JP2007299639A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2007299639A
JP2007299639A JP2006126603A JP2006126603A JP2007299639A JP 2007299639 A JP2007299639 A JP 2007299639A JP 2006126603 A JP2006126603 A JP 2006126603A JP 2006126603 A JP2006126603 A JP 2006126603A JP 2007299639 A JP2007299639 A JP 2007299639A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
current collector
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006126603A
Other languages
Japanese (ja)
Other versions
JP4854377B2 (en
Inventor
Shumei Nishijima
主明 西島
Naoto Nishimura
直人 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006126603A priority Critical patent/JP4854377B2/en
Publication of JP2007299639A publication Critical patent/JP2007299639A/en
Application granted granted Critical
Publication of JP4854377B2 publication Critical patent/JP4854377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To constitute a current collector so that physical stress can be absorbed even when a mix formed by mixing an active material, a conductive material, and a binder is expanded and contracted by charge discharge in a positive electrode and a negative electrode of a lithium secondary battery. <P>SOLUTION: The lithium secondary battery is equipped with a positive electrode A, a negative electrode B, a separator 2 electrically insulating the positive electrode A and the negative electrode B, and an electrolyte, the positive electrode A and the negative electrode B have current collectors 3, 6 having structure formed by accumulating two or more prismatic hollow parts, and the mix formed by mixing the active material, the conductive material, and the binder, filled in the prismatic hollow parts of the current collectors 3, 6, and the current collectors 3, 6 are constituted so that the prismatic hollow parts are deformed according to the expansion and contraction of the mix in charge discharge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はリチウム二次電池に関し、さらに詳しくは、長寿命を図るための集電体を有するリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having a current collector for achieving a long life.

ポータブル機器用の電源として二次電池が経済性、省資源等の観点から多く使われている。二次電池には様々な種類があり、現在最も一般的なのものはニッケル−カドミウム電池であり、最近になってニッケル水素電池も普及してきている。さらに、正極材料としてリチウム酸コバルトLiCoO2、リチウム酸ニッケルLiNiO2、これらの固溶体Li(Co1-xNix)O2あるいはスピネル型構造を有するLiMn2O4等を用い、また負極材料としては黒鉛等の炭素材料を用い、また液体の有機化合物を溶媒とし、リチウム化合物を溶質とした電解液を用いたリチウム二次電池も、ニッケル水素電池よりも出力電圧が高く高エネルギー密度であるために主力になりつつある。 Secondary batteries are often used as power sources for portable devices from the viewpoints of economy and resource saving. There are various types of secondary batteries, and the most common one at present is a nickel-cadmium battery. Recently, nickel metal hydride batteries have also become widespread. Furthermore, as the positive electrode material, cobalt lithium LiCoO 2 , nickel lithium oxide LiNiO 2 , these solid solution Li (Co 1-x Ni x ) O 2 or LiMn 2 O 4 having a spinel structure, etc. Lithium secondary batteries using carbon materials such as graphite, electrolytes with liquid organic compounds as solvents, and lithium compounds as solutes also have higher output voltage and higher energy density than nickel metal hydride batteries. It is becoming the main force.

通常、ポータブル機器等に用いられている1Ah程度の容量の二次電池は、それぞれ百数十ミクロン程度の厚みの正極板と負極板が、多孔性絶縁体のセパレータを介して向かい合っており、これを捲回あるいは積層したものが、金属製あるいは金属層を有する樹脂フィルムに電解質とともに封入されて構成されている。また、一般に正電極または負電極は、正極活物質または負極活物質と電子導電性を向上させるための導電材とを、結着剤にて集電体に接着することにより構成されている。また、正極板や負極板に用いられる集電体には、パンチング状、網状、ハニカム状、ラス状、格子状、エキスパンデッド状、スクリーン状、レース状といった形状のものが提案されている(例えば、特許文献1参照)。
特開平10−32006号公報
Usually, a secondary battery having a capacity of about 1 Ah used for portable equipment or the like has a positive electrode plate and a negative electrode plate each having a thickness of about several hundreds of microns facing each other through a porous insulator separator. Is formed by encapsulating a metal or a resin film having a metal layer together with an electrolyte. In general, a positive electrode or a negative electrode is formed by adhering a positive electrode active material or a negative electrode active material and a conductive material for improving electronic conductivity to a current collector with a binder. In addition, current collectors used for the positive electrode plate and the negative electrode plate have been proposed in shapes such as punching, mesh, honeycomb, lath, lattice, expanded, screen, and lace ( For example, see Patent Document 1).
Japanese Patent Laid-Open No. 10-32006

リチウム二次電池は、前述のように出力電圧が高いこと、エネルギー密度が高いことに加えて、エネルギー効率(放電電力/充電電力)が高いことも知られており、これらの性質は電池としては好適なものであるが、いくつかの問題点があり、最も重要な問題はサイクルの繰り返しによる容量低下と負荷特性低下である。   Lithium secondary batteries are known to have high output voltage and high energy density, as described above, and high energy efficiency (discharge power / charge power). Although preferred, there are several problems, the most important being capacity reduction and load characteristic degradation due to repeated cycles.

リチウム二次電池は、放電時に下記の反応により電子を外部回路に供給する。なお、下記の反応式においてLi1-xCoO2 は正極活物質であり、C6 は負極活物質である。
正極 Li1-xCoO2 + xLi + xe- → LiCoO2
負極 xLiC6 → C6 + xLi + xe-
The lithium secondary battery supplies electrons to an external circuit by the following reaction during discharging. In the following reaction formula, Li 1-x CoO 2 is a positive electrode active material, and C 6 is a negative electrode active material.
The positive electrode Li 1-x CoO 2 + xLi + xe - → LiCoO 2
The negative electrode xLiC 6 → C 6 + xLi + xe -

上記の反応が進行するのに伴い、正極活物質および負極活物質は体積減少(収縮)する。逆の充電時には上記と逆の反応が進行し、正極活物質および負極活物質は体積増加(膨張)する。つまり、リチウム二次電池においては充放電を繰り返すことにより、活物質の膨張収縮が繰り返され、その結果、密閉容器内部に封入された電極内には物理的応力が発生する。
この物理的応力により活物質と導電材との接触率が低下すると、電極内部の電流経路が断たれるために電極の抵抗率が上昇し、その結果、電池の負荷特性が低下する。
さらに、応力が繰り返し発生すると、最終的には活物質が完全に孤立して充放電に関与しなくなり、電池としての容量低下を招く。よって、充放電サイクルの繰り返しによる容量低下と負荷特性低下を抑制し、より長寿命のリチウム二次電池を提供するためには、前記膨張収縮に起因する活物質と導電剤との接触率低下を抑制し、内部抵抗上昇を抑制することが課題となる。
なお、前記特許文献1に記載の各種形状の集電体では、このような課題を解決することは検討されていない。
As the above reaction proceeds, the positive electrode active material and the negative electrode active material decrease (shrink). During reverse charging, the reverse reaction proceeds, and the positive electrode active material and the negative electrode active material increase in volume (expand). That is, in the lithium secondary battery, the active material is repeatedly expanded and contracted by repeating charge and discharge, and as a result, physical stress is generated in the electrode sealed in the sealed container.
When the contact ratio between the active material and the conductive material decreases due to the physical stress, the current path inside the electrode is interrupted, so that the resistivity of the electrode increases, and as a result, the load characteristics of the battery decrease.
Furthermore, when stress repeatedly occurs, the active material is finally completely isolated and does not participate in charge / discharge, leading to a decrease in capacity as a battery. Therefore, in order to suppress a decrease in capacity and load characteristics due to repeated charge / discharge cycles and to provide a longer-life lithium secondary battery, the contact ratio between the active material and the conductive agent due to the expansion and contraction is reduced. It becomes a subject to suppress and to suppress an increase in internal resistance.
In the current collectors of various shapes described in Patent Document 1, it has not been studied to solve such a problem.

本願発明者らは、鋭意検討の結果、正極および負極において、活物質と導電材と結着剤とを混合した合材が充放電により膨張、収縮しても物理的応力を吸収できるように集電体を構成することにより、本発明をするに至った。
かくして、本発明によれば、正極および負極と、該正極および負極を電気的に絶縁するセパレータと、電解質とを備え、前記正極および負極は、複数の角柱形中空部が集積された構造の集電体と、この集電体の各角柱形中空部に充填された活物質と導電材と結着剤とを混合した合材とをそれぞれ有してなり、前記集電体は、前記合材の熱による膨張、収縮に応じて角柱形中空部の形状が変形するように構成されたリチウム二次電池が提供される。
As a result of intensive studies, the inventors of the present application have gathered so that, in the positive electrode and the negative electrode, a mixture of an active material, a conductive material, and a binder can absorb physical stress even if it expands and contracts due to charge and discharge. By constructing the electric body, the present invention has been achieved.
Thus, according to the present invention, a positive electrode and a negative electrode, a separator that electrically insulates the positive electrode and the negative electrode, and an electrolyte are provided. The positive electrode and the negative electrode are a collection of structures in which a plurality of prismatic hollow portions are integrated. Each of the current collector and a mixed material obtained by mixing an active material, a conductive material, and a binder filled in each prismatic hollow portion of the current collector. There is provided a lithium secondary battery configured such that the shape of the prismatic hollow portion is deformed in accordance with expansion and contraction due to heat.

本発明のリチウム二次電池によれば、集電体は、前記合材の熱による膨張、収縮に対応して角柱形中空部の形状が変形するように構成されているため、充電に伴う合材の体積膨張時には各中空部がそれに追随して大きくなり、正極および負極にかかる物理的応力が緩和される。その結果、合材内の活物質と導電材との接触点が応力により破壊されることが無く(接触状態が維持され)、充放電サイクルを繰り返しても内部抵抗の上昇および容量低下が抑制され、長寿命化が図られる。   According to the lithium secondary battery of the present invention, the current collector is configured such that the shape of the prismatic hollow portion is deformed in response to the expansion and contraction of the composite material due to heat. At the time of volume expansion of the material, each hollow portion becomes larger following it, and the physical stress applied to the positive electrode and the negative electrode is relaxed. As a result, the contact point between the active material and the conductive material in the composite material is not destroyed by stress (the contact state is maintained), and the increase in internal resistance and capacity decrease are suppressed even when the charge / discharge cycle is repeated. Longer life is achieved.

本発明のリチウム二次電池は、図1に示すように、正極Aおよび負極Bと、該正極Aおよび負極Bを電気的に絶縁するセパレータ2と、電解質とを備え、前記正極Aおよび負極Bは、複数の角柱形中空部が集積された構造の集電体3、6と、この集電体3、6の各角柱形中空部に充填された活物質と導電材と結着剤とを混合した合材とをそれぞれ有してなり、前記集電体3、6は、前記合材の熱による膨張、収縮に応じて角柱形中空部の形状が変形するように構成されたことを特徴とする。
つまり、正極および負極の集電体は、前記合材を保持するための変形可能な角柱形中空部を密に集積して構成されている。
なお、図1は、本発明の一例として挙げた基本的な構造の角型リチウム二次電池を示し、符合50は本発明の実施形態のリチウム二次電池、符合4および5は正極板および負極板、符合4a、4bは正極板4および負極板5からそれぞれ延出した正極端子および負極端子、符合7は樹脂製シートからなる電池容器を示している。
以下、本発明のリチウム二次電池の各構成要素について説明する。なお、本発明は以下の実施形態および実施例に限定されるものではない。
As shown in FIG. 1, the lithium secondary battery of the present invention includes a positive electrode A and a negative electrode B, a separator 2 that electrically insulates the positive electrode A and the negative electrode B, and an electrolyte. The current collectors 3 and 6 having a structure in which a plurality of prismatic hollow portions are integrated, and the active material, the conductive material, and the binder filled in each prismatic hollow portion of the current collectors 3 and 6. Each of the current collectors 3 and 6 is configured such that the shape of the prismatic hollow portion is deformed in accordance with expansion and contraction of the composite material due to heat. And
That is, the positive and negative electrode current collectors are configured by closely integrating deformable prismatic hollow portions for holding the composite material.
FIG. 1 shows a prismatic lithium secondary battery having a basic structure given as an example of the present invention. Reference numeral 50 denotes a lithium secondary battery according to an embodiment of the present invention. Reference numerals 4 and 5 denote a positive electrode plate and a negative electrode. Reference numerals 4a and 4b denote positive and negative terminals extending from the positive electrode 4 and the negative electrode 5, respectively, and reference numeral 7 denotes a battery container made of a resin sheet.
Hereinafter, each component of the lithium secondary battery of the present invention will be described. Note that the present invention is not limited to the following embodiments and examples.

(集電体)
図2は正極の集電体3を厚さ方向から見た状態を示す部分的な平面図である。集電体3は、複数枚(図2では5枚)の金属板11と、細長い複数枚の金属板11を重ね合わせた状態で相互に結合する複数の結合部12とを有し、複数の結合部12は等間隔で厚さ方向に平行に延び、対向する1対の金属板11、11間である一の段における結合部12が、隣接する他の段における隣接する結合部12、12間の中間に位置し、図3の状態の最外層の2枚の金属板11、11を図2の矢符a、b方向(平面方向)に引き離すことにより、複数の角柱形中空部13が形成されたものである。なお、負極については、正極とは異なる点を主に説明する。
(Current collector)
FIG. 2 is a partial plan view showing a state in which the positive electrode current collector 3 is viewed from the thickness direction. The current collector 3 includes a plurality of (five in FIG. 2) metal plates 11 and a plurality of coupling portions 12 that are coupled to each other in a state where the plurality of elongated metal plates 11 are overlapped. The joints 12 extend in parallel in the thickness direction at equal intervals, and the joints 12 in one stage between the pair of opposing metal plates 11, 11 are adjacent joints 12, 12 in other neighboring stages. By pulling the two outermost metal plates 11 and 11 in the state of FIG. 3 in the direction of arrows a and b (planar direction) in FIG. It is formed. In addition, about a negative electrode, a different point from a positive electrode is mainly demonstrated.

正極Aおよび負極Bの集電体3、6の金属板11の材料としては、アルミニウム、アルミニウム合金、鉄、ステンレス、チタン、銅、ニッケル等が挙げられるが、電気化学的安定性を考慮すると、正極用にはアルミニウムまたはアルミニウム合金、負極用には銅またはニッケルが好ましい。
金属板11の厚さとしては、10μmより薄いと物理的な構造を維持できず、また1mmより厚いと、一定サイズのリチウム二次電池における集電体3の中空部13の容積が減少し、中空部13への活物質の充填量が低下して電池容量が低下するため、10μm〜1mmが好ましい。
Examples of the material of the metal plate 11 of the current collectors 3 and 6 of the positive electrode A and the negative electrode B include aluminum, aluminum alloy, iron, stainless steel, titanium, copper, nickel, and the like. Aluminum or aluminum alloy is preferable for the positive electrode, and copper or nickel is preferable for the negative electrode.
If the thickness of the metal plate 11 is less than 10 μm, the physical structure cannot be maintained, and if it is more than 1 mm, the volume of the hollow portion 13 of the current collector 3 in the lithium secondary battery of a certain size decreases. Since the filling amount of the active material into the hollow portion 13 is reduced and the battery capacity is reduced, 10 μm to 1 mm is preferable.

