JP2007300496A - Optical transmitter, optical relay, optical transmission system and optical transmission method in wavelength division multiplex transmission - Google Patents

Optical transmitter, optical relay, optical transmission system and optical transmission method in wavelength division multiplex transmission Download PDF

Info

Publication number
JP2007300496A
JP2007300496A JP2006127865A JP2006127865A JP2007300496A JP 2007300496 A JP2007300496 A JP 2007300496A JP 2006127865 A JP2006127865 A JP 2006127865A JP 2006127865 A JP2006127865 A JP 2006127865A JP 2007300496 A JP2007300496 A JP 2007300496A
Authority
JP
Japan
Prior art keywords
optical
light
waveform
transmission
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006127865A
Other languages
Japanese (ja)
Other versions
JP4813963B2 (en
Inventor
Fumikazu Inuzuka
史一 犬塚
Etsushi Yamazaki
悦史 山崎
Atsushi Takada
篤 高田
Kazushige Yonenaga
一茂 米永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006127865A priority Critical patent/JP4813963B2/en
Publication of JP2007300496A publication Critical patent/JP2007300496A/en
Application granted granted Critical
Publication of JP4813963B2 publication Critical patent/JP4813963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce signal waveform deterioration generated by a nonlinear optical effect in wavelength division multiplex transmission. <P>SOLUTION: The optical transmitter in a wavelength division multiplex transmission system has a light source which generates light with a plurality of wavelength in which phases of light are synchronized and a compensation means for compensating waveform deterioration of the light of each wavelength generated by the nonlinear optical effect of a transmission path. The compensation means estimates the waveform deterioration on the receiving end to compensate the waveform deterioration based on transmission path parameters such as the transmission parameters. Otherwise, the compensation means estimates the waveform deterioration generated in the transmission path by the nonlinear optical effect by using a transmission data pattern of other wavelength. Furthermore, the compensation means estimates phase variation generation in the transmission path by the nonlinear optical effect based on optical field intensity to compensate the waveform deterioration by the phase variation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数波長の信号光を同一の光ファイバ中に多重化して光通信の大容量化を実現する波長分割多重(WDM)伝送システムにおいて使用される波長多重光変調方式に関する。   The present invention relates to a wavelength division multiplexing optical modulation method used in a wavelength division multiplexing (WDM) transmission system that multiplexes signal light of a plurality of wavelengths into the same optical fiber to realize a large capacity of optical communication.

従来の光通信における波長分割多重伝送システムでは、光送信部は、各々が異なる波長を発振するレーザ、例えば分布帰還型レーザダイオードを個別にチャネル数分だけ用意し、それぞれ個別の外部光変調器を用いてそれぞれの波長の光を送信データ系列によって変調し、送信している。また光受信器では、波長フィルタなどを用いて波長多重された信号光を各波長の変調信号光へと分波し、それぞれの波長の信号光を個別に復調・検波する。変復調方式としては、送信データ信号の0,1を光の強度に符号化して伝送する強度変調−直接検波方式、送信データ信号の0,1を光位相に符号化して伝送する位相変調方式、また、送信データ信号の0,1を光の位相変化として符号化する遅延位相変調方式などがある。WDM信号の波長多重数を増やし、波長間隔を狭窄化し周波数利用効率を上げることにより、光ファイバ1本あたりの伝送容量を拡大することが、波長分割多重伝送システムを経済的に構築する上で重要になる。   In a conventional wavelength division multiplex transmission system in optical communication, the optical transmission unit prepares lasers each oscillating different wavelengths, for example, distributed feedback laser diodes for the number of channels individually, and each has an individual external optical modulator. The light of each wavelength is modulated by the transmission data series and transmitted. Also, the optical receiver demultiplexes the wavelength-multiplexed signal light into wavelength-modulated signal light using a wavelength filter or the like, and individually demodulates and detects the signal light of each wavelength. As a modulation / demodulation method, an intensity modulation-direct detection method in which 0 and 1 of a transmission data signal are encoded and transmitted as light intensity, a phase modulation method in which 0 and 1 of a transmission data signal are encoded and transmitted as an optical phase, There is a delay phase modulation system that encodes 0 and 1 of a transmission data signal as a phase change of light. Increasing the transmission capacity per optical fiber by increasing the number of wavelength division multiplexing of WDM signals, narrowing the wavelength interval and increasing frequency utilization efficiency is important in constructing a wavelength division multiplexing transmission system economically become.

一般に光ファイバには伝搬定数が周波数によって変化する分散が存在する。この分散の影響で光ファイバ伝搬後の信号光パルス波形は広がり、受信側で符号間干渉による信号波形劣化が生じる。さらに光ファイバでは、その屈折率が光強度に比例して変化する光カー効果によって、四光波混合(FWM)、相互位相変調(CPM)、自己位相変調(SPM)などの非線形光学効果が発生する。例えば、FWMは3つの異なる波長の光(光周波数:ω,ω,ω)によって、光周波数ω=ω+ω−ω,ω+ω−ω,ω+ω−ωに新たな光(アイドラ光)が発生する現象である。波長分割多重伝送システムでは等間隔に設定された光周波数グリッド上に光信号が配置されるため、FWMによって発生したアイドラ光の光周波数は他のチャネルの光周波数に一致し、受信側で信号光の波形劣化を引き起こす。自波長の光強度が自波長の位相変化をもたらすSPMや、他波長の光強度が自波長の位相変化をもたらすCPMは、信号光のパルス時間幅を変化させる原因となり、受信側での信号光の波形劣化を引き起こす。そこで、1つの波長での光ファイバ伝送による分散とSPMの影響を伝送後に打ち消すような送信波形を電気演算して、その波形を信号光に符号化する方法が提案されている(非特許文献1参照)。 In general, an optical fiber has dispersion in which a propagation constant varies with frequency. Due to this dispersion, the signal light pulse waveform after propagation through the optical fiber spreads, and signal waveform deterioration due to intersymbol interference occurs on the receiving side. Further, in an optical fiber, nonlinear optical effects such as four-wave mixing (FWM), cross phase modulation (CPM), and self phase modulation (SPM) occur due to the optical Kerr effect whose refractive index changes in proportion to the light intensity. . For example, the FWM uses light of three different wavelengths (optical frequencies: ω 1 , ω 2 , ω 3 ) to generate optical frequencies ω 4 = ω 1 + ω 2 −ω 3 , ω 3 + ω 1 −ω 2 , ω 2 + ω 3. -ω new optical (idler light) 1 is a phenomenon that occurs. In the wavelength division multiplexing transmission system, optical signals are arranged on an optical frequency grid set at equal intervals, so that the optical frequency of idler light generated by the FWM matches the optical frequency of other channels, and the signal light is received on the receiving side. Cause waveform degradation. The SPM in which the light intensity of the own wavelength causes the phase change of the own wavelength and the CPM in which the light intensity of the other wavelengths causes the phase change of the own wavelength cause the pulse time width of the signal light to change, and the signal light on the receiving side Cause waveform degradation. In view of this, a method has been proposed in which a transmission waveform that cancels after dispersion the dispersion due to optical fiber transmission at one wavelength and the effect of SPM is electrically calculated and the waveform is encoded into signal light (Non-patent Document 1). reference).

Kim Roberts, et. al., “Electric Precompensation of Optical Nonlinearity”, Photonics Technology Letters, Vol.18, NO.2, pp.403-405Kim Roberts, et. Al., “Electric Precompensation of Optical Nonlinearity”, Photonics Technology Letters, Vol.18, NO.2, pp.403-405 Nonlinear Fiber Optics 3rd-edition, G.P.Agrawal, Academic Press (2001)Nonlinear Fiber Optics 3rd-edition, G.P.Agrawal, Academic Press (2001)

波長分割多重伝送では、自波長信号光の非線形光学効果であるSPM以外に、他波長信号光からの非線形光学効果であるFWMやCPMも信号波形劣化の要因となる。上述したような分散とSPMの影響を打ち消す送信方法では、波長分割多重伝送におけるFWMやCPMによる信号波形劣化を低減することはできない。そのため、FWMやCPMの影響が少なくなるように波長分割多重伝送システムを設計すると、波長多重数や波長間隔が制限されることになる。   In the wavelength division multiplexing transmission, in addition to the SPM that is the nonlinear optical effect of the self-wavelength signal light, the FWM and CPM that are the nonlinear optical effects from the other wavelength signal light also cause signal waveform deterioration. In the transmission method that cancels the influence of dispersion and SPM as described above, signal waveform deterioration due to FWM or CPM in wavelength division multiplexing transmission cannot be reduced. Therefore, if the wavelength division multiplexing transmission system is designed so that the influence of FWM and CPM is reduced, the number of wavelength multiplexing and the wavelength interval are limited.

本発明はこのような問題に鑑みてなされたものであり、その目的とするところは、波長分割多重伝送における非線形光学効果による信号波形の劣化を低減する波長多重光送信方式を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a wavelength division multiplexing optical transmission system that reduces deterioration of a signal waveform due to a nonlinear optical effect in wavelength division multiplexing transmission. .

本発明は、このような目的を達成するために、請求項1に記載の発明は、複数の波長の光を変調し、多重して送信する光送信器において、光の位相が同期した複数の波長の光を発生する光源と、伝送路の非線形光学効果により発生する各波長の光の波形劣化を補償する補償手段とを備えたことを特徴とする。   In order to achieve such an object, the present invention provides an optical transmitter that modulates a plurality of wavelengths of light and multiplexes and transmits the light, and a plurality of optical phases synchronized with each other. A light source that generates light of a wavelength and a compensation unit that compensates for waveform deterioration of the light of each wavelength generated by the nonlinear optical effect of the transmission line are provided.

また、請求項2に記載の発明は、請求項1に記載の光送信器において、前記補償手段は、前記伝送路の伝送路パラメータに基づいて波形劣化を補償することを特徴とする。   According to a second aspect of the present invention, in the optical transmitter according to the first aspect, the compensating means compensates for waveform deterioration based on a transmission path parameter of the transmission path.

また、請求項3に記載の発明は、請求項1または2に記載の光送信器において、前記補償手段は、一の波長の光の波形劣化を補償するにあたって他の波長の光の送信データ系列に基づいて波形劣化を補償することを特徴とする。   According to a third aspect of the present invention, there is provided the optical transmitter according to the first or second aspect, wherein the compensating means transmits a transmission data sequence of light of another wavelength in compensating for waveform deterioration of light of one wavelength. Based on the above, the waveform deterioration is compensated.

また、請求項4に記載の発明は、請求項1から3のいずれかに記載の光送信器において、前記補償手段は、前記伝送路パラメータを含む非線形伝搬方程式に基づいて波形劣化を補償することを特徴とする。   According to a fourth aspect of the present invention, in the optical transmitter according to any one of the first to third aspects, the compensating means compensates for waveform degradation based on a nonlinear propagation equation including the transmission path parameter. It is characterized by.

また、請求項5に記載の発明は、請求項1から4のいずれかに記載の光送信器において、前記補償手段は、前記複数の波長の光に対する送信データパターンと、前記送信データパターンに対応する各波長の補償波形とを対応付けて格納した記憶手段を備え、前記補償手段は、前記送信データパターンに応じて、前記記憶手段から各波長の補償波形を読み出して、各波長の波形劣化を補償することを特徴とする。   According to a fifth aspect of the present invention, in the optical transmitter according to any one of the first to fourth aspects, the compensation means corresponds to the transmission data pattern for the light of the plurality of wavelengths and the transmission data pattern. Storage means that associates and stores the compensation waveform of each wavelength to be read, and the compensation means reads the compensation waveform of each wavelength from the storage means according to the transmission data pattern, and performs waveform deterioration of each wavelength. It is characterized by compensating.

また、請求項6に記載の発明は、請求項1から3のいずれかに記載の光送信器において、前記補償手段は、前記伝送路の非線形光学効果により発生する光の位相変化による波形劣化を補償することを特徴とする。   According to a sixth aspect of the present invention, in the optical transmitter according to any one of the first to third aspects, the compensating means performs waveform degradation due to a phase change of light generated by a nonlinear optical effect of the transmission path. It is characterized by compensating.

また、請求項7に記載の発明は、請求項6に記載の光送信器において、前記補償手段は、複数の波長の光をそれぞれの送信データにより変調し、多重した後、前記それぞれの送信データパターンに基づいて前記多重した光の位相変化による波形劣化を補償することを特徴とする。   The invention according to claim 7 is the optical transmitter according to claim 6, wherein the compensating means modulates and multiplexes light of a plurality of wavelengths with respective transmission data, and then transmits the respective transmission data. The waveform deterioration due to the phase change of the multiplexed light is compensated based on the pattern.

また、請求項8に記載の発明は、請求項6に記載の光送信器において、前記補償手段は、複数の波長の光をそれぞれの送信データにより変調し、多重した後、前記多重した光の光電界強度に基づいて前記多重した光の位相変化による波形劣化を補償することを特徴とする。   According to an eighth aspect of the present invention, in the optical transmitter according to the sixth aspect, the compensation means modulates and multiplexes light of a plurality of wavelengths with respective transmission data, and then transmits the multiplexed light. The waveform deterioration due to the phase change of the multiplexed light is compensated based on the optical electric field intensity.

また、請求項9に記載の発明は、請求項1から9のいずれかに記載の光送信器を備えた光伝送システムである。   The invention according to claim 9 is an optical transmission system including the optical transmitter according to any one of claims 1 to 9.

また、請求項10に記載の発明は、複数の波長の光が変調され、多重された光信号を中継する光中継器において、前記多重された光の光電界強度に基づいて前記多重された光の位相変化による波形劣化を補償することを特徴とする。   According to a tenth aspect of the present invention, there is provided an optical repeater that relays multiplexed optical signals in which light of a plurality of wavelengths is modulated, and the multiplexed light based on the optical electric field strength of the multiplexed light. It is characterized in that the waveform deterioration due to the phase change is compensated.

また、請求項11に記載の発明は、複数の波長の光を変調し、多重して送信する方法であって、光の位相が同期した複数の波長の光を発生することと、伝送路の非線形光学効果により発生する各波長の光の波形劣化を補償することとを備えることを特徴とする。   The invention according to claim 11 is a method for modulating and multiplexing a plurality of wavelengths of light, generating a plurality of wavelengths of light whose phase is synchronized, Compensating for waveform deterioration of light of each wavelength generated by the nonlinear optical effect.

本発明によれば、光ファイバ伝送路中で非線形光学効果による信号波形劣化を低減することにより、波長多重数、周波数利用効率を上げることができ、波長分割多重伝送システムを経済的に構築することができる。   According to the present invention, by reducing signal waveform deterioration due to nonlinear optical effects in an optical fiber transmission line, the number of wavelength multiplexing and frequency utilization efficiency can be increased, and a wavelength division multiplexing transmission system can be constructed economically. Can do.

以下、図面を参照しながら本発明の実施例について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1の実施例では、波長分割多重伝送における各波長の光位相が時間的に安定な搬送波を用い、さらに信号波形劣化を及ぼす非線形光学効果による他波長からの影響を補償する方法を示す。ここで、各波長の光位相が時間的に安定しているとは、各波長の光位相が同期していることであり、ある波長の光位相と別の波長の光位相との差が一定の速度で安定にシフトし、光位相が一致するタイミングが一定周期になっている状態のことをいう。つまり、光周波数がf1、f2の光に対して1/(f1−f2)周期で2つの光位相が一致する状態である。換言すると、異なる波長の光を光受信器で受光すると、2つの光周波数の差で振動する光電流成分(ビート成分)が発生する。このビート成分の周波数、位相が安定である状態を各波長の光位相が同期している状態と呼ぶ。   In the first embodiment of the present invention, there is provided a method of compensating for the influence from other wavelengths due to the nonlinear optical effect that causes the signal waveform deterioration, using a carrier wave whose optical phase of each wavelength is temporally stable in wavelength division multiplex transmission. Show. Here, the optical phase of each wavelength is stable in time means that the optical phase of each wavelength is synchronized, and the difference between the optical phase of one wavelength and the optical phase of another wavelength is constant. It is a state in which the light phase is shifted stably and the timing at which the optical phases coincide is a constant period. That is, the two optical phases coincide with each other in the 1 / (f1-f2) period with respect to the light having the optical frequencies f1 and f2. In other words, when light of different wavelengths is received by the optical receiver, a photocurrent component (beat component) that oscillates due to the difference between the two optical frequencies is generated. A state where the frequency and phase of the beat component are stable is called a state where the optical phases of the respective wavelengths are synchronized.

図1に本発明の波長多重光送信方式の第一の実施例による構成例を示す。図1(a)に示すように、波長分割多重伝送システム100は、複数波長の変調信号光を多重して送信する光送信器200と、光ファイバ伝送路300と、複数波長の変調信号光を受信して復調する光受信器400とを備えている。この波長分割多重伝送システムにおいて、光送信器200の複数波長の光源から発生する光として、図1(b)に示すように、k、k+1、k+2、k+3の搬送波が波長多重数mで周波数軸上に等間隔に配置され、各波長の光位相が同期したものを想定する。   FIG. 1 shows a configuration example according to a first embodiment of the wavelength division multiplexing optical transmission system of the present invention. As shown in FIG. 1A, a wavelength division multiplexing transmission system 100 includes an optical transmitter 200 that multiplexes and transmits a plurality of wavelengths of modulated signal light, an optical fiber transmission line 300, and a plurality of wavelengths of modulated signal light. And an optical receiver 400 that receives and demodulates. In this wavelength division multiplexing transmission system, as shown in FIG. 1B, the light generated from the light sources having a plurality of wavelengths of the optical transmitter 200 includes k, k + 1, k + 2, and k + 3 carriers having a wavelength multiplexing number m and a frequency axis. It is assumed that the optical phases of the respective wavelengths are synchronized with each other at equal intervals.

四光波混合は、周波数の異なる3つ、もしくは2つの光の光周波数ミキシングにより新たな光が発生する現象であり、例えば、図1(b)に示すようにチャネルk−1、k、k+1の光周波数をωk−1、ω、ωk+1とすると、これらの信号光間の周波数ミキシングによってω+ωk+1−ωk−1=ωk+2にアイドラ光を発生させる。発生するアイドラ光の光位相ψk+2は、チャネルk−1、k、k+1の信号光のそれぞれの光位相φk−1、φ、φk+1を用いてψk+2=φk−1+φ−φk+1と表される。各搬送波間の光位相が同期していない場合、光周波数ωk+2で送信された信号光の光位相φk+2とψk+2は相関を持たないため、四光波混合で発生したアイドラ光とチャネルk+2の信号光の干渉によって生成される信号光の光振幅および光位相はランダムに変動する。一方、各波長の搬送波の光位相をロックすることで、干渉によって生成される信号光の振幅および位相は安定する。さらに、四光波混合によって発生するアイドラ光と同じ振幅で、逆位相の補償用信号光をωk+2の信号光に予め付加して送信することで、受信側で四光波混合によるクロストークを打ち消すことが可能となる。 Four-wave mixing is a phenomenon in which new light is generated by optical frequency mixing of three or two lights having different frequencies. For example, as shown in FIG. 1B, channels k-1, k, and k + 1 If the optical frequencies are ω k−1 , ω k , and ω k + 1 , idler light is generated at ω k + ω k + 1 −ω k−1 = ω k + 2 by frequency mixing between these signal lights. The optical phase ψ k + 2 of the generated idler light is expressed as ψ k + 2 = φ k-1 + φ k − using the optical phases φ k−1 , φ k , φ k + 1 of the signal lights of the channels k−1, k, k + 1. It is expressed as φ k + 1 . When the optical phases between the carrier waves are not synchronized, the optical phases φ k + 2 and ψ k + 2 of the signal light transmitted at the optical frequency ω k + 2 have no correlation. Therefore, the idler light generated by the four-wave mixing and the channel k + 2 The optical amplitude and optical phase of the signal light generated by the interference of the signal light vary randomly. On the other hand, the amplitude and phase of the signal light generated by the interference are stabilized by locking the optical phase of the carrier wave of each wavelength. Further, the compensation signal light having the same amplitude as that of the idler light generated by the four-wave mixing is added in advance to the signal light of ω k + 2 and transmitted, thereby canceling the crosstalk caused by the four-wave mixing on the receiving side. Is possible.

ここでは、簡単のため1つのチャネルに注目して説明したが、他のチャネルでも同様にして四光波混合による波形劣化の効果を打ち消すことができることが理解されよう。但し、付加する補償光が他のチャネルに与える影響も考慮して補償する必要がある。また、各波長の搬送波間の光位相をロックすることにより、自己位相変調、相互位相変調によるチャネル間クロストークも予測可能になるため、光ファイバ伝送路中のすべての非線形光学効果を補償することができる。また、ここでは光送信器で前補償する方法について述べたが、光受信器にて他のチャネルから光ファイバ伝送中に受けた光振幅、光位相波形の変化を推定して補償する方法も可能である。   Here, for the sake of simplicity, the description has been given focusing on one channel, but it will be understood that the effect of waveform deterioration due to four-wave mixing can be canceled in the same manner for other channels as well. However, it is necessary to compensate in consideration of the influence of the added compensation light on other channels. In addition, by locking the optical phase between the carrier waves of each wavelength, crosstalk between channels due to self-phase modulation and cross-phase modulation can also be predicted, thus compensating for all nonlinear optical effects in the optical fiber transmission line. Can do. Although the pre-compensation method using the optical transmitter has been described here, it is also possible to estimate and compensate for changes in the optical amplitude and optical phase waveform received during optical fiber transmission from other channels by the optical receiver. It is.

以下では、強度変調−直接検波方式を例に、補償用信号光を信号光に重畳する構成例について説明する。図2に、その構成例を示す。図2において、光送信器200は、各チャンネルの搬送波を送信データで変調して信号光を生成する光変調器210と、各チャネルの搬送波を補償用の変調信号で変調して補償用信号光を生成する変調器220と、各チャネルの送信データから補償用の変調信号を生成する補償信号演算回路230と、各チャネルの補償用信号光の位相を調整する位相シフタ240と、各チャンネルの信号光および補償用信号光を合波して出力する光合波器250とを含む。   Hereinafter, a configuration example in which the compensation signal light is superimposed on the signal light will be described using the intensity modulation-direct detection method as an example. FIG. 2 shows an example of the configuration. In FIG. 2, an optical transmitter 200 modulates a carrier wave of each channel with transmission data to generate signal light, and modulates a carrier wave of each channel with a modulation signal for compensation to generate a compensation signal light. , A compensation signal calculation circuit 230 that generates a modulation signal for compensation from transmission data of each channel, a phase shifter 240 that adjusts the phase of the compensation signal light of each channel, and a signal of each channel And an optical multiplexer 250 that combines and outputs the light and the compensation signal light.

ここでは、周波数ωk+2の信号光に注目して、ωk+2に重畳するωk−1、ω、ωk+1の四光波混合光を補償する構成例を示す。送信データdk−1、d、dk+1がそれぞれ(1、1、1)のとき周波数ωk+2に四光波混合光が発生する。そのため、補償信号演算回路230はチャネルk−1、k、k+1のデータパターンを読み取って、その値に基づいてωk+2の補償用光変調器220を駆動して補償用信号光を生成する。補償用信号光の光位相は、四光波混合によって発生するアイドラ光と光位相が反転するように位相シフタ240(k+2)を予め調整し、光合波器(250)によってωk+2の信号光と合波する。ここでは、周波数ωk−1、ω、ωk+1によって周波数ωk+2に発生する光を補償する例を示したが、周波数ωk+2に重畳する四光波混合光は、図1(b)に示した周波数の組み合わせ以外でも発生する。そのため、それぞれの四光波混合光に対して図2に示した補償用信号光を生成することで、さらなる非線形波形劣化による影響の低減が可能となる。また、補償信号演算回路230で用いる伝送路パラメータは各光ファイバに固有のものであり、時間的に変動するため、受信波形が所望の波形となるように光送信器200の補償信号演算回路230をフィードバック制御して補償された送信波形を生成することも可能である。 Here, a configuration example in which the four-wave mixed light of ω k−1 , ω k , and ω k + 1 superimposed on ω k + 2 is compensated by paying attention to the signal light of frequency ω k + 2 is shown. When the transmission data d k−1 , d k , and d k + 1 are (1, 1, 1), four-wave mixed light is generated at the frequency ω k + 2 . Therefore, the compensation signal calculation circuit 230 reads the data patterns of the channels k−1, k, k + 1, and drives the ω k + 2 compensation optical modulator 220 based on the values to generate compensation signal light. The optical phase of the compensation signal light is adjusted in advance by the phase shifter 240 (k + 2) so that the optical phase is inverted with respect to the idler light generated by the four-wave mixing, and is combined with the signal light of ω k + 2 by the optical multiplexer (250). To wave. Here, an example in which light generated at the frequency ω k + 2 is compensated by the frequencies ω k−1 , ω k , and ω k + 1 is shown, but the four-wave mixed light superimposed on the frequency ω k + 2 is shown in FIG. It occurs even when the frequency combination is different. Therefore, by generating the compensation signal light shown in FIG. 2 for each four-wave mixed light, it is possible to further reduce the influence due to nonlinear waveform deterioration. Further, the transmission path parameter used in the compensation signal calculation circuit 230 is unique to each optical fiber and fluctuates with time. Therefore, the compensation signal calculation circuit 230 of the optical transmitter 200 has a desired waveform. It is also possible to generate a compensated transmission waveform by performing feedback control.

本実施例では、各波長の光位相が同期している搬送波を用いて、光ファイバ伝送路に依存する伝送路パラメータを係数とする非線形伝搬方程式に、所望の受信信号波形を終状態として与えることによって非線形波形劣化を抑圧するための送信波形を求め、これに基づいて各波長の光振幅と光位相を制御することで前補償された送信信号波形を生成し送信する。   In the present embodiment, a desired received signal waveform is given as a final state in a nonlinear propagation equation using a transmission line parameter depending on an optical fiber transmission line as a coefficient, using a carrier wave in which the optical phase of each wavelength is synchronized. Thus, a transmission waveform for suppressing nonlinear waveform deterioration is obtained, and based on this, the optical amplitude and optical phase of each wavelength are controlled to generate and transmit a precompensated transmission signal waveform.

図3を参照して本実施例の動作を説明する。図3に示すように、本実施例による光送信器200は、各チャネルの搬送波を変調器駆動信号で変調して前補償された送信信号光を生成する変調器210と、各チャネルの送信データを非線形伝搬方程式に基づいて補償した変調器駆動信号を生成する波形演算回路232とを含む。この光送信器200では、波長間の周波数と初期位相が時間的に安定な複数波長λ、λ、λ、…λの光が搬送波としてそれぞれの光変調器210に入力される。各波長の光変調器210には、各チャネルに割り当てられた送信データパターンd1,n、d2,n、d3,n、…dm,nを各波長λ、λ、λ、…λの搬送波の光振幅と光位相に符号化するために波形演算回路232で演算された変調器駆動信号の同相位相成分Mi1、Mi2、Mi3、…Mimと、直交位相成分Mq1、Mq2、Mq3、…Mqmが入力される。光変調器210で、各波長λ、λ、λ、…λの光は、変調器駆動信号の同相位相成分Mi1、Mi2、Mi3、…Mimと、直交位相成分Mq1、Mq2、Mq3、…Mqmにより、その振幅と位相が変調され、送信信号光として伝送路光ファイバ300に出力される。 The operation of this embodiment will be described with reference to FIG. As shown in FIG. 3, the optical transmitter 200 according to this embodiment includes a modulator 210 that generates a pre-compensated transmission signal light by modulating a carrier wave of each channel with a modulator driving signal, and transmission data of each channel. And a waveform calculation circuit 232 that generates a modulator drive signal that is compensated based on the nonlinear propagation equation. In this optical transmitter 200, light of a plurality of wavelengths λ 1 , λ 2 , λ 3 ,... Λ m whose frequency and initial phase are stable in time are input to each optical modulator 210 as a carrier wave. In the optical modulator 210 of each wavelength, the transmission data patterns d 1, n , d 2, n , d 3, n ,... Dm, n assigned to each channel are changed to the wavelengths λ 1 , λ 2 , λ 3. , ... lambda-phase phase component of the carrier of the optical amplitude and the calculated modulator drive signal waveform calculation circuit 232 for encoding the light phase of the m M i1, M i2, M i3, ... M im and, quadrature phase The components M q1 , M q2 , M q3 ,... M qm are input. In the optical modulator 210, each wavelength λ 1, λ 2, λ 3 , ... λ light of m-phase phase component of the modulator drive signal M i1, M i2, M i3, a ... M im, quadrature phase component M q1, M q2, M q3, by ... M qm, its amplitude and phase are modulated, and output to the transmission path optical fiber 300 as a transmission signal light.

送信信号光の搬送波間の光位相が同期している場合には、光送信器の光振幅・光位相を境界条件として非線形伝搬方程式に与えて、光ファイバ伝送後の波形を計算することができる。同様に、非線形伝搬方程式の境界条件として受信側での光振幅・位相波形を与えることで、送信側での波形を計算することができる。したがって、光受信器の光振幅・位相波形として所望の波形を与えて計算することで、光ファイバ伝送路で受ける波形変化が前補償された送信波形を得ることができる。   When the optical phase between the carrier waves of the transmission signal light is synchronized, the waveform after optical fiber transmission can be calculated by giving the optical amplitude and optical phase of the optical transmitter to the nonlinear propagation equation as boundary conditions . Similarly, the waveform on the transmission side can be calculated by giving the optical amplitude / phase waveform on the reception side as the boundary condition of the nonlinear propagation equation. Therefore, by giving a desired waveform as the optical amplitude / phase waveform of the optical receiver and calculating, it is possible to obtain a transmission waveform in which the waveform change received in the optical fiber transmission line is pre-compensated.

近年、光ファイバ伝送シミュレーション技術は向上しているが、送信器の波形を境界条件として与え、受信器の波形を求める方法が一般的である。この既存のシミュレーション技術を用いて前補償された送信波形を求めるためには、シミュレーションに用いる伝送路パラメータに負符号をかけて計算すればよい。以下にその原理を示す。非線形伝搬方程式は、光電場A、距離z、時刻t、非線形係数γ、分散β、分散スロープβ、損失係数αとして、次式で表される(非特許文献2の49ページを参照)。 In recent years, optical fiber transmission simulation technology has been improved, but a general method is to obtain a waveform of a receiver by giving a waveform of a transmitter as a boundary condition. In order to obtain a pre-compensated transmission waveform using this existing simulation technique, the transmission path parameter used for the simulation may be calculated by applying a negative sign. The principle is shown below. The nonlinear propagation equation is expressed by the following equation as photoelectric field A, distance z, time t, nonlinear coefficient γ, dispersion β 2 , dispersion slope β 3 , and loss coefficient α (see page 49 of Non-Patent Document 2). .

Figure 2007300496
Figure 2007300496

ここで、Tとは群速度vgで伝搬する光波形の中心を時間0としたときの時刻である。 Here, T is the time when the center of the optical waveform propagating at the group velocity vg is time 0.

次に、伝送路光ファイバの長さをLとし、z’=L−zとして新たな変数z’を導入する。このときA(z’)は次の非線形方程式を満たす。   Next, the length of the transmission line optical fiber is set to L, and a new variable z ′ is introduced as z ′ = L−z. At this time, A (z ′) satisfies the following nonlinear equation.

Figure 2007300496
Figure 2007300496

z’=0、およびz’=Lはそれぞれz=L、z=0に対応するため、A(z’=0)、A(z’=L)はそれぞれ受信器、送信器での波形を表す。(2)式は、(1)式の伝送路パラメータγ、β、β、αを−1倍した方程式に一致する。したがって、A(z’=0)として所望の波形を与え、伝送路パラメータγ、β、β、αを負符号として、既存の伝送路シミュレータ技術を用いて前補償送信波形を得ることができる。γ、β、β、αなどの伝送路パラメータを予め取得しておき、送信データパターンd1,n、d2,n、d3,n、…dm,nに応じて、例えばSplit−Step Fourier法(非特許文献2の51ページを参照)を用いて、(2)式から前補償送信波形を生成するための変調器駆動信号を得ることができる。波形演算回路232の出力がデジタル信号の場合には、デジタル−アナログ変換器を介して変調器駆動信号Mi1、Mi2、Mi3、…MimおよびMq1、Mq2、Mq3、…Mqmを生成し、各波長の搬送波の光振幅と光位相を変調することができる。 Since z ′ = 0 and z ′ = L correspond to z = L and z = 0, respectively, A (z ′ = 0) and A (z ′ = L) respectively represent waveforms at the receiver and the transmitter. To express. Equation (2) matches the equation obtained by multiplying the transmission line parameters γ, β 2 , β 3 , and α of Equation (1) by −1. Therefore, a desired waveform can be given as A (z ′ = 0), and the pre-compensated transmission waveform can be obtained using the existing transmission line simulator technology with the transmission line parameters γ, β 2 , β 3 , α as negative signs. it can. γ, β 2, β 3, obtained in advance of the transmission path parameters, such as alpha, the transmission data pattern d 1, n, d 2, n, d 3, n, ... d m, depending on n, for example Split Using the Step Fourier method (see page 51 of Non-Patent Document 2), a modulator drive signal for generating a pre-compensated transmission waveform can be obtained from Equation (2). When the output of the waveform calculation circuit 232 is a digital signal, modulator driving signals M i1 , M i2 , M i3 ,... M im and M q1 , M q2 , M q3,. qm can be generated and the optical amplitude and optical phase of the carrier wave of each wavelength can be modulated.

変調信号Mi1、Mi2、Mi3、…MimとMq1、Mq2、Mq3、…Mqmから各波長の搬送波の光振幅と光位相を変調する方法としては、例えば、同相位相成分と直交位相成分の振幅をそれぞれ変調して、それぞれの変調波形を合波させることで任意の振幅と位相を得る方法がある。このような変調器の構成例を図4に示す。この光変調器210は、2つに分岐させたそれぞれの光路にマッハツェンダ干渉計型強度変調器212、214を配置し、それぞれの変調器を異なる駆動信号で独立に変調できるように構成されている。(2)式から求めた送信波形の同相位相成分と直交位相成分をそれぞれ変調器駆動信号Mi1、Mi2、Mi3、…MimとMq1、Mq2、Mq3、…Mqmに変換して、それぞれ光変調器212と214に入力する。2つの光路の位相差がπ/2±nπ(n:整数)となるように位相シフタ216を介して2つの光路を再び結合させることで、前補償送信波形の同相位相成分と直交位相成分をもつ信号光を生成することができる。 As a method for modulating the optical amplitude and optical phase of the carrier wave of each wavelength from the modulated signals M i1 , M i2 , M i3 ,... M im and M q1 , M q2 , M q3 ,. There is a method of obtaining arbitrary amplitudes and phases by modulating the amplitudes of the quadrature phase components and combining the respective modulated waveforms. A configuration example of such a modulator is shown in FIG. This optical modulator 210 is configured such that Mach-Zehnder interferometer type intensity modulators 212 and 214 are arranged in respective optical paths branched into two, and each modulator can be independently modulated with different drive signals. . The in-phase component and the quadrature component of the transmission waveform obtained from the equation (2) are converted into modulator drive signals M i1 , M i2 , M i3 ,... M im and M q1 , M q2 , M q3 ,. And input to the optical modulators 212 and 214, respectively. By recombining the two optical paths through the phase shifter 216 so that the phase difference between the two optical paths is π / 2 ± nπ (n: integer), the in-phase component and the quadrature component of the pre-compensated transmission waveform can be obtained. It is possible to generate signal light having the same.

図5に波長分割多重伝送システムの各部における信号波形を示す。図5は例として、波長数4、ビットレート10Gbps、チャネル間隔25GHzで、送信波長が光ファイバのゼロ分散波長付近としている場合を示している。図5(a)はチャネル4のデータ系列を示し、図5(b)はチャンネル4の送信波形の同相位相成分を示し、図5(c)は直交位相成分を示している。また、図6に、80kmの光ファイバ伝送後の受信波形を示す。図6(a)は、非線形光学効果と分散による波形劣化が補償され、アイパターンの目が開いた受信波形を示している。図6(b)は、比較のため、本発明による補償を行わなかった場合の受信波形を示している。   FIG. 5 shows signal waveforms in each part of the wavelength division multiplex transmission system. FIG. 5 shows an example in which the number of wavelengths is 4, the bit rate is 10 Gbps, the channel interval is 25 GHz, and the transmission wavelength is in the vicinity of the zero dispersion wavelength of the optical fiber. FIG. 5A shows the data series of channel 4, FIG. 5B shows the in-phase component of the transmission waveform of channel 4, and FIG. 5C shows the quadrature component. FIG. 6 shows a received waveform after transmission of an 80 km optical fiber. FIG. 6A shows a received waveform in which the waveform deterioration due to the nonlinear optical effect and dispersion is compensated and the eyes of the eye pattern are opened. For comparison, FIG. 6B shows a received waveform when compensation according to the present invention is not performed.

送信波形を求める際に、波長分散によりチャネルによって群速度が異なるため、非線形光学効果による他チャネルからの影響は、送信しようとしている送信データパターンd1,n、d2,n、d3,n、…dm,nの前後数ビットの送信データパターンを演算に利用することもできる。 When the transmission waveform is obtained, the group velocity varies depending on the channel due to chromatic dispersion. Therefore, the influence from other channels due to the nonlinear optical effect is caused by the transmission data pattern d 1, n , d 2, n , d 3, n to be transmitted. ,..., D m, n before and after several bits of transmission data patterns can be used for the calculation.

また、伝送路パラメータは各光ファイバに固有のものであり、時間的に変動するため、受信波形が所望の波形となるように光送信器の波形演算回路をフィードバック制御して送信波形を生成することもできる。   Also, since the transmission path parameter is unique to each optical fiber and fluctuates with time, the waveform calculation circuit of the optical transmitter is feedback-controlled so that the received waveform becomes a desired waveform, thereby generating a transmission waveform. You can also

本発明の第2の実施例では送信データパターンに応じた各波長の送信波形を実時間で演算して求める必要がある。しかし、送信データのビットレートが上がると、その演算速度も上げる必要がある。そこで、本実施例では、複数チャネルのビットパターンの組み合わせに対応した送信波形を、γ、β、β、αなどの伝送路パラメータを用いて予め演算し、その送信波形を波形データテーブルに蓄積しておき、ビットパターンの組み合わせに応じて波形データテーブルと照合して一致する送信波形を取り出す方法を示す。 In the second embodiment of the present invention, it is necessary to calculate the transmission waveform of each wavelength according to the transmission data pattern in real time. However, when the bit rate of transmission data increases, it is necessary to increase the calculation speed. Therefore, in this embodiment, a transmission waveform corresponding to a combination of bit patterns of a plurality of channels is calculated in advance using transmission path parameters such as γ, β 2 , β 3 , α, and the transmission waveform is stored in a waveform data table. A method is shown in which the transmission waveforms that have been stored and matched with the waveform data table in accordance with the combination of bit patterns are extracted.

図7を参照して、本実施例について説明する。送信データパターンd1,n、d2,n、d3,n、…dm,nはデータパターン照合回路234により送信しようとする各チャネルの送信データパターンを認識し、データパターン組み合わせに応じてメモリ内の送信波形へのポインタ信号Pを出力する。波形データメモリ236には、γ、β、β、αなどの伝送路パラメータを用いて予め演算された送信波形がポインタPに対してそれぞれ蓄積してある。照合回路234から入力されたポインタ信号Pに対応した送信波形、もしくは変調器駆動波形が波形データメモリ236から出力され、各波長の変調器210が駆動される。 This embodiment will be described with reference to FIG. The transmission data patterns d 1, n , d 2, n , d 3, n ,... Dm, n recognize the transmission data pattern of each channel to be transmitted by the data pattern matching circuit 234, and according to the data pattern combination. A pointer signal P i to the transmission waveform in the memory is output. The waveform data memory 236, γ, β 2, β 3, pre-computed transmit waveform using a transmission line parameters, such as α is are stored respectively pointer P i. Transmission waveform corresponding to the pointer signal P i that is input from the verification circuit 234 or modulator drive waveform is outputted from the waveform data memory 236, the modulator 210 of each wavelength are driven.

送信波形を求める際には、波長分散によりチャネルによって群速度が異なるため、非線形光学効果による他チャネルからの影響は、送信しようとしている送信データパターンd1,n、d2,n、d3,n、…dm,nの前後数ビットの送信データパターンを演算に利用する必要があるため、データパターン照合回路では前後数ビットのデータパターンも認識し、ポインタ信号Pijを波形データテーブルに出力するようにしてもよい。この場合、波形データテーブルに蓄積される非線形波形劣化を抑圧する送信波形は、前後数ビットのデータパターンを考慮に入れ、予め演算されたものであり、ポインタ信号Pijに応じて順次生成される。 When obtaining the transmission waveform, the group velocity differs depending on the channel due to chromatic dispersion, and therefore the influence from other channels due to the nonlinear optical effect is caused by the transmission data pattern d 1, n , d 2, n , d 3, Since it is necessary to use a transmission data pattern of several bits before and after n 1 ,... dm , n for calculation, the data pattern verification circuit also recognizes a data pattern of several bits before and after and outputs a pointer signal P ij to the waveform data table. You may make it do. In this case, the transmission waveform that suppresses nonlinear waveform deterioration accumulated in the waveform data table is calculated in advance in consideration of a data pattern of several bits before and after, and is sequentially generated according to the pointer signal P ij. .

また、伝送路パラメータは各光ファイバに固有のものであり、時間的に変動するため、受信波形が所望の波形となるように送信器のデータテーブルをフィードバック制御して送信波形を生成することもできる。   Also, since the transmission path parameter is unique to each optical fiber and fluctuates with time, the transmission waveform can be generated by feedback controlling the data table of the transmitter so that the received waveform becomes a desired waveform. it can.

次に、本実施例による具体例についていくつか説明する。図8は、本実施例による送信器の一例である。図8を参照して、光源202には短波長のレーザ光源を用いて、周波数fで駆動している光変調器206により複数波長の光を発生させる。発生した複数波長の光は、波長間隔c/f(cは光速)でそれぞれの周波数モードが同期している。複数波長の光は、光分波器208により波長ごとの光路に振り分けられ、並列に配置された変調器210に入力される。データパターン照合回路234は、送信しようとする各チャンネルの送信データパターンd1,n、d2,n、d3,n、…dm,nを認識し、データパターン組み合わせに応じてルックアップテーブル236内の送信波形へのポインタ信号Pijを出力する。ルックアップテーブル236には、γ、β、β、αなどの伝送パラメータを用いて予め演算された送信波形がポインタPijに対してそれぞれ蓄積してある。照合回路234から入力されたポインタ信号Pijに対応した変調器駆動波形が、デジタル−アナログ変換器により変換された後、各波長の変調器210を駆動する。変調器駆動波形は、各波長の光の同相位相成分と直交位相成分の振幅をそれぞれ変調する変調信号MとMで構成される。 Next, some specific examples according to this embodiment will be described. FIG. 8 is an example of a transmitter according to this embodiment. Referring to FIG. 8, a short wavelength laser light source is used as light source 202, and light of a plurality of wavelengths is generated by optical modulator 206 driven at frequency f. The generated light of a plurality of wavelengths has a synchronized frequency mode at a wavelength interval c / f (c is the speed of light). The light of a plurality of wavelengths is distributed to the optical path for each wavelength by the optical demultiplexer 208 and input to the modulators 210 arranged in parallel. The data pattern matching circuit 234 recognizes the transmission data patterns d 1, n , d 2, n , d 3, n ,... Dm, n of each channel to be transmitted, and looks up the table according to the data pattern combination. A pointer signal P ij to the transmission waveform in 236 is output. In the lookup table 236, transmission waveforms calculated in advance using transmission parameters such as γ, β 2 , β 3 , α and the like are stored for the pointer P ij . The modulator driving waveform corresponding to the pointer signal P ij input from the verification circuit 234 is converted by the digital-analog converter, and then the modulator 210 of each wavelength is driven. The modulator driving waveform is composed of modulation signals M i and M q that respectively modulate the amplitudes of the in-phase component and the quadrature component of the light of each wavelength.

変調信号MとMでそれぞれ変調された波形を合波させることで任意の振幅と位相を得ることができ、各波長の搬送波に送信波形を符号化することができる。符号化された各波長の搬送波は合波器250で合波されて出力される。 Arbitrary amplitude and phase can be obtained by combining the waveforms modulated by the modulation signals M i and M q , respectively, and the transmission waveform can be encoded on the carrier wave of each wavelength. The encoded carrier wave of each wavelength is multiplexed by the multiplexer 250 and output.

光源202から各波長に分波するまでの波長間の周波数と初期位相が時間的に安定していても、熱的、機械的な揺らぎによって各波長の光路長が変動して、異なる波長のビート信号が出力側で時間的に不安定になることがある。そこで、位相ロックループ回路と電圧制御発振器(VCO)、位相シフタを用いて、異なる波長の搬送波間のビート信号を出力側で安定化させることができる。このような例を、図9に示す。   Even if the frequency and the initial phase between the wavelengths until the light is split from the light source 202 are stable in time, the optical path length of each wavelength varies due to thermal and mechanical fluctuations, and beats of different wavelengths The signal may become unstable in time on the output side. Therefore, a beat signal between carriers of different wavelengths can be stabilized on the output side by using a phase lock loop circuit, a voltage controlled oscillator (VCO), and a phase shifter. Such an example is shown in FIG.

図9を参照して、光合波器250からのWDM信号光は、光分波手段260によりその一部が位相ロックループ回路262に入力され、その他はWDM信号光として出力される。位相ロックループ回路262に入力されたWDM信号光は、位相ロックループ回路内で2波長または隣接波長を含む多波長に分波され、それぞれを光/電気変換し、それらの光周波数差で振動するビート信号を得る。このビート信号の成分とデータクロックで振動する成分を周波数ミキシングすることで、ビート成分の位相Δφ、Δφ、…Δφとデータクロックの位相θとの差(Δφ−θ)、(Δφ−θ)、…(Δφ−θ)を検出する。検出されたこれらの位相差信号は、VCO264に入力され、位相シフタ266の位相シフト量Φを−ΔΦ、−ΔΦ、…−ΔΦだけ変化させる。位相シフト量変化ΔΦ、ΔΦ、…ΔΦは、Δφ−θ=0、Δφ−θ=0、…Δφ−θ=0となるように働き、ある波長とその隣接波長の信号光を検波して得られるビート信号とデータクロックの位相差を時間的に安定化させることができる。 Referring to FIG. 9, a part of the WDM signal light from optical multiplexer 250 is input to phase-locked loop circuit 262 by optical demultiplexing means 260, and the other is output as WDM signal light. The WDM signal light input to the phase-locked loop circuit 262 is demultiplexed into two wavelengths or multiple wavelengths including adjacent wavelengths in the phase-locked loop circuit, and each is optically / electrically converted and oscillates with the optical frequency difference between them. Get beat signal. By frequency-mixing the beat signal component and the component oscillating with the data clock, the difference between the beat component phase Δφ 1 , Δφ 2 ,... Δφ m and the data clock phase θ (Δφ 1 −θ), (Δφ 2 −θ),... (Δφ m −θ) is detected. These detected phase difference signals are input to the VCO 264 to change the phase shift amount Φ of the phase shifter 266 by −ΔΦ 1 , −ΔΦ 2 ,... −ΔΦ m . Phase shift amount changes ΔΦ 1 , ΔΦ 2 ,... ΔΦ m work so that Δφ 1 −θ = 0, Δφ 2 −θ = 0,... Δφ m −θ = 0, and a signal of a certain wavelength and its adjacent wavelength. It is possible to temporally stabilize the phase difference between the beat signal obtained by detecting light and the data clock.

また、上記のような方法以外にも、入力側の分波器208から出力側の合波器250までを集積化することで熱的、機械的な光路長の揺らぎを軽減させ、ビート信号とデータクロックの位相差を時間的に安定化させることもできる。   In addition to the above method, by integrating the duplexer 208 on the input side to the multiplexer 250 on the output side, fluctuations in the thermal and mechanical optical path length can be reduced, and the beat signal and The phase difference of the data clock can be stabilized in time.

光ファイバ中の非線形現象は、光電界強度の2乗に比例した位相変調が発生する現象である。さらに、この位相変調が光ファイバの波長分散を介して波形振幅をも変化させる。そこで、複数チャネルの送信データを用いて、光ファイバ伝送中の光電界強度|A(t,z=0)|を演算し、光ファイバ伝送路中で受ける非線形位相変調と逆の位相変調を送信器にて位相変調して送信する。図10にその基本構成を示す。図10を参照して、各波長の搬送波はそれぞれの送信データを用いて変調される。変調光信号は、合波器250により合波された後、位相変調器270を用いて、γ|A(t,z=0)|effの位相変調を与え、送信する。ここで、γは光ファイバの非線形係数、Leffは有効ファイバ長であり、受信器の受信信号品質が高くなるように、Leffを調整する。 The nonlinear phenomenon in the optical fiber is a phenomenon in which phase modulation proportional to the square of the optical electric field strength occurs. Furthermore, this phase modulation also changes the waveform amplitude through the chromatic dispersion of the optical fiber. Therefore, using the transmission data of a plurality of channels, the optical electric field intensity | A (t, z = 0) | 2 during the optical fiber transmission is calculated, and the phase modulation opposite to the nonlinear phase modulation received in the optical fiber transmission line is performed. The phase is modulated by the transmitter and transmitted. FIG. 10 shows the basic configuration. Referring to FIG. 10, the carrier wave of each wavelength is modulated using the respective transmission data. The modulated optical signal is multiplexed by the multiplexer 250 and then subjected to phase modulation of γ | A (t, z = 0) | 2 L eff using the phase modulator 270 and transmitted. Here, γ is the nonlinear coefficient of the optical fiber, L eff is the effective fiber length, and L eff is adjusted so that the received signal quality of the receiver becomes high.

また、図11に示すように、変調された信号光の一部取り出して光電変換して得られた信号は、光電界強度の2乗に比例するため、これを位相変調器270の駆動信号として利用してもよい。ここで、位相変調信号生成部276では、信号光を光電変換して得られた|A(t,z=0)|の信号に、γ、Leffの値を係数として乗算することで、位相変調器駆動信号を生成する。γ、Leffの値は受信器の受信信号品質が高くなるように予め調整する。 Further, as shown in FIG. 11, since a signal obtained by photoelectrically converting a part of the modulated signal light is proportional to the square of the optical electric field intensity, this is used as a drive signal for the phase modulator 270. May be used. Here, the phase modulation signal generation unit 276 multiplies the signal of | A (t, z = 0) | 2 obtained by photoelectric conversion of the signal light using the values of γ and L eff as coefficients, A phase modulator drive signal is generated. The values of γ and L eff are adjusted in advance so that the received signal quality of the receiver becomes high.

さらに、図12に示すように、線形中継ノードごとに線形増幅器320の出力光を一部取り出し、光電変換344して得られた信号を補償用位相変調器340の駆動信号として利用することができる。これにより、ファイバ伝送路350中の非線形位相変調を補償することができる。以上の方法では、位相変調器駆動信号に対して最適な周波数フィルタを用いることによって非線形補償効果を高めることができる。   Further, as shown in FIG. 12, a part of the output light of the linear amplifier 320 is extracted for each linear relay node, and the signal obtained by the photoelectric conversion 344 can be used as a drive signal for the compensation phase modulator 340. . Thereby, the nonlinear phase modulation in the fiber transmission line 350 can be compensated. In the above method, the nonlinear compensation effect can be enhanced by using an optimum frequency filter for the phase modulator drive signal.

以上、本発明について、いくつかの実施例を示し具体的に説明したが、本発明の原理を適用できる多くの実施可能な形態に鑑みて、ここに記載した実施例は、単に例示に過ぎず、本発明の範囲を限定するものではない。ここに例示した実施例は、本発明の趣旨から逸脱することなくその構成と詳細を変更することができる。さらに、説明のための構成要素および手順は、本発明の趣旨から逸脱することなく変更、補足、またはその順序を変えてもよい。   Although the present invention has been described specifically with reference to several embodiments, the embodiments described herein are merely illustrative in view of many possible forms to which the principles of the present invention can be applied. It does not limit the scope of the present invention. The embodiments illustrated herein can be modified in configuration and details without departing from the spirit of the present invention. Further, the illustrative components and procedures may be changed, supplemented, or changed in order without departing from the spirit of the invention.

本発明による波長多重光波長方式について説明するための図であり、図1(a)は波長分割多重伝送システムの概略図であり、図1(b)は四光波混合の補償について説明するための図である。FIG. 1A is a schematic diagram of a wavelength division multiplexing transmission system, and FIG. 1B is a diagram for explaining compensation of four-wave mixing. FIG. 波長分割多重伝送システムにおける本発明の第1の実施例による送信器の構成例を示す概略図である。1 is a schematic diagram showing a configuration example of a transmitter according to a first embodiment of the present invention in a wavelength division multiplexing transmission system. 波長分割多重伝送システムにおける本発明の第2の実施例による送信器の構成例を示す概略図である。It is the schematic which shows the structural example of the transmitter by the 2nd Example of this invention in a wavelength division multiplexing transmission system. 本発明による波長分割多重伝送システムの送信器における変調器の構成例を示す概略図である。It is the schematic which shows the structural example of the modulator in the transmitter of the wavelength division multiplexing transmission system by this invention. 本発明による波長分割多重伝送システムの各部における信号波形を示す図であり、図5(a)は送信器におけるあるチャンネルのデータパターン、図5(b)は送信器の変調器における変調信号の同相位相成分、図5(c)は送信器の変調器における変調信号の直交位相成分を示している。FIG. 5A is a diagram showing signal waveforms in each part of the wavelength division multiplex transmission system according to the present invention, FIG. 5A is a data pattern of a certain channel in the transmitter, and FIG. 5B is an in-phase modulation signal in the modulator of the transmitter. FIG. 5C shows the quadrature phase component of the modulation signal in the modulator of the transmitter. 波長分割多重伝送システムにおける光ファイバ伝送後の受信波形を示し、図6(a)は本発明による波形劣化を補償した場合の受信波形であり、図6(b)は波形劣化を補償しなかった場合の受信波形である。FIG. 6A shows a received waveform after optical fiber transmission in a wavelength division multiplex transmission system, FIG. 6A shows a received waveform when the waveform deterioration according to the present invention is compensated, and FIG. 6B does not compensate the waveform deterioration. Is the received waveform. 波長分割多重伝送システムにおける本発明の第3の実施例による送信器の構成例を示す概略図である。It is the schematic which shows the structural example of the transmitter by the 3rd Example of this invention in a wavelength division multiplexing transmission system. 波長分割多重伝送システムにおける本発明の第3の実施例による送信器の具体的な構成例を示す概略図である。It is the schematic which shows the specific structural example of the transmitter by the 3rd Example of this invention in a wavelength division multiplexing transmission system. 波長分割多重伝送システムにおける本発明の第3の実施例による送信器の具体的な構成例を示す概略図である。It is the schematic which shows the specific structural example of the transmitter by the 3rd Example of this invention in a wavelength division multiplexing transmission system. 波長分割多重伝送システムにおける本発明の第4の実施例による送信器の構成例を示す概略図である。It is the schematic which shows the structural example of the transmitter by the 4th Example of this invention in a wavelength division multiplex transmission system. 波長分割多重伝送システムにおける本発明の第4の実施例による送信器の構成例を示す概略図である。It is the schematic which shows the structural example of the transmitter by the 4th Example of this invention in a wavelength division multiplex transmission system. 波長分割多重伝送システムにおける本発明の第4の実施例による送信器の構成例を示す概略図である。It is the schematic which shows the structural example of the transmitter by the 4th Example of this invention in a wavelength division multiplex transmission system.

符号の説明Explanation of symbols

100 波長分割多重伝送システム
200 光送信器
208 光分波器
212,214 マッハツェンダ干渉計型強度変調器
216 位相シフタ
250 光合波器
260 光分波手段
330 光分波手段
DESCRIPTION OF SYMBOLS 100 Wavelength division multiplexing transmission system 200 Optical transmitter 208 Optical demultiplexer 212, 214 Mach-Zehnder interferometer type intensity modulator 216 Phase shifter 250 Optical multiplexer 260 Optical demultiplexing means 330 Optical demultiplexing means

Claims (11)

複数の波長の光を変調し、多重して送信する光送信器において、
光の位相が同期した複数の波長の光を発生する光源と、
伝送路の非線形光学効果により発生する各波長の光の波形劣化を補償する補償手段と
を備えたことを特徴とする光送信器。
In an optical transmitter that modulates and multiplexes light of a plurality of wavelengths,
A light source that generates light of a plurality of wavelengths whose light phases are synchronized;
An optical transmitter comprising: compensation means for compensating for waveform deterioration of light of each wavelength generated by a nonlinear optical effect in a transmission line.
請求項1に記載の光送信器において、
前記補償手段は、前記伝送路の伝送路パラメータに基づいて波形劣化を補償することを特徴とする光送信器。
The optical transmitter according to claim 1,
The optical transmitter is characterized in that the compensation means compensates for waveform deterioration based on a transmission path parameter of the transmission path.
請求項1または2に記載の光送信器において、
前記補償手段は、一の波長の光の波形劣化を補償するにあたって他の波長の光の送信データ系列に基づいて波形劣化を補償することを特徴とする光送信器。
The optical transmitter according to claim 1 or 2,
The compensation means compensates for waveform degradation based on a transmission data sequence of light of another wavelength when compensating the waveform degradation of light of one wavelength.
請求項1から3のいずれかに記載の光送信器において、
前記補償手段は、前記伝送路パラメータを含む非線形伝搬方程式に基づいて波形劣化を補償することを特徴とする光送信器。
The optical transmitter according to any one of claims 1 to 3,
The optical transmitter is characterized in that the compensation means compensates for waveform degradation based on a nonlinear propagation equation including the transmission path parameter.
請求項1から4のいずれかに記載の光送信器において、
前記補償手段は、前記複数の波長の光に対する送信データパターンと、前記送信データパターンに対応する各波長の補償波形とを対応付けて格納した記憶手段を備え、前記補償手段は、前記送信データパターンに応じて、前記記憶手段から各波長の補償波形を読み出して、各波長の波形劣化を補償することを特徴とする光送信器。
The optical transmitter according to any one of claims 1 to 4,
The compensation means includes storage means for storing a transmission data pattern for light of the plurality of wavelengths and a compensation waveform for each wavelength corresponding to the transmission data pattern in association with each other, and the compensation means includes the transmission data pattern In accordance with the optical transmitter, the compensation waveform of each wavelength is read from the storage means to compensate for the waveform deterioration of each wavelength.
請求項1から3のいずれかに記載の光送信器において、
前記補償手段は、前記伝送路の非線形光学効果により発生する光の位相変化による波形劣化を補償することを特徴とする光送信器。
The optical transmitter according to any one of claims 1 to 3,
The optical transmitter is characterized in that the compensation means compensates for waveform deterioration due to a phase change of light generated by a nonlinear optical effect of the transmission path.
請求項6に記載の光送信器において、
前記補償手段は、複数の波長の光をそれぞれの送信データにより変調し、多重した後、前記それぞれの送信データパターンに基づいて前記多重した光の位相変化による波形劣化を補償することを特徴とする光送信器。
The optical transmitter according to claim 6.
The compensation means modulates and multiplexes light of a plurality of wavelengths with respective transmission data, and then compensates for waveform deterioration due to a phase change of the multiplexed light based on the respective transmission data patterns. Optical transmitter.
請求項6に記載の光送信器において、
前記補償手段は、複数の波長の光をそれぞれの送信データにより変調し、多重した後、前記多重した光の光電界強度に基づいて前記多重した光の位相変化による波形劣化を補償することを特徴とする光送信器。
The optical transmitter according to claim 6.
The compensation means modulates and multiplexes light of a plurality of wavelengths with respective transmission data, and then compensates for waveform deterioration due to a phase change of the multiplexed light based on an optical electric field intensity of the multiplexed light. An optical transmitter.
請求項1から8のいずれかに記載の光送信器を備えた光伝送システム。   An optical transmission system comprising the optical transmitter according to claim 1. 複数の波長の光が変調され、多重された光信号を中継する光中継器において、
前記多重された光の光電界強度に基づいて前記多重された光の位相変化による波形劣化を補償することを特徴とする光中継器。
In an optical repeater that modulates light of a plurality of wavelengths and relays multiplexed optical signals,
An optical repeater that compensates for waveform deterioration due to a phase change of the multiplexed light based on an optical electric field intensity of the multiplexed light.
複数の波長の光を変調し、多重して送信する方法であって、
光の位相が同期した複数の波長の光を発生することと、
伝送路の非線形光学効果により発生する各波長の光の波形劣化を補償することと
を備えることを特徴とする方法。
A method for modulating and multiplexing light of a plurality of wavelengths,
Generating light of multiple wavelengths whose phases are synchronized;
Compensating for waveform degradation of light of each wavelength generated by a nonlinear optical effect in a transmission line.
JP2006127865A 2006-05-01 2006-05-01 Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission Expired - Fee Related JP4813963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127865A JP4813963B2 (en) 2006-05-01 2006-05-01 Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127865A JP4813963B2 (en) 2006-05-01 2006-05-01 Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission

Publications (2)

Publication Number Publication Date
JP2007300496A true JP2007300496A (en) 2007-11-15
JP4813963B2 JP4813963B2 (en) 2011-11-09

Family

ID=38769600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127865A Expired - Fee Related JP4813963B2 (en) 2006-05-01 2006-05-01 Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission

Country Status (1)

Country Link
JP (1) JP4813963B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219779A (en) * 2009-03-16 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> Optical signal transmitter in wavelength division multiplex transmission
JP2012075097A (en) * 2010-09-28 2012-04-12 Fujitsu Ltd Nonlinear compensation device, and transmitter
JP2013507795A (en) * 2009-10-07 2013-03-04 オフィディウム、プロプライエタリー、リミテッド Multi-channel nonlinearity compensation in optical communication links
JP2013228676A (en) * 2012-03-29 2013-11-07 Fujitsu Ltd Optical signal transmission device
WO2014141973A1 (en) * 2013-03-13 2014-09-18 株式会社ニコン Pulse laser device
JP2017034710A (en) * 2016-10-11 2017-02-09 日本電信電話株式会社 Optical transmission system and optical transmission method
JP2018098780A (en) * 2016-12-08 2018-06-21 富士通株式会社 Multichannel optical cross-phase modulation compensator
JP2018160913A (en) * 2018-05-28 2018-10-11 日本電信電話株式会社 Optical transmission system and optical transmission method
US10559937B2 (en) 2016-05-26 2020-02-11 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11366070B2 (en) 2016-05-26 2022-06-21 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170019178A1 (en) * 2014-02-24 2017-01-19 The Regents Of The University Of California Nonlinearity cancellation in fiber optic transmission based on frequency-mutually-referenced carriers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109428A (en) * 1997-10-02 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplex light signal transmission apparatus
JPH11149064A (en) * 1997-09-08 1999-06-02 Northern Telecom Ltd Transmission system provided with compensation of mutual phase and/or self-phase modulation
JP2003510890A (en) * 1999-09-23 2003-03-18 コーニング・インコーポレーテッド Method and system for reducing FWM loss in NRZWDM systems
WO2004088883A1 (en) * 2003-04-03 2004-10-14 Nortel Networks Limited Electrical domain compensation of non-linear effects in an optical communications system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149064A (en) * 1997-09-08 1999-06-02 Northern Telecom Ltd Transmission system provided with compensation of mutual phase and/or self-phase modulation
JPH11109428A (en) * 1997-10-02 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplex light signal transmission apparatus
JP2003510890A (en) * 1999-09-23 2003-03-18 コーニング・インコーポレーテッド Method and system for reducing FWM loss in NRZWDM systems
WO2004088883A1 (en) * 2003-04-03 2004-10-14 Nortel Networks Limited Electrical domain compensation of non-linear effects in an optical communications system
JP2006522508A (en) * 2003-04-03 2006-09-28 ノーテル・ネットワークス・リミテッド Electrical domain compensation of nonlinear effects in optical communication systems.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219779A (en) * 2009-03-16 2010-09-30 Nippon Telegr & Teleph Corp <Ntt> Optical signal transmitter in wavelength division multiplex transmission
JP2013507795A (en) * 2009-10-07 2013-03-04 オフィディウム、プロプライエタリー、リミテッド Multi-channel nonlinearity compensation in optical communication links
JP2012075097A (en) * 2010-09-28 2012-04-12 Fujitsu Ltd Nonlinear compensation device, and transmitter
JP2013228676A (en) * 2012-03-29 2013-11-07 Fujitsu Ltd Optical signal transmission device
WO2014141973A1 (en) * 2013-03-13 2014-09-18 株式会社ニコン Pulse laser device
US11303091B2 (en) 2016-05-26 2022-04-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11757247B2 (en) 2016-05-26 2023-09-12 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US10559937B2 (en) 2016-05-26 2020-02-11 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
US11366070B2 (en) 2016-05-26 2022-06-21 Nikon Corporation Pulsed light generation device, pulsed light generation method, exposure apparatus having pulsed light generation device and inspection apparatus having pulsed light generation device
JP2017034710A (en) * 2016-10-11 2017-02-09 日本電信電話株式会社 Optical transmission system and optical transmission method
JP2018098780A (en) * 2016-12-08 2018-06-21 富士通株式会社 Multichannel optical cross-phase modulation compensator
JP7047339B2 (en) 2016-12-08 2022-04-05 富士通株式会社 Multi-channel optical mutual phase modulation compensator
JP2018160913A (en) * 2018-05-28 2018-10-11 日本電信電話株式会社 Optical transmission system and optical transmission method

Also Published As

Publication number Publication date
JP4813963B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4813963B2 (en) Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission
US6606178B1 (en) Method and system to reduce FWM penalty in NRZ WDM systems
JP6123337B2 (en) Optical signal processing device, transmission device, and optical signal processing method
EP1059758B1 (en) Optical transmitter and optical transmitter control method using variable duty ratio setting and alternate phase inversion for optical clock pulses
US7623792B2 (en) Clock extracting method and apparatus thereof
US20060204162A1 (en) Device for mach-zehnder modulator bias control for duobinary optical transmission and associated system and method
JP5786565B2 (en) Optical multiplexer and optical network system
JP4521884B2 (en) Optical transmitter and relay node for reducing in-phase crosstalk between WDM channels
JP5068240B2 (en) Optical transmission system, transmitter and receiver
US8213798B2 (en) Optical transmission apparatus, wavelength division multiplexing optical communication system and optical transmission method
JP5665038B2 (en) Broadband optical comb generator
JP4889661B2 (en) Optical multicarrier generator and optical multicarrier transmitter using the same
JP6492864B2 (en) Optical add / drop apparatus and optical add / drop method
JP5484556B2 (en) Optical transmitter
US9148228B2 (en) Optical signal transmitting device, optical signal transmitting method, frequency fluctuation suppressing device and frequency fluctuation suppressing system
US20060140636A1 (en) Optical communication system
JP3447664B2 (en) Optical transmitter and optical transmitter control method
JP4827944B2 (en) Optical signal transmitter for wavelength division multiplexing transmission
JP4693644B2 (en) Wavelength division multiplexing optical modulation method and apparatus
JP3545673B2 (en) Optical communication device, optical transmitter and optical receiver
JP5030205B2 (en) Wavelength stabilization apparatus and wavelength stabilization method
JP2006251360A (en) Wavelength conversion method and wavelength converter
JP4251355B2 (en) Optical transmitter
Lowery Electro-Photonics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4813963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees