JP2007298327A - Particle measuring device and method - Google Patents

Particle measuring device and method Download PDF

Info

Publication number
JP2007298327A
JP2007298327A JP2006125149A JP2006125149A JP2007298327A JP 2007298327 A JP2007298327 A JP 2007298327A JP 2006125149 A JP2006125149 A JP 2006125149A JP 2006125149 A JP2006125149 A JP 2006125149A JP 2007298327 A JP2007298327 A JP 2007298327A
Authority
JP
Japan
Prior art keywords
particle
light
electronic camera
image
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006125149A
Other languages
Japanese (ja)
Other versions
JP4774517B2 (en
Inventor
Tomohiro Uesugi
杉 知 弘 上
Masaaki Kawahashi
橋 正 昭 川
Hiroyuki Hirahara
原 裕 行 平
Yoshio Zama
間 淑 夫 座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2006125149A priority Critical patent/JP4774517B2/en
Publication of JP2007298327A publication Critical patent/JP2007298327A/en
Application granted granted Critical
Publication of JP4774517B2 publication Critical patent/JP4774517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a particle size and a three-dimensional position, and to facilitate a work for calibrating a parameter. <P>SOLUTION: This particle measuring device has a constitution equipped with a laser light source 10 for emitting a laser beam L; beam splitters BS1, BS2 for branching the laser beam L into the first beam L1 (L1s), the second beam L2 and the third beam L3; the first optical means M1, M2, SL for irradiating a measuring object domain with the first beam L1s; the first electronic camera 20 for photographing the measuring object domain at a light receiving angle which is a scattering angle θ wherein each light intensity of zero-order reflected light and primary refracted light of particles hit by the first beam becomes equal relative to the first beam L1s with which the measuring object domain is irradiated; the second optical means M3, M4 for projecting the second beam L2 to the first electronic camera 20 as the first reference light; and the second electronic camera 21 forming a stereo angle ϕ to an optical axis of the first electronic camera 20, and projecting the third beam L3 as the second reference light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、撮影画像を表すデジタル電気信号すなわち画像データを生成する電子カメラに計測対象粒子を照射したレーザ光像を投影し、該画像データを処理して、画像データが表す画像に基づいて粒子の3次元速度,粒径等を計測する粒子計測装置及びそれを用いる粒子計測方法に関する。該粒子計測装置は、これに限定する意図ではないが、デジタルホログラフィによる、粒子の3次元速度の計測および粒子径の計測に用いることができる。   The present invention projects a laser light image irradiated with measurement target particles onto a digital electrical signal representing a captured image, that is, an electronic camera that generates image data, processes the image data, and generates particles based on the image represented by the image data. The present invention relates to a particle measuring apparatus that measures the three-dimensional velocity, particle size, etc. The particle measuring device is not intended to be limited to this, but can be used for measuring the three-dimensional velocity of particles and measuring the particle diameter by digital holography.

特開2002−181515号公報JP 2002-181515 A 特開2004−361291号公報。JP 2004-361291 A.

特許文献1には、シート状の平行なレーザビームが当たった液滴からの反射及び屈折光を、レーザビームの側方からCCDカメラで、干渉縞が現れる焦点外れで撮影し、液滴像領域内の干渉縞の本数Nに基づいて液滴の直径を算出する粒径測定において、レンズとCCD素子の間に、干渉縞の分布方向と直行する方向yに液滴像を偏平化して線状とするシリンドリカルレンズを介挿して、複数の液滴像のy方向の重なりを解消する粒径測定が記載されている。短時間差で液滴を撮影して粒径測定すると共に、該時間差内の2次元方向の液滴移動量を計測して速度に換算する二次元速度の算出も記載されている。   In Patent Document 1, reflected and refracted light from a droplet hit by a sheet-like parallel laser beam is photographed from the side of the laser beam with a CCD camera out of focus where an interference fringe appears, and a droplet image region is obtained. In the particle size measurement for calculating the diameter of the droplet based on the number N of the interference fringes, the droplet image is flattened between the lens and the CCD element in a direction y perpendicular to the distribution direction of the interference fringes. The particle size measurement which cancels the overlap of the y direction of several droplet images is described by interposing the cylindrical lens. It also describes the calculation of a two-dimensional velocity in which droplets are photographed with a short-time difference to measure the particle size, and the amount of droplet movement in the two-dimensional direction within the time difference is measured and converted into a velocity.

特許文献2には、放射シート状のレーザ光を照射した計測対象領域を、ステレオ角で配置した2台のカメラで各焦点位置(合焦点)に同時に撮影して、各カメラで撮影した1粒子に付き1対として現れる輝点対を、同一粒子のものを同定して該粒子の3次元位置を求める計測装置及び方法が記載されている。   In Patent Document 2, a measurement target region irradiated with a radiation sheet-shaped laser beam is simultaneously photographed at two focal points (focused points) with two cameras arranged at a stereo angle, and one particle photographed with each camera. A measuring apparatus and method for identifying a pair of bright spots appearing as a pair at the same time and identifying the three-dimensional position of the same particle are described.

引用文献1の計測装置によれば、粒径を計測することはできるが、3次元位置を求めることはできない。引用文献2の計測装置は、粒子の3次元位置を求めることはできるが、合焦点撮影によって輝点対像を得るので、それによっては粒径を計測することはできない。   According to the measuring apparatus of the cited document 1, the particle diameter can be measured, but the three-dimensional position cannot be obtained. Although the measuring apparatus of the cited document 2 can obtain the three-dimensional position of the particle, it obtains the bright spot pair image by the in-focus photographing, and thus cannot measure the particle size.

本発明は、粒径および3次元位置を計測し得る粒子計測装置を提供することを第1の目的とし、3次元位置演算に用いるパラメータの校正(カメラ校正)のための作業が簡易な粒子計測装置を提供することを第2の目的とする。   The first object of the present invention is to provide a particle measuring apparatus capable of measuring a particle size and a three-dimensional position, and particle measurement with a simple work for calibration (camera calibration) of parameters used for three-dimensional position calculation. A second object is to provide an apparatus.

(1)レーザビーム(L)を出射するレーザ光源(10);
前記レーザビーム(L)を、第1ビーム(L1),第2ビーム(L2)および第3ビーム(L3)に分岐するビームスプリッタ(BS1,BS2);
第1ビーム(L1s)を計測対象領域に照射する第1光学手段(M1,M2,SL);
計測対象領域を照射する第1ビーム(L1s)に対して、第1ビームが当たった粒子の0次反射光と1次屈折光の光強度が同等となる散乱角θとなる受光角で計測対象領域を撮影する第1電子カメラ(20);
第2ビーム(L2)を、第1参照光として第1電子カメラ(20)に投射する第2光学手段(M3,M4);および、
第1電子カメラ(20)の光軸に対してステレオ角φをなし、かつ第3ビーム(L3)が第2参照光として投射される第2電子カメラ(21);
を備える粒子計測装置(図1)。
(1) Laser light source (10) that emits a laser beam (L);
A beam splitter (BS1, BS2) for splitting the laser beam (L) into a first beam (L1), a second beam (L2), and a third beam (L3);
First optical means (M1, M2, SL) for irradiating the measurement target region with the first beam (L1s);
Measurement target at the light receiving angle that is the scattering angle θ where the light intensity of the 0th-order reflected light and the 1st-order refracted light of the particle hit by the first beam is equivalent to the first beam (L1s) that irradiates the measurement target area A first electronic camera (20) for photographing the area;
Second optical means (M3, M4) for projecting the second beam (L2) to the first electronic camera (20) as first reference light; and
A second electronic camera (21) that forms a stereo angle φ with respect to the optical axis of the first electronic camera (20) and that projects the third beam (L3) as the second reference light;
The particle | grain measuring apparatus provided with (FIG. 1).

なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応要素又は対応事項の符号を、例示として参考までに付記した。以下も同様である。   In addition, in order to make an understanding easy, the code | symbol of the corresponding element or the corresponding matter of the Example which is shown in drawing and mentions later in a parenthesis was added as an example for reference. The same applies to the following.

第1ビーム(L1s)が当たった粒子の0次反射光と1次屈折光の光強度が同等となる散乱角θとなる受光角で計測対象領域を撮影するので、第1電子カメラ(20)の撮影画面上に現れる1粒子の輝点対(2像)の輝度が同等であり、輝点対の識別抽出の精度が向上する。第1電子カメラ(20)の結像面を、粒子像内に干渉縞を生ずる焦点外れ位置とすることにより、第1電子カメラ(20)の撮影画面上の粒子像内に現れる干渉縞が明瞭になり、粒径計測の精度を高くすることができる。   Since the region to be measured is photographed at a light receiving angle corresponding to the scattering angle θ where the light intensity of the first-order reflected light and the first-order refracted light of the particle hit by the first beam (L1s) is equal, the first electronic camera (20) The luminance of the bright spot pair (2 images) of one particle appearing on the shooting screen is equivalent, and the accuracy of identifying and extracting bright spot pairs is improved. By setting the imaging surface of the first electronic camera (20) to an out-of-focus position that generates interference fringes in the particle image, the interference fringes appearing in the particle image on the photographing screen of the first electronic camera (20) are clear. Thus, the accuracy of particle size measurement can be increased.

第1および第2電子カメラ(20,21)の撮影画面上の同一の粒子像に3次元PTVを適用して粒子の3次元位置を算出することができる。短時間dt間隔で2度撮影して、各回撮影画面に基づいて粒子のdt前,後の3次元位置を算出し両位置差とdtに基づいて3次元速度を算出できる。計測対象領域にカメラ校正板をおいて第1および第2電子カメラ(20,21)で撮影して、像再生した校正板の画像に基づいて、カメラ校正(3次元位置算出のパラメータの校正)を行うことができ、校正を比較的に容易に実施できる。   The three-dimensional position of the particle can be calculated by applying the three-dimensional PTV to the same particle image on the photographing screens of the first and second electronic cameras (20, 21). Images are taken twice at short time intervals of dt, and the three-dimensional position before and after the particle dt is calculated on the basis of each time shooting screen, and the three-dimensional velocity can be calculated on the basis of both position differences and dt. Camera calibration (calibration of parameters for 3D position calculation) based on the image of the calibration plate captured by the first and second electronic cameras (20, 21) with the camera calibration plate in the measurement target area And calibration can be performed relatively easily.