上述のように構成された集積体3は、重ね合わせた金属板11、11同士を接着剤もしくは溶接により結合させて結合部12を形成することができる。この結合部12の幅と厚みは任意に設定可能であるが、例えば幅Wは1〜10mm、厚みTは1mm以下とすることができる。結合部12が接着剤からなる場合、その材料としては、化学的に安定し、適当な溶媒には溶解するが電解質には侵食されない熱可塑性樹脂が好ましく、例えば低融点ポリエチレン、ポリプロピレン、フッ素樹脂が挙げられる。   The assembly 3 configured as described above can form the joint portion 12 by joining the stacked metal plates 11 and 11 together by an adhesive or welding. The width and thickness of the coupling portion 12 can be arbitrarily set. For example, the width W can be set to 1 to 10 mm and the thickness T can be set to 1 mm or less. When the bonding portion 12 is made of an adhesive, the material is preferably a thermoplastic resin that is chemically stable and dissolves in a suitable solvent but does not corrode by the electrolyte. For example, low melting point polyethylene, polypropylene, and fluororesin are used. Can be mentioned.

図1に示す集電体3は平面方向から見た状態であり、金属板11の幅および中空部13の長さに相当する集電体3の厚さTは、対極までの距離が長くなると内部抵抗が上昇するため5mm以下が好ましく、1〜3mmがさらに好ましい。正極Aは、集電体3の角柱形中空部13の一方の開口をセパレータ2へ対向させ、他方の開口を正極板本体4へ対向させて配置されている。負極Bも同様である。   The current collector 3 shown in FIG. 1 is viewed from the plane direction, and the thickness T of the current collector 3 corresponding to the width of the metal plate 11 and the length of the hollow portion 13 increases as the distance to the counter electrode increases. Since internal resistance rises, 5 mm or less is preferable and 1-3 mm is more preferable. The positive electrode A is disposed with one opening of the prismatic hollow portion 13 of the current collector 3 facing the separator 2 and the other opening facing the positive electrode plate body 4. The same applies to the negative electrode B.

次に、集電体3の角柱形中空部13の形状について説明する。
図2では結合部12を説明するために幅Wに比して厚みTを大きく図示しているため、集電体3の内方に位置する角柱形中空部13(2〜4層目の金属板11にて形成された角柱形中空部13)の平面視形状は8角形に見え、外方に位置する角柱形中空部13(1〜2層目および4〜5層目の金属板11にて形成された角柱形中空部13)は平面視7角形に見える。しかし、実際は結合部12の厚みTは上述のように小さいため、図4に示すように角柱形中空部13の平面視形状は、集電体3の内方に位置するものは6角形であり、外方に位置するものは5角形である。なお、図2および4では、角柱形中空部13に充填される合材を図示省略している。
Next, the shape of the prismatic hollow portion 13 of the current collector 3 will be described.
In FIG. 2, since the thickness T is shown larger than the width W in order to explain the coupling portion 12, the prismatic hollow portion 13 (the second to fourth layers of metal) positioned inside the current collector 3. The plan view shape of the prismatic hollow portion 13 formed of the plate 11 looks like an octagon, and the prismatic hollow portion 13 (the first and second layers and the fourth to fifth layers of the metal plates 11) located outward. The prismatic hollow portion 13) formed in this manner appears to be a heptagon in plan view. However, since the thickness T of the coupling portion 12 is actually small as described above, the plan view shape of the prismatic hollow portion 13 is hexagonal when located inward of the current collector 3 as shown in FIG. The one located outside is a pentagon. 2 and 4, the mixture filled in the prismatic hollow portion 13 is not shown.

本発明において、平面視6角形の6角柱形中空部13は、その6つ内角のうち、対向する第1の内角の角度θ1と、対向する第2の内角θ2と、対向する第3の内角θ3とを有し、前記角度θ1と角度θ2は異なり、前記角度θ2と角度θ3は実質的に等しくなっている。
この6角柱形中空部13は、中空部13に合材が充填された状態において、第1の内角の角度θ1は、120°<θ1<180°または0°<θ1<120°を満たし、好ましくは120°<θ1<150°または90°<θ1<120°であり、さらに好ましくは120°<θ1<130°または110°<θ1<120°である。その理由を以下に説明する。
In the present invention, the hexagonal columnar hollow portion 13 having a hexagonal shape in plan view has a first inner angle θ 1 that is opposed to a second inner angle θ 2 that is opposed to a third inner angle that is opposite to the third inner angle. of and a interior angle theta 3, unlike the angle theta 1 and the angle theta 2, the angle theta 2 and the angle theta 3 is made substantially equal.
In the hexagonal columnar hollow portion 13, the first interior angle θ 1 satisfies 120 ° <θ 1 <180 ° or 0 ° <θ 1 <120 ° when the hollow portion 13 is filled with the composite material. Preferably 120 ° <θ 1 <150 ° or 90 ° <θ 1 <120 °, more preferably 120 ° <θ 1 <130 ° or 110 ° <θ 1 <120 °. The reason will be described below.

図5は、6角柱形中空部13における第1の内角の角度θ1と中空部容積との関係を示すグラフであって、角度θ1が120°のときの中空部容積を1とし、角度θ1の変化による容積変化を表している。このグラフの結果は、下記の条件で試作した集電体に基いて得た結果である。
結合部12の厚みt:0.05mm
結合部12の幅W:1mm
集電体の幅:3mm
6角柱形中空部13の一辺(長辺)の長さL:1mm
角度θ1を変化させたときの中空部容積は、中空部13の断面積と集電体の幅との積によって算出することができる。中空部13の断面積は、接合部12の厚み部分に対応する四角形領域R1と、四角形領域R1を挟む両側の各台形領域を2つの直角三角形領域R2と1つの四角形領域R3にそれぞれ分割し、以下の式によって各領域R1〜R3を求め、それらの和によって算出することができる。
R1の断面積={2*cos(θ1/2)+1}*0.05
R2の断面積=sin(θ1/2)*cos(θ1/2)/2
R3の断面積=1*sin(θ1/2)
中空部の断面積=R1の断面積+4×(R2の断面積)+2×(R3の断面積)
なお、角度θ1が180°を超える6角柱形中空部も作製可能であるが、実質的にそのような6角柱形中空部を作製することは困難であるので図5では省略した。
FIG. 5 is a graph showing the relationship between the angle θ 1 of the first inner angle and the volume of the hollow portion in the hexagonal column-shaped hollow portion 13, where the volume of the hollow portion when the angle θ 1 is 120 ° is set to 1. It represents the volume change due to the change of θ 1 . The result of this graph is a result obtained on the basis of a current collector experimentally manufactured under the following conditions.
The thickness t of the coupling portion 12: 0.05 mm
Width W of coupling part 12: 1 mm
Current collector width: 3 mm
Length of one side (long side) of the hexagonal column shaped hollow portion L: 1 mm
The volume of the hollow part when the angle θ 1 is changed can be calculated by the product of the cross-sectional area of the hollow part 13 and the width of the current collector. The cross-sectional area of the hollow portion 13 is divided into a rectangular region R1 corresponding to the thickness portion of the joint 12 and each trapezoidal region on both sides sandwiching the rectangular region R1 into two right-angled triangular regions R2 and one rectangular region R3, Each area | region R1-R3 can be calculated | required with the following formula | equation, and it can calculate by those sums.
R1 cross-sectional area = {2 * cos (θ 1 /2)+1}*0.05
Sectional area of R2 = sin (θ 1/2 ) * cos (θ 1/2) / 2
R3 sectional area of = 1 * sin (θ 1/ 2)
Cross-sectional area of hollow portion = cross-sectional area of R1 + 4 × (cross-sectional area of R2) + 2 × (cross-sectional area of R3)
Although a hexagonal columnar hollow portion having an angle θ 1 exceeding 180 ° can be produced, it is substantially difficult to produce such a hexagonal columnar hollow portion, and is omitted in FIG.

図5から、6角柱形中空部の場合、第1の内角の角度θ1が120°のとき最も容積が大きいことがわかる。したがって、角度θ1を120°よりも大きいかまたは小さくすれば、6角柱形中空部に充填された合材(特に活物質)が膨張しても、第1の内角の角度θ1が小さくなるか大きくなるように中空部の形状が変形することにより、中空部の容積が大きくなるので、中空部内部に充填された活物質内部に物理適応力がかかることはない。これに対し、第1の内角の角度θ1が120°の場合、合材の膨張しても中空部の容積はそれ以上大きくならないため、活物質内部に物理的応力がかかって活物質と導電材との接触点が破壊され、サイクル特性の劣化や電池寿命が短くなる。
一方、合材(特に活物質)に収縮が生じた場合には、第1の内角の角度θ1が大きくなるか小さくなることにより、充填された合材全体の収縮に応じて中空部の容積が減少するので中空部内部に充填された活物質内部に物理適応力がかかることはない。
From FIG. 5, it can be seen that in the case of a hexagonal columnar hollow portion, the volume is the largest when the angle θ 1 of the first inner angle is 120 °. Therefore, if the angle θ 1 is larger or smaller than 120 °, even if the composite material (particularly the active material) filled in the hexagonal columnar hollow portion expands, the angle θ 1 of the first inner angle becomes smaller. By deforming the shape of the hollow portion so as to increase, the volume of the hollow portion increases, so that no physical adaptation force is applied to the inside of the active material filled in the hollow portion. On the other hand, when the angle θ 1 of the first inner angle is 120 °, the volume of the hollow portion does not increase any more even if the composite material expands. Contact points with the material are destroyed, cycle characteristics are deteriorated and battery life is shortened.
On the other hand, when shrinkage occurs in the composite material (particularly the active material), the volume of the hollow portion is increased according to the shrinkage of the entire filled composite material by increasing or decreasing the angle θ 1 of the first internal angle. Therefore, the physical adaptability is not applied to the inside of the active material filled in the hollow portion.

このように、本発明によれば、正極Aおよび負極Bの集電体3、6の各中空部13内に充填された合材の膨張、収縮によって生じる集電体3、6への応力が緩和されるため、活物質と導電材の接触点が応力により破壊されることが無く、充放電サイクルを繰り返しても内部抵抗が上昇したり容量が低下することのない長寿命のリチウム二次電池が得られる。
上述したように、集電体の6角柱形中空部13は、中空部13に合材が充填された状態において、第1の内角の角度θ1は、120°<θ1<180°または0°<θ1<120°であればよいが、電池容量をできるだけ大きくするためには中空部13の容積はできるだけ大きい方が好ましく、そのため120°<θ1<150°または90°<θ1<120°が好ましく、特に120°<θ1<130°または110°<θ1<120°が好ましい。
As described above, according to the present invention, the stress applied to the current collectors 3 and 6 caused by the expansion and contraction of the mixture filled in the hollow portions 13 of the current collectors 3 and 6 of the positive electrode A and the negative electrode B is reduced. Because it is relaxed, the contact point between the active material and the conductive material is not destroyed by stress, and the long-life lithium secondary battery does not increase in internal resistance or decrease in capacity even after repeated charge / discharge cycles Is obtained.
As described above, in the hexagonal columnar hollow portion 13 of the current collector, the first interior angle θ 1 is 120 ° <θ 1 <180 ° or 0 when the hollow portion 13 is filled with the composite material. ° <θ 1 <may be a 120 °, but preferably as large as possible is the volume of the hollow portion 13 in order to maximize the battery capacity, therefore 120 ° <θ 1 <150 ° or 90 ° <θ 1 < 120 ° is preferable, and 120 ° <θ 1 <130 ° or 110 ° <θ 1 <120 ° is particularly preferable.

また、集電体3の角柱形中空部13の角柱形の一辺の長さLは、特に限定されるものではないが、一辺の長さが5mm以上であると、中空部13に充填した活物質から集電体3までの距離が大きくなり、電極の内部抵抗上昇し易く電池の負荷特性が低下し易いため、5mmまでが好ましく、1〜3mmがさらに好ましい。   Further, the length L of one side of the prismatic hollow part 13 of the prismatic hollow part 13 of the current collector 3 is not particularly limited, but if the length of one side is 5 mm or more, the active part filled in the hollow part 13 is Since the distance from the substance to the current collector 3 is increased, the internal resistance of the electrode is likely to increase, and the load characteristics of the battery are liable to be reduced, it is preferably up to 5 mm, more preferably 1 to 3 mm.

(正極活物質)
正極活物質としては、リチウム遷移金属複合酸化物、リチウム遷移金属複合硫化物、リチウム遷移金属複合窒化物、リン酸リチウム遷移金属化合物などが使用できる。
(Positive electrode active material)
As the positive electrode active material, lithium transition metal composite oxide, lithium transition metal composite sulfide, lithium transition metal composite nitride, lithium phosphate transition metal compound, and the like can be used.

(負極活物質)
負極活物質としては、電気化学的にリチウムを挿入/脱離し得る材料が好ましい。高エネルギー密度電池を構成するためには、リチウムの挿入/脱離する電位が金属リチウムの析出/溶解電位に近いものが好ましい。その典型例は、粒子状(鱗片状、塊状、繊維状、ウィスカー状、球状、粉砕粒子状など)の天然もしくは人造黒鉛である。メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末などを黒鉛化して得られる人造黒鉛を使用してもよい。また、非晶質炭素を表面に付着させた黒鉛粒子も使用できる。あるいはリチウム遷移金属酸化物やリチウム遷移金属窒化物、遷移金属酸化物や、酸化シリコン等も使用可能である。これらの中でも還元雰囲気での熱処理によって組成や構造が変化しにくいものが好ましく、具体的には炭素材料が好ましい。
(Negative electrode active material)
As the negative electrode active material, a material capable of electrochemically inserting / extracting lithium is preferable. In order to constitute a high energy density battery, it is preferable that the potential at which lithium is inserted / desorbed is close to the deposition / dissolution potential of metallic lithium. A typical example is natural or artificial graphite in the form of particles (scale-like, lump-like, fibrous, whisker-like, spherical, pulverized particles, etc.). Artificial graphite obtained by graphitizing mesocarbon microbeads, mesophase pitch powder, isotropic pitch powder, and the like may be used. Also, graphite particles having amorphous carbon attached to the surface can be used. Alternatively, lithium transition metal oxide, lithium transition metal nitride, transition metal oxide, silicon oxide, or the like can be used. Among these, those that are difficult to change in composition and structure by heat treatment in a reducing atmosphere are preferable, and specifically, a carbon material is preferable.

(導電材)
導電材としては黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、導電性金属酸化物等の化学的に安定なものが使用可能であり、必要であるならば複数の種類を混合して使用しても良い。合材中の導電材の混合比は、正極活物質または負極活物質100重量部に対して1〜50重量部とすることができるが、この範囲に限定されるものではない。
(Conductive material)
Chemically stable materials such as graphite, carbon black, acetylene black, ketjen black, carbon fiber, and conductive metal oxide can be used as the conductive material. If necessary, multiple types can be mixed. May be used. The mixing ratio of the conductive material in the mixture can be 1 to 50 parts by weight with respect to 100 parts by weight of the positive electrode active material or the negative electrode active material, but is not limited to this range.

(結着剤)
結着剤にはポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー等を用いることができる。合材中の結着剤の混合比は、正極活物質または負極活物質100重量部に対して1〜50重量部とすることができるが、この範囲に限定されるものではない。
(Binder)
As the binder, fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride, polyolefin-based polymers such as polyethylene and polypropylene, and the like can be used. The mixing ratio of the binder in the composite material can be 1 to 50 parts by weight with respect to 100 parts by weight of the positive electrode active material or the negative electrode active material, but is not limited to this range.

(正極板、負極板およびそれらの電極端子)
正極板4および正極端子4aの材料は正極用集電体3と同じ金属材料を用いることができ、負極板5および負極端子4bの材料は負極用集電体6と同じ金属材料を用いることができる。なお、正極および負極端子4a、4bは、予め正極および負極板4、5に溶接にて接続されていることが好ましい。また、正極および負極板4、5を省略し、正極および負極端子4a、4bを正極用集電体3および負極用集電体6に直接溶接してもよい。
(Positive electrode plate, negative electrode plate and their electrode terminals)
The material of the positive electrode plate 4 and the positive electrode terminal 4a can be the same metal material as that of the positive electrode current collector 3, and the material of the negative electrode plate 5 and the negative electrode terminal 4b can be the same metal material as that of the negative electrode current collector 6. it can. The positive and negative terminals 4a and 4b are preferably connected in advance to the positive and negative electrodes 4 and 5 by welding. Alternatively, the positive and negative electrode plates 4 and 5 may be omitted, and the positive and negative electrode terminals 4a and 4b may be directly welded to the positive electrode current collector 3 and the negative electrode current collector 6.

(電解質)
電解質には、例えば有機電解液、ゲル状電解質、高分子固体電解質、無機固体電解質、溶融塩等を用いることができ、中でも有機電解液が好ましい。有機電解液は、使用する正極および負極活物質との組み合わせに最適なものを選択することが好ましく、以下のような正極活物質/電解液(塩:溶媒)/負極活物質の組み合わせを挙げることができる。
LiFePO4/LiPF6・エチレンカーボネート+ジエチルカーボネート/黒鉛の組み合わせ、LiCoO2/LiPF6:プロピレンカーボネート+ジエチルカーボネート/Li−Cの組み合わせなど。
(Electrolytes)
As the electrolyte, for example, an organic electrolyte, a gel electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among them, an organic electrolyte is preferable. It is preferable to select an organic electrolyte that is most suitable for the combination of the positive electrode and the negative electrode active material to be used. Examples include the following combinations of positive electrode active material / electrolytic solution (salt: solvent) / negative electrode active material. Can do.
A combination of LiFePO 4 / LiPF 6 · ethylene carbonate + diethyl carbonate / graphite, a combination of LiCoO 2 / LiPF 6: propylene carbonate + diethyl carbonate / Li—C, and the like.

(セパレータ)
セパレータ7の材質としては、電解質中に含まれる有機溶媒に対して溶解したり膨潤しないものが好ましく、具体的にはポリエステル系ポリマー、ポリオレフィン系ポリマー、エーテル系ポリマー、あるいはガラスなどの無機材料が挙げられ、具体的にはポリエチレンあるいはポリプロピレンから形成された多孔質材料あるいは不織布を用いることができる。セパレータ7の厚さとしては0.005〜0.1mmとすることができる。
(Separator)
The material of the separator 7 is preferably one that does not dissolve or swell in the organic solvent contained in the electrolyte, and specifically includes an inorganic material such as a polyester polymer, a polyolefin polymer, an ether polymer, or glass. Specifically, a porous material or a nonwoven fabric formed from polyethylene or polypropylene can be used. The thickness of the separator 7 can be 0.005 to 0.1 mm.

次に、リチウム二次電池の作製について説明する。
集電体3は、上述のように矢符a、b方向への金属板11、11間の引き延ばし幅を制御することにより、中空部13の第1の内角の角度θ1を制御することができる。あるいは、一旦金属板11、11間を引き延ばした後に、第1の内角が任意の角度になるように後から調整することもできる。なお、負極用集電体6も同様である。
Next, production of a lithium secondary battery will be described.
The current collector 3 can control the angle θ 1 of the first inner angle of the hollow portion 13 by controlling the extension width between the metal plates 11 and 11 in the directions of the arrows a and b as described above. it can. Or after extending between the metal plates 11 and 11, it can also adjust later so that a 1st interior angle may become arbitrary angles. The same applies to the negative electrode current collector 6.

前記活物質、導電材および結着剤は、それぞれ所定量を混合して合材を作製し、合材は集電体3の全ての中空部13に隙間無く充填される。このとき、集電体3を正極板4上に載置し、上方に開口した中空部13に合材を充填してもよい。また、溶媒を添加してペースト状に合材を作製してもよい。合材のペースト化の溶媒としては、特に限定されないが、結着剤を溶解できるものが好ましく、例えばN−メチルピロリドン、アセトン、アルコール等の有機溶媒のほかに水も使用可能である。また、ペースト状の合材の粘度は、自重で中空部13から漏れ出ない粘度範囲が好ましく、例えば20〜100Pa・sである。
合材に溶媒を添加してペースト化した場合、合材を集電体3に担持させた後、溶媒を除去するために合材の乾燥を行うことが好ましい。乾燥は大気中で行っても、減圧下で行なってもよい。好ましくは、乾燥時間短縮のために80℃程度の温度下で乾燥させる。なお、負極用集電体6の各中空部13にも同様にして負極活物質と導電材と結着剤の合材が充填される。
The active material, the conductive material, and the binder are mixed in predetermined amounts to produce a composite material, and the composite material is filled in all the hollow portions 13 of the current collector 3 without any gaps. At this time, the current collector 3 may be placed on the positive electrode plate 4, and the hollow part 13 opened upward may be filled with the mixture. Moreover, you may produce a compound material in paste form by adding a solvent. The solvent for forming the paste of the composite material is not particularly limited, but a solvent capable of dissolving the binder is preferable. For example, water can be used in addition to an organic solvent such as N-methylpyrrolidone, acetone and alcohol. The viscosity of the paste-like composite material is preferably within a viscosity range that does not leak from the hollow portion 13 due to its own weight, and is, for example, 20 to 100 Pa · s.
When a solvent is added to the composite material to form a paste, the composite material is preferably dried on the current collector 3 and then dried to remove the solvent. Drying may be performed in the air or under reduced pressure. Preferably, drying is performed at a temperature of about 80 ° C. in order to shorten the drying time. Similarly, each hollow portion 13 of the negative electrode current collector 6 is filled with a mixture of a negative electrode active material, a conductive material, and a binder.

正極板4と重ねた正極用集電体3と負極板5に重ねた負極用集電体6とでセパレータ2を挟んで積層し電極群を作製する。図1の場合、正極と負極が1枚ずつの2層構造であるが、正極および負極の少なくとも一方が2枚以上異なる極性側に重なって3層以上積層されてもよい。
この様にして作製した電極群を、電池容器7の内部に挿入し、正極端子4aおよび負極端子4bを電池容器7の外部に導出する。その後に、正・負電極A、Bおよびセパレータ2を外気より遮断するために電池容器7を密閉しする。封口の方法は角型電池の場合は金属性の封口板と呼ばれる蓋を開口部に取りつけ、溶接を行うことにより密封できる。これらの方法以外に接着剤で密封したり、ガスケットなどを介してボルトなどで固定してもよい。また、金属箔に熱可塑性樹脂を貼り付けたラミネート膜にて封止してもよい。封入時に電解質注入用の開口部を設けておくこともできる。なお、円筒型の電池の場合、電池容器の開口部に樹脂製のパッキンを有する蓋をはめ込み、容器をかしめることによって密封を行うのが普通である。
その後、電池容器7に電解質を注入し、電池容器7の開口部を封止して二次電池の作製を完了する。なお、封止の前に通電し発生したガスを電池容器7内から取り除くのもよい。
A positive electrode current collector 3 superimposed on the positive electrode plate 4 and a negative electrode current collector 6 superimposed on the negative electrode plate 5 are stacked with the separator 2 interposed therebetween to produce an electrode group. In the case of FIG. 1, the positive electrode and the negative electrode have a two-layer structure, but at least one of the positive electrode and the negative electrode may be stacked on three or more layers with different polar sides overlapping each other.
The electrode group produced in this way is inserted into the battery container 7, and the positive terminal 4 a and the negative terminal 4 b are led out of the battery container 7. Thereafter, the battery container 7 is sealed in order to block the positive / negative electrodes A and B and the separator 2 from the outside air. In the case of a square battery, the sealing method can be sealed by attaching a lid called a metallic sealing plate to the opening and welding. In addition to these methods, sealing with an adhesive or fixing with bolts or the like via a gasket or the like may be used. Alternatively, sealing may be performed with a laminate film in which a thermoplastic resin is attached to a metal foil. An opening for injecting electrolyte can be provided at the time of sealing. In the case of a cylindrical battery, sealing is usually performed by fitting a lid having a resin packing into the opening of the battery container and caulking the container.
Thereafter, an electrolyte is injected into the battery container 7, and the opening of the battery container 7 is sealed to complete the production of the secondary battery. Note that the gas generated by energization before sealing may be removed from the battery container 7.

(実施例1)
正極を下記の手順で作製した。
正極活物質として200gのLiFePO4と、導電材として10gのアセチレンブラックと、結着剤として10gのポリビニリデンフルオライドとを混合し、これにN-メチル-2-ピロリドンを150ml加えて混錬装置を用いて混錬を行って正極用合材を作製した。
使用した正極用集電体はアルミニウム製で、長さ10cm、幅10cm、厚さ1mmであり、中空部の一辺の長さは1.5mm、中空部の第1の内角の角度θ1は125°である。また、正極用集電体には幅5mm、厚さ100μmのアルミニウム製正極端子が予め溶接されている。この正極用集電体の各中空部内にペースト化した正極用合材を充填し、合材を充填した集電体を乾燥機中で60℃、12時間放置し溶媒を除去した。
Example 1
A positive electrode was produced by the following procedure.
200 g of LiFePO 4 as a positive electrode active material, 10 g of acetylene black as a conductive material, and 10 g of polyvinylidene fluoride as a binder are mixed, and 150 ml of N-methyl-2-pyrrolidone is added to the kneader. Kneading was performed to produce a positive electrode mixture.
The positive electrode current collector used was made of aluminum, had a length of 10 cm, a width of 10 cm, and a thickness of 1 mm. The length of one side of the hollow portion was 1.5 mm, and the angle θ 1 of the first inner angle of the hollow portion was 125. °. Further, an aluminum positive electrode terminal having a width of 5 mm and a thickness of 100 μm is welded to the positive electrode current collector in advance. Each hollow part of the positive electrode current collector was filled with the paste-formed positive electrode mixture, and the current collector filled with the mixture was left in a dryer at 60 ° C. for 12 hours to remove the solvent.

負極を下記の手順で作製した。
負極活物質として200gの天然黒鉛と、結着剤として10gのポリビニリデンフルオライドとを混合し、これにN-メチル-2-ピロリドンを150ml加えて混錬装置を用いて混錬を行って負極用合材を作製した。
使用した負極用集電体は材質が銅製である以外は、正極用集電体と同様の構成であり、この負極用集電体には幅5mm、厚さ100μmのニッケル製負極端子が予め溶接されている。この負極用集電体の各中空部内にペースト化した負極用合材を充填し、合材を充填した集電体を乾燥機中で60℃、12時間放置し溶媒を除去した。
A negative electrode was produced by the following procedure.
200 g of natural graphite as a negative electrode active material and 10 g of polyvinylidene fluoride as a binder are mixed, 150 ml of N-methyl-2-pyrrolidone is added thereto, and kneading is performed using a kneading apparatus to form a negative electrode. A composite material was prepared.
The negative electrode current collector used had the same structure as the positive electrode current collector, except that the material was copper. The negative electrode current collector was previously welded with a negative electrode terminal made of nickel having a width of 5 mm and a thickness of 100 μm. Has been. Each hollow part of the negative electrode current collector was filled with the pasted negative electrode mixture, and the current collector filled with the mixture was left in a dryer at 60 ° C. for 12 hours to remove the solvent.

その後、水分を除去するために正極および負極を150℃、0.01MPa以下の圧力下で12時間乾燥を行った。
これ以降の作業は全て露点温度が-80℃以下のアルゴン雰囲気ドライボックス内にて行った。
厚さ50μmの多孔質ポリエチレン製のセパレータを介して正極と負極を対向させ、それを厚さ50μmのアルミニウム箔に厚さ50μmの低融点ポリエチレンフィルムを溶着してなるラミネートフィルム袋(電池容器)内に挿入し、ラミネートフィルム袋内に電解液を注入し開口部を熱溶着にて封止してリチウム二次電池を完成させた。なお、電解液としては、エチレンカーボネートとジエチルカーボネートとを容量比1:1で混合した溶媒に塩としてLiPF6を1.0mol/l溶解させたものを用いた。
Thereafter, in order to remove moisture, the positive electrode and the negative electrode were dried at 150 ° C. under a pressure of 0.01 MPa or less for 12 hours.
All subsequent operations were performed in an argon atmosphere dry box having a dew point temperature of −80 ° C. or lower.
Inside a laminated film bag (battery container), in which a positive electrode and a negative electrode are opposed to each other through a porous polyethylene separator having a thickness of 50 μm, and a low melting point polyethylene film having a thickness of 50 μm is welded to an aluminum foil having a thickness of 50 μm. The electrolyte solution was poured into the laminated film bag and the opening was sealed by heat welding to complete a lithium secondary battery. As the electrolytic solution, capacitance of ethylene carbonate and diethyl carbonate ratio of 1: a LiPF 6 solvent as a salt mixed was used by dissolving 1.0 mol / l in 1.

完成したリチウム二次電池を、電池の電圧が4.0Vになるまで1Aの定電流で充電を行い、それ以降は4.0Vの定電圧充電を2時間行って充電を完了させた。その後、1Aで電池電圧が2.5Vになるまで放電を行った。その時の放電容量をこの電池の初期容量とした。実施例1の初期容量は10.3Ahであった。
次に、電池の電圧が4.0Vになるまで5時間率の定電流で充電を行い、それ以降は4.0Vの定電圧充電を2時間行って充電を完了させ、5時間率で放電を行うことを1サイクルとし、これを100サイクル繰り返した。実施例1の100サイクル後の放電容量は9.8Ahであり、初期容量に対する容量比で示されるサイクル特性は95.2%であった。ここで5時間率とは、電池の定格容量に対して5時間で全容量を放電する電流値を意味する。
The completed lithium secondary battery was charged with a constant current of 1 A until the voltage of the battery reached 4.0 V, and thereafter, 4.0 V constant voltage charging was performed for 2 hours to complete the charging. Thereafter, discharging was performed at 1 A until the battery voltage reached 2.5V. The discharge capacity at that time was defined as the initial capacity of the battery. The initial capacity of Example 1 was 10.3 Ah.
Next, the battery is charged at a constant current of 5 hours until the voltage of the battery reaches 4.0V, and thereafter, the battery is charged at a constant voltage of 4.0V for 2 hours to complete the charge, and discharged at the 5 hour rate One cycle was performed, and this was repeated 100 cycles. The discharge capacity after 100 cycles of Example 1 was 9.8 Ah, and the cycle characteristic indicated by the capacity ratio with respect to the initial capacity was 95.2%. Here, the 5-hour rate means a current value for discharging the entire capacity in 5 hours with respect to the rated capacity of the battery.

(実施例2)
正極用集電体および負極用集電体の中空部の第1の内角の角度θ1を175°にしたこと以外は実施例1と同様の手順で実施例2のリチウム二次電池を作製し、実施例1と同様の方法で実施例2の電池の初期容量と100サイクル後の放電容量を比較することで、サイクル特性を測定した。実施例2において、初期容量は10.5Ah、100サイクル後の放電容量は10.1Ah、サイクル特性は96.3%であった。
(Example 2)
A lithium secondary battery of Example 2 was fabricated in the same procedure as in Example 1 except that the angle θ 1 of the first inner angle of the hollow part of the positive electrode current collector and the negative electrode current collector was 175 °. The cycle characteristics were measured by comparing the initial capacity of the battery of Example 2 and the discharge capacity after 100 cycles in the same manner as in Example 1. In Example 2, the initial capacity was 10.5 Ah, the discharge capacity after 100 cycles was 10.1 Ah, and the cycle characteristics were 96.3%.

(実施例3)
正極用集電体および負極用集電体の中空部の第1の内角の角度θ1を115°にしたこと以外は実施例1と同様の手順で実施例3のリチウム二次電池を作製し、実施例1と同様の方法で実施例3の電池の初期容量と100サイクル後の放電容量を比較することで、サイクル特性を測定した。実施例3において、初期容量は10.9Ah、100サイクル後の放電容量は10.0Ah、サイクル特性は91.3%であった。
(Example 3)
A lithium secondary battery of Example 3 was produced in the same procedure as Example 1 except that the first inner angle θ 1 of the hollow part of the positive electrode current collector and the negative electrode current collector was 115 °. The cycle characteristics were measured by comparing the initial capacity of the battery of Example 3 and the discharge capacity after 100 cycles in the same manner as in Example 1. In Example 3, the initial capacity was 10.9 Ah, the discharge capacity after 100 cycles was 10.0 Ah, and the cycle characteristics were 91.3%.

(比較例1)
正極用集電体および負極用集電体の中空部の第1の内角の角度θ1を120°にしたこと以外は実施例1と同様の手順で比較例1のリチウム二次電池を作製し、実施例1と同様の方法で比較例1の電池の初期容量と100サイクル後の放電容量を比較することで、サイクル特性を測定した。比較例1において、初期容量は10.9Ah、100サイクル後の放電容量は7.1Ah、サイクル特性は65.3%であった。
(Comparative Example 1)
A lithium secondary battery of Comparative Example 1 was fabricated in the same procedure as in Example 1 except that the first interior angle θ 1 of the hollow part of the positive electrode current collector and the negative electrode current collector was 120 °. The cycle characteristics were measured by comparing the initial capacity of the battery of Comparative Example 1 and the discharge capacity after 100 cycles in the same manner as in Example 1. In Comparative Example 1, the initial capacity was 10.9 Ah, the discharge capacity after 100 cycles was 7.1 Ah, and the cycle characteristics were 65.3%.

実施例1〜3及び比較例1のサイクル特性についてまとめたものを表1に示す。実施例1〜3の電池はサイクル特性も良好であることがわかる。これは充放電に伴う活物質の膨張収縮により生じる電極内部の応力が緩和され、活物質と導電材と集電体との接触が100サイクルを経過しても初期の状態を保っているためであると考えられる。   Table 1 summarizes the cycle characteristics of Examples 1 to 3 and Comparative Example 1. It can be seen that the batteries of Examples 1 to 3 have good cycle characteristics. This is because the stress inside the electrode caused by the expansion and contraction of the active material due to charge and discharge is relieved, and the initial state is maintained even after 100 cycles of contact between the active material, the conductive material and the current collector. It is believed that there is.

Figure 2007299639
Figure 2007299639

本発明のリチウム二次電池の一実施形態の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of one Embodiment of the lithium secondary battery of this invention. 本発明における集電体を説明する厚さ方向から見た図である。It is the figure seen from the thickness direction explaining the electrical power collector in this invention. 図2の集電体を広げる前の状態を示す厚さ方向から見た図である。It is the figure seen from the thickness direction which shows the state before extending the electrical power collector of FIG. 図2の集電体の角柱形中空部の形状を説明する図である。It is a figure explaining the shape of the prismatic hollow part of the electrical power collector of FIG. 図2の集電体の角柱形中空部における第1の内角の角度と中空部容積との関係を示すグラフである。It is a graph which shows the relationship between the angle of the 1st interior angle in the prismatic hollow part of the electrical power collector of FIG. 2, and a hollow part volume.

符号の説明Explanation of symbols

2 セパレータ
3 正極用集電体
4 正極板
4a 正極端子
5 負極板
5a 負極端子
6 負極用集電体
7 電池容器
12 結合部
13 角柱形中空部(6角柱形中空部)
A 正極
B 負極
L 角柱形中空部の一辺の長さ
T 集電体の厚さ
t 結合部の厚さ
w 結合部の幅
θ1 第1の内角の角度
θ2 第2の内角の角度
θ3 第3の内角の角度
2 Separator 3 Positive electrode current collector 4 Positive electrode plate 4a Positive electrode terminal 5 Negative electrode plate 5a Negative electrode terminal 6 Negative electrode current collector 7 Battery container 12 Coupling portion 13 Rectangular column-shaped hollow portion (hexagonal column-shaped hollow portion)
A Positive electrode B Negative electrode L Length of one side of the prismatic hollow part T Current collector thickness t Coupling part thickness w Coupling part width θ 1 First interior angle θ 2 Second interior angle θ 3 Third interior angle

Claims (5)

正極および負極と、該正極および負極を電気的に絶縁するセパレータと、電解質とを備え、前記正極および負極は、複数の角柱形中空部が集積された構造の集電体と、この集電体の各角柱形中空部に充填された活物質と導電材と結着剤とを混合した合材とをそれぞれ有してなり、前記集電体は、充放電時の前記合材の膨張、収縮に応じて角柱形中空部の形状が変形するように構成されたことを特徴とするリチウム二次電池。   A positive electrode and a negative electrode; a separator that electrically insulates the positive electrode and the negative electrode; and an electrolyte. Each of the prismatic hollow portions is filled with an active material, a conductive material and a binder mixed, and the current collector is expanded and contracted during charging and discharging. A lithium secondary battery characterized in that the shape of the prismatic hollow portion is deformed according to the above. 前記複数の角柱形中空部は、6角柱形中空部を有し、前記6角柱形中空部における6つ内角のうち、対向する第1の内角の角度θ1と、対向する第2の内角θ2と、対向する第3の内角θ3とを有し、前記角度θ1と角度θ2は異なり、前記角度θ2と角度θ3は等しい請求項1に記載のリチウム二次電池。 Wherein the plurality of prismatic hollow part has a hexagonal prism-shaped hollow portion, the six internal angles in the 6 prismatic hollow portion, an angle theta 1 of the first interior angle opposite, second interior angle opposite theta 2, and a third interior angle theta 3 facing the different angles theta 1 and the angle theta 2, the angle theta 2 and the angle theta 3 is a lithium secondary battery according to claim 1 equivalent. 前記角度θ1は、120°<θ1<180°または0°<θ1<120°を満たす請求項2に記載のリチウム二次電池。 The lithium secondary battery according to claim 2, wherein the angle θ 1 satisfies 120 ° <θ 1 <180 ° or 0 ° <θ 1 <120 °. 前記集電体が、複数枚の金属板と、前記複数枚の金属板を重ね合わせた状態で相互に結合する複数の結合部とを有し、
前記複数の結合部は等間隔で同一方向に延び、対向する1対の金属板間である一の段における結合部が、隣接する他の段における隣接する結合部間の中間に位置し、
最外層の2枚の金属板を引き離すことにより複数の角柱形中空部が形成された請求項1〜3のいずれか1つに記載のリチウム二次電池。
The current collector has a plurality of metal plates and a plurality of coupling portions that are coupled to each other in a state where the plurality of metal plates are overlapped,
The plurality of joints extend in the same direction at equal intervals, a joint in one stage between a pair of opposing metal plates is located in the middle between adjacent joints in another adjacent stage,
The lithium secondary battery according to any one of claims 1 to 3, wherein a plurality of prismatic hollow portions are formed by separating two outermost metal plates.
前記正極および負極は、それらの集電体の角柱形中空部の一方の開口を前記セパレータへ対向させて配置されている請求項4に記載のリチウム二次電池。   The lithium secondary battery according to claim 4, wherein the positive electrode and the negative electrode are arranged such that one opening of a prismatic hollow portion of the current collector faces the separator.
JP2006126603A 2006-04-28 2006-04-28 Lithium secondary battery Expired - Fee Related JP4854377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126603A JP4854377B2 (en) 2006-04-28 2006-04-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126603A JP4854377B2 (en) 2006-04-28 2006-04-28 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007299639A true JP2007299639A (en) 2007-11-15
JP4854377B2 JP4854377B2 (en) 2012-01-18

Family

ID=38768961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126603A Expired - Fee Related JP4854377B2 (en) 2006-04-28 2006-04-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4854377B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322059B1 (en) 2008-06-13 2013-10-25 주식회사 엘지화학 Cylindrical can of lithium secondary battery using complex material
KR20150076423A (en) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 sodium sulfur batteries

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032006A (en) * 1996-05-17 1998-02-03 Katayama Tokushu Kogyo Kk Metal sheet for battery electrode plate and electrode for battery using the metal sheet
JP2000243401A (en) * 1998-06-26 2000-09-08 Kazunori Yamada Collector for battery
JP2001126736A (en) * 1999-10-27 2001-05-11 Inoac Corp Honeycomb-structure collector for electrode of lithium ion secondary cell, electrode of lithium ion secondary cell, and method for preventing the honeycomb- structure collector for electrode of lithium ion secondary cell
JP2001202968A (en) * 2000-01-17 2001-07-27 Dainippon Printing Co Ltd Current collector for battery
JP2002184411A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
JP2002222653A (en) * 2001-01-25 2002-08-09 Sumitomo Electric Ind Ltd Positive electrode collector for alkali secondary battery and its manufacturing method, and positive electrode using the collector
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032006A (en) * 1996-05-17 1998-02-03 Katayama Tokushu Kogyo Kk Metal sheet for battery electrode plate and electrode for battery using the metal sheet
JP2000243401A (en) * 1998-06-26 2000-09-08 Kazunori Yamada Collector for battery
JP2001126736A (en) * 1999-10-27 2001-05-11 Inoac Corp Honeycomb-structure collector for electrode of lithium ion secondary cell, electrode of lithium ion secondary cell, and method for preventing the honeycomb- structure collector for electrode of lithium ion secondary cell
JP2001202968A (en) * 2000-01-17 2001-07-27 Dainippon Printing Co Ltd Current collector for battery
JP2002184411A (en) * 2000-12-15 2002-06-28 Sumitomo Electric Ind Ltd Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
JP2002222653A (en) * 2001-01-25 2002-08-09 Sumitomo Electric Ind Ltd Positive electrode collector for alkali secondary battery and its manufacturing method, and positive electrode using the collector
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322059B1 (en) 2008-06-13 2013-10-25 주식회사 엘지화학 Cylindrical can of lithium secondary battery using complex material
KR20150076423A (en) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 sodium sulfur batteries
KR101597292B1 (en) 2013-12-26 2016-02-25 재단법인 포항산업과학연구원 sodium sulfur batteries

Also Published As

Publication number Publication date
JP4854377B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
CN106104901B (en) Sheet-laminated lithium ion secondary battery and method for manufacturing sheet-laminated lithium ion secondary battery
KR101684026B1 (en) Nonaqueous electrolyte battery, battery pack and storage battery apparatus
US20130177787A1 (en) Current collector and nonaqueous secondary battery
JP6644658B2 (en) Lithium ion battery
US20130177788A1 (en) Nonaqueous secondary battery
JP2007299698A (en) Method of manufacturing lithium ion accumulating element
KR20140091478A (en) Energy storage device and method
JP2010161249A (en) Lithium ion capacitor
JP5664414B2 (en) Bipolar type secondary battery
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
JP2012156405A (en) Electricity storage device
JP5937969B2 (en) Non-aqueous secondary battery
JP6362440B2 (en) Secondary battery
JP5761439B2 (en) Non-aqueous electrolyte secondary battery and storage circuit using the same
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
CN112236894A (en) Nonaqueous electrolyte secondary battery
JP2017059538A (en) Laminated battery
JP4802217B2 (en) Nonaqueous electrolyte secondary battery
JP4854377B2 (en) Lithium secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2015128021A (en) Bipolar secondary battery
US20160049651A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20180113640A (en) Flat-type secondary battery
KR20190056848A (en) Electrode assembly
JP4092543B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees