JP2007298634A - Reflection type polarizing plate - Google Patents

Reflection type polarizing plate Download PDF

Info

Publication number
JP2007298634A
JP2007298634A JP2006125235A JP2006125235A JP2007298634A JP 2007298634 A JP2007298634 A JP 2007298634A JP 2006125235 A JP2006125235 A JP 2006125235A JP 2006125235 A JP2006125235 A JP 2006125235A JP 2007298634 A JP2007298634 A JP 2007298634A
Authority
JP
Japan
Prior art keywords
film
refractive index
scattering film
polarizer
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006125235A
Other languages
Japanese (ja)
Other versions
JP4746475B2 (en
Inventor
Mitsumasa Ono
光正 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2006125235A priority Critical patent/JP4746475B2/en
Publication of JP2007298634A publication Critical patent/JP2007298634A/en
Application granted granted Critical
Publication of JP4746475B2 publication Critical patent/JP4746475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection type polarizing plate in which the linearly polarized light reflected in a reflection type polarizer is depolarized and reused efficiently to improve the light quality of transmitted light. <P>SOLUTION: The reflection type polarizing plate is a laminated body with a scattering film (B) laminated on the light entrance side of the reflection polarizer (A). The scattering film (B) has a structure comprising a matrix phase (B-1) containing a thermoplastic resin and a dispersed phase (B-2). The refractive index of the matrix phase and that of the dispersed phase satisfy expression (1): ¾N<SB>yz</SB>-(n<SB>y</SB>+n<SB>z</SB>)/2¾≤0.05 and expression (2): ¾n<SB>x</SB>-N<SB>x</SB>¾>0.05. The whole light transmittance and the parallel light transmittance of the scattering film (B) are ≥85% and ≥60%, respectively when the linearly polarized light parallel to the y direction is made incident perpendicularly on the film plane. The transmission axis of the reflection type polarizer (A) is made parallel to the y direction on the film plane of the scattering film (B). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は反射型偏光板に関する。更に詳しくは、反射型偏光子の光線入射側に散乱フィルムが積層された反射型偏光板に関し、反射型偏光子で反射される直線偏光が散乱フィルムによって偏光解消されて非偏光光として再利用されることにより、透過光の光量が向上する反射型偏光板に関する。   The present invention relates to a reflective polarizing plate. More specifically, regarding a reflective polarizing plate in which a scattering film is laminated on the light incident side of a reflective polarizer, linearly polarized light reflected by the reflective polarizer is depolarized by the scattering film and reused as non-polarized light. The present invention relates to a reflective polarizing plate that improves the amount of transmitted light.

入射光の偏光成分(以下、直線偏光又は直線偏光成分と称する)を分離する光学素子である偏光子は、テレビ、PCモニター、各種携帯機器などに使用される表示機材の主流となっている液晶ディスプレイ装置における根幹部材であり、近年、使用量が増大している。   Polarizers, which are optical elements that separate polarized light components of incident light (hereinafter referred to as linearly polarized light or linearly polarized light components), are the mainstream liquid crystal display devices used in televisions, PC monitors, various portable devices, and the like. It is a basic member in display devices, and its usage is increasing in recent years.

偏光子には、不要な直線偏光を偏光子中の物質で吸収させる吸収型偏光子と、偏光子の表面および/または内部で反射させる反射型偏光子とがある。例えばPVA−よう素系に代表される、配向した二色系色素などの吸収型偏光子は、不要な直線偏光が偏光子中の物質に吸収されるため、不要な直線偏光を効率的に再利用することは難しい。   The polarizer includes an absorption polarizer that absorbs unnecessary linearly polarized light with a substance in the polarizer, and a reflective polarizer that reflects the surface and / or inside of the polarizer. For example, an absorption type polarizer such as an oriented dichroic dye represented by the PVA-iodine system absorbs unnecessary linearly polarized light efficiently by a substance in the polarizer, and thus efficiently recycles unnecessary linearly polarized light. It is difficult to use.

反射型偏光子としては、ワイヤグリッド型偏光子が挙げられ、例えば特許文献1において複屈折を有する透明な基板上に直線状金属細線が互いに平行に、同じ間隔をおいて配置されているワイヤグリッド型偏光子が提案されている。また屈折率異方性が互いに異なる2種の薄膜の交互積層体からなる反射型偏光子が例えば特許文献2に記載されている。   Examples of the reflective polarizer include a wire grid polarizer. For example, in Patent Document 1, a wire grid in which straight metal thin wires are arranged in parallel with each other at the same interval on a transparent substrate having birefringence. Type polarizers have been proposed. Further, for example, Patent Document 2 discloses a reflective polarizer composed of an alternating laminate of two kinds of thin films having different refractive index anisotropies.

反射型偏光子の場合は、偏光子で反射された不要な直線偏光の偏光を解消することができれば、偏光解消された光線を偏光子の後方(光源側)から偏光子に再入射させることで再利用することができ、透過光の光量を向上させることが可能なため、液晶ディスプレイの輝度を向上させる上で有利な部材である。そこで反射型偏光子によって反射された直線偏光を再利用するために、いったん反射光をバックライト側に戻し、反射板で散乱・反射により偏光状態が解消された状態で再び導光板、拡散板、プリズムなどを通過して反射型偏光子に戻す方法が知られている。しかしながら、この方法によると反射板と偏光子の間の部材数が多いほど再利用の過程で光量の一部が散逸してしまう可能性があった。   In the case of a reflective polarizer, if the polarization of unwanted linearly polarized light reflected by the polarizer can be eliminated, the depolarized light can be re-incident on the polarizer from the back (light source side) of the polarizer. Since it can be reused and the amount of transmitted light can be improved, it is an advantageous member for improving the luminance of the liquid crystal display. Therefore, in order to reuse the linearly polarized light reflected by the reflective polarizer, the reflected light is once returned to the backlight side, and the light guide plate, diffuser plate, A method of returning to a reflective polarizer through a prism or the like is known. However, according to this method, as the number of members between the reflector and the polarizer increases, there is a possibility that a part of the light amount is dissipated in the process of reuse.

また反射型偏光子として、透過軸方向の直線偏光を透過させ、散乱軸方向の直線偏光を後方散乱することにより偏光を分離する散乱型偏光板が特許文献3などに開示されている。この場合、散乱による散逸光が多いため、再利用光率が低いことが指摘されている。
そこで液晶ディスプレイのコントラスト(輝度)を向上させるために、より光の利用効率を高める光学部材が望まれている。
Further, as a reflective polarizer, Patent Document 3 discloses a scattering type polarizing plate that transmits linearly polarized light in the transmission axis direction and separates polarized light by backscattering the linearly polarized light in the scattering axis direction. In this case, it is pointed out that the reuse light rate is low because there is much dissipated light due to scattering.
Therefore, in order to improve the contrast (brightness) of the liquid crystal display, an optical member that further increases the light utilization efficiency is desired.

特開2005−195824号公報JP-A-2005-195824 米国特許第3610729号公報US Pat. No. 3,610,729 特開平9−297204号公報JP 9-297204 A

本発明の目的は、かかる従来技術の課題を解消し、反射型偏光子で反射される直線偏光を、偏光解消した上で効率よく再利用することにより透過光の光量が向上する反射型偏光板を提供することにある。   An object of the present invention is to solve such problems of the prior art and to improve the amount of transmitted light by efficiently reusing linearly polarized light reflected by a reflective polarizer after depolarizing it. Is to provide.

本発明者らは、前記課題を解決するために鋭意検討した結果、偏光子の透過軸方向の直線偏光については高い透過性を有し、一方で偏光子透過軸と直交方向の直線偏光についても光源からの入射光については一定の透過性を有し、その直線偏光が反射型偏光子で反射されて戻ってきた際に後方散乱によって偏光解消させる散乱フィルムを、反射型偏光子の光線入射側に積層させることによって、偏光子の透過軸方向の直線偏光の光量を低下させることなく、しかも散乱フィルムが偏光子に隣接しているため不要な直線偏光の散逸を抑えて効率よく反射型偏光子に再入射させることから、透過光の光量を向上させて光の利用効率を高めることができ、液晶ディスプレイのコントラスト(輝度)が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have high transmittance for linearly polarized light in the transmission axis direction of the polarizer, while also for linearly polarized light in the direction orthogonal to the polarizer transmission axis. The incident light from the light source has a certain transparency, and when the linearly polarized light is reflected by the reflective polarizer and returns, the scattering film is depolarized by backscattering. By laminating to the polarizer, the amount of linearly polarized light in the transmission axis direction of the polarizer is reduced, and since the scattering film is adjacent to the polarizer, the dissipation of unnecessary linearly polarized light is suppressed and efficient reflective polarizer Therefore, the present invention has been completed by finding that the amount of transmitted light can be increased to improve the light utilization efficiency and the contrast (brightness) of the liquid crystal display can be improved. .

すなわち本発明によれば、本発明の目的は、反射型偏光子(A)の光線入射側に散乱フィルム(B)が積層された積層体であり、該散乱フィルム(B)は熱可塑性樹脂を含むマトリックス相(B-1)及び分散相(B-2)からなる構造を有しており、マトリックス相の屈折率と分散相の屈折率とが下記式(1)(2)を満たし、
|Nyz−(n+n)/2|≦0.05 ・・・(1)
|n−N|>0.05 ・・・(2)
(ここで、nはマトリックスの屈折率、Nは分散相の屈折率をそれぞれ表し、nはフィルム平面内でもっとも屈折率が高い方向のマトリックス屈折率、nはフィルム平面内でx方向と直交するy方向のマトリックス屈折率、nはフィルム厚み方向のマトリックス屈折率、Nはx方向の分散相屈折率、Nyzはyz平面内の分散相の平均屈折率をそれぞれ表す)
y方向と平行な直線偏光をフィルム面に垂直に入射した際の散乱フィルム(B)の全光線透過率が85%以上、平行光線透過率が60%以上であり、かつ反射型偏光子(A)の透過軸と散乱フィルム(B)のフィルム平面内のy方向が平行に積層されている反射型偏光板によって達成される。
That is, according to the present invention, an object of the present invention is a laminate in which the scattering film (B) is laminated on the light incident side of the reflective polarizer (A), and the scattering film (B) is made of a thermoplastic resin. The matrix phase (B-1) and the dispersed phase (B-2) are included, and the refractive index of the matrix phase and the refractive index of the dispersed phase satisfy the following formulas (1) and (2):
| N yz - (n y + n z) /2|≦0.05 ··· (1)
| N x −N x |> 0.05 (2)
(Where, n is the refractive index of the matrix, N is the represents the refractive index of the dispersed phase, respectively, n x most high refractive index direction of the matrix refractive index in the film plane, n y is the x-direction in the film plane matrix refractive index of the orthogonal y-direction, n z is the matrix refractive index of the film thickness direction, n x represents the dispersed phase refractive index in the x direction, n yz is the average refractive index of the dispersed phase in the yz plane, respectively)
When the linearly polarized light parallel to the y direction is incident on the film surface perpendicularly, the scattering film (B) has a total light transmittance of 85% or more, a parallel light transmittance of 60% or more, and a reflective polarizer (A ) And the reflection type polarizing plate in which the y direction in the film plane of the scattering film (B) is laminated in parallel.

また本発明の反射型偏光板は、好ましい態様として、散乱フィルム(B)はy方向と平行な直線偏光に対するヘーズ値Hyとx方向と平行な直線偏光に対するヘーズ値Hxとの比R=Hy/Hxが0.7未満であること、散乱フィルム(B)のマトリックス相(B-1)を構成する熱可塑性樹脂がポリエステル樹脂であること、散乱フィルム(B)の分散相(B-2)が微粒子の凝集体であること、散乱フィルム(B)の分散相(B-2)がマトリックス相と異なる熱可塑性樹脂であること、散乱フィルム(B)の分散相(B-2)を構成する物質の含有量がフィルム(B)の重量を基準として0.01〜30重量%であること、反射型偏光子(A)が直線状金属細線が周期配置されたワイヤグリッド型偏光子であること、ワイヤグリッド型偏光子が散乱フィルム(B)上に直接加工することで形成されたものであること、反射型偏光子(A)が屈折率異方性が互いに異なる2種の薄膜の交互積層体であること、かかる交互積層体からなる反射型偏光子(A)と散乱フィルム(B)が共押出法によって積層されたものであること、の少なくともいずれか1つを具備するものも好ましい態様として包含する。   In the reflective polarizing plate of the present invention, as a preferred embodiment, the scattering film (B) is a ratio of the haze value Hy for linearly polarized light parallel to the y direction and the haze value Hx for linearly polarized light parallel to the x direction R = Hy / Hx is less than 0.7, the thermoplastic resin constituting the matrix phase (B-1) of the scattering film (B) is a polyester resin, and the dispersed phase (B-2) of the scattering film (B) is A substance constituting the aggregate of fine particles, the dispersed phase (B-2) of the scattering film (B) being a thermoplastic resin different from the matrix phase, and the dispersed phase (B-2) of the scattering film (B) The content of is 0.01 to 30% by weight based on the weight of the film (B), the reflective polarizer (A) is a wire grid polarizer in which linear metal wires are periodically arranged, Wire grid polarizer is scattered It is formed by processing directly on the film (B), the reflective polarizer (A) is an alternating laminate of two kinds of thin films having different refractive index anisotropies, and such an alternating laminate What comprises at least any one of the reflection type polarizer (A) which consists of a body, and a scattering film (B) laminated | stacked by the coextrusion method is also included as a preferable aspect.

本発明の反射型偏光板は、偏光子の透過軸方向の直線偏光の光量を低下させることなく、しかも散乱フィルムが偏光子に隣接しているため不要な直線偏光の散逸を抑えて効率よく反射型偏光子に再入射させることから、透過光の光量を向上させて光の利用効率を高めることができ、映像光のコントラストの良好な液晶ディスプレイを提供することができる。   The reflective polarizing plate of the present invention efficiently reflects light without reducing the amount of linearly polarized light in the transmission axis direction of the polarizer and suppressing the dissipation of unnecessary linearly polarized light because the scattering film is adjacent to the polarizer. Since the light is incident again on the type polarizer, the amount of transmitted light can be improved to improve the light use efficiency, and a liquid crystal display with a good contrast of video light can be provided.

以下、本発明を詳しく説明する。
<反射型偏光子(A)>
本発明の反射型偏光板を構成する反射型偏光子(A)は、一方の直線偏光のみを透過し、透過する直線偏光と直交方向の直線偏光を反射させる機能を有する偏光子であれば特に制限されない。かかる反射型偏光子として、例えば直線状の金属細線が周期配置されたワイヤグリッド型偏光子が挙げられる。ここで金属細線の材料として、金、銀、アルミニウムが例示される。各金属細線は直線状であり、金属細線が互いに平行に並んだ構造を有しており、本発明ではかかる配置構造を「周期配置」と定義している。直線状金属細線の間隔であるピッチが入射光の波長よりも十分短い時、入射光のうち金属細線に直交する電場ベクトルを有する直線偏光は透過し、金属細線と平行な電場ベクトルを有する直線偏光は反射される。金属細線のピッチ間隔は400nm以下であることが好ましい。また金属細線の幅はピッチ間隔に対し30〜70%の幅であることが好ましい。
Hereinafter, the present invention will be described in detail.
<Reflective polarizer (A)>
The reflective polarizer (A) constituting the reflective polarizing plate of the present invention is particularly a polarizer that has a function of transmitting only one linearly polarized light and reflecting linearly polarized light orthogonal to the transmitted linearly polarized light. Not limited. An example of such a reflective polarizer is a wire grid polarizer in which linear metal wires are periodically arranged. Here, gold, silver, and aluminum are exemplified as the material for the fine metal wires. Each fine metal wire is linear and has a structure in which the fine metal wires are arranged in parallel to each other. In the present invention, such an arrangement structure is defined as “periodic arrangement”. When the pitch, which is the distance between the linear metal wires, is sufficiently shorter than the wavelength of the incident light, the linearly polarized light having the electric field vector orthogonal to the metal wires is transmitted and the linearly polarized light having the electric field vector parallel to the metal wires. Is reflected. The pitch interval between the fine metal wires is preferably 400 nm or less. Moreover, it is preferable that the width | variety of a metal fine wire is 30 to 70% of width | variety with respect to a pitch space | interval.

ワイヤグリッド型偏光子は、通常ガラス基板などの光学的に均一な材質からなる基板上に金属細線が周期配置された構造が知られている。本発明の場合、基板の代わりに、本発明の散乱フィルム(B)上に直接、直線状金属細線を周期配置することが可能となるため、構成部材の数が減り光量のロスを減らすことができる。本発明の散乱フィルム(B)上に該金属細線からなる偏光子を積層する方法として、散乱フィルム(B)上に作成した金属膜のリソグラフィー加工、あるいはあらかじめパターンニング成形した表面への金属デポジットなどが挙げられる。   A wire grid polarizer is known in which metal fine wires are periodically arranged on a substrate made of an optically uniform material such as a glass substrate. In the case of the present invention, instead of the substrate, it becomes possible to periodically arrange the linear metal thin wires directly on the scattering film (B) of the present invention, so that the number of constituent members is reduced and the loss of light quantity is reduced. it can. As a method of laminating the polarizer composed of the thin metal wires on the scattering film (B) of the present invention, lithography processing of a metal film prepared on the scattering film (B), metal deposition on a surface patterned in advance, or the like Is mentioned.

その他の反射型偏光子としては、屈折率異方性が互いに異なる2種の薄膜の交互積層体からなるものが挙げられ、具体的には屈折率の異なる2種類のフィルムを多層に積層して、延伸その他の工程条件により、1つの面内方向における層間の屈折率差を大きくすることで、屈折率差の大きい方向と平行な直線偏光を反射させ、一方未延伸で屈折率差の少ない方向に平行な直線偏光を透過させる反射型偏光子が得られる。屈折率異方性が互いに異なる2種の薄膜の交互積層体は、共押出法により各層が積層されることが好ましい。   Other reflective polarizers include those composed of an alternating laminate of two types of thin films having different refractive index anisotropies. Specifically, two types of films having different refractive indexes are laminated in multiple layers. Depending on the stretching and other process conditions, by increasing the refractive index difference between layers in one in-plane direction, the linearly polarized light parallel to the direction having a large refractive index difference is reflected, while the direction having a small refractive index difference is not stretched. A reflective polarizer that transmits linearly polarized light parallel to the light is obtained. It is preferable that each layer is laminated | stacked by the coextrusion method in the alternating laminated body of 2 types of thin films from which refractive index anisotropy mutually differs.

反射型偏光子(A)の透過軸は、ワイヤグリッド型偏光子の場合は金属細線に直交する方向、また屈折率異方性が互いに異なる2種の薄膜の交互積層体の場合は延伸方向に直交する方向、すなわち未延伸で屈折率差の小さい方向である。ここで、透過軸とは入射平面と、透過する直線偏光の振動面との交線を指す。また入射平面は、光が垂直に入射する場合は偏光子の平面であり、振動面は、入射直線偏光の伝播方向と電場ベクトル方向の両方を含む平面を指す。   The transmission axis of the reflective polarizer (A) is in the direction perpendicular to the thin metal wire in the case of a wire grid polarizer, and in the stretching direction in the case of an alternating laminate of two kinds of thin films having different refractive index anisotropies. The direction is orthogonal, that is, unstretched and has a small refractive index difference. Here, the transmission axis indicates an intersection line between the incident plane and the plane of vibration of the linearly polarized light that is transmitted. The incident plane is the plane of the polarizer when light is incident vertically, and the vibration plane is a plane including both the propagation direction of the incident linearly polarized light and the electric field vector direction.

<散乱フィルム(B)>
本発明の散乱フィルム(B)は、光源から反射型偏光子(A)に入射透過される直線偏光については反射することなく高い透過性を有し、一方、偏光子透過軸と直交方向の直線偏光についても光源からの入射光については一定の透過性を有し、その直線偏光が反射型偏光子で反射されて戻ってきた際に後方散乱によって偏光解消させる散乱因子を有するフィルムである。本発明の散乱フィルム(B)の具体的態様について、以下に詳述する。
<Scattering film (B)>
The scattering film (B) of the present invention has high transmittance without reflecting the linearly polarized light that is incident and transmitted from the light source to the reflective polarizer (A), while it is a straight line perpendicular to the transmission axis of the polarizer. Regarding the polarized light, it is a film having a certain transparency for incident light from the light source and having a scattering factor that depolarizes the light by backscattering when the linearly polarized light is reflected by the reflective polarizer and returned. Specific embodiments of the scattering film (B) of the present invention are described in detail below.

(屈折率特性)
本発明の散乱フィルム(B)は、熱可塑性樹脂を含むマトリックス相(B-1)及び分散相(B-2)からなる構造を有し、かつマトリックス相の屈折率と分散相の屈折率とが下記式(1)(2)
|Nyz−(n+n)/2|≦0.05 ・・・(1)
|n−N|>0.05 ・・・(2)
(ここで、nはマトリックスの屈折率、Nは分散相の屈折率をそれぞれ表し、nはフィルム平面内でもっとも屈折率が高い方向のマトリックス屈折率、nはフィルム平面内でx方向と直交するy方向のマトリックス屈折率、nはフィルム厚み方向のマトリックス屈折率、Nはx方向の分散相屈折率、Nyzはyz平面内の分散相の平均屈折率をそれぞれ表す)
を満たす必要がある。
(Refractive index characteristics)
The scattering film (B) of the present invention has a structure comprising a matrix phase (B-1) and a dispersed phase (B-2) containing a thermoplastic resin, and has a refractive index of the matrix phase and a refractive index of the dispersed phase. Is the following formula (1) (2)
| N yz - (n y + n z) /2|≦0.05 ··· (1)
| N x −N x |> 0.05 (2)
(Where, n is the refractive index of the matrix, N is the represents the refractive index of the dispersed phase, respectively, n x most high refractive index direction of the matrix refractive index in the film plane, n y is the x-direction in the film plane matrix refractive index of the orthogonal y-direction, n z is the matrix refractive index of the film thickness direction, n x represents the dispersed phase refractive index in the x direction, n yz is the average refractive index of the dispersed phase in the yz plane, respectively)
It is necessary to satisfy.

本発明の散乱フィルム(B)は、x、y、z方向のマトリックス相および分散相の屈折率が式(1)、(2)を満たす場合に、x方向と平行な直線偏光を強く後方散乱し、一方、y方向と平行な直線偏光は散乱せずに透過させるという光学特性が発現する。ここで、x方向と平行な直線偏光は、x方向の振動面をもつ直線偏光と同義であり、y方向と平行な直線偏光はy方向の振動面をもつ直線偏光と同義である。   The scattering film (B) of the present invention strongly backscatters linearly polarized light parallel to the x direction when the refractive indices of the matrix phase and the dispersed phase in the x, y and z directions satisfy the expressions (1) and (2). On the other hand, the optical characteristic that linearly polarized light parallel to the y direction is transmitted without being scattered appears. Here, linearly polarized light parallel to the x direction is synonymous with linearly polarized light having a vibrating surface in the x direction, and linearly polarized light parallel to the y direction is synonymous with linearly polarized light having a vibrating surface in the y direction.

したがって、反射型偏光子(A)の光線入射側に該散乱フィルム(B)が積層され、かつ反射型偏光子(A)の透過軸と該散乱フィルム(B)のy方向が平行になるように積層されることで、1)液晶表示に必要な直線偏光成分は該散乱フィルム(B)のy方向を透過した後、さらに反射型偏光子(A)の透過軸方向を透過し、2)一方液晶表示に不要な直線偏光成分のうち該散乱フィルム(B)のx方向を透過した直線偏光は、反射型偏光子(A)の透過軸の直交方向で反射されて再び該散乱フィルムに戻され、3)散乱フィルム(B)のx方向に再入射した該直線偏光成分は偏光子(A)側に後方散乱されて偏光が解消された上で、再び偏光子(A)に再入射し、偏光子(A)の透過軸方向の直線偏光は透過し、透過軸に直交する直線偏光は再び反射して散乱フィルム(B)方向に戻される、といった過程を繰り返して、液晶セル内に入射する光量を増やすことができ、ディスプレイの輝度を向上させることが可能となる。   Therefore, the scattering film (B) is laminated on the light incident side of the reflective polarizer (A), and the transmission axis of the reflective polarizer (A) is parallel to the y direction of the scattering film (B). 1) The linearly polarized light component necessary for the liquid crystal display is transmitted in the y direction of the scattering film (B), and further transmitted in the transmission axis direction of the reflective polarizer (A). 2) On the other hand, of the linearly polarized light components unnecessary for the liquid crystal display, the linearly polarized light transmitted through the x direction of the scattering film (B) is reflected in the direction orthogonal to the transmission axis of the reflective polarizer (A) and returns to the scattering film again. 3) The linearly polarized light component reincident in the x direction of the scattering film (B) is backscattered to the polarizer (A) side to be depolarized, and then reenters the polarizer (A) again. The linearly polarized light in the transmission axis direction of the polarizer (A) is transmitted, and the linearly polarized light orthogonal to the transmission axis is again Shines returned to scattering film (B) direction, by repeating the processes such as, can increase the quantity of light incident on the liquid crystal cell, it is possible to improve the brightness of the display.

上記式(1)において、|Nyz−(ny+nz)/2|>0.05の場合は、yz平面内において、マトリックス相と分散相の屈折率差が大きいため、x方向以外での散乱が増加してしまい、液晶表示に必要な直線偏光成分の透過率が低下するため、視認性に十分な透過光の光量が得られない。なお|Nyz−(ny+nz)/2|は、0.03以下であることが好ましい。 In the above formula (1), | N yz - (n y + n z) / 2 | For> 0.05, in the yz plane, because of the large difference in refractive index between the matrix phase and the dispersed phase, other than the x-direction As a result, the transmittance of the linearly polarized light component necessary for the liquid crystal display is decreased, so that the amount of transmitted light sufficient for visibility cannot be obtained. Incidentally | N yz - (n y + n z) / 2 | is preferably 0.03 or less.

また上記式(2)において、|nx−Nx|≦0.05の場合は、x方向の散乱性能が不十分となり、偏光子(A)で反射された不要な直線偏光成分を散乱フィルム(B)で後方散乱して偏光を解消して再び偏光子(A)に再入射する光量が少なくなるため、透過光の光量を向上させて光の利用効率を高めることができない。|nx−Nx|は0.05を超える範囲で屈折率差が大きい方がよりx方向の散乱性能が高まり、好ましくは0.09以上である。一方、|nx−Nx|の上限は延伸倍率や機械特性などの点で0.35以下であることが好ましい。 In the above formula (2), when | n x −N x | ≦ 0.05, the scattering performance in the x direction becomes insufficient, and unnecessary linearly polarized light components reflected by the polarizer (A) are scattered. In (B), the amount of light that is backscattered to cancel the polarized light and re-enter the polarizer (A) is reduced. Therefore, the amount of transmitted light cannot be improved to increase the light utilization efficiency. When | n x −N x | is greater than 0.05, the larger the difference in refractive index, the higher the scattering performance in the x direction, and preferably 0.09 or more. On the other hand, the upper limit of | n x −N x | is preferably 0.35 or less in view of the draw ratio and mechanical properties.

本発明のフィルム(B)は、上述のようにフィルム面内の一方向でなくyz平面内でマトリックス相と分散相の屈折率がほぼ一致し((1)式)、かつx方向においてマトリックス相と分散相の屈折率の差が大きく、差の絶対値が0.05を越えることにより、フィルム中を透過する光の中で多く存在するフィルム面内に対して斜め入射する偏光に対しても高い散乱異方性を示す。したがって、マトリックス相の屈折率は、yz平面内においては等方的に近いほど好ましく、下記式(3)を満足することがより好ましい。
0.85<ny/nz≦1.2 ・・・(3)
In the film (B) of the present invention, as described above, the refractive index of the matrix phase and the dispersed phase almost coincide with each other in the yz plane instead of one direction in the film plane (formula (1)), and the matrix phase in the x direction. The difference in the refractive index of the dispersed phase is large and the absolute value of the difference exceeds 0.05. High scattering anisotropy. Therefore, the refractive index of the matrix phase is preferably as isotropic in the yz plane, and more preferably satisfies the following formula (3).
0.85 < ny / nz ≦ 1.2 (3)

かかる屈折率特性は、マトリックス相(B-1)および分散相(B-2)の構成物質を含む熱可塑性樹脂組成物を溶融押出法により未延伸シートを作成し、該未延伸シートを後述する製膜条件で少なくとも一方向に延伸して一軸延伸に近い延伸を行うことにより得られる。さらに、マトリックス相(B-1)および分散相(B-2)の構成物質として、後述の組み合わせから選択することが好ましい。   Such refractive index characteristics are obtained by preparing an unstretched sheet from a thermoplastic resin composition containing the constituent materials of the matrix phase (B-1) and the dispersed phase (B-2) by a melt extrusion method, which will be described later. It is obtained by stretching in at least one direction under film forming conditions and performing stretching close to uniaxial stretching. Furthermore, it is preferable to select from constituents described later as constituents of the matrix phase (B-1) and the dispersed phase (B-2).

(光線透過率)
本発明の散乱フィルム(B)は、y方向と平行な直線偏光をフィルム面に垂直に入射した際の全光線透過率が85%以上であることが必要である。ここで全光線透過率とは、JISK7105に準拠して、積分球式測定装置を用いて全光線透過量を測定することによって求められる。
(Light transmittance)
The scattering film (B) of the present invention needs to have a total light transmittance of 85% or more when linearly polarized light parallel to the y direction is incident perpendicularly to the film surface. Here, the total light transmittance is obtained by measuring the total light transmittance using an integrating sphere type measuring device in accordance with JISK7105.

また本発明の散乱フィルム(B)は、y方向と平行な直線偏光をフィルム面に垂直に入射した際の平行光線透過率が60%以上であることが必要である。ここで平行光線透過率とは、入射光線と同一正線上で測定される平行光線透過率であり、JISK7105に準拠して、全光線透過率から拡散透過率を差し引いて求められる。   Further, the scattering film (B) of the present invention is required to have a parallel light transmittance of 60% or more when linearly polarized light parallel to the y direction is incident perpendicularly to the film surface. Here, the parallel light transmittance is a parallel light transmittance measured on the same positive line as the incident light, and is obtained by subtracting the diffuse transmittance from the total light transmittance in accordance with JISK7105.

これらの光線透過率が低い場合、偏光子の透過軸を透過する液晶表示に必要な直線偏光成分の透過率が低下するため、液晶セル内に入射する光量が低下し、液晶ディスプレイの輝度が十分に向上しなくなる。かかる光線透過率は、マトリックス相(B-1)と分散相(B-2)のy方向、z方向の屈折率特性が式(1)を満たすこと、および分散相の含有量が散乱フィルムの重量を基準として30重量%以下であることによって達成される。   When these light transmittances are low, the transmittance of the linearly polarized light component necessary for the liquid crystal display that transmits the transmission axis of the polarizer decreases, so the amount of light incident on the liquid crystal cell decreases, and the brightness of the liquid crystal display is sufficient. Will not improve. The light transmittance is such that the y- and z-direction refractive index characteristics of the matrix phase (B-1) and the dispersed phase (B-2) satisfy the formula (1), and the content of the dispersed phase is that of the scattering film. This is achieved by being 30% by weight or less based on the weight.

(ヘーズ)
本発明の散乱フィルム(B)は、y方向と平行な直線偏光に対するヘーズ値Hyとx方向と平行な直線偏光に対するヘーズ値Hxとの比R=Hy/Hxが0.7未満であることが好ましい。
ここで、ヘーズ値とは、JISK7105に準拠して下記式により求められる。
H=拡散透過率/全光線透過率×100
y方向と平行な直線偏光に対するヘーズ値Hy、x方向と平行な直線偏光に対するヘーズ値Hxは、それぞれの方向の直線偏光について上式により求められる。
(Haze)
In the scattering film (B) of the present invention, the ratio R = Hy / Hx between the haze value Hy for linearly polarized light parallel to the y direction and the haze value Hx for linearly polarized light parallel to the x direction is less than 0.7. preferable.
Here, the haze value is obtained by the following formula in accordance with JISK7105.
H = diffuse transmittance / total light transmittance × 100
The haze value Hy for the linearly polarized light parallel to the y direction and the haze value Hx for the linearly polarized light parallel to the x direction are obtained by the above equations for the linearly polarized light in each direction.

ヘーズ値の偏光成分ごとの比Rが0.7以上の場合は、x方向のマトリックス相と分散相との屈折率差が式(2)より小さくなるか、および/または、yz平面内においてマトリックス相と分散相の屈折率差が式(1)より大きくなるため、x方向と平行な直線偏光の散乱性能が不十分となったり、y方向と平行な直線偏光の透過性能が不十分となることがある。かかるヘーズ値特性は、マトリックス相(B-1)と分散相(B-2)のx方向、y方向、z方向の屈折率がそれぞれ式(1)、式(2)を満たすこと、すなわちマトリックス相と分散相の屈折率特性に着目したそれぞれの材料の組み合わせと、後述する製膜条件で少なくとも一方向に延伸して一軸延伸に近い延伸を行うことにより得られる。   When the ratio R of the haze value for each polarization component is 0.7 or more, the difference in refractive index between the matrix phase and the dispersed phase in the x direction is smaller than that in the formula (2) and / or the matrix is in the yz plane. Since the refractive index difference between the phase and the disperse phase is larger than that in the formula (1), the scattering performance of the linearly polarized light parallel to the x direction becomes insufficient, or the transmission performance of the linearly polarized light parallel to the y direction becomes insufficient. Sometimes. Such a haze value characteristic is that the x-, y-, and z-direction refractive indexes of the matrix phase (B-1) and the dispersed phase (B-2) satisfy the equations (1) and (2), respectively. It can be obtained by combining a combination of materials focusing on the refractive index characteristics of the phase and the dispersed phase, and stretching near uniaxial stretching by stretching in at least one direction under the film forming conditions described later.

(マトリックス相(B-1))
本発明の散乱フィルム(B)のマトリックス相(B-1)を形成する熱可塑性樹脂は、フィルムを延伸したときの高分子鎖が配向しやすい結晶性あるいは半結晶性の透明高分子であることが好ましい。非晶性高分子の場合、フィルムを延伸する際の高分子鎖の配向が難しいため、後述する延伸方法に従って、例えば一方向に延伸を行った場合、未延伸方向(y方向、z方向)のマトリックス相と分散相との屈折率差が式(1)を満たしても、延伸方向(x方向)におけるマトリックス相と分散相との屈折率差を大きくして式(2)を満たすような散乱フィルムを得ることが難しい。
(Matrix phase (B-1))
The thermoplastic resin forming the matrix phase (B-1) of the scattering film (B) of the present invention is a crystalline or semi-crystalline transparent polymer in which the polymer chain is easily oriented when the film is stretched. Is preferred. In the case of an amorphous polymer, it is difficult to orient the polymer chain when the film is stretched. For example, when stretching is performed in one direction according to the stretching method described later, the unstretched direction (y direction, z direction) Scattering that satisfies the formula (2) by increasing the refractive index difference between the matrix phase and the dispersed phase in the stretching direction (x direction) even if the refractive index difference between the matrix phase and the dispersed phase satisfies the formula (1). Difficult to get a film.

結晶性あるいは半結晶性の透明高分子である熱可塑性樹脂として、例えばポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、シンジオタクチックポリスチレン、ポリエチレン、ポリプロピレンなどを挙げることができる。かかる熱可塑性樹脂の中でも、製膜性および延伸による各方向の屈折率特性を制御しやすい点で、好ましくはポリエステルであり、中でも耐熱性、透明性、強度に優れたポリエチレンテレフタレート、ポリエチレンナフタレート等の芳香族ポリエステルが好ましい。   Examples of the thermoplastic resin that is a crystalline or semi-crystalline transparent polymer include polyesters such as polyethylene terephthalate and polyethylene naphthalate, syndiotactic polystyrene, polyethylene, and polypropylene. Among such thermoplastic resins, polyester is preferable because it is easy to control film forming properties and refractive index characteristics in each direction by stretching, among which polyethylene terephthalate, polyethylene naphthalate, etc. excellent in heat resistance, transparency, and strength Aromatic polyesters are preferred.

(分散相(B-2))
本発明の散乱フィルム(B)の分散相(B-2)は(i)1次粒子径が0.01〜10μmである微粒子、(ii)微粒子の凝集体または(iii)マトリックス相と異なる熱可塑性樹脂のいずれかであることが好ましい。
(i)(ii)で表される微粒子としては、1次粒子径が0.01〜10μmである微粒子が例示される。微粒子は透明な有機粒子あるいは無機粒子であれば特に制限は無い。好ましくはフィルムを延伸したときにボイドの生じにくい有機粒子である。ここで1次粒径とは粒子の最小単位の大きさである。1次粒径が0.01以下の場合は散乱反射性能が生じない可能性が高く、10μmを越える場合は延伸時にボイドが生じやすくなる。かかる微粒子は、延伸後のマトリックス相のy方向、z方向の屈折率と同じか屈折率差が0.035以下である屈折率を有することがさらに好ましい。
(Dispersed phase (B-2))
The dispersed phase (B-2) of the scattering film (B) of the present invention comprises (i) fine particles having a primary particle diameter of 0.01 to 10 μm, (ii) aggregates of fine particles, or (iii) heat different from that of the matrix phase. It is preferably one of plastic resins.
Examples of the fine particles represented by (i) (ii) include fine particles having a primary particle diameter of 0.01 to 10 μm. The fine particles are not particularly limited as long as they are transparent organic particles or inorganic particles. Preferably, the organic particles are less likely to generate voids when the film is stretched. Here, the primary particle size is the minimum unit size of particles. When the primary particle size is 0.01 or less, there is a high possibility that the scattering reflection performance does not occur, and when it exceeds 10 μm, voids are likely to occur during stretching. More preferably, the fine particles have a refractive index that is the same as the refractive index in the y direction and z direction of the matrix phase after stretching, or a refractive index difference of 0.035 or less.

有機系の微粒子の種類として、例えばアクリル微粒子、スチレン微粒子、シリコーン微粒子、スチレン−ブタジエンゴム微粒子、アクリル−アクリルコアシェル型微粒子、アクリル−スチレン−ブタジエンコアシェル微粒子が挙げられる。特にコアシェル型微粒子は、ゴム弾性を有するため延伸によるボイド生成をさらに抑制することができ、本発明の諸光学特性を得やすい。   Examples of the organic fine particles include acrylic fine particles, styrene fine particles, silicone fine particles, styrene-butadiene rubber fine particles, acrylic-acrylic core-shell fine particles, and acrylic-styrene-butadiene core-shell fine particles. In particular, since the core-shell type fine particles have rubber elasticity, generation of voids due to stretching can be further suppressed, and various optical characteristics of the present invention can be easily obtained.

例えばマトリックス相としてポリエチレンナフタレートを用いた場合、分散相に用いる微粒子の種類としては、ポリスチレン、シンジオタクチックポリスチレン、メタクリレート−スチレン共重合体、アクリロニトリル−スチレン共重合体等を例示できる。またマトリックス相がポリエチレンテレフタレートの場合、分散相に用いる微粒子の種類としては、ポリメチルメタクリレート等のアクリル樹脂、メタクリレート−スチレン共重合体等が例示できる。   For example, when polyethylene naphthalate is used as the matrix phase, examples of the fine particles used in the dispersed phase include polystyrene, syndiotactic polystyrene, methacrylate-styrene copolymer, acrylonitrile-styrene copolymer, and the like. When the matrix phase is polyethylene terephthalate, examples of the type of fine particles used in the dispersed phase include acrylic resins such as polymethyl methacrylate, methacrylate-styrene copolymers, and the like.

(iii)マトリックス相と異なる熱可塑性樹脂としては、高透明でマトリックス相を形成する熱可塑性樹脂と非相溶の熱可塑性樹脂であれば特に制限されないが、延伸後のマトリックス相のy方向、z方向の屈折率と同じか屈折率差が0.035以下である屈折率を有することが好ましい。 例えばマトリックス相としてポリエチレンナフタレートを用いた場合、分散相に用いる熱可塑性樹脂としては、ポリスチレン、シンジオタクチックポリスチレン、メタクリレート−スチレン共重合体、アクリロニトリル−スチレン共重合体等を例示できる。またマトリックス相がポリエチレンテレフタレートの場合、分散相に用いる熱可塑性樹脂としては、ポリメチルメタクリレート等のアクリル樹脂、メタクリレート−スチレン共重合体等が例示できる。   (Iii) The thermoplastic resin different from the matrix phase is not particularly limited as long as it is highly transparent and incompatible with the thermoplastic resin forming the matrix phase, but the y direction of the matrix phase after stretching, z It is preferable to have a refractive index that is the same as the refractive index in the direction or has a refractive index difference of 0.035 or less. For example, when polyethylene naphthalate is used as the matrix phase, examples of the thermoplastic resin used in the dispersed phase include polystyrene, syndiotactic polystyrene, methacrylate-styrene copolymer, acrylonitrile-styrene copolymer, and the like. When the matrix phase is polyethylene terephthalate, examples of the thermoplastic resin used in the dispersed phase include acrylic resins such as polymethyl methacrylate, methacrylate-styrene copolymers, and the like.

本発明の分散相(B-2)は、上述の(i)〜(iii)の中でも、分散相がフィルム延伸方向に変形することでボイドが生じない点で(ii)微粒子の凝集体または(iii)マトリックス相と異なる熱可塑性樹脂であることが好ましく、特に(ii)微粒子の凝集体で構成されることが好ましい。特に1次粒径がサブミクロンオーダーの微粒子の場合、表面エネルギーの影響で凝集体になりやすく、フィルムを延伸したときにその凝集体が変形することによりボイドが生じにくいため、本発明の屈折率特性、光線透過率、ヘーズを得ることができる。また(ii)微粒子の凝集体は、(iii)マトリックス相と異なる熱可塑性樹脂に較べて分散相のサイズコントロールがしやすいため、散乱強度をコントロールしやすく、また波長依存性をなくすことができるため散乱光の着色を防ぐことができる。   Among the above-mentioned (i) to (iii), the dispersed phase (B-2) of the present invention is (ii) an aggregate of fine particles or (ii) in that voids are not generated when the dispersed phase is deformed in the film stretching direction. iii) It is preferably a thermoplastic resin different from the matrix phase, and (ii) is preferably composed of fine particle aggregates. In particular, in the case of fine particles having a primary particle size of submicron order, they tend to be aggregates due to the influence of surface energy, and when the film is stretched, the aggregates are not easily deformed and voids are not easily generated. Characteristics, light transmittance, and haze can be obtained. In addition, (ii) aggregates of fine particles are (iii) easier to control the size of the dispersed phase compared to thermoplastic resins different from the matrix phase, so that it is easy to control the scattering intensity and eliminate wavelength dependence. Coloring of scattered light can be prevented.

散乱フィルム(B)の分散相(B-2)を構成する物質の含有量は、散乱フィルム(B)の重量を基準として0.01〜30重量%であることが好ましい。分散相の含有量はかかる範囲内において増加するに従い、散乱光を多重に散乱して散乱フィルムから偏光子に再入射する出射光が正面方向になりやすくなる。また分散相の含有量はかかる範囲内において減少するに従い、多重散乱は減るものの、よりシャープな出射パターンが得られるため出射光のコントロールが可能である。ただし分散相の含有量が上限を超える場合は、多重散乱しすぎて、本来のy方向の透過光が偏光解消された非偏光成分の一部となってしまう他、y方向の散乱光が多くなり透過率が低下することがあり、また分散相の含有量が下限に満たない場合は、散乱が著しく少なく、この場合も偏光分離性能を確保することが難しくなる。分散相の含有量は、y方向の直線偏光を十分に透過させるための透明性を確保する目的から、 0.05〜20重量%であることがさらに好ましい。   The content of the substance constituting the dispersed phase (B-2) of the scattering film (B) is preferably 0.01 to 30% by weight based on the weight of the scattering film (B). As the content of the dispersed phase increases within such a range, the scattered light is scattered multiple times, and the outgoing light that reenters the polarizer from the scattering film tends to be in the front direction. As the content of the dispersed phase decreases within this range, multiple scattering decreases, but a sharper emission pattern can be obtained, so that the emitted light can be controlled. However, if the content of the disperse phase exceeds the upper limit, multiple scattering occurs, and the original transmitted light in the y direction becomes a part of the non-polarized component that has been depolarized, and there is much scattered light in the y direction. When the content of the dispersed phase is less than the lower limit, scattering is extremely small, and in this case, it is difficult to ensure the polarization separation performance. The content of the dispersed phase is more preferably 0.05 to 20% by weight in order to ensure transparency for sufficiently transmitting linearly polarized light in the y direction.

本発明の散乱フィルム(B)の分散相は、下記式(3)を満たしていることがより好ましい。 10≦α=π・d/λ≦200 (3)
(上式中、dは分散相の長径、λは可視光の波長である。ここでα=π・d/λは散乱パラメータを表す。)
The dispersed phase of the scattering film (B) of the present invention more preferably satisfies the following formula (3). 10 ≦ α = π · d / λ ≦ 200 (3)
(In the above equation, d is the major axis of the dispersed phase, and λ is the wavelength of visible light. Here, α = π · d / λ represents a scattering parameter.)

本発明の散乱フィルム(B)は、少なくとも一方向に延伸して一軸延伸に近い延伸を行うことにより得られることから、本発明の分散相は、延伸方向に長軸を有する楕円球状(以下島状と称することがある)である。従って上式(3)中、dは延伸方向、すなわちx方向における分散相の粒径を指し、楕円球状の長径に相等する。   Since the scattering film (B) of the present invention is obtained by stretching in at least one direction and stretching close to uniaxial stretching, the dispersed phase of the present invention has an elliptical sphere (hereinafter referred to as an island) having a major axis in the stretching direction. May be referred to as a shape). Therefore, in the above formula (3), d indicates the particle size of the dispersed phase in the stretching direction, that is, the x direction, and is equivalent to the major axis of an elliptical sphere.

一般に散乱効率Qには波長依存性が存在するため、例えばサブミクロンオーダーの非常に小さい粒子の場合、短波長の光ほど散乱されやすい。したがって、光の入射角の違いによりフィルム中の光路長が異なる際に散乱光の波長分布が異なってくる可能性があり、甚だしい場合には、ディスプレイの表示範囲内で色味がずれる(色ずれ)結果となる。   In general, since the scattering efficiency Q has a wavelength dependency, for example, in the case of very small particles on the order of submicron, light having a shorter wavelength is more likely to be scattered. Therefore, there is a possibility that the wavelength distribution of scattered light will be different when the optical path length in the film is different due to the difference in the incident angle of light, and in severe cases, the color will shift within the display range (color shift). ) Result.

なお分散相(B-2)が(ii)微粒子の凝集体または(iii) マトリックス相と異なる熱可塑性樹脂である場合、分散相の長径の平均値は0.1〜400μmであることが好ましい。長径の平均値は、より好ましくは0.5〜50μmである。長径の平均径が下限に満たない場合は、光学的な作用を生じないことがあり、また上限を超える場合は散乱の異方性が不十分となることがある。   When the dispersed phase (B-2) is (ii) an aggregate of fine particles or (iii) a thermoplastic resin different from the matrix phase, the average value of the major axis of the dispersed phase is preferably 0.1 to 400 μm. The average value of the major axis is more preferably 0.5 to 50 μm. When the average diameter of the major axis is less than the lower limit, an optical action may not be generated, and when the upper limit is exceeded, the scattering anisotropy may be insufficient.

(その他成分)
本発明の散乱フィルム(B)には、本発明の趣旨を超えない範囲で安定剤、紫外線吸収剤、加工助剤、難燃剤、帯電防止剤等を添加することができる。
(Other ingredients)
In the scattering film (B) of the present invention, a stabilizer, an ultraviolet absorber, a processing aid, a flame retardant, an antistatic agent, and the like can be added within a range not exceeding the spirit of the present invention.

(熱寸法安定性)
本発明の散乱フィルム(B)は、120℃、30分間保持後の熱収縮率が、フィルム平面内のいかなる方向においても10%未満であることが好ましい。散乱フィルムの熱収縮率は、フィルム平面内のいかなる方向においても5%未満であることがさらに好ましい。
本発明の散乱フィルムは、マトリックス相および分散相を含む組成物を溶融押出し、固化成形したシートを一軸延伸に近い延伸を施したものであるが、一般的に、延伸されたフィルム中の配向した分子鎖のうち、非結晶性のものは、マトリックス相のガラス転移温度以上においては、その配向を解いてランダム状態になりやすいため収縮が起き易い。
本発明の散乱フィルムは、反射型偏光子と積層させる際に、貼り合せるために高温で加工されることがあり、収縮率が大きい場合は、光学特性などの諸特性に好ましくない変化を生じさせることがある。これらの熱寸法安定性は、得られたフィルムに熱固定処理を行うことにより達成される。
(Thermal dimensional stability)
The scattering film (B) of the present invention preferably has a thermal shrinkage rate of less than 10% in any direction within the film plane after being held at 120 ° C. for 30 minutes. More preferably, the thermal shrinkage of the scattering film is less than 5% in any direction within the plane of the film.
The scattering film of the present invention is obtained by melt-extrusion of a composition containing a matrix phase and a dispersed phase, and a solidified and formed sheet subjected to stretching close to uniaxial stretching, but generally oriented in the stretched film. Among the molecular chains, non-crystalline ones tend to shrink at a temperature higher than the glass transition temperature of the matrix phase, because their orientation tends to be solved and become a random state.
When the scattering film of the present invention is laminated with a reflective polarizer, the scattering film may be processed at a high temperature for bonding. When the shrinkage rate is large, undesired changes are caused in various characteristics such as optical characteristics. Sometimes. These thermal dimensional stability is achieved by carrying out the heat setting process to the obtained film.

(機械特性)
本発明の散乱フィルム(B)は、フィルム平面内における延伸倍率の高い方向、すなわちx方向のフィルム破断強度が150MPa以上であり、該方向に直交した方向、すなわちy方向のフィルムの破断強度が15MPa以上であることが好ましい。
(Mechanical properties)
The scattering film (B) of the present invention has a film breaking strength in the direction of high draw ratio in the plane of the film, that is, the film breaking strength in the x direction of 150 MPa or more, and the breaking strength of the film in the direction perpendicular to the direction, that is, the y direction is 15 MPa. The above is preferable.

本発明の散乱フィルムは、上記の光学特性を発現させるために、一軸延伸に近い延伸を施すが、延伸倍率の高くない方向(y方向)は分子鎖の配向の割合が少ないため強度が低くなり、工程中のフィルム破断などによる生産性の低下が起きる可能性がある。   The scattering film of the present invention is subjected to stretching close to uniaxial stretching in order to develop the above optical characteristics, but the direction in which the stretching ratio is not high (y direction) is low in strength because the proportion of molecular chain orientation is small. There is a possibility that productivity may be reduced due to film breakage during the process.

フィルム破断強度は、より好ましくは延伸倍率の高い方向(x方向)のフィルム破断強度が160MPa以上、該方向に直交した方向(y方向)のフィルム破断強度が18MPa以上である。
本発明のフィルムにおけるこれらの機械特性は、後述するフィルムの製造方法により達成される。
The film breaking strength is more preferably 160 MPa or more in the direction (x direction) where the draw ratio is high, and the film breaking strength in the direction (y direction) perpendicular to the direction is 18 MPa or more.
These mechanical properties of the film of the present invention are achieved by the film production method described below.

<散乱フィルム(B)の製膜方法>
(溶融押出キャスティング)
本発明の散乱フィルム(B)は、マトリックス相及び分散相の構成成分を含む樹脂組成物を溶融押出キャスティングにより製膜した後、少なくとも一方向に延伸して一軸延伸に近い延伸を行うことにより得られる。
<Method for forming scattering film (B)>
(Melt extrusion casting)
The scattering film (B) of the present invention is obtained by forming a resin composition containing constituent components of a matrix phase and a dispersed phase by melt extrusion casting, and then stretching the resin composition in at least one direction to perform stretching close to uniaxial stretching. It is done.

溶融押出には、従来公知の手法を用いることができる。具体的には、乾燥した前述の樹脂組成物ペレットを押出機に供給し、Tダイなどのスリットダイより溶融樹脂を押出す方法や、樹脂ペレットを供給した押出機にベント装置をセットし、溶融押出時に水分や発生する各種気体成分を排出しながら、同じくTダイなどのスリットダイより溶融樹脂を押出す方法が挙げられる。
スリットダイより押出された溶融樹脂は、キャストされ冷却固化させる。冷却固化の方法は、従来公知のいずれの方法をとっても良いが、回転する冷却用ロール上に溶融樹脂をキャストし、シート化する方法が例示される。
A conventionally known method can be used for melt extrusion. Specifically, the above-mentioned dried resin composition pellets are supplied to an extruder, a molten resin is extruded from a slit die such as a T-die, or a vent device is set in the extruder supplied with resin pellets and melted. A method of extruding a molten resin from a slit die such as a T die while discharging moisture and various gas components generated during extrusion may be mentioned.
The molten resin extruded from the slit die is cast and cooled and solidified. The cooling and solidification method may be any conventionally known method, but a method of casting a molten resin on a rotating cooling roll and forming a sheet is exemplified.

冷却用ロールの表面温度は、マトリックス相を形成する熱可塑性樹脂のガラス転移点(Tg)に対して、(Tg−100)℃〜(Tg+20)℃の範囲に設定するのが好ましい。また冷却用ロールの表面温度は、マトリックス相を形成する熱可塑性樹脂のガラス転移点(Tg)に対して、(Tg−30)℃〜(Tg−5)℃の範囲に設定するのがさらに好ましい。冷却ロールの表面温度が上限を超える場合、溶融樹脂が固化する前に該ロールに粘着することがある。また冷却ロールの表面温度が下限に満たない場合、固化が速すぎて該ロール表面を滑ってしまい、得られるシートの平面性が損なわれることがある。   The surface temperature of the cooling roll is preferably set in the range of (Tg-100) ° C. to (Tg + 20) ° C. with respect to the glass transition point (Tg) of the thermoplastic resin forming the matrix phase. The surface temperature of the cooling roll is more preferably set in the range of (Tg-30) ° C. to (Tg-5) ° C. with respect to the glass transition point (Tg) of the thermoplastic resin forming the matrix phase. . When the surface temperature of the cooling roll exceeds the upper limit, the molten resin may stick to the roll before solidifying. Further, when the surface temperature of the cooling roll is less than the lower limit, solidification is too fast and the roll surface slides, and the flatness of the obtained sheet may be impaired.

冷却ロールへのキャスティングの際に、溶融樹脂が冷却ロール上へ着地する位置近傍に金属ワイヤーを張り、電流を流すことで静電場を発生させ樹脂を帯電させて、冷却ロールの金属表面上への密着性を高めることも、フィルムの平面性を高める観点から有効である。その際、樹脂組成物中に、本発明の趣旨を超えない範囲で、電解質性物質を添加してもよい。   When casting on the chill roll, a metal wire is stretched near the position where the molten resin lands on the chill roll, and an electric field is generated by passing an electric current to charge the resin, and the chill roll is placed on the metal surface. Increasing the adhesion is also effective from the viewpoint of increasing the flatness of the film. In that case, you may add an electrolyte substance in the resin composition in the range which does not exceed the meaning of this invention.

(延伸)
溶融押出キャスティングにより得られたシート状物は、少なくとも一方向に延伸して一軸延伸に近い延伸を行うことにより、散乱フィルムの光学特性などを、本発明の目的と合致させることができる。
(Stretching)
The sheet-like material obtained by melt extrusion casting can be stretched in at least one direction and stretched close to uniaxial stretching to match the optical properties of the scattering film with the object of the present invention.

かかる延伸の方法は、逐次延伸機または同時延伸機を用いて行うことができる。また高い生産性を得るためには、散乱フィルムは、上述のシート製造に引続く連続的工程にて製造されることが好ましい。以下、延伸方法を例示する。   This stretching method can be performed using a sequential stretching machine or a simultaneous stretching machine. Moreover, in order to obtain high productivity, it is preferable that a scattering film is manufactured in the continuous process following the above-mentioned sheet manufacture. Hereafter, the extending | stretching method is illustrated.

例えば、縦方向(製膜方向、長手方向、MDと記載することがある。)に延伸する場合は、2個以上のロールの周速差を用いて延伸する方法や、オーブン中で延伸する方法が挙げられる。   For example, in the case of stretching in the longitudinal direction (film forming direction, longitudinal direction, sometimes referred to as MD), a method of stretching using a peripheral speed difference of two or more rolls, or a method of stretching in an oven Is mentioned.

ロールを用いる延伸方法において、シート状物(未延伸フィルム)の加熱方法は、熱媒を通したロールで誘導加熱する方法、赤外加熱ヒーターなどで外部から加熱する方法が例示され、一つないし複数の方法をとってよい。またオーブン中で延伸する方法において、シート状物(未延伸フィルム)の加熱方法は、フィルム両端をクリップなどにより把持するテンター式オーブンにてクリップ間隔を延伸倍率にしたがって広げる方法、オーブン中にロール系を設置しフィルムをパスさせて延伸する方法、オーブン内で幅方向をまったくフリーにして入側と出側の速度差のみで延伸する方法が例示され、一つないし複数の方法をとってよい。   In the stretching method using a roll, examples of the heating method of the sheet (unstretched film) include a method of induction heating with a roll through a heating medium, and a method of heating from the outside with an infrared heater, etc. Several methods may be taken. In addition, in the method of stretching in an oven, the heating method of the sheet-like material (unstretched film) is a method of widening the clip interval according to the stretch ratio in a tenter type oven that grips both ends of the film with clips, etc., a roll system in the oven And a method of stretching the film by passing the film, and a method of stretching the film only in the oven with only the difference in speed between the inlet side and the outlet side, and may take one or a plurality of methods.

また、幅方向(製膜方向と垂直な方向、横方向、TDと記載することがある。)に延伸する場合は、クリップなどにより端部を把持する方式のテンターオーブン中で入側と出側のクリップ搬送レール間隔に差をつけて延伸する方法が挙げられる。   In addition, when stretching in the width direction (direction perpendicular to the film forming direction, lateral direction, TD), the entrance side and the exit side in a tenter oven that grips the end with a clip or the like. The method of extending | stretching with a difference in the clip conveyance rail space | interval of this is mentioned.

(延伸温度)
本発明におけるフィルム延伸温度(Td)は、Tg〜(Tg+40℃)の温度とするのが好ましい。フィルムの延伸温度がTg(マトリックス相の熱可塑性樹脂のガラス転移点温度)に満たない場合は、延伸自体が困難であり、一方延伸温度が(Tg+40℃)を超える場合は、延伸に要する応力が極端に低くなってしまうため、分子鎖の配向が不足し、得られた散乱フィルムの高延伸方向(x方向)におけるマトリックス相と分散相との屈折率バランスがとりにくくなったり、機械特性、特に破断強度が確保できなくなることがある。延伸温度のより好ましい範囲は、Tg〜(Tg+20℃)である。
(Stretching temperature)
The film stretching temperature (Td) in the present invention is preferably a temperature of Tg to (Tg + 40 ° C.). When the stretching temperature of the film is less than Tg (the glass transition temperature of the matrix phase thermoplastic resin), stretching itself is difficult. On the other hand, when the stretching temperature exceeds (Tg + 40 ° C.), the stress required for stretching Since it becomes extremely low, the orientation of the molecular chain is insufficient, and it becomes difficult to balance the refractive index of the matrix phase and the dispersed phase in the high stretching direction (x direction) of the obtained scattering film, Break strength may not be ensured. A more preferable range of the stretching temperature is Tg to (Tg + 20 ° C.).

(延伸倍率)
延伸倍率のコントロールは、一軸延伸に近い延伸フィルムとし、本発明の屈折率特性を発現する上で最も重要である。
延伸倍率は、RMD>RTDまたはRTD>RMDであることが好ましい。RMDは縦延伸倍率、RTDは横延伸倍率を示す。これは、RMDとRTDとが等しくなく、どちらか一方の延伸倍率が他方の延伸倍率よりも大きいことを意味する。また、これは必ずしも二軸延伸のみを意味するものではなく、延伸直交方向がフリーの状態での一軸延伸により直交方向が実質的に収縮しRMD>RTDの場合のRTD、あるいはRTD>RMDの場合のRMDの値が1未満になる場合、さらには、テンター方式延伸装置などを用いてむしろ積極的に直交方向を収縮させる場合をも包含する。
(Stretch ratio)
The control of the draw ratio is most important in obtaining a stretched film close to uniaxial stretching and expressing the refractive index characteristics of the present invention.
The draw ratio is preferably R MD > R TD or R TD > R MD . RMD represents the longitudinal draw ratio, and RTD represents the transverse draw ratio. This means that RMD and RTD are not equal, and one of the draw ratios is larger than the other draw ratio. Further, this does not necessarily mean only biaxial stretching. R TD or R TD in the case where R MD > R TD substantially shrinks due to uniaxial stretching in a state where the stretching orthogonal direction is free. > If the value of R MD in the case of R MD is less than 1, furthermore also includes a case of rather actively contract the orthogonal direction by using a tenter system stretching device.

延伸倍率は、さらに好ましくは、RMD>RTDの場合にはRMD/RTDが1.0を超え7.0以下、かつRTDが0.7以上2.0以下の範囲、またはRTD>RMDの場合にはRTD/RMDが1.0を超え7.0以下、かつRMDが0.7以上2.0以下の範囲である。
MD/RTDまたはRTD/RMDが1.0、すなわちRMD=RTDの場合は、得られた散乱フィルムの高延伸方向(x方向)におけるマトリックス相と分散相との屈折率の関係は式(1)(2)の関係を満足することができない。
MD>RTDの場合のRMD/RTD、あるいはRTD>RMDの場合のRTD/RMDが、7.0を超える場合、本発明の屈折率特性が得られなくなり、また延伸倍率の低い方向の機械特性が低下して脆くなる可能性がある。
The draw ratio is more preferably in the range of R MD / R TD exceeding 1.0 and 7.0 or less and R TD being 0.7 or more and 2.0 or less when R MD > R TD , or R In the case of TD > RMD , RTD / RMD exceeds 1.0 and is 7.0 or less, and RMD is in the range of 0.7 to 2.0.
When R MD / R TD or R TD / R MD is 1.0, that is, R MD = R TD , the refractive index of the matrix phase and the dispersed phase in the high stretching direction (x direction) of the obtained scattering film The relationship cannot satisfy the relationships of equations (1) and (2).
R MD> R MD / R TD in the case of R TD or R TD> in the case of R MD R TD / R MD, is if it exceeds 7.0, the refractive index characteristics can not be obtained in the present invention, also stretching There is a possibility that the mechanical properties in the direction of lower magnification will deteriorate and become brittle.

MD>RTDの場合のRTD、あるいはRTD>RMDの場合のRMDが0.7未満に満たない場合、すなわち延伸直交方向がフリーな場合に、延伸直交方向が極端に収縮すると、フィルムの平面性や均一性を損なうばかりか、この場合も延伸倍率の低い方向の機械特性が低下し脆くなる可能性がある。一方、RMD>RTDの場合のRTD、あるいはRTD>RMDの場合のRMDが2.0を超える場合はnzが小さくなりすぎ、マトリックス相の屈折率バランスのうち、特にny/nzの値が本発明に規定した範囲にならないことがある。 If R MD> in the case of R TD R TD or R TD> in the case of R MD R MD, is less than less than 0.7, that is, when the stretching direction orthogonal is free, the stretching direction orthogonal to extreme contraction Moreover, not only the flatness and uniformity of the film are impaired, but also in this case, the mechanical properties in the direction of a low draw ratio may be lowered and the film may become brittle. On the other hand, R MD> R TD in the case of R TD or if R MD in the case of R TD> R MD is more than 2.0 too small nz, of the refractive index balance of the matrix phase, particularly ny / The value of nz may not be within the range defined in the present invention.

延伸倍率の相互関係は、より好ましくはRMD>RTDの場合にはRMD/RTDが、またはRTD>RMDの場合にはRTD/RMDが3.0以上5.5以下である。またそれぞれの延伸方向の好ましい範囲は、RMD>RTDの場合にはRMDが3.0以上6.0以下、かつRTDが0.95以上1.75以下の範囲、またはRTD>RMDの場合にはRTDが3.0以上6.0以下、かつRMDが0.95以上1.75以下の範囲である。 Interrelationship of stretching ratio is more preferably R MD> R MD / R TD in the case of R TD is, or R TD> in the case of R MD is R TD / R MD 3.0 to 5.5 It is. The preferable range of each stretching direction, R MD> in the case of R TD is R MD 3.0 to 6.0, and R TD than 0.95 to 1.75 range or R TD,> in the case of R MD is R TD is 3.0 to 6.0, and R MD is in the range of 0.95 to 1.75.

(延伸速度)
延伸速度は5〜500000%/分であることが好ましい。
(Stretching speed)
The stretching speed is preferably 5 to 500,000% / min.

(熱固定処理)
本発明の散乱フィルムの製造工程においては、熱寸法安定性を付与させるために、熱固定処理を施すことが好ましい。熱固定処理は、延伸したフィルムに一定の張力をかけて寸法を所定の条件にて固定した状態で、樹脂が十分結晶化しうる温度で熱処理を行うものである。
(Heat setting process)
In the manufacturing process of the scattering film of this invention, in order to provide thermal dimensional stability, it is preferable to perform a heat setting process. The heat setting treatment is a heat treatment at a temperature at which the resin can be sufficiently crystallized in a state in which a fixed tension is applied to the stretched film and the dimensions are fixed under predetermined conditions.

具体的な手法として多く用いられるものとして、テンター式オーブンにて延伸した後、クリップ把持にて寸法を所定の値に固定したまま、熱処理温度に設定したゾーンにフィルムを導く方法を例示することができる。寸法固定する条件として、延伸直後の幅を保つ方法、幅を縮めて弛緩させる方法、または逆に幅を広げて更なる緊張を与える方法、のいずれの方法を用いてもよく、所望する物性により適宜選択すればよい。また縦方向の寸法安定性を向上させるためには、上記熱処理ゾーン内で、フィルムを把持したクリップの間隔を所定の値に制御する方法、熱処理ゾーン中にてフィルムをクリップ把持から開放し、入/出側の速度比微調整により所望する物性を得る方法、などを例示することができる。   As a method that is often used as a specific method, after stretching in a tenter type oven, the method of guiding the film to the zone set at the heat treatment temperature while fixing the dimensions to a predetermined value by clip holding may be exemplified. it can. As a condition for fixing the dimensions, any of a method of maintaining the width immediately after stretching, a method of reducing and relaxing the width, or a method of increasing the width and applying further tension may be used, depending on the desired physical properties. What is necessary is just to select suitably. In addition, in order to improve the dimensional stability in the vertical direction, the method of controlling the interval between the clips holding the film within the heat treatment zone to a predetermined value, and releasing the film from the clip holding in the heat treatment zone Examples include a method of obtaining desired physical properties by fine adjustment of the speed ratio on the output side.

該熱処理温度は、所望する物性に応じて任意に設定することができるが、マトリックス相の熱可塑性樹脂の結晶融解温度より20℃以上、さらには30℃以上低いことが好ましい。熱処理による結晶化は、被熱による樹脂中分子鎖運動の活性化とそれに引続く結晶化との共奏過程であり、処理温度が高すぎると、分子鎖運動が活発になりすぎて延伸により生成した配向も損なわれてしまうため、本発明に規定する屈折率特性が得られない可能性がある。
必要に応じ、この熱固定処理に加え、熱弛緩処理などの更なる熱寸法安定化処理を施してもよい。
The heat treatment temperature can be arbitrarily set according to the desired physical properties, but is preferably 20 ° C. or more, more preferably 30 ° C. or more lower than the crystal melting temperature of the matrix phase thermoplastic resin. Crystallization by heat treatment is a symbiotic process of activation of molecular chain motion in the resin due to heat and subsequent crystallization. If the treatment temperature is too high, molecular chain motion becomes too active and generated by stretching. Therefore, the refractive index characteristic defined in the present invention may not be obtained.
If necessary, in addition to the heat setting process, a further heat dimension stabilization process such as a heat relaxation process may be performed.

(フィルムの後加工)
延伸した散乱フィルムは、他基材との貼合時の接着性向上などの必要に応じて、表面活性化処理(コーティング、コロナ放電、プラズマ処理など)などの後加工を施しても良い。この後加工はフィルム延伸工程中に行っても良く、また別工程で行っても良い。
(Post-processing of film)
The stretched scattering film may be subjected to post-processing such as surface activation treatment (coating, corona discharge, plasma treatment, etc.) as necessary for improving the adhesiveness at the time of pasting with another substrate. This post-processing may be performed during the film stretching step or may be performed in a separate step.

<反射型偏光板>
本発明の反射型偏光板は、反射型偏光子(A)の光線入射側に散乱フィルム(B)が積層された積層構成を有し、かつ反射型偏光子(A)の透過軸と散乱フィルム(B)のフィルム平面内のy方向が平行に積層される必要がある。反射型偏光板は、かかる構成を有することによって、既述のとおり、1)液晶表示に必要な直線偏光成分は該散乱フィルム(B)のy方向を透過した後、さらに反射型偏光子(A)の透過軸方向を透過し、2)一方液晶表示に不要な直線偏光成分のうち該散乱フィルム(B)のx方向を透過した直線偏光は、反射型偏光子(A)の透過軸の直交方向で反射されて再び該散乱フィルムに戻され、3)散乱フィルム(B)のx方向に再入射した該直線偏光成分は偏光子(A)側に後方散乱されて偏光が解消され、再び偏光子(A)に再入射し、偏光子(A)の透過軸方向の直線偏光は透過し、透過軸に直交する直線偏光は再び反射して散乱フィルム(B)方向に戻される、といった過程を繰り返して、液晶セル内に入射する光量を増やすことができ、ディスプレイの輝度を向上させることが可能となる。
<Reflective polarizing plate>
The reflective polarizing plate of the present invention has a laminated structure in which the scattering film (B) is laminated on the light incident side of the reflective polarizer (A), and the transmission axis of the reflective polarizer (A) and the scattering film. (Y) in the film plane of (B) needs to be laminated | stacked in parallel. As described above, the reflective polarizing plate has such a configuration. 1) After the linearly polarized light component necessary for liquid crystal display is transmitted through the y direction of the scattering film (B), the reflective polarizer (A 2) The linearly polarized light transmitted through the x direction of the scattering film (B) among the linearly polarized light components unnecessary for the liquid crystal display is orthogonal to the transmission axis of the reflective polarizer (A). 3) The linearly polarized light component incident again in the x direction of the scattering film (B) is backscattered to the polarizer (A) side to be depolarized and repolarized again. Reentering the polarizer (A), the linearly polarized light in the transmission axis direction of the polarizer (A) is transmitted, and the linearly polarized light orthogonal to the transmission axis is reflected again and returned to the scattering film (B) direction. Repeatedly, the amount of light entering the liquid crystal cell can be increased. It is possible to improve the brightness of the play.

散乱フィルム(B)上に偏光子を積層する方法として、偏光子が該金属細線からなる偏光子である場合、散乱フィルム(B)上に作成した金属膜のリソグラフィー加工、あるいはあらかじめパターニング成形した表面への金属デポジットなどが挙げられる。また、あらかじめ基材上に金属細線の周期構造を形成させてある偏光フィルターの金属細線部分の上に本発明の散乱フィルム(B)を貼付ける方法であってもよい。   As a method of laminating the polarizer on the scattering film (B), when the polarizer is a polarizer made of the thin metal wire, the surface of the metal film prepared on the scattering film (B) is subjected to lithography processing or patterned in advance. Metal deposits and the like. Moreover, the method of affixing the scattering film (B) of this invention on the metal fine wire part of the polarizing filter by which the periodic structure of the metal fine wire was previously formed on the base material may be sufficient.

また偏光子が屈折率異方性が互いに異なる2種の薄膜の交互積層体である場合、予め作成した散乱フィルムと交互積層体とを粘着層あるいは接着層を介して積層させる方法、あるいは共押出法により散乱フィルムと該偏光子とを同時に溶融押出した後に延伸を行う方法であってもよい。   When the polarizer is an alternating laminate of two kinds of thin films having different refractive index anisotropy, a method of laminating a scattering film and an alternating laminate prepared in advance via an adhesive layer or an adhesive layer, or coextrusion A method of stretching after simultaneously scattering and extruding the scattering film and the polarizer by a method may be used.

以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の部および%は、特に断らない限り、それぞれ重量%および重量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples. Each characteristic value was measured by the following method. Moreover, unless otherwise indicated, the part and% in an Example mean weight% and weight%, respectively.

(1)屈折率
得られたフィルムを用い、波長473nm、633nm、830nmの3種のレーザー光にて、屈折率計(Metricon社製、プリズムカプラ)を用いて測定された、3方向における屈折率nx、ny、nzを、下記のCauchyの屈折率波長分散フィッティング式
ni(λ)=a/λ+b/λ+c
(ここで、ni(λ):波長λ(nm)における各方向の屈折率(i=x、y、z)、a、b、c:定数、をそれぞれ示す。添字j(j=1,2)は、本測定時に観測される2種類の屈折率値に便宜的につけた番号である)
に代入し、得られた3つの式からa、b、cの定数を求め、しかる後に589.3nmにおける屈折率(nx(589.3)、ny(589.3)、nz(589.3))を算出した。
各方向それぞれにおいて、niおよびniのいずれかがマトリックス相の屈折率n、他方が分散相の屈折率Nであるが、これらは、下記の方法により各相単独の屈折率n’i、N’を測定し、これに近い値を選択することにより判別した。
(1) Refractive index Using the obtained film, the refractive index in three directions measured using a refractometer (manufactured by Metricon, prism coupler) with three types of laser light having wavelengths of 473 nm, 633 nm, and 830 nm. nx j , ny j , nz j are expressed by the following Cauchy's refractive index chromatic dispersion fitting equation ni j (λ) = a / λ 4 + b / λ 2 + c
(Here, ni j (λ): Refractive index in each direction at wavelength λ (nm) (i = x, y, z), a, b, c: constants, respectively. Subscript j (j = 1, 2) is a number given for convenience to the two types of refractive index values observed during this measurement)
Then, constants of a, b, and c are obtained from the obtained three equations, and thereafter, the refractive index at 589.3 nm (nx j (589.3), ny j (589.3), nz j (589) .3)) was calculated.
In each of the direction, the refractive index n i of either ni 1 and ni 2 is the matrix phase and the other is a refractive index N i of the disperse phase, these are the refractive index of each phase alone by the following method n ' i and N ′ were measured, and a value close to this was selected.

(1−1)マトリックス相の屈折率
各実施例、比較例で使用したマトリックス相の熱可塑性樹脂のみを用いて、各実施例、比較例と同じ条件でフィルムを作成し、上記(1)と同じ方法にて3方向における屈折率n’i(i=x、y、z)を測定した。
(1-1) Refractive index of matrix phase Using only the thermoplastic resin of the matrix phase used in each example and comparative example, a film was prepared under the same conditions as in each example and comparative example. The refractive index n′i (i = x, y, z) in three directions was measured by the same method.

(1−2)分散相の屈折率
浸液法にて、微粒子あるいはその凝集体単独の屈折率N’を直接測定した。屈折率が既知の標準液を準備し、スライドガラスとカバーガラス間に少量のサンプル粉体とともに挟んで液膜とし、アナライザーをはずした偏光顕微鏡にセットする。光源としてNaD線を用い、光量を絞った状態で観察すると、サンプルと標準液の屈折率が異なる場合、サンプル粉体の周囲にBecke線が観測される。顕微鏡のサンプルステージを下から上にごくわずかに動かした際に、サンプルの屈折率の方が標準液のものより高い場合はBecke線がサンプル粉体から標準液の方に移動し、逆の場合は、Becke線は逆方向に移動する。各実施例、比較例で使用した分散相の種類に応じて順次標準液の屈折率を変えながら測定を繰り返し、Becke線が観測されなくなったときの標準液の屈折率を分散相単独の屈折率N’とした。
(1-2) Refractive Index of Dispersed Phase The refractive index N ′ of the fine particles or their aggregates alone was directly measured by the immersion method. A standard solution with a known refractive index is prepared, sandwiched with a small amount of sample powder between a slide glass and a cover glass to form a liquid film, and set in a polarizing microscope with the analyzer removed. When the NaD line is used as the light source and observation is performed with the light amount reduced, Becke line is observed around the sample powder when the refractive index of the sample is different from that of the standard solution. When the sample stage of the microscope is moved slightly from the bottom to the top, if the refractive index of the sample is higher than that of the standard solution, the Becke line moves from the sample powder to the standard solution, and vice versa. The Becke line moves in the opposite direction. The measurement was repeated while changing the refractive index of the standard solution sequentially according to the type of the dispersed phase used in each example and comparative example, and the refractive index of the standard solution when the Becke line was no longer observed is the refractive index of the dispersed phase alone. N ′.

(2)フィルムの光線透過率(全光線透過率、平行光線透過率)、ヘーズ
市販の偏光フィルムを、その透過軸が得られたフィルムの最大屈折率方向およびその直交方向と平行になるように重ね合せて、それぞれの積層サンプルを作成した。
得られた積層サンプルを、ヘーズメーター(日本精密光学(株)製、POICヘーズメーター SEP−HS−D1)内に、偏光フィルムを光源側に、かつ偏光フィルムの透過軸方向が鉛直となるようにセットし、JISK7105に準拠して、全光線透過率(%)、平行光線透過率(%)、ヘーズ(%)を測定した。
(2) Light transmittance of the film (total light transmittance, parallel light transmittance), haze For a commercially available polarizing film, its transmission axis is parallel to the maximum refractive index direction and the orthogonal direction of the obtained film. Each laminated sample was created by overlapping.
The obtained laminated sample is placed in a haze meter (manufactured by Nippon Seimitsu Optical Co., Ltd., POIC haze meter SEP-HS-D1) so that the polarizing film is on the light source side and the transmission axis direction of the polarizing film is vertical. The total light transmittance (%), parallel light transmittance (%), and haze (%) were measured according to JISK7105.

(3)液晶ディスプレイの輝度
市販の液晶ディスプレイ内の液晶セルのバックライト側の偏光板を除去し、実施例、比較例で得られた積層体を代わりに貼合した。この際、本発明の散乱フィルムをバックライト側、偏光子を液晶セル側になるように貼合せた。得られた液晶セルパネルをディスプレイに再セットし、全面白表示の正面輝度を測定した。得られた測定値について、下記の基準にて評価した。
○: ワイヤーグリッド型偏光板(P1)単独の輝度(参考例1)より高い
×: ワイヤーグリッド型偏光板(P1)単独の輝度(参考例1)以下
(3) Luminance of liquid crystal display The polarizing plate on the backlight side of the liquid crystal cell in a commercially available liquid crystal display was removed, and the laminates obtained in Examples and Comparative Examples were bonded instead. At this time, the scattering film of the present invention was bonded to the backlight side and the polarizer to the liquid crystal cell side. The obtained liquid crystal cell panel was reset on the display, and the front luminance of the entire white display was measured. The obtained measured values were evaluated according to the following criteria.
○: Higher than the brightness of the wire grid type polarizing plate (P1) alone (Reference Example 1) ×: The brightness of the wire grid type polarizing plate (P1) alone (Reference Example 1) or less

(4)散乱フィルムの粒子の分散状態
フィルムの小片をエポキシ樹脂(リファインテック(株)製の商品名「エポマウント」)中に包埋し、Reichert−Jung社製Microtome2050を用いて高延伸方向と平行なフィルム断面を切り出す。得られた断面をO2プラズマを用いてエッチングし、走査型顕微鏡(日立ハイテクノロジース S−4700)を用いて個々の凝集粒子の分散状態が確認できる倍率で観察した。
(4) Dispersion state of particles of scattering film A small piece of the film is embedded in an epoxy resin (trade name “Epomount” manufactured by Refinetech Co., Ltd.), and a microtome 2050 manufactured by Reichert-Jung Co., Ltd. is used. Cut out parallel film sections. The obtained cross section was etched using O 2 plasma, and observed with a scanning microscope (Hitachi High-Technologies S-4700) at a magnification at which the dispersed state of the individual aggregated particles could be confirmed.

[実施例1]
固有粘度(オルトクロロフェノール、25℃)0.6のポリエチレンテレフタレート(以下、PETと記載)のペレット97.0重量%を170℃で3時間乾燥後、分散相を構成する成分としてアクリル微粒子(ロームアンドハース製、商品名「パラロイドBTA712」)3.0重量%と混合し、一軸混練押出機に供給し、溶融温度285℃で溶融後、フィルターで濾過し、ダイから押出した。この溶融物を表面温度をPETのTgより低くした回転冷却ドラム上に押出し、厚み400μmの未延伸フィルムを得た。
[Example 1]
After drying 97.0% by weight pellets of polyethylene terephthalate (hereinafter referred to as PET) having an intrinsic viscosity (orthochlorophenol, 25 ° C.) of 0.6 at 170 ° C. for 3 hours, acrylic fine particles (ROHM) are used as components constituting the dispersed phase. The product was mixed with 3.0% by weight of a product name “Paraloid BTA712” manufactured by Andhers), supplied to a single screw kneading extruder, melted at a melting temperature of 285 ° C., filtered through a filter, and extruded from a die. This melt was extruded onto a rotating cooling drum having a surface temperature lower than the Tg of PET to obtain an unstretched film having a thickness of 400 μm.

得られた未延伸フィルムをテンターに供給し、縦方向には延伸することなく、85℃の温度条件で幅方向に500%/分の延伸速度で4.0倍に延伸し、引き続き、テンター内で定幅を保ったまま、150℃にて1分間の熱固定処理を施し、100μm厚みの延伸フィルム(E1)を得た。得られたフィルムの特性を表1に示す。得られた延伸フィルムはアクリル粒子が凝集状態で分散していた。   The obtained unstretched film was supplied to a tenter and stretched 4.0 times at a stretching rate of 500% / min in the width direction at a temperature of 85 ° C. without stretching in the longitudinal direction. While maintaining the constant width, a heat setting treatment at 150 ° C. for 1 minute was performed to obtain a stretched film (E1) having a thickness of 100 μm. The properties of the obtained film are shown in Table 1. The obtained stretched film had acrylic particles dispersed in an aggregated state.

次いで、フィルムE1の片面に、市販の粘着シート(日東電工(株)製、透明両面接着テープCS9621)を貼合せた。さらに、市販のワイヤーグリッド型偏光板(P1:Moxtek社製、ProFlux(TM)偏光板)のアルミニウム面に粘着シートを貼合せた該フィルムを貼合せた。得られた積層体について、上記(3)の評価を行った。結果を表2に示す。   Next, a commercially available pressure-sensitive adhesive sheet (manufactured by Nitto Denko Corporation, transparent double-sided adhesive tape CS9621) was bonded to one side of the film E1. Further, the film obtained by bonding an adhesive sheet to the aluminum surface of a commercially available wire grid type polarizing plate (P1: ProFlux (TM) polarizing plate manufactured by Moxtek) was bonded. Evaluation of said (3) was performed about the obtained laminated body. The results are shown in Table 2.

[実施例2]
実施例1で得られたフィルムE1の片面に、金属アルミニウムを200nm厚さとなるように真空蒸着した。次いで、公知の方法にてパターンニング及びエッチングし、ピッチ120nm、線幅50nmとなるようにアルミニウム細線が平行に配置された周期構造体(D1)を形成させた。この際、細線の長手方向は、フィルム平面内でもっともマトリックス相屈折率が高い方向に対し平行となるように、パターンニングを行った。得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
[Example 2]
On one side of the film E1 obtained in Example 1, metal aluminum was vacuum-deposited so as to have a thickness of 200 nm. Next, patterning and etching were performed by a known method to form a periodic structure (D1) in which fine aluminum wires were arranged in parallel so as to have a pitch of 120 nm and a line width of 50 nm. At this time, patterning was performed so that the longitudinal direction of the thin line was parallel to the direction having the highest matrix phase refractive index in the film plane. Evaluation of said (3) was performed about the obtained laminated body. The results are shown in Table 2.

[実施例3]
(屈折率異方性が互いに異なる2種の薄膜の交互積層体の作成方法)
固有粘度(オルトクロロフェノール、35℃)0.62のポリエチレン−2,6−ナフタレンジカルボキシレート(以下、PENと記載)に真球状シリカ粒子(平均粒径0.3μm、長径と短径の比:1.02、粒径の平均偏差:0.1)を0.15wt%添加したものを第1の層用ポリエステルとし、第2の層用ポリエステルとして固有粘度(オルトクロロフェノール、35℃)0.62のテレフタル酸10mol%共重合ポリエチレン−2,6−ナフタレンジカルボキシレート(TA10PEN)を準備した。
[Example 3]
(Method for producing an alternating laminate of two kinds of thin films having different refractive index anisotropy)
Polyethylene-2,6-naphthalenedicarboxylate (hereinafter referred to as PEN) having an intrinsic viscosity (orthochlorophenol, 35 ° C.) of 0.62 and true spherical silica particles (average particle size: 0.3 μm, ratio of major axis to minor axis) : 1.02 and 0.15 wt% of the average particle size deviation 0.1) are added as the first layer polyester, and the second layer polyester is intrinsic viscosity (orthochlorophenol, 35 ° C.) 0 .62 terephthalic acid 10 mol% copolymerized polyethylene-2,6-naphthalenedicarboxylate (TA10PEN) was prepared.

そして、第1の層用ポリエステルおよび第2の層用ポリエステルを、それぞれ170℃で5時間乾燥後、押出機に供給し、300℃まで加熱して溶融状態とし、第1の層用ポリエステルを301層、第2の層用ポリエステルを300層に分岐させた後、第1の層と第2の層が交互に積層され、かつ層厚が最大/最小で3倍まで、連続的に変化するような多層フィードブロック装置を使用して、その積層状態を保持したままダイへ導き、キャスティングドラム上にキャストして第1の層と第2の層の各層の厚みが1.0:2.0になるように調整し、第1の層と第2の層が交互に積層された総数601層の未延伸多層積層フィルムを作成した。   Then, the polyester for the first layer and the polyester for the second layer are each dried at 170 ° C. for 5 hours, then supplied to the extruder, heated to 300 ° C. to be in a molten state, and the polyester for the first layer is 301 After the polyester for the second layer and the second layer are branched into 300 layers, the first layer and the second layer are alternately laminated, and the layer thickness continuously changes up to 3 times at maximum / minimum. Using a multi-layer feed block device, the laminated state is maintained and the die is guided to a die and cast on a casting drum so that the thickness of each layer of the first layer and the second layer is 1.0: 2.0. Thus, a total of 601 unstretched multilayer laminated films in which the first layer and the second layer were alternately laminated were prepared.

該多層未延伸フイルムを135℃の温度で製膜方向(MD方向)に5.2倍に延伸し、245℃で3秒間熱固定処理を行い、55μm厚さの多層フィルム(M1)を得た。
実施例1で得られたフィルムE1の片面に実施例1と同じ粘着シートを貼合せ、さらに上記の多層フィルムM1を偏光子として貼合せた。得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
The multilayer unstretched film was stretched 5.2 times in the film forming direction (MD direction) at a temperature of 135 ° C., and heat-fixed at 245 ° C. for 3 seconds to obtain a multilayer film (M1) having a thickness of 55 μm. .
The same adhesive sheet as in Example 1 was bonded to one side of the film E1 obtained in Example 1, and the multilayer film M1 was bonded as a polarizer. Evaluation of said (3) was performed about the obtained laminated body. The results are shown in Table 2.

[実施例4]
未延伸フィルムの厚みを500μmとし、該未延伸フィルムを80℃に予熱し、低速ローラーと高速ローラーの間で15mm上方より800℃の表面温度の赤外線ヒーター1本にて加熱してフィルム製膜方向に10000%/分の延伸速度にて1.25倍に延伸し、さらに、続いてテンターに供給し、延伸温度85℃、幅方向に500%/分の延伸速度にて4.0倍に逐次延伸した以外は、実施例1と同様にして延伸フィルム(E2)を得た。得られたフィルムの特性を表1に示す。
さらに、得られたフィルムE2の片面に、実施例1と同様に偏光板P1を貼合せ、得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
[Example 4]
The thickness of the unstretched film is 500 μm, the unstretched film is preheated to 80 ° C., and heated with one infrared heater having a surface temperature of 800 ° C. from 15 mm between the low speed roller and the high speed roller, in the film forming direction The film is stretched to 1.25 times at a stretching speed of 10,000% / min, and then supplied to a tenter, and successively stretched to 4.0 times at a stretching temperature of 85 ° C. and a stretching speed of 500% / min in the width direction. Except having extended | stretched, it carried out similarly to Example 1, and obtained the stretched film (E2). The properties of the obtained film are shown in Table 1.
Furthermore, the polarizing plate P1 was bonded to one side of the obtained film E2 in the same manner as in Example 1, and the obtained laminate was evaluated in the above (3). The results are shown in Table 2.

[実施例5]
熱固定処理温度を150℃から180℃に変更した以外は実施例1と同様にして延伸フィルム(E3)を得た。得られたフィルムの特性を表1に示す。
さらに、得られたフィルムE3の片面に、実施例1と同様に偏光板P1を貼合せ、得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
[Example 5]
A stretched film (E3) was obtained in the same manner as in Example 1 except that the heat setting treatment temperature was changed from 150 ° C to 180 ° C. The properties of the obtained film are shown in Table 1.
Furthermore, the polarizing plate P1 was bonded to one side of the obtained film E3 in the same manner as in Example 1, and the obtained laminate was evaluated for the above (3). The results are shown in Table 2.

[実施例6]
未延伸フィルムの厚みを400μmから600μmに変更し、得られた未延伸フィルムをテンターに供給して縦方向に1.5倍を行う操作を加えた以外は実施例1と同様にして延伸フィルム(E4)を得た。得られたフィルムの特性を表1に示す。
さらに、得られたフィルムE4の片面に、実施例1と同様に偏光板P1を貼合せ、得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
[Example 6]
The thickness of the unstretched film was changed from 400 μm to 600 μm, and the unstretched film thus obtained was supplied to a tenter, and the stretched film ( E4) was obtained. The properties of the obtained film are shown in Table 1.
Furthermore, polarizing plate P1 was bonded to one side of the obtained film E4 in the same manner as in Example 1, and the obtained laminate was evaluated in the above (3). The results are shown in Table 2.

[比較例1]
原料樹脂組成物として、PET99.7重量%に平均粒径2.0μmの塊状シリカ粒子 0.3重量%を混合したものを用いた以外は、実施例1と同様にして延伸フィルム(C1)を得た。得られたフィルムの特性を表1に示す。
さらに、得られたフィルムC1の片面に、実施例1と同様に偏光板P1を貼合せ、得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
[Comparative Example 1]
A stretched film (C1) was prepared in the same manner as in Example 1 except that the raw material resin composition was a mixture of 99.7% by weight of PET and 0.3% by weight of bulk silica particles having an average particle size of 2.0 μm. Obtained. The properties of the obtained film are shown in Table 1.
Furthermore, the polarizing plate P1 was bonded to one side of the obtained film C1 in the same manner as in Example 1, and the obtained laminate was evaluated in the above (3). The results are shown in Table 2.

[比較例2]
原料樹脂組成物として、PET60重量%にアクリル微粒子(ロームアンドハース製、商品名「パラロイドBTA712」)40重量%を混合したものを用いた以外は、実施例1と同様にして延伸フィルム(C2)を得た。得られたフィルムの特性を表1に示す。
さらに、得られたフィルムC2の片面に、実施例1と同様に偏光板P1を貼合せ、得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
[Comparative Example 2]
A stretched film (C2) was prepared in the same manner as in Example 1 except that 60% by weight of PET was mixed with 40% by weight of acrylic fine particles (trade name “Paraloid BTA712” manufactured by Rohm and Haas) as a raw material resin composition. Got. The properties of the obtained film are shown in Table 1.
Furthermore, the polarizing plate P1 was bonded to one side of the obtained film C2 in the same manner as in Example 1, and the obtained laminate was evaluated in the above (3). The results are shown in Table 2.

[比較例3]
原料樹脂組成物として、PET 95重量%に平均粒径0.3μmの酸化チタン粒子5重量%を混合したものを用いた以外は、実施例1と同様にして延伸フィルム(C3)を得た。得られたフィルムの特性を表1に示す。
さらに、得られたフィルムC2の片面に、実施例1と同様に偏光板P1を貼合せ、得られた積層体について、上記(3)の評価を行った。結果を表2に示す。
[Comparative Example 3]
A stretched film (C3) was obtained in the same manner as in Example 1 except that 95% by weight of PET and 5% by weight of titanium oxide particles having an average particle diameter of 0.3 μm were mixed as the raw material resin composition. The properties of the obtained film are shown in Table 1.
Furthermore, the polarizing plate P1 was bonded to one side of the obtained film C2 in the same manner as in Example 1, and the obtained laminate was evaluated in the above (3). The results are shown in Table 2.

[参考例1]
実施例1で用いたワイヤーグリッド型偏光板P1を単層で用い、散乱フィルムを積層しないで上記(3)の測定を行い、評価の基準とした。
[Reference Example 1]
The wire grid type polarizing plate P1 used in Example 1 was used as a single layer, and the measurement of the above (3) was performed without laminating the scattering film, which was used as a reference for evaluation.

Figure 2007298634
Figure 2007298634

Figure 2007298634
Figure 2007298634

本発明の反射型偏光板は、偏光子の透過軸方向の直線偏光の光量を低下させることなく、しかも散乱フィルムが偏光子に隣接しているため不要な直線偏光の散逸を抑えて効率よく反射型偏光子に再入射させることから、透過光の光量を向上させて光の利用効率を高めることができ、映像光のコントラストの良好な液晶ディスプレイを提供することができる。   The reflective polarizing plate of the present invention efficiently reflects light without reducing the amount of linearly polarized light in the transmission axis direction of the polarizer and suppressing the dissipation of unnecessary linearly polarized light because the scattering film is adjacent to the polarizer. Since the light is incident again on the type polarizer, the amount of transmitted light can be improved to improve the light use efficiency, and a liquid crystal display with a good contrast of video light can be provided.

Claims (10)

反射型偏光子(A)の光線入射側に散乱フィルム(B)が積層された積層体であり、該散乱フィルム(B)は熱可塑性樹脂を含むマトリックス相(B-1)及び分散相(B-2)からなる構造を有しており、マトリックス相の屈折率と分散相の屈折率とが下記式(1)(2)を満たし、
|Nyz−(n+n)/2|≦0.05 ・・・(1)
|n−N|>0.05 ・・・(2)
(ここで、nはマトリックスの屈折率、Nは分散相の屈折率をそれぞれ表し、nはフィルム平面内でもっとも屈折率が高い方向のマトリックス屈折率、nはフィルム平面内でx方向と直交するy方向のマトリックス屈折率、nはフィルム厚み方向のマトリックス屈折率、Nはx方向の分散相屈折率、Nyzはyz平面内の分散相の平均屈折率をそれぞれ表す)
y方向と平行な直線偏光をフィルム面に垂直に入射した際の散乱フィルム(B)の全光線透過率が85%以上、平行光線透過率が60%以上であり、かつ反射型偏光子(A)の透過軸と散乱フィルム(B)のフィルム平面内のy方向が平行に積層されていることを特徴とする反射型偏光板。
It is a laminate in which a scattering film (B) is laminated on the light incident side of the reflective polarizer (A), and the scattering film (B) comprises a matrix phase (B-1) containing a thermoplastic resin and a dispersed phase (B -2), the refractive index of the matrix phase and the refractive index of the dispersed phase satisfy the following formulas (1) and (2),
| N yz - (n y + n z) /2|≦0.05 ··· (1)
| N x −N x |> 0.05 (2)
(Where, n is the refractive index of the matrix, N is the represents the refractive index of the dispersed phase, respectively, n x most high refractive index direction of the matrix refractive index in the film plane, n y is the x-direction in the film plane matrix refractive index of the orthogonal y-direction, n z is the matrix refractive index of the film thickness direction, n x represents the dispersed phase refractive index in the x direction, n yz is the average refractive index of the dispersed phase in the yz plane, respectively)
When the linearly polarized light parallel to the y direction is incident on the film surface perpendicularly, the scattering film (B) has a total light transmittance of 85% or more, a parallel light transmittance of 60% or more, and a reflective polarizer (A ) And the y direction in the film plane of the scattering film (B) are laminated in parallel.
散乱フィルム(B)が、y方向と平行な直線偏光に対するヘーズ値Hyとx方向と平行な直線偏光に対するヘーズ値Hxとの比R=Hy/Hxが0.7未満である請求項1に記載の反射型偏光板。   2. The ratio R = Hy / Hx between the haze value Hy for linearly polarized light parallel to the y direction and the haze value Hx for linearly polarized light parallel to the x direction of the scattering film (B) is less than 0.7. Reflection type polarizing plate. 散乱フィルム(B)のマトリックス相(B-1)を構成する熱可塑性樹脂がポリエステル樹脂である請求項1または2に記載の反射型偏光板。   The reflective polarizing plate according to claim 1 or 2, wherein the thermoplastic resin constituting the matrix phase (B-1) of the scattering film (B) is a polyester resin. 散乱フィルム(B)の分散相(B-2)が微粒子の凝集体である請求項1〜3のいずれかに記載の反射型偏光板。   The reflective polarizing plate according to any one of claims 1 to 3, wherein the dispersed phase (B-2) of the scattering film (B) is an aggregate of fine particles. 散乱フィルム(B)の分散相(B-2)がマトリックス相と異なる熱可塑性樹脂である請求項1〜4のいずれかに記載の反射型偏光板。   The reflective polarizing plate according to any one of claims 1 to 4, wherein the scattering phase (B-2) of the scattering film (B) is a thermoplastic resin different from the matrix phase. 散乱フィルム(B)の分散相(B-2)を構成する物質の含有量が、フィルム(B)の重量を基準として0.01〜30重量%である請求項1〜5のいずれかに記載の反射型偏光板。   The content of a substance constituting the dispersed phase (B-2) of the scattering film (B) is 0.01 to 30% by weight based on the weight of the film (B). Reflection type polarizing plate. 反射型偏光子(A)が直線状金属細線が周期配置されたワイヤグリッド型偏光子である請求項1〜6のいずれかに記載の反射型偏光板。   The reflective polarizer according to any one of claims 1 to 6, wherein the reflective polarizer (A) is a wire grid polarizer in which linear fine metal wires are periodically arranged. ワイヤグリッド型偏光子が散乱フィルム(B)上に直接加工することで形成されたものである請求項7に記載の反射型偏光板。   The reflective polarizing plate according to claim 7, wherein the wire grid polarizer is formed by processing directly on the scattering film (B). 反射型偏光子(A)が、屈折率異方性が互いに異なる2種の薄膜の交互積層体である請求項1〜6のいずれかに記載の反射型偏光板。   The reflective polarizer according to any one of claims 1 to 6, wherein the reflective polarizer (A) is an alternating laminate of two kinds of thin films having different refractive index anisotropies. 請求項9に記載の交互積層体からなる反射型偏光子(A)と散乱フィルム(B)が共押出法によって積層されたものである反射型偏光板。   A reflective polarizing plate in which the reflective polarizer (A) and the scattering film (B) comprising the alternately laminated body according to claim 9 are laminated by a coextrusion method.
JP2006125235A 2006-04-28 2006-04-28 Reflective polarizing plate Active JP4746475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125235A JP4746475B2 (en) 2006-04-28 2006-04-28 Reflective polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125235A JP4746475B2 (en) 2006-04-28 2006-04-28 Reflective polarizing plate

Publications (2)

Publication Number Publication Date
JP2007298634A true JP2007298634A (en) 2007-11-15
JP4746475B2 JP4746475B2 (en) 2011-08-10

Family

ID=38768192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125235A Active JP4746475B2 (en) 2006-04-28 2006-04-28 Reflective polarizing plate

Country Status (1)

Country Link
JP (1) JP4746475B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251035A (en) * 2008-04-01 2009-10-29 Nitto Denko Corp Depolarizing film, method for production thereof, optical film, and liquid crystal display
JP2009276398A (en) * 2008-05-12 2009-11-26 Teijin Ltd Laminated sheet polarizer, liquid crystal display device and polarized light scattering plate
JP2009276401A (en) * 2008-05-12 2009-11-26 Teijin Ltd Laminated sheet polarizer and liquid crystal display device
JP2010085617A (en) * 2008-09-30 2010-04-15 Teijin Dupont Films Japan Ltd Film laminate for three-dimensional display screen, three-dimensional display screen including the same, and three-dimensional display system
JP2010160280A (en) * 2009-01-07 2010-07-22 Asahi Kasei E-Materials Corp Optical film, reflection type polarizing plate using the optical film, and luminance enhancing film
JP2011197299A (en) * 2010-03-18 2011-10-06 Asahi Kasei E-Materials Corp Optical film, reflection type polarizing plate using the same, and luminance enhancing film
JP2012048225A (en) * 2010-07-30 2012-03-08 Asahi Kasei E-Materials Corp Wire grid polarization plate and polarization beam splitter using the same
US8730431B2 (en) 2010-09-17 2014-05-20 Japan Display Inc. Liquid crystal display device
US9097933B2 (en) 2012-11-20 2015-08-04 Samsung Display Co., Ltd. Polarizer and liquid crystal display including the same
JP2015533753A (en) * 2012-08-01 2015-11-26 フエロ コーポレーション Photoactive nanolayer
US9625762B2 (en) 2014-08-05 2017-04-18 Samsung Display Co., Ltd. Liquid crystal display device
JP2017102408A (en) * 2015-12-04 2017-06-08 東ソー株式会社 Fine particle arrangement film and antireflection film
JP2018503875A (en) * 2015-01-15 2018-02-08 エルエムエス カンパニー リミテッドLms Co., Ltd. Reflective polarization module having light reuse improving sheet and backlight unit having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121838B (en) * 2017-06-13 2020-06-05 明基材料有限公司 Backlight module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328225A (en) * 2001-04-26 2002-11-15 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
JP2003015133A (en) * 2001-04-27 2003-01-15 Citizen Watch Co Ltd Liquid crystal display device
JP2003075643A (en) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd Polarizing element and surface light source device and liquid crystal display device using the same
JP2003510629A (en) * 1999-09-20 2003-03-18 スリーエム イノベイティブ プロパティズ カンパニー Optical film having at least one particle-containing layer
JP2004205953A (en) * 2002-12-26 2004-07-22 Nitto Denko Corp Optical element, polarization plane light source using same, and display device using same
JP2004318060A (en) * 2003-04-01 2004-11-11 Nitto Denko Corp Optical element, polarizing element, lighting device, and liquid crystal display device
JP2005195824A (en) * 2004-01-07 2005-07-21 Asahi Kasei Chemicals Corp Wire grid type polarizer
JP2006075698A (en) * 2004-09-08 2006-03-23 Fuji Photo Film Co Ltd Production method for optical functional film, optical functional film, protection film for polarizing plate and polarizing plate and image display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510629A (en) * 1999-09-20 2003-03-18 スリーエム イノベイティブ プロパティズ カンパニー Optical film having at least one particle-containing layer
JP2002328225A (en) * 2001-04-26 2002-11-15 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
JP2003015133A (en) * 2001-04-27 2003-01-15 Citizen Watch Co Ltd Liquid crystal display device
JP2003075643A (en) * 2001-06-22 2003-03-12 Daicel Chem Ind Ltd Polarizing element and surface light source device and liquid crystal display device using the same
JP2004205953A (en) * 2002-12-26 2004-07-22 Nitto Denko Corp Optical element, polarization plane light source using same, and display device using same
JP2004318060A (en) * 2003-04-01 2004-11-11 Nitto Denko Corp Optical element, polarizing element, lighting device, and liquid crystal display device
JP2005195824A (en) * 2004-01-07 2005-07-21 Asahi Kasei Chemicals Corp Wire grid type polarizer
JP2006075698A (en) * 2004-09-08 2006-03-23 Fuji Photo Film Co Ltd Production method for optical functional film, optical functional film, protection film for polarizing plate and polarizing plate and image display device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251035A (en) * 2008-04-01 2009-10-29 Nitto Denko Corp Depolarizing film, method for production thereof, optical film, and liquid crystal display
JP2009276398A (en) * 2008-05-12 2009-11-26 Teijin Ltd Laminated sheet polarizer, liquid crystal display device and polarized light scattering plate
JP2009276401A (en) * 2008-05-12 2009-11-26 Teijin Ltd Laminated sheet polarizer and liquid crystal display device
JP2010085617A (en) * 2008-09-30 2010-04-15 Teijin Dupont Films Japan Ltd Film laminate for three-dimensional display screen, three-dimensional display screen including the same, and three-dimensional display system
JP2010160280A (en) * 2009-01-07 2010-07-22 Asahi Kasei E-Materials Corp Optical film, reflection type polarizing plate using the optical film, and luminance enhancing film
JP2011197299A (en) * 2010-03-18 2011-10-06 Asahi Kasei E-Materials Corp Optical film, reflection type polarizing plate using the same, and luminance enhancing film
JP2012048225A (en) * 2010-07-30 2012-03-08 Asahi Kasei E-Materials Corp Wire grid polarization plate and polarization beam splitter using the same
US8730431B2 (en) 2010-09-17 2014-05-20 Japan Display Inc. Liquid crystal display device
JP2015533753A (en) * 2012-08-01 2015-11-26 フエロ コーポレーション Photoactive nanolayer
US9097933B2 (en) 2012-11-20 2015-08-04 Samsung Display Co., Ltd. Polarizer and liquid crystal display including the same
US9964798B2 (en) 2012-11-20 2018-05-08 Samsung Display Co., Ltd. Polarizer and liquid crystal display including the same
US9625762B2 (en) 2014-08-05 2017-04-18 Samsung Display Co., Ltd. Liquid crystal display device
JP2018503875A (en) * 2015-01-15 2018-02-08 エルエムエス カンパニー リミテッドLms Co., Ltd. Reflective polarization module having light reuse improving sheet and backlight unit having the same
JP2017102408A (en) * 2015-12-04 2017-06-08 東ソー株式会社 Fine particle arrangement film and antireflection film

Also Published As

Publication number Publication date
JP4746475B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4746475B2 (en) Reflective polarizing plate
JP5186097B2 (en) Highly transparent reflective screen film
JP5519217B2 (en) Film for polarizer support substrate
KR102505572B1 (en) Liquid-crystal display, polarizing plate, and polarizer-protecting film
EP1872161B1 (en) Structured oriented films for use in displays
JP5451186B2 (en) Uniaxially oriented aromatic polyester film for polarizer support substrate
JP6404962B2 (en) White reflective film and method for producing the same
JP5926512B2 (en) White reflective film
WO2013057845A1 (en) Uniaxially oriented multi-layer laminate film
TWI551448B (en) Textured film and process for manufacture thereof
TW201535022A (en) Polarizing plate, liquid crystal display device
KR20210116714A (en) Liquid crystal display device, polarization plate, and polarizer protective film
KR20140113700A (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP6211923B2 (en) White reflective film
WO2013133102A1 (en) Retarder manufacturing method
JP6110220B2 (en) White reflective film
JP5301784B2 (en) Screen film
JP5468766B2 (en) Stretched film
WO2015182517A1 (en) Optical film, method for producing same, and polarizer plate, liquid crystal display device, and polarized light projector screen provided with optical film
JP5240103B2 (en) Laminated retardation plate, retardation plate manufacturing film, and manufacturing method of laminated retardation plate using the same
JP6235299B2 (en) White reflective film
JP2008275868A (en) Light diffusing film for rear projection screen and rear projection screen composed of same
CN113861464A (en) Polyester film for optical display and preparation method and application thereof
JP2011145642A (en) Polarizing diffusion film, method for manufacturing the polarizing diffusion film, and liquid crystal display device including the polarizing diffusion film
JP2010085617A (en) Film laminate for three-dimensional display screen, three-dimensional display screen including the same, and three-dimensional display system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4746475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250