(2)第2光学手段(M3,M4)は、第2ビーム(L2)を計測対象領域を通して第1電子カメラ(20)に投射し;第3ビーム(L3)も計測対象領域を通して第2電子カメラ(21)に投射される;上記(1)に記載の粒子計測装置(図1)。   (2) The second optical means (M3, M4) projects the second beam (L2) to the first electronic camera (20) through the measurement target region; the third beam (L3) also projects the second electron through the measurement target region. The particle measuring apparatus according to (1) above (FIG. 1).

すなわちインライン光学系を用いるインラインホログラフィ撮影システムである。従来は物体光(粒子像光)に対する立体視用の参照光の入射角の範囲が非常に狭く、光学系の設定が非常に難しいが、本実施態様によれば、インライン光学系なのでその複雑さがない。電子カメラの撮像素子たとえばCCD素子などは、ホログラムの空間解像度が非常に低く、奥行き方向の像再生が非常に粗い。したがって、粒子の奥行き方向(第3軸)位置の検出精度が悪い。しかし本実施態様によれば、第3軸方向の粒子の位置は、幾何学的な関係から得られるため、高精度である。   That is, an in-line holographic imaging system using an in-line optical system. Conventionally, the range of the incident angle of the reference light for stereoscopic viewing with respect to the object light (particle image light) is very narrow, and it is very difficult to set the optical system. There is no. An image pickup element of an electronic camera, such as a CCD element, has a very low hologram spatial resolution and a very rough image reproduction in the depth direction. Therefore, the detection accuracy of the position in the depth direction (third axis) of the particles is poor. However, according to the present embodiment, the position of the particle in the third axial direction is obtained from a geometric relationship, and thus is highly accurate.

(3)レーザビーム(L)を出射するレーザ光源(10);
前記レーザビーム(L)を、第1ビーム(L1),第2ビーム(L2)および第3ビーム(L3)に分岐するビームスプリッタ(BS1,BS2);
第1ビーム(L1s)を計測対象領域に照射する第1光学手段(M1,SL);
計測対象領域を照射する第1ビーム(L1s)に対して、第1ビームが当たった粒子の0次反射光と1次屈折光の光強度が同等となる散乱角θとなる受光角で計測対象領域を撮影する電子カメラ(M4,20);
第2ビーム(L2)を、第1参照光として前記電子カメラ(20)に投射する第2光学手段(M3,M4);
前記電子カメラで撮影される前記散乱角θのレーザ光に対してステレオ角φをなすレーザ光(L3)を前記電子カメラ(20)に投射する第3光学手段(M6,BS3);および、
第3ビーム(L3)を、第2参照光として前記電子カメラ(20)に投射する第4光学手段(M5,M6,BS3);
を備える粒子計測装置(図5)
上記(1)に記述した作用効果が同様に得られる。加えて、カメラが一台でよいので、計測システムの構造が簡単になり、カメラの設定,調整の作業量も少ない。
(3) Laser light source (10) that emits a laser beam (L);
A beam splitter (BS1, BS2) for splitting the laser beam (L) into a first beam (L1), a second beam (L2), and a third beam (L3);
First optical means (M1, SL) for irradiating the measurement target region with the first beam (L1s);
Measurement target at the light receiving angle that is the scattering angle θ where the light intensity of the 0th-order reflected light and the 1st-order refracted light of the particle hit by the first beam is equivalent to the first beam (L1s) that irradiates the measurement target area Electronic camera (M4,20) to capture the area;
Second optical means (M3, M4) for projecting the second beam (L2) to the electronic camera (20) as first reference light;
Third optical means (M6, BS3) for projecting a laser beam (L3) having a stereo angle φ to the laser beam of the scattering angle θ photographed by the electronic camera onto the electronic camera (20);
4th optical means (M5, M6, BS3) which projects a 3rd beam (L3) to the said electronic camera (20) as 2nd reference light;
Particle measuring device (Fig. 5)
The effect described in (1) above can be obtained similarly. In addition, since only one camera is required, the structure of the measurement system is simplified, and the amount of work for setting and adjusting the camera is small.

(4)第2光学手段(M3,M4)は、第2ビーム(L2)を計測対象領域を通して前記電子カメラ(20)に投射し;第4光学手段(M5,M6,BS3)も、第3ビーム(L3)を計測対象領域を通して前記電子カメラ(20)に投射する;請求項3に記載の粒子計測装置(図5)。   (4) The second optical means (M3, M4) projects the second beam (L2) to the electronic camera (20) through the measurement target region; the fourth optical means (M5, M6, BS3) is also the third 4. The particle measuring apparatus (FIG. 5) according to claim 3, wherein the beam (L3) is projected onto the electronic camera (20) through a measurement target region.

上記(2)に記述した作用効果が同様に得られる。   The effect described in the above (2) can be obtained similarly.

(5)レーザビーム(L)を出射するレーザ光源(10);
前記レーザビーム(L)を、第1ビーム(L1)および第2ビーム(L2)に分岐するビームスプリッタ(BS1,BS2);
第1ビーム(L1s)を計測対象領域に照射する第1光学手段(M1,SL);
計測対象領域を照射する第1ビーム(L1s)に対して、第1ビームが当たった粒子の0次反射光と1次屈折光の光強度が同等となる散乱角θとなる受光角(L2m)で計測対象領域を撮影する電子カメラ(M4,20);
第2ビーム(L2)を、計測対象領域を外れた光路を経る参照光として前記電子カメラ(20)に投射する第2光学手段(M5,M7,BS4);および、
前記電子カメラで撮影される前記散乱角θのレーザ光に対してステレオ角φをなすレーザ光(L3m)を前記電子カメラ(20)に投射する第3光学手段(M6,BS3);
を備える粒子計測装置(図8)。
(5) Laser light source (10) that emits a laser beam (L);
A beam splitter (BS1, BS2) for splitting the laser beam (L) into a first beam (L1) and a second beam (L2);
First optical means (M1, SL) for irradiating the measurement target region with the first beam (L1s);
The light receiving angle (L2m) corresponding to the scattering angle θ at which the light intensity of the 0th order reflected light and the first order refracted light of the particle hit by the first beam is equivalent to the first beam (L1s) that irradiates the measurement target region. An electronic camera (M4,20) that captures the measurement area
Second optical means (M5, M7, BS4) for projecting the second beam (L2) to the electronic camera (20) as reference light passing through an optical path out of the measurement target region; and
Third optical means (M6, BS3) for projecting, onto the electronic camera (20), laser light (L3m) having a stereo angle φ with respect to the laser light having the scattering angle θ photographed by the electronic camera;
The particle | grain measuring apparatus provided with (FIG. 8).

すなわちオフアクシス(off axis)型のホログラフィ撮影システムである。上記(1)に記述した作用効果が同様に得られ、また、カメラが一台でよいので、計測システムの構造が簡単になり、カメラの設定,調整の作業量も少ない。インライン型の場合、参照光も計測対象領域を透過するので液滴そのもののホログラムが干渉縞像ホログラム画面にかさなって撮影されるので、干渉縞像ホログラムに対して光学的ノイズとなる。しかし、本実施態様によれば、参照光は計測対象領域を透過しないので、該光学的ノイズを生じない。干渉縞像ホログラムに基づく3次元位置計測の精度を向上させることが可能となる。   That is, it is an off axis type holographic imaging system. The effect described in (1) above can be obtained in the same manner, and since only one camera is required, the structure of the measurement system is simplified, and the amount of work for setting and adjusting the camera is small. In the case of the in-line type, since the reference light also passes through the measurement target area, the hologram of the droplet itself is photographed over the interference fringe image hologram screen, resulting in optical noise with respect to the interference fringe image hologram. However, according to this embodiment, since the reference light does not pass through the measurement target region, the optical noise does not occur. It becomes possible to improve the accuracy of the three-dimensional position measurement based on the interference fringe image hologram.

(6)前記電子カメラ(20)に投射される、ステレオ角φをなす2方向のレーザ光の、計測対象領域から前記電子カメラ(20)に至る像再生距離は、同一画面上の、2方向のレーザ光による同一粒子の画像のサイズを異にするために、異なった値である、上記(3),(4)又は(5)に記載の粒子計測装置(図5,図8)。   (6) The image reproduction distance from the measurement target region to the electronic camera (20) of the two directions of laser light forming the stereo angle φ projected onto the electronic camera (20) is two directions on the same screen. The particle measurement apparatus according to (3), (4), or (5) (FIGS. 5 and 8), which has different values in order to make the image size of the same particle by the laser beam of different.

相関判定により2方向のレーザ光による同一粒子の同一サイズの画像を抽出することもできるが、本実施態様によれば、サイズにしたがって2方向のレーザ光による同一粒子の画像を分離抽出できるので、同一画面上の2方向のレーザ光による同一粒子画像を分離する精度を高くすることができる。画像処理技術(ソフトウエア=プログラム)により自動的に分離する実施態様では、まずサイズによって粒子画像を2グループに分離して2画面とし、像再生距離の差によるサイズ比にしたがって一方の画面を拡大又は縮小して同一サイズの2画面を生成してから、相関判定処理によって、同一粒子像を抽出(同定)する。コンピュータ(例えばパソコンのアプリケーションプログラム)とオペレータとの対話により同一粒子像を抽出する実施態様では、ディスプレイ上の表示画像に対するオペレータの目視判定により同一粒子をマーキングする。これに基づいてコンピュータが2方向のレーザ光による同一粒子像を各方向のレーザ光による各粒子像を表わす2画面を生成し、像再生距離の差によるサイズ比にしたがって一方の画面を拡大又は縮小して同一サイズの2画面を生成してから、相関判定処理によって、同一粒子像を抽出(同定)する。この対話形式の処理においても、2方向のレーザ光による同一粒子像にサイズ差があるので、同一粒子像を抽出するための目視判定が容易である。   Although it is possible to extract the same size image of the same particle by the laser beam in two directions by the correlation determination, according to this embodiment, the image of the same particle by the laser beam in the two directions can be separated and extracted according to the size. It is possible to increase the accuracy of separating the same particle image by the laser light in two directions on the same screen. In an embodiment in which image processing technology (software = program) automatically separates, first, the particle images are separated into two groups according to size to make two screens, and one screen is enlarged according to the size ratio due to the difference in image reproduction distance. Alternatively, after reducing and generating two screens of the same size, the same particle image is extracted (identified) by correlation determination processing. In an embodiment in which the same particle image is extracted by interaction between a computer (for example, an application program of a personal computer) and an operator, the same particle is marked by visual judgment of the operator on the display image on the display. Based on this, the computer generates two screens representing the same particle image by the laser light in two directions and each particle image by the laser light in each direction, and enlarges or reduces one screen according to the size ratio depending on the difference in image reproduction distance Then, after generating two screens of the same size, the same particle image is extracted (identified) by correlation determination processing. Also in this interactive processing, since there is a size difference between the same particle images by the two directions of laser light, visual judgment for extracting the same particle image is easy.

(7)前記電子カメラ(20,21)の結像面は、粒子像内に干渉縞を生ずる焦点外れ位置である;上記(1)乃至(6)のいずれか1つに記載の粒子計測装置。   (7) The imaging surface of the electronic camera (20, 21) is an out-of-focus position where an interference fringe is generated in the particle image; the particle measuring apparatus according to any one of (1) to (6) above .

(8)前記電子カメラ(20,21)が撮影した画面上の、粒子像内の干渉縞の数に基づいて粒子径を算出する、上記(7)に記載の粒子計測装置を用いる粒子計測方法。   (8) A particle measuring method using the particle measuring apparatus according to (7), wherein the particle diameter is calculated based on the number of interference fringes in the particle image on the screen captured by the electronic camera (20, 21). .

(9)前記電子カメラ(20,21)で短時間dt間隔で2回粒子像を撮影して、第1回の撮影像に基づいて粒子の3次元位置を算出し、第2回の撮影像に基づいて粒子の3次元位置を算出し、両算出値に基づいて粒子の3次元速度を算出する、上記(1)乃至(7)に記載の粒子計測装置を用いる粒子計測方法。   (9) Taking a particle image twice with a short time interval of dt with the electronic camera (20, 21), calculating the three-dimensional position of the particle based on the first photographed image, and taking the second photographed image A particle measuring method using the particle measuring apparatus according to any one of (1) to (7) above, wherein the three-dimensional position of the particle is calculated based on the two and the three-dimensional velocity of the particle is calculated based on the two calculated values.

(10)前記電子カメラ(20,21)で短時間dt間隔で2回粒子像を撮影して、第1回又は第2回の撮影画面上の、粒子像内の干渉縞の数に基づいて粒子径を算出し、第1回の撮影像に基づいて粒子の3次元位置を算出し、第2回の撮影像に基づいて粒子の3次元位置を算出し、両算出値に基づいて粒子の3次元速度を算出する、上記(7)に記載の粒子計測装置を用いる粒子計測方法。   (10) Based on the number of interference fringes in the particle image on the first or second imaging screen by capturing the particle image twice at short time dt intervals with the electronic camera (20, 21). The particle diameter is calculated, the three-dimensional position of the particle is calculated based on the first captured image, the three-dimensional position of the particle is calculated based on the second captured image, and the particle size is calculated based on both calculated values. A particle measurement method using the particle measurement apparatus according to (7), wherein a three-dimensional velocity is calculated.

(11)前記計測対象領域の位置に校正板を置いて撮影し、撮影画面上の校正板の画像から、3次元位置算出のパラメータを校正し、校正したパラメータを前記3次元位置の算出に用いる、上記(9)又は(10)に記載の粒子計測方法。   (11) A calibration plate is placed at the position of the measurement target region and photographed. The parameters of the three-dimensional position calculation are calibrated from the image of the calibration plate on the photographing screen, and the calibrated parameters are used for the calculation of the three-dimensional position. The particle measuring method according to (9) or (10) above.

これによれば、計測対象領域の位置に校正板を置いて撮影すれば、校正用の画像が得られるので、パラメータの校正のための作業が簡易である。   According to this, if a calibration plate is placed at the position of the measurement target area and an image is taken, a calibration image can be obtained, so that the work for parameter calibration is simple.

本発明の他の目的及び特徴は、図面を参照した以下の実施例の説明より明らかになろう。   Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

図1に、本発明の第1実施例の構成を示す。レーザ装置10は、ダブルパルス発振のNd:YAGレーザ(波長:532nm,出力:50mJ/pulse,閃光時間:5ns)であり、2台のCCDカメラ20,21(有効画素数:1360(H)×1036(V)pixles)でインラインホログラムを撮影する。まず、レーザ装置10から出力されたボリューム光Lから一つ目のビームスプリッタBS1により粒子計測光L1を分離し、該粒子計測光L1を、ミラーM1,M2およびシート状光への変換レンズユニットSLで、シート状光L1sとして、本実施例では、ノズルNZによって水滴が噴霧される計測対象領域に照射する。二つ目のビームスプリッタBS1により第1参照光L2をボリューム光Lから分離し、残ったボリューム光を第2参照光L3としている。第2参照光L2は、ミラーM3,M4で反射して計測対象領域に照射する。   FIG. 1 shows the configuration of the first embodiment of the present invention. The laser apparatus 10 is a double pulse oscillation Nd: YAG laser (wavelength: 532 nm, output: 50 mJ / pulse, flash time: 5 ns), and two CCD cameras 20 and 21 (effective pixel number: 1360 (H) × Inline hologram is photographed at 1036 (V) pixles). First, the particle measurement light L1 is separated from the volume light L output from the laser device 10 by the first beam splitter BS1, and the particle measurement light L1 is converted into mirrors M1, M2 and a sheet-shaped light conversion lens unit SL. Thus, in the present embodiment, the sheet-like light L1s is irradiated onto the measurement target region where water droplets are sprayed by the nozzle NZ. The first reference light L2 is separated from the volume light L by the second beam splitter BS1, and the remaining volume light is used as the second reference light L3. The second reference light L2 is reflected by the mirrors M3 and M4 and applied to the measurement target region.

計測対象領域において、上記シート状光L1sの光軸,第1参照光L2および第3参照光L3が交叉し、しかも第1参照光L2の、計測対象領域を通過する光路に第1カメラ20の光軸があり、第2参照光L3の、計測対象領域を通過する光路に第2カメラ21の光軸がある。   In the measurement target region, the optical axis of the sheet-like light L1s, the first reference light L2 and the third reference light L3 cross each other, and the first reference light L2 passes through the measurement target region on the optical path of the first camera 20. There is an optical axis, and the optical axis of the second camera 21 is on the optical path of the second reference light L3 passing through the measurement target region.

第1実施例では、カメラ20,21のそれぞれに入射するレーザ光L2,L3の光路は立体(3次元)配置である。シート状光L1sの光軸と、それに対してθの角度をなす第1カメラ20の光軸とを含む第1平面と、同様にシート状光L1sの光軸と、それに対してθの角度をなす第2カメラ21の光軸とを含む第2平面とは、非平行の異なる面であって、シート状光L1sの光軸の位置で交叉する。   In the first embodiment, the optical paths of the laser beams L2 and L3 incident on the cameras 20 and 21 are three-dimensional (three-dimensional) arrangement. The first plane including the optical axis of the sheet-like light L1s and the optical axis of the first camera 20 that forms an angle θ with respect thereto, and similarly the optical axis of the sheet-like light L1s and the angle θ with respect thereto. The second plane including the optical axis of the second camera 21 formed is a different non-parallel surface and intersects at the position of the optical axis of the sheet-like light L1s.

図2に、計測対象領域においてシート状光L1sが当たった水滴Dropletによる0次反射光および1次屈折光の、カメラ20の撮像面への投影光路を、模式的に示す。光透過性球形粒子にレーザのようなコヒーレント光を照射すると、粒子表面で反射する0次反射光と、粒子内部で屈折を繰り返し散乱する1次からn次までの屈折光が生じる。このうち、散乱角が小さい前方散乱では、0次反射光と粒子内部で2度屈折する1次屈折光が支配的になる。   FIG. 2 schematically shows a projection optical path of the 0th-order reflected light and the first-order refracted light by the water droplet Droplet impinged on the sheet-like light L1s in the measurement target region onto the imaging surface of the camera 20. When the light-transmitting spherical particles are irradiated with coherent light such as a laser, 0th-order reflected light reflected on the particle surface and 1st-order to nth-order refracted light that repeatedly scatters within the particle are generated. Among these, in the forward scattering with a small scattering angle, the 0th-order reflected light and the first-order refracted light that is refracted twice inside the particle are dominant.

カメラ20,21間のステレオ角φは、デジタル再構築の便宜性を考慮して90°としている。計測対象粒子が水滴の場合、水の相対屈折率nが1.33であるので、図3に示すように、表面反射光(0次反射光)と1次屈折光の光強度が散乱角70°において等しくなるので、2台のカメラ20,21の受光角θはそれぞれ70°とした。カメラ20の撮像素子であるCCD素子の受光面にカメラレンズ20Lの焦点があると、0次反射光による投影像(輝点)と1次屈折光による投影像(輝点)が受光面に現れる。これらの輝点を一般にGlare Points(輝点対)とよぶ。図2に輝点対20Gfを示す。しかし、CCD素子の受光面に対してカメラレンズ20Lの焦点がずれていると、干渉縞が内部に現れた粒子像20Sfとなる。輝点対20Gfおよび干渉縞粒子像20Sfのいずれも、受光角θを0次反射光と1次屈折光の強度が同等となる角度(水の場合で70°)に設定することにより、最も明確になる。   The stereo angle φ between the cameras 20 and 21 is 90 ° in consideration of the convenience of digital reconstruction. When the measurement target particle is a water droplet, the relative refractive index n of water is 1.33. Therefore, as shown in FIG. 3, the light intensity of the surface reflected light (0th order reflected light) and the first order refracted light has a scattering angle of 70. Therefore, the light receiving angles θ of the two cameras 20 and 21 are set to 70 °. When the focus of the camera lens 20L is on the light receiving surface of a CCD element that is an image pickup device of the camera 20, a projected image (bright spot) by zero-order reflected light and a projected image (bright spot) by primary refracted light appear on the light receiving surface. . These bright spots are generally called Glare Points. FIG. 2 shows a bright spot pair 20Gf. However, if the focus of the camera lens 20L is deviated from the light receiving surface of the CCD element, a particle image 20Sf in which interference fringes appear inside is obtained. In both of the bright spot pair 20Gf and the interference fringe particle image 20Sf, the light reception angle θ is most clearly defined by setting the light receiving angle θ to an angle at which the intensities of the 0th-order reflected light and the first-order refracted light are equal (70 ° in the case of water). become.

なお、本第1実施例ならびに後述の第2,第3実施例のいずれにおいても、測定対象領域には、粒子計測光としてシート状光L1sを照射している。これにより、撮影粒子が少なく、ノイズとなる多数の粒子像が少ない。したがって粒子像の選別あるいは抽出の精度を高くすることができる。しかし、必ずしもシート状光を用いる必要はない。シート状光L1sに代えて、1粒以上の少数の粒子群を同時照射し得る横断面の粒子計測光L1を用いることもできる。また、画像データ処理においてノイズ分離機能又は粒子像摘出機能が高ければ、さらに横断面面積の大きい非シート状の粒子計測光を用いることもできる。   In both the first example and the second and third examples described later, the measurement target region is irradiated with the sheet-like light L1s as the particle measurement light. Thereby, there are few imaging | photography particles and there are few many particle images used as noise. Therefore, it is possible to increase the accuracy of sorting or extracting the particle image. However, it is not always necessary to use sheet-like light. Instead of the sheet-like light L1s, the particle measuring light L1 having a cross section capable of simultaneously irradiating a small number of one or more particles can be used. Further, if the noise separation function or the particle image extraction function is high in the image data processing, non-sheet-like particle measurement light having a larger cross-sectional area can be used.

干渉縞粒子像20Sf内の縞数Nを観測することにより、次のように粒子直径Dpを算出することができる。   By observing the number N of fringes in the interference fringe particle image 20Sf, the particle diameter Dp can be calculated as follows.

Figure 2007298327
Figure 2007298327

ここで、dは粒径、Nは干渉縞の縞次数、λは波長、θはカメラの受光角、αは集光角、nは粒子と周囲媒体との相対屈析率である。カメラの受光角θとはレーザ進行方向とカメラの光軸とがなす角をさす。 Here, d p is the particle size, N is the fringe order of the interference fringes, λ is the wavelength, θ is the light receiving angle of the camera, α is the converging angle, and n is the relative refractive index between the particles and the surrounding medium. The light receiving angle θ of the camera is an angle formed by the laser traveling direction and the optical axis of the camera.

波長λや角度θは光学系により決定されるパラメータであるので、屈折率nが既知ならば、粒径dは干渉縞像の縞数Nにより求められ、粒径の絶対計測が可能である。0次反射光と1次屈折光の強度が等しいとき、干渉縞の振幅が最大となり良好な干渉像となる。図3で示すように0次反射光と1次屈折光の強度比は散乱角θによって変化し、光強度の等しくなる角度θは、光源の偏光や対象とする粒子の屈折率nなどによっても変化する。 Since the wavelength λ and the angle θ are parameters determined by the optical system, if the refractive index n is known, the particle size d p can be obtained from the number N of fringes of the interference fringe image, and the absolute measurement of the particle size is possible. . When the 0th-order reflected light and the first-order refracted light have the same intensity, the interference fringe has the largest amplitude and a good interference image. As shown in FIG. 3, the intensity ratio between the 0th-order reflected light and the first-order refracted light varies depending on the scattering angle θ, and the angle θ at which the light intensity becomes equal depends on the polarization of the light source and the refractive index n of the target particle. Change.

3次元速度計測では,2台のカメラ20,21で計測対象領域をステレオ視することにより撮影されたホログラムパターンの像再構築に、3次元PTVを適用する。PTV(粒子追跡法)とは、連続する2時刻間の流体画像上で同一粒子の対応付けを行うことにより、物体空間上の個々の粒子の移動量を求める手法である。   In the three-dimensional velocity measurement, a three-dimensional PTV is applied to image reconstruction of a hologram pattern photographed by viewing the measurement target region in stereo with the two cameras 20 and 21. PTV (particle tracking method) is a method for obtaining the movement amount of each particle in the object space by associating the same particle on a fluid image between two consecutive times.

再度図1を参照する。レーザ装置10およびCCDカメラ20,21には、シーケンサ23が、レーザ発射指示信号および撮影指示信号を、パソコン(PC)22からのスタート指示に応答して送信する。   Refer to FIG. 1 again. The sequencer 23 transmits a laser emission instruction signal and a photographing instruction signal to the laser device 10 and the CCD cameras 20 and 21 in response to a start instruction from the personal computer (PC) 22.

パソコン22には、粒子計測アプリケーションプログラム(「粒子計測」という)がインストールされており、オペレータが該「粒子計測」を起動することにより、メインメニューが、パソコン22に接続されたディスプレイに表示される。メインメニューには、サブメニュー項目「カメラ校正」,「パラメータ調整」および「計測」が表示されている。オペレータが「カメラ校正」をクリックすると、「カメラ校正」の入力画面がディスプレイに表示される。図1に示すノズルNZ直下の計測対象領域に校正板を配置して、「2次元校正」を指定して実行入力をすることにより、パソコン22は、1回の撮影を行ない、各カメラ20,21の撮影画面(の画像データ)が、パソコン22に送り込まれると、ディスプレイにサムネイル表示する。その後、パソコン22(の「粒子計測」)と対話形式で、各撮影画面をディスプレイに表示して、2次元画像処理で用いる幾何学的パラメータの設定を行う。「3次元校正」を指定して実行を入力したときには、パソコン22は、短時間dt間隔の2回の撮影を行ない、後述する3次元速度の算出3DVM(図4)の輝点対像の再構築S31〜3次元位置の算出S36を順次に、パラメータ参照の演算となるステージでは対話形式でオペレータの介入による、パラメータの調整を行う。このようにして確定したパラメータ値が、次回校正まで、粒子計測で使用される。   A particle measurement application program (referred to as “particle measurement”) is installed in the personal computer 22, and the main menu is displayed on a display connected to the personal computer 22 when the operator activates the “particle measurement”. . In the main menu, sub-menu items “camera calibration”, “parameter adjustment”, and “measurement” are displayed. When the operator clicks “camera calibration”, an input screen of “camera calibration” is displayed on the display. By arranging a calibration plate in the measurement target region immediately below the nozzle NZ shown in FIG. 1, specifying “two-dimensional calibration” and performing execution input, the personal computer 22 performs one shooting, and each camera 20, When the photographing screen (image data) 21 is sent to the personal computer 22, it is displayed as a thumbnail on the display. Thereafter, each imaging screen is displayed on the display in an interactive manner with the personal computer 22 (“particle measurement”), and geometric parameters used in the two-dimensional image processing are set. When “3D calibration” is designated and execution is input, the personal computer 22 performs imaging for a short time dt interval twice, and calculates the 3D velocity calculation 3DVM (FIG. 4) described later. The construction S31 to the three-dimensional position calculation S36 are sequentially performed, and the parameters are adjusted by the operator's intervention in an interactive manner at the stage of the parameter reference calculation. The parameter values determined in this way are used for particle measurement until the next calibration.

メインメニュー上の「パラメータ調整」を指定したときには、パソコン22は、「2次元校正」と「3次元校正」で設定されているパラメータ値をディスプレイに表示し、この表示画面からオペレータは、パラメータ値を調整又は変更することができる。   When “parameter adjustment” on the main menu is designated, the personal computer 22 displays the parameter values set in “two-dimensional calibration” and “three-dimensional calibration” on the display. Can be adjusted or changed.

メインメニュー上の「計測」をオペレータが指定したときには、「計測」の手順説明が表示され、実行を指示すると、パソコン22(の「粒子計測」アプリケーション)が、粒子計測を実行する。   When the operator designates “Measurement” on the main menu, the explanation of the procedure of “Measurement” is displayed. When the execution is instructed, the personal computer 22 (“Particle Measurement” application thereof) executes particle measurement.

図4に、該粒子計測の概要を示す。本実施例では、三次元PTVアルゴリズムは画像からの粒子検出,2時刻間での粒子追跡,そして幾何学カメラモデルによる三次元再構築の3ステップで構成するので、「計測」の実行が入力されるとパソコン22は、短時間dt間隔の2回の撮影を、シーケンサ23に指示し、これに応答してシーケンサ23が、第1の撮影をレーザ装置10とカメラ20,21に指示し、そしてdt経過後に第2回の撮影を指示する。そしてカメラ20,21に順次に、画像転送を指示する。カメラ20,21は、第1回撮影画像と第2回撮影画像を記憶媒体に記憶しており、画像転送指示に応答して第1回撮影画像と第2回撮影画像をパソコン22に転送する。パソコン22はそれらを内部メモリに格納する(ステップS1)。以下では、括弧内には、ステップという語を省略してステップNo.符号のみを記す。   FIG. 4 shows an outline of the particle measurement. In this embodiment, the three-dimensional PTV algorithm is composed of three steps: particle detection from an image, particle tracking between two times, and three-dimensional reconstruction using a geometric camera model. Then, the personal computer 22 instructs the sequencer 23 to perform two shootings at short time intervals of dt, and in response, the sequencer 23 instructs the laser device 10 and the cameras 20 and 21 to perform the first shooting. The second shooting is instructed after dt has elapsed. Then, the cameras 20 and 21 are sequentially instructed to transfer images. The cameras 20 and 21 store the first shot image and the second shot image in a storage medium, and transfer the first shot image and the second shot image to the personal computer 22 in response to an image transfer instruction. . The personal computer 22 stores them in the internal memory (step S1). In the following, the word “step” is omitted in parentheses, and step no. Write only the sign.

ここで、第1カメラ20の第1回撮影画像(画面)にP11と、第2回撮影画像(画面)にP12と識別符号を与え、第2カメラ21の第1回撮影画像(画面)にP21と、第2回撮影画像(画面)にP22と識別符号を与える。   Here, P11 is given to the first shot image (screen) of the first camera 20, P12 and an identification code are given to the second shot image (screen), and the first shot image (screen) of the second camera 21 is given. P21 and the identification code are given to P2 and the second captured image (screen).

パソコン22は、画像処理(S2)によってコントラストの補正及びノイズ除去を行ってから、粒子像を抽出する(S3)。そして「粒径算出」(PDM)において、画面P11上の1つの粒子像の干渉縞数Nを算出して、(1)式に基づいて粒子直径Dpを算出して、P11画面をディスプレイに表示して該粒子像を4角枠で示して、算出した干渉縞数N,粒子直径Dpおよび(1)式のパラメータ値をディスプレイに表示する。ここでオペレータが表示画面上の「確認」ボタンをクリックすると、パソコン22は、内部メモリに設定した計測データテーブル(1メモリ領域)に、干渉縞数N,粒子直径Dpおよび(1)式のパラメータ値を格納する。オペレータが「確認」ではなく、P11上の特定領域を枠指定し、その中の粒子像内の縞数Npを入力し、又は、表示中の干渉縞数NをNpに変更し、および/又は表示中のパラメータ値を変更して、「再実行ボタン」をクリックするとパソコン22は、入力値と(1)式に基づいて粒子直径Dpを再度算出してパラメータ値とともにディスプレイに表示する。そして「3次元速度の算出」(3DVM)を実行する。   The personal computer 22 corrects contrast and removes noise by image processing (S2), and then extracts a particle image (S3). In “particle size calculation” (PDM), the number N of interference fringes of one particle image on the screen P11 is calculated, the particle diameter Dp is calculated based on the equation (1), and the P11 screen is displayed on the display. Then, the particle image is indicated by a quadrangular frame, and the calculated interference fringe number N, particle diameter Dp, and parameter value of the equation (1) are displayed on the display. Here, when the operator clicks the “Confirm” button on the display screen, the personal computer 22 adds the interference fringe number N, the particle diameter Dp, and the parameters of the equation (1) to the measurement data table (one memory area) set in the internal memory. Stores a value. The operator designates a specific area on P11 instead of “confirmation”, inputs the number of fringes Np in the particle image therein, or changes the number N of interference fringes being displayed to Np, and / or When the parameter value being displayed is changed and the “re-execute button” is clicked, the personal computer 22 recalculates the particle diameter Dp based on the input value and the expression (1) and displays it on the display together with the parameter value. Then, “calculation of three-dimensional velocity” (3DVM) is executed.

「3次元速度の算出」(3DVM)では、まず始めに、デジタルホログラフィによって干渉縞像から輝点対像を再構築し(S31)、再構築した画面に対して粒子マスク相関法を適用し輝点対像を検出する(S32)。これを、撮影画面P11,P12,P21およびP22に対して行う。次に、第1時刻(第1回撮影)の画面P11,P12上で検出した各粒子に対して、第2時刻(第2回撮影)の画面P21,P22上に設定した探査領域から輝点対像間隔などの粒子情報を基に対応粒子を決定する(S33,S34)。   In “3D velocity calculation” (3DVM), first, a bright spot pair image is reconstructed from the interference fringe image by digital holography (S31), and the particle mask correlation method is applied to the reconstructed screen to obtain a bright spot. A point pair image is detected (S32). This is performed for the photographing screens P11, P12, P21 and P22. Next, for each particle detected on the screens P11 and P12 at the first time (first shooting), the bright spot from the exploration area set on the screens P21 and P22 at the second time (second shooting). Corresponding particles are determined based on particle information such as the image interval (S33, S34).

次に、3次元位置算出のパラメータを用いて、第1回撮影の粒子の3次元位置(始点位置)と第2回撮影の粒子の3次元位置(終点位置)を算出する(S35,S36)。これにおいては、カメラ校正データ(校正により設定したパラメータ)から、像平面と物体空間との投影関数を算出し、それによって得られたカメラの視点と画像上の粒子の位置により、画像上の各粒子から物体空間中に1本の視線を決定する。もし、ステレオ画像上で同一粒子ならば、左右の視線が交わるはずであるので、それぞれの視線の間隔が最小となる2視線の各粒子を同一粒子とし、該粒子の三次元位置を算出する。   Next, using the three-dimensional position calculation parameters, the three-dimensional position (start position) of the first-shot particle and the three-dimensional position (end point position) of the second-shot particle are calculated (S35, S36). . In this case, the projection function between the image plane and the object space is calculated from the camera calibration data (parameters set by calibration), and each point on the image is determined based on the camera viewpoint obtained and the position of the particle on the image. A line of sight is determined from the particles in the object space. If the particles are the same on the stereo image, the left and right lines of sight should intersect, so each particle of the two lines of sight where the interval between the lines of sight is minimized is set as the same particle, and the three-dimensional position of the particle is calculated.

次に、算出した3次元位置(始点位置,終点位置)と時間間隔dtを3次元速度算出式に与えて3次元速度を算出してディスプレイに表示し、計測データテーブルに加える(S37)。そして、計測値処置用の入力画面をディスプレイに表示し、登録指示があれば指定された登録先に登録し、印刷指示があると図示を省略したプリンタでプリントアウトする(S4)。   Next, the calculated three-dimensional position (start point position, end point position) and time interval dt are given to the three-dimensional speed calculation formula to calculate the three-dimensional speed and display it on the display, and add it to the measurement data table (S37). Then, an input screen for measurement value treatment is displayed on the display. If there is a registration instruction, it is registered in the designated registration destination, and if there is a print instruction, it is printed out by a printer (not shown) (S4).

図5に、本発明の第2実施例の構成を示す。この第2実施例は、一台のCCDカメラ20で、デジタルホログラフィ画像を得るものである。レーザ装置10が出射するレーザビームがビームスプリッタBS1により、粒子測定光L1と参照光に別けられ、該参照光が更にビームスプリッタBS2により、第1参照光L2と第2参照光L3に別けられる。第1,第2参照光L2,L3が、測定対象領域で互いに直交すると共に、粒子測定光L1のシート状変換光L1sの光軸と交叉する。測定対象領域を通過した第1,第2参照光L2,L3はビームスプリッタBS3で合成され、CCDカメラ20に入射する。CCDカメラ20は、二方向からの光を同時に撮影する。   FIG. 5 shows the configuration of the second embodiment of the present invention. In the second embodiment, a digital holographic image is obtained by a single CCD camera 20. The laser beam emitted from the laser device 10 is separated into the particle measurement light L1 and the reference light by the beam splitter BS1, and the reference light is further separated into the first reference light L2 and the second reference light L3 by the beam splitter BS2. The first and second reference lights L2 and L3 are orthogonal to each other in the measurement target region and intersect the optical axis of the sheet-like converted light L1s of the particle measurement light L1. The first and second reference beams L2 and L3 that have passed through the measurement target region are combined by the beam splitter BS3 and enter the CCD camera 20. The CCD camera 20 captures light from two directions at the same time.

第2実施例では、シート状光L1sの光軸とカメラ20に入射するレーザ光L2,L3の光路とは同一平面(2次元)状の配置である。すなわち、シート状光L1sの光軸と、それに対してθの角度をなしてミラーM4に入射するレーザ光L2と、ミラーM6に入射するレーザ光L3とは、同一平面上にある。   In the second embodiment, the optical axis of the sheet-like light L1s and the optical paths of the laser lights L2 and L3 incident on the camera 20 are arranged in the same plane (two-dimensional). That is, the optical axis of the sheet-like light L1s, the laser light L2 incident on the mirror M4 at an angle θ with respect to the optical axis, and the laser light L3 incident on the mirror M6 are on the same plane.

ビームスプリッタBS2で分けられた第1参照光L2は、シート光L1sの光軸に対してθの角度である。粒子計測光であるシート光L1sは測定対象粒子を照明し、該粒子表面に二つの輝点を生じさせる。それらの輝点の明るさは散乱角度θに依存し、水滴(入射光の波長:532mm,相対屈折率:1.33)の場合、約70°でそれらの輝点の明るさが等しくなる。そこでθ=70°に設定している。ステレオ角φは、90°である。シート状光L1sの光軸とレーザ光L2およびL3の光路とが同一平面上の配置であり、ステレオ角φが90°であるので、測定対象領域を通過する第2参照光L3の光軸は20°となっている。したがってこの第2参照光L3の方向の撮影では、1次屈折光が優勢であり、一点の輝点すなわち1次屈折光の輝点が観察される。   The first reference light L2 divided by the beam splitter BS2 is at an angle θ with respect to the optical axis of the sheet light L1s. The sheet light L1s, which is particle measurement light, illuminates the measurement target particle and generates two bright spots on the particle surface. The brightness of these bright spots depends on the scattering angle θ. In the case of a water droplet (incident light wavelength: 532 mm, relative refractive index: 1.33), the brightness of these bright spots is equal at about 70 °. Therefore, θ = 70 ° is set. The stereo angle φ is 90 °. Since the optical axis of the sheet-like light L1s and the optical paths of the laser beams L2 and L3 are arranged on the same plane and the stereo angle φ is 90 °, the optical axis of the second reference light L3 passing through the measurement target region is It is 20 °. Therefore, in photographing in the direction of the second reference light L3, the primary refracted light is dominant, and one bright spot, that is, a bright spot of the primary refracted light is observed.

第1,第2参照光L2,L3は、インラインホログラフィ光学系のオブジェクト光に相当する。それらの光は、粒子にシート状光が当たることによって生じた輝点または輝点対および粒子に平行光として入射し、ホログラムを生じさせる。L2は輝点対および粒子からのホログラム、L3は輝点および液滴のホログラムを発生させる効果をもつ。一般的なデジタルホログラフィでは、被写体を拡大または縮小させるためのレンズを介さずにホログラムが直接記録されるため、観察領域は使用したCCD素子のサイズによって決定される。第2実施例では、CCDカメラ20に、被写体を拡大または縮小させるためのレンズを装備し、局所的なホログラムを観察する機構を備えているので、観察領域をそのレンズで容易に変えることができる。   The first and second reference lights L2 and L3 correspond to object light of the inline holographic optical system. Those lights are incident as parallel light on the bright spots or bright spot pairs and the particles generated by the sheet-like light hitting the particles, thereby generating a hologram. L2 has the effect of generating bright spot pairs and holograms from particles, and L3 has the effect of generating bright spot and droplet holograms. In general digital holography, a hologram is directly recorded without going through a lens for enlarging or reducing an object, so that the observation area is determined by the size of the CCD element used. In the second embodiment, the CCD camera 20 is equipped with a lens for enlarging or reducing the subject and a mechanism for observing a local hologram, so that the observation area can be easily changed with the lens. .

また、第2実施例では、二方向に生じるホログラムを一台のカメラ20によって記録するので、図6に示すように、二方向のホログラムが同一画面に撮影される。二方向に生じるホログラムの分離を容易にするために、第1,第2参照光L2,L3の、計測対象領域からカメラ20に至る光路距離に差をつけている。該距離差が像の再生距離に反映し、得られたホログラムに、図6に示すように、サイズ差を生ずるので、各方向の粒子像の分離が容易である。   In the second embodiment, since the holograms generated in two directions are recorded by one camera 20, the two-direction holograms are photographed on the same screen as shown in FIG. In order to facilitate the separation of holograms generated in two directions, the optical path distances of the first and second reference beams L2 and L3 from the measurement target region to the camera 20 are differentiated. The distance difference reflects the image reproduction distance, and the resulting hologram has a size difference as shown in FIG. 6, so that the particle images in each direction can be easily separated.

輝点対から生じる干渉縞像の縞次数が粒径と比例する。本手法により得られるホログラムでは、拡大または縮小するためのレンズを用いているため光学的な性質から輝点対から生じる干渉縞が同時に撮影される。ゆえに既存の方法と同様に縞像の解析から粒径を得る。もしくは、ホログラムから得られた輝点対の再生像を適当な画像処理で抽出し、その像をさらにデフォカス面に再生することで干渉縞像が得られる。したがって、上記の方法より径を評価することも可能である。   The fringe order of the interference fringe image generated from the bright spot pair is proportional to the particle size. In the hologram obtained by this method, since the lens for enlarging or reducing is used, the interference fringes generated from the bright spot pair are photographed simultaneously due to optical properties. Therefore, the particle size is obtained from the analysis of the fringe image in the same manner as the existing method. Alternatively, a reproduction image of the bright spot pair obtained from the hologram is extracted by appropriate image processing, and the image is further reproduced on the defocused surface to obtain an interference fringe image. Therefore, the diameter can be evaluated by the above method.

3次元速度計測は3D−PTVに基づく処理を行い、物体の3次元位置を特定する。そこで物体と像面との幾何学的な関係を導く必要がある。一般的には校正板と呼ばれる間隔や位置が知られたドットまたはグリッドの描かれた板を測定領域に配置し、その校正板の画像から幾何学的な関係を導く方法が採られる。第2実施例の粒子計測装置でも同様な手順でカメラ校正を行うが、得られる校正板の画像は校正板のホログラムである。そこで第2実施例の粒子計測装置でも、同様なカメラ校正を実現させるため、オブジェクト光を透過させるガラス製の校正板を利用する。グリッドを描かれたガラス板をL2およびL3に対して45゜に傾けた位置に配置し、そのガラス板を精密ステージにより奥行き方向に移動させ、適当な断面でホログラムを記録する。記録されたホログラムから像再生を行い、得られた校正板画像からカメラ校正を行う。   The three-dimensional velocity measurement performs processing based on 3D-PTV and specifies the three-dimensional position of the object. Therefore, it is necessary to derive a geometric relationship between the object and the image plane. Generally, a method called a calibration plate is used in which a plate on which dots or grids with known intervals and positions are drawn is arranged in a measurement region, and a geometrical relationship is derived from an image of the calibration plate. In the particle measuring apparatus of the second embodiment, the camera calibration is performed in the same procedure, but the obtained image of the calibration plate is a hologram of the calibration plate. Therefore, in the particle measuring apparatus of the second embodiment, a glass calibration plate that transmits object light is used in order to realize similar camera calibration. The glass plate on which the grid is drawn is arranged at a position inclined by 45 ° with respect to L2 and L3, and the glass plate is moved in the depth direction by a precision stage, and a hologram is recorded with an appropriate cross section. Image reproduction is performed from the recorded hologram, and camera calibration is performed from the obtained calibration plate image.

図7に、第2実施例による粒子計測の概要を示す。これは、CCDカメラ20のCCD素子の撮像面に対して焦点をずらして、第1参照光L2経路の粒子撮影像に干渉縞20sf(図2)を表わすものである。「計測」の実行が入力されるとパソコン22は、短時間dt間隔の2回の撮影を、シーケンサ23に指示し、これに応答してシーケンサ23が、第1の撮影をレーザ装置10とカメラ20に指示し、そしてdt経過後に第2回の撮影を指示する。そしてカメラ20に、画像転送を指示する。カメラ20は、第1回撮影画像と第2回撮影画像を記憶媒体に記憶しており、画像転送指示に応答して第1回撮影画像と第2回撮影画像をパソコン22に転送する。パソコン22はそれらを内部メモリに格納する(ステップS1a)。   FIG. 7 shows an outline of particle measurement according to the second embodiment. This represents the interference fringes 20sf (FIG. 2) in the particle photograph image of the first reference light L2 path by shifting the focus with respect to the imaging surface of the CCD element of the CCD camera 20. When execution of “measurement” is input, the personal computer 22 instructs the sequencer 23 to perform two imaging at short time dt intervals, and in response to this, the sequencer 23 performs the first imaging with the laser device 10 and the camera. 20 is instructed, and after the elapse of dt, the second shooting is instructed. Then, the camera 20 is instructed to transfer an image. The camera 20 stores the first shot image and the second shot image in a storage medium, and transfers the first shot image and the second shot image to the personal computer 22 in response to an image transfer instruction. The personal computer 22 stores them in the internal memory (step S1a).

ここで、カメラ20の第1回撮影画像(画面)にP1と、第2回撮影画像(画面)にP2と識別符号を与える。パソコン22は、画像処理(S2)によってコントラストの補正及びノイズ除去を行ってから、粒子像を抽出する(S3)。そして、画面P1より第1参照光L2経路の粒子像と、第2参照光L3経路の粒子像とを分離してそれぞれを同一サイズに修正して別画面P11,P12として、同様に、画面P2より第1参照光L2経路の粒子像と、第2参照光L3経路の粒子像とを分離してそれぞれを同一サイズに修正して別画面P21,P22とする(S1b)。   Here, P1 is assigned to the first captured image (screen) of the camera 20, and P2 and identification code are assigned to the second captured image (screen). The personal computer 22 corrects contrast and removes noise by image processing (S2), and then extracts a particle image (S3). Then, the particle image of the first reference light L2 path and the particle image of the second reference light L3 path are separated from the screen P1 and corrected to the same size as the separate screens P11 and P12. Similarly, the screen P2 Accordingly, the particle image of the first reference light L2 path and the particle image of the second reference light L3 path are separated and corrected to the same size to obtain different screens P21 and P22 (S1b).

そして「粒径算出」(PDM)において、画面P11上の1つの粒子像の干渉縞数Nを算出して、(1)式に基づいて粒子直径Dpを算出して、P11画面をディスプレイに表示して該粒子像を4角枠で示して、算出した干渉縞数N,粒子直径Dpおよび(1)式のパラメータ値をディスプレイに表示する。ここでオペレータが表示画面上の「確認」ボタンをクリックすると、パソコン22は、内部メモリに設定した計測データテーブル(1メモリ領域)に、干渉縞数N,粒子直径Dpおよび(1)式のパラメータ値を格納する。オペレータが「確認」ではなく、P11上の特定領域を枠指定し、その中の粒子像内の縞数Npを入力し、又は、表示中の干渉縞数NをNpに変更し、および/又は表示中のパラメータ値を変更して、「再実行ボタン」をクリックするとパソコン22は、入力値と(1)式に基づいて粒子直径Dpを再度算出してパラメータ値とともにディスプレイに表示する。そして「3次元速度の算出」(3DVM)を実行する。   In “particle size calculation” (PDM), the number N of interference fringes of one particle image on the screen P11 is calculated, the particle diameter Dp is calculated based on the equation (1), and the P11 screen is displayed on the display. Then, the particle image is indicated by a quadrangular frame, and the calculated interference fringe number N, particle diameter Dp, and parameter value of the equation (1) are displayed on the display. Here, when the operator clicks the “Confirm” button on the display screen, the personal computer 22 adds the interference fringe number N, the particle diameter Dp, and the parameters of the equation (1) to the measurement data table (one memory area) set in the internal memory. Stores a value. The operator designates a specific area on P11 instead of “confirmation”, inputs the number of fringes Np in the particle image therein, or changes the number N of interference fringes being displayed to Np, and / or When the parameter value being displayed is changed and the “re-execute button” is clicked, the personal computer 22 recalculates the particle diameter Dp based on the input value and the expression (1) and displays it on the display together with the parameter value. Then, “calculation of three-dimensional velocity” (3DVM) is executed.

「3次元速度の算出」(3DVM)では、まず始めに、デジタルホログラフィによってP11,P12画面上の干渉縞像から1次屈折光の輝点像を再構築し(S31a)、再構築した画面に対して粒子マスク相関法を適用し1次屈折光の輝点像を検出する(S32a)。撮影画面P21およびP22には、L3の受光角が70°ではなく、20度であるので、もともと1次屈折光の輝点像がある。次に、第1時刻(第1回撮影)の画面P11,P12上で検出した各粒子に対して、第2時刻(第2回撮影)の画面P21,P22上に設定した探査領域から輝点像の粒子情報を基に対応粒子を決定する(S33,S34)。以後の処理は、図4に示した第1実施例の処理と同様である。   In “3D velocity calculation” (3DVM), first, a bright spot image of the first-order refracted light is reconstructed from the interference fringe images on the P11 and P12 screens by digital holography (S31a), and the reconstructed screen is displayed. On the other hand, the bright spot image of the first-order refracted light is detected by applying the particle mask correlation method (S32a). In the photographing screens P21 and P22, since the light receiving angle of L3 is not 70 ° but 20 degrees, there is originally a bright spot image of the first-order refracted light. Next, for each particle detected on the screens P11 and P12 at the first time (first shooting), the bright spot from the exploration area set on the screens P21 and P22 at the second time (second shooting). Corresponding particles are determined based on the particle information of the image (S33, S34). The subsequent processing is the same as that of the first embodiment shown in FIG.

図8に、本発明の第3実施例の構成を示す。この第3実施例は、第2実施例のインラインの第1,第2参照光L2,L3を省略して、オフアクシスの参照光L2を、ビームスプリッタM7で、2方向の粒子計測光L2mおよびL3mに合成してカメラ20に入射するようにしたものである。第2実施例と同様に、粒子計測光L2mは、シート状光L1sの光軸に対してθ=70°であるので、干渉縞情報(20sf:図2)を含む。第3実施例でも、第2実施例と同様に、シート状光L1sの光軸と、それに対してθの角度をなしてミラーM4に入射するレーザ光L2と、ミラーM6に入射するレーザ光L3とは、同一平面上にある。ステレオ角φは、90°である。粒子計測光L3mは、シート状光L1sの光軸に対して20°の角度であるので、粒子の1次屈折光が優勢であり、干渉縞情報は少ない。ステレオ角φは、90°である。   FIG. 8 shows the configuration of the third embodiment of the present invention. In the third embodiment, the inline first and second reference beams L2 and L3 of the second embodiment are omitted, and the off-axis reference beam L2 is converted into the two-direction particle measurement beam L2m and the beam splitter M7. This is combined with L3m so as to enter the camera 20. Similar to the second embodiment, the particle measurement light L2m includes interference fringe information (20sf: FIG. 2) because θ = 70 ° with respect to the optical axis of the sheet-like light L1s. In the third embodiment, similarly to the second embodiment, the optical axis of the sheet-like light L1s, the laser light L2 incident on the mirror M4 at an angle θ with respect to the optical axis, and the laser light L3 incident on the mirror M6. Is on the same plane. The stereo angle φ is 90 °. Since the particle measurement light L3m is at an angle of 20 ° with respect to the optical axis of the sheet-like light L1s, the first-order refracted light of the particles is dominant and there is little interference fringe information. The stereo angle φ is 90 °.

第3実施例による粒子計測の内容は、図7に示す第2実施例のものと同様である。この第3実施例では、参照光L2が測定対象領域を通過しないので粒子情報(カメラ20に対してはノイズ)を含まない。これにより、第1,第2実施例よりもノイズが少ない粒子画像が得られ、粒子摘出を容易に行うことができる。   The contents of particle measurement according to the third embodiment are the same as those of the second embodiment shown in FIG. In the third embodiment, since the reference light L2 does not pass through the measurement target region, particle information (noise for the camera 20) is not included. Thereby, a particle image with less noise than the first and second embodiments can be obtained, and particle extraction can be easily performed.

本発明の第1実施例の装置構成を示すブロツク図である。It is a block diagram which shows the apparatus structure of 1st Example of this invention. 図1に示すノズルNZ直下の計測対象領域の粒子Dropletとカメラ20の撮像面との間のレーザ光路を模式的に示す縦断面図である。FIG. 2 is a longitudinal sectional view schematically showing a laser light path between a particle Droplet in a measurement target region immediately below a nozzle NZ shown in FIG. 1 and an imaging surface of a camera 20. 水滴粒子を撮影する散乱角θと水滴粒子の0次反射光輝度および1次屈折光輝度との関係を示すグラフである。It is a graph which shows the relationship between scattering angle | corner (theta) which image | photographs a water droplet particle | grain, 0th-order reflected light brightness | luminance and 1st-order refraction light brightness | luminance of a water droplet particle | grain. 図1に示すパソコン22の、それにインストールされた粒子計測アプリケーションにより実行する粒子計測の処理概要を示すフローチャートである。It is a flowchart which shows the process outline | summary of the particle | grain measurement performed with the particle | grain measurement application installed in the personal computer 22 shown in FIG. 本発明の第2実施例の装置構成を示すブロツク図である。It is a block diagram which shows the apparatus structure of 2nd Example of this invention. 図5に示すCCDカメラ20で撮影した粒子画像の一例を示す写真の複製である。6 is a reproduction of a photograph showing an example of a particle image taken by the CCD camera 20 shown in FIG. 図5に示すパソコン22の、それにインストールされた粒子計測アプリケーションにより実行する粒子計測の処理概要を示すフローチャートである。It is a flowchart which shows the process outline | summary of the particle | grain measurement performed with the particle | grain measurement application installed in the personal computer 22 shown in FIG. 本発明の第3実施例の装置構成を示すブロツク図である。It is a block diagram which shows the apparatus structure of 3rd Example of this invention.

符号の説明Explanation of symbols

10:レーザ装置
20,21:CCDカメラ
22:パソコン
23:シーケンサ
B1〜B4:ビームスプリッタ
M1〜M7:ミラー
SL:シート状光への変換レンズ
NZ:水滴粒子噴霧ノズル
10: laser device 20, 21: CCD camera 22: personal computer 23: sequencer B1 to B4: beam splitter M1 to M7: mirror SL: conversion lens NZ: water droplet particle spray nozzle

Claims (11)

レーザビームを出射するレーザ光源;
前記レーザビームを、第1ビーム,第2ビームおよび第3ビームに分岐するビームスプリッタ;
第1ビームを計測対象領域に照射する第1光学手段;
計測対象領域を照射する第1ビームに対して、第1ビームが当たった粒子の0次反射光と1次屈折光の光強度が同等となる散乱角θとなる受光角で計測対象領域を撮影する第1電子カメラ;
第2ビームを第1参照光として第1電子カメラに投射する第2光学手段;
第1電子カメラの光軸に対してステレオ角φをなし、かつ第3ビームが第2参照光として投射される第2電子カメラ;
を備える粒子計測装置。
A laser light source for emitting a laser beam;
A beam splitter for branching the laser beam into a first beam, a second beam, and a third beam;
First optical means for irradiating the measurement target region with the first beam;
The measurement target area is photographed at a light receiving angle corresponding to a scattering angle θ in which the light intensity of the 0th-order reflected light and the first-order refracted light of the particle hit by the first beam is equivalent to the first beam that irradiates the measurement target area. A first electronic camera;
Second optical means for projecting the second beam onto the first electronic camera as first reference light;
A second electronic camera having a stereo angle φ with respect to the optical axis of the first electronic camera and a third beam projected as second reference light;
A particle measuring apparatus comprising:
第2光学手段は、第2ビームを計測対象領域を通して第1電子カメラに投射し;第3ビームも計測対象領域を通して第2電子カメラに投射される;請求項1に記載の粒子計測装置。   2. The particle measuring apparatus according to claim 1, wherein the second optical means projects the second beam through the measurement target region to the first electronic camera; the third beam is also projected through the measurement target region to the second electronic camera; レーザビームを出射するレーザ光源;
前記レーザビームを、第1ビーム,第2ビームおよび第3ビームに分岐するビームスプリッタ;
第1ビームを計測対象領域に照射する第1光学手段;
計測対象領域を照射する第1ビームに対して、第1ビームが当たった粒子の0次反射光と1次屈折光の光強度が同等となる散乱角θとなる受光角で計測対象領域を撮影する電子カメラ;
第2ビームを、第1参照光として前記電子カメラに投射する第2光学手段;
前記電子カメラで撮影される前記散乱角θのレーザ光に対してステレオ角φをなす反射レーザ光を前記電子カメラに投射する第3光学手段;および、
第3ビームを、第2参照光として前記電子カメラに投射する第4光学手段;
を備える粒子計測装置。
A laser light source for emitting a laser beam;
A beam splitter for branching the laser beam into a first beam, a second beam, and a third beam;
First optical means for irradiating the measurement target region with the first beam;
The measurement target area is photographed at a light receiving angle corresponding to a scattering angle θ in which the light intensity of the 0th-order reflected light and the first-order refracted light of the particle hit by the first beam is equivalent to the first beam that irradiates the measurement target area. Electronic camera to do;
Second optical means for projecting the second beam onto the electronic camera as first reference light;
Third optical means for projecting, onto the electronic camera, reflected laser light having a stereo angle φ with respect to the laser light having the scattering angle θ photographed by the electronic camera;
Fourth optical means for projecting the third beam to the electronic camera as second reference light;
A particle measuring apparatus comprising:
第2光学手段は、第2ビームを計測対象領域を通して前記電子カメラに投射し;第4光学手段も、第3ビームを計測対象領域を通して前記電子カメラに投射する;請求項3に記載の粒子計測装置。   4. The particle measurement according to claim 3, wherein the second optical unit projects the second beam to the electronic camera through the measurement target region; and the fourth optical unit also projects the third beam to the electronic camera through the measurement target region. apparatus. レーザビームを出射するレーザ光源;
前記レーザビームを、第1ビームおよび第2ビームに分岐するビームスプリッタ;
第1ビームを計測対象領域に照射する第1光学手段;
計測対象領域を照射する第1ビームに対して、第1ビームが当たった粒子の0次反射光と1次屈折光の光強度が同等となる散乱角θとなる受光角で計測対象領域を撮影する電子カメラ;
第2ビームを、計測対象領域を外れた光路を経る参照光として前記電子カメラに投射する第2光学手段;および、
前記電子カメラで撮影される前記散乱角θのレーザ光に対してステレオ角φをなす反射レーザ光を前記電子カメラに投射する第3光学手段;
を備える粒子計測装置。
A laser light source for emitting a laser beam;
A beam splitter for splitting the laser beam into a first beam and a second beam;
First optical means for irradiating the measurement target region with the first beam;
The measurement target area is photographed at a light receiving angle corresponding to a scattering angle θ in which the light intensity of the 0th-order reflected light and the first-order refracted light of the particle hit by the first beam is equivalent to the first beam that irradiates the measurement target area. Electronic camera to do;
Second optical means for projecting the second beam onto the electronic camera as reference light that passes through an optical path out of the measurement target region; and
Third optical means for projecting a reflected laser beam having a stereo angle φ with respect to the laser beam having the scattering angle θ photographed by the electronic camera to the electronic camera;
A particle measuring apparatus comprising:
前記電子カメラに投射される、ステレオ角φをなす2方向のレーザ光の、計測対象領域から前記電子カメラに至る像再生距離は、同一画面上の、2方向のレーザ光による同一粒子の画像のサイズを異にするために、異なった値である、請求項3,4又は5に記載の粒子計測装置。   The image reproduction distance from the measurement target region to the electronic camera of the two-direction laser light having a stereo angle φ projected on the electronic camera is the same particle image by the two-direction laser light on the same screen. 6. The particle measuring device according to claim 3, 4 or 5, which has different values in order to make the sizes different. 前記電子カメラの結像面は、粒子像内に干渉縞を生ずる焦点外れ位置である;請求項1乃至6のいずれか1つに記載の粒子計測装置。   The particle measuring apparatus according to claim 1, wherein the imaging plane of the electronic camera is an out-of-focus position where an interference fringe is generated in the particle image. 前記電子カメラが撮影した画面上の、粒子像内の干渉縞の数に基づいて粒子径を算出する、請求項7に記載の粒子計測装置を用いる粒子計測方法。   The particle measuring method using the particle measuring apparatus according to claim 7, wherein the particle diameter is calculated based on the number of interference fringes in a particle image on a screen captured by the electronic camera. 前記電子カメラで短時間dt間隔で2回粒子像を撮影して、第1回の撮影像に基づいて粒子の3次元位置を算出し、第2回の撮影像に基づいて粒子の3次元位置を算出し、両算出値に基づいて粒子の3次元速度を算出する、請求項1乃至7に記載の粒子計測装置を用いる粒子計測方法。   Taking a particle image twice at a short time interval dt with the electronic camera, calculating the three-dimensional position of the particle based on the first photographed image, and calculating the three-dimensional position of the particle based on the second photographed image The particle measurement method using the particle measurement apparatus according to claim 1, wherein the three-dimensional velocity of the particles is calculated based on both calculated values. 前記電子カメラで短時間dt間隔で2回粒子像を撮影して、第1回又は第2回の撮影画面上の、粒子像内の干渉縞の数に基づいて粒子径を算出し、第1回の撮影像に基づいて粒子の3次元位置を算出し、第2回の撮影像に基づいて粒子の3次元位置を算出し、両算出値に基づいて粒子の3次元速度を算出する、請求項7に記載の粒子計測装置を用いる粒子計測方法。   The particle size is calculated based on the number of interference fringes in the particle image on the first or second imaging screen by taking a particle image twice with a short time dt interval with the electronic camera, and the first Calculating the three-dimensional position of the particle based on the captured image of the second time, calculating the three-dimensional position of the particle based on the second captured image, and calculating the three-dimensional velocity of the particle based on both calculated values. Item 8. A particle measurement method using the particle measurement apparatus according to Item 7. 前記計測対象領域の位置に校正板を置いて撮影し、撮影画面上の校正板の画像から、3次元位置算出のパラメータを校正し、校正したパラメータを前記3次元位置の算出に用いる、請求項9又は10に記載の粒子計測方法。
6. A photograph is taken by placing a calibration plate at a position of the measurement target region, a parameter for calculating a three-dimensional position is calibrated from an image of the calibration plate on a photographing screen, and the calibrated parameter is used for calculation of the three-dimensional position. The particle measurement method according to 9 or 10.
JP2006125149A 2006-04-28 2006-04-28 Particle measuring apparatus and method Active JP4774517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125149A JP4774517B2 (en) 2006-04-28 2006-04-28 Particle measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125149A JP4774517B2 (en) 2006-04-28 2006-04-28 Particle measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2007298327A true JP2007298327A (en) 2007-11-15
JP4774517B2 JP4774517B2 (en) 2011-09-14

Family

ID=38767943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125149A Active JP4774517B2 (en) 2006-04-28 2006-04-28 Particle measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4774517B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509075A (en) * 2007-12-21 2011-03-24 プレジデント アンド フェロウズ オブ ハーバード カレッジ Systems and methods for nucleic acid sequencing
US9017948B2 (en) 2007-03-07 2015-04-28 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9056289B2 (en) 2009-10-27 2015-06-16 President And Fellows Of Harvard College Droplet creation techniques
JP2015135463A (en) * 2013-12-19 2015-07-27 オリンパス株式会社 Microscope apparatus and microscope system
JP2017523441A (en) * 2014-08-21 2017-08-17 ベルツ,マルティン Interferometer
CN108931185A (en) * 2018-04-24 2018-12-04 歌尔股份有限公司 A kind of detection device and detection method of ray machine mould group
JP2019120552A (en) * 2017-12-28 2019-07-22 東芝メモリ株式会社 Measurement device and measurement method
US10457977B2 (en) 2008-12-19 2019-10-29 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
US10471016B2 (en) 2013-11-08 2019-11-12 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
US11123297B2 (en) 2015-10-13 2021-09-21 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
US11401550B2 (en) 2008-09-19 2022-08-02 President And Fellows Of Harvard College Creation of libraries of droplets and related species

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469533B2 (en) * 2010-05-22 2014-04-16 国立大学法人横浜国立大学 Microfluidic field imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112946A (en) * 1984-11-07 1986-05-30 Mitsubishi Heavy Ind Ltd Apparatus for forming hologram
JP2000162119A (en) * 1998-11-25 2000-06-16 Denso Corp Spray measuring device
JP2003307484A (en) * 2002-04-16 2003-10-31 Koichi Nishino Particle feature photographing/measuring apparatus
JP2004361291A (en) * 2003-06-05 2004-12-24 Masaaki Kawahashi Droplet state measuring device and state measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61112946A (en) * 1984-11-07 1986-05-30 Mitsubishi Heavy Ind Ltd Apparatus for forming hologram
JP2000162119A (en) * 1998-11-25 2000-06-16 Denso Corp Spray measuring device
JP2003307484A (en) * 2002-04-16 2003-10-31 Koichi Nishino Particle feature photographing/measuring apparatus
JP2004361291A (en) * 2003-06-05 2004-12-24 Masaaki Kawahashi Droplet state measuring device and state measuring method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683524B2 (en) 2007-03-07 2020-06-16 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10738337B2 (en) 2007-03-07 2020-08-11 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10221437B2 (en) 2007-03-07 2019-03-05 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10941430B2 (en) 2007-03-07 2021-03-09 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9017948B2 (en) 2007-03-07 2015-04-28 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10508294B2 (en) 2007-03-07 2019-12-17 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9068210B2 (en) 2007-03-07 2015-06-30 President And Fellows Of Harvard College Assay and other reactions involving droplets
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9816121B2 (en) 2007-03-07 2017-11-14 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9850526B2 (en) 2007-03-07 2017-12-26 President And Fellows Of Harvard College Assays and other reactions involving droplets
JP2011509075A (en) * 2007-12-21 2011-03-24 プレジデント アンド フェロウズ オブ ハーバード カレッジ Systems and methods for nucleic acid sequencing
US10633701B2 (en) 2007-12-21 2020-04-28 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
US9797010B2 (en) 2007-12-21 2017-10-24 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
US11401550B2 (en) 2008-09-19 2022-08-02 President And Fellows Of Harvard College Creation of libraries of droplets and related species
US10457977B2 (en) 2008-12-19 2019-10-29 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
US9839911B2 (en) 2009-10-27 2017-12-12 President And Fellows Of Harvard College Droplet creation techniques
US11000849B2 (en) 2009-10-27 2021-05-11 President And Fellows Of Harvard College Droplet creation techniques
US9056289B2 (en) 2009-10-27 2015-06-16 President And Fellows Of Harvard College Droplet creation techniques
US10471016B2 (en) 2013-11-08 2019-11-12 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
JP2015135463A (en) * 2013-12-19 2015-07-27 オリンパス株式会社 Microscope apparatus and microscope system
JP2017523441A (en) * 2014-08-21 2017-08-17 ベルツ,マルティン Interferometer
US11123297B2 (en) 2015-10-13 2021-09-21 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
JP2019120552A (en) * 2017-12-28 2019-07-22 東芝メモリ株式会社 Measurement device and measurement method
CN108931185B (en) * 2018-04-24 2020-12-08 歌尔股份有限公司 Detection device and detection method of optical-mechanical module
CN108931185A (en) * 2018-04-24 2018-12-04 歌尔股份有限公司 A kind of detection device and detection method of ray machine mould group

Also Published As

Publication number Publication date
JP4774517B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4774517B2 (en) Particle measuring apparatus and method
JP5469483B2 (en) Fluid analysis apparatus and fluid analysis method
CN103649674B (en) Measuring equipment and messaging device
Cavagna et al. The STARFLAG handbook on collective animal behaviour: Part I, empirical methods
US7826067B2 (en) Method and apparatus for quantitative 3-D imaging
KR20100019455A (en) Single-lens, single-aperture, single-sensor 3-d imaging device
JP4568800B2 (en) Droplet state measuring apparatus and camera calibration method in the apparatus
JP2005140528A (en) Fluid measurement device
TWI597042B (en) Endoscopic with distance measuring function and distance measuring method
JP6176054B2 (en) Droplet flow observation method and droplet flow observation apparatus
US11430144B2 (en) Device and process for the contemporary capture of standard images and plenoptic images via correlation plenoptic imaging
JP3398657B2 (en) Welding sensor
JP2005147715A (en) Light wave interference measuring method for winding surface, and interferometer device for winding surface measurement
TWI500963B (en) An image capturing device and method
JP2007071584A (en) Method and device measuring displacement distribution using digital holography
JP2015108582A (en) Three-dimensional measurement method and device
JP7157409B2 (en) 3D image generation device, 3D image generation method, and 3D image generation program
JP2009134357A (en) Image processor, imaging device, image processing program, and image processing method
JP2008046110A (en) Method and apparatus for measuring shape of droplet
KR20210050365A (en) Apparatus and method for registering images
Tehrani et al. A practical method for fully automatic intrinsic camera calibration using directionally encoded light
CN109936692B (en) Through scattering medium image acquisition system and method based on epipolar constraint
Tang et al. Multi-image-distance imaging system for extending depth-of-field
JP2005331413A (en) Distance image acquiring system
JP2009300100A (en) Shape measuring apparatus and its shape measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110530

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150