JP2007298325A - Electrode chip and manufacturing method therefor - Google Patents

Electrode chip and manufacturing method therefor Download PDF

Info

Publication number
JP2007298325A
JP2007298325A JP2006125106A JP2006125106A JP2007298325A JP 2007298325 A JP2007298325 A JP 2007298325A JP 2006125106 A JP2006125106 A JP 2006125106A JP 2006125106 A JP2006125106 A JP 2006125106A JP 2007298325 A JP2007298325 A JP 2007298325A
Authority
JP
Japan
Prior art keywords
electrode
insulating substrate
holding layer
liquid
liquid holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125106A
Other languages
Japanese (ja)
Inventor
Nobuhiko Ozaki
亘彦 尾崎
Tetsuo Yukimasa
哲男 行政
Hirokazu Sugihara
宏和 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006125106A priority Critical patent/JP2007298325A/en
Publication of JP2007298325A publication Critical patent/JP2007298325A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately prescribe the area of the electrode body part of a working electrode or the like, without providing an insulating layer in an electrode chip utilizable as a biosensor or the like. <P>SOLUTION: The acting electrode 14 and a counter electrode 15 are formed on an insulating substrate 12. The predetermined region 22 of the insulating substrate 12 is provided with a liquid-holding layer 21 which can hold a sample solution and is brought into direct contact with the insulating substrate 12, the working electrode 14 and the counter electrode 15 that cover them. The parts, brought into contact with the liquid holding layer 21 of the acting electrode 14 and the counter electrode 15, function as electrode body parts 14a and 15a that react electrochemically with the sample solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バイオセンサを含む電気化学センサとして利用可能な電極チップ及びその製造方法に関する。   The present invention relates to an electrode chip that can be used as an electrochemical sensor including a biosensor and a method for manufacturing the electrode chip.

絶縁基体上に電極を備えたチップ(電極チップ)からなり、電極界面で被測定物質により起こる電流や電位の変化を検知する電極式の電気化学センサが種々の分野で応用及び実用化されている。特に近年、小型化及びマルチ化が容易であるという理由から、電極式の電気化学センサを生体中に存在するタンパク質、酵素、低分子複合体等の物質を測定するバイオセンサに適用することに対する需要が高まっている。   Electrode type electrochemical sensors consisting of a chip (electrode chip) provided with an electrode on an insulating substrate and detecting changes in current and potential caused by a substance to be measured at the electrode interface have been applied and put into practical use in various fields. . In particular, in recent years, the demand for applying electrode-type electrochemical sensors to biosensors that measure substances such as proteins, enzymes, and low-molecular complexes existing in living organisms because they are easy to miniaturize and multi-size. Is growing.

この種の電気化学センサは、3極式と2極式に大別される。3極式の電気化学センサは、絶縁基体上に作用電極、対極、及び参照電極を備えている。これら作用電極、対極、及び参照電極は被測定液と電気化学的に相互作用する部分(電極本体部)と、外部回路との電気的導通のための部分(接点端子部)とを除いて絶縁層で覆われている。電位測定の場合には、作用電極と参照電極との電位差が測定される。また、電流測定の場合には、作用電極と参照電極との電位差を外部回路によって一定に維持しつつ、作用電極と対極との間に流れる電流が測定される。一方、2極式の電気化学センサは対極と作用電極のみを備え、対極と作用電極間に電圧を印加し、その際に流れる電流を検出することにより測定液体中に含まれる特定の成分(例えば、グルコース)の濃度を検出する。   This type of electrochemical sensor is roughly divided into a tripolar type and a bipolar type. The tripolar electrochemical sensor includes a working electrode, a counter electrode, and a reference electrode on an insulating substrate. These working electrode, counter electrode, and reference electrode are insulated except for the part that interacts electrochemically with the liquid to be measured (electrode body part) and the part for electrical continuity with the external circuit (contact terminal part). Covered with layers. In the case of potential measurement, the potential difference between the working electrode and the reference electrode is measured. In the case of current measurement, the current flowing between the working electrode and the counter electrode is measured while the potential difference between the working electrode and the reference electrode is kept constant by an external circuit. On the other hand, a bipolar electrochemical sensor includes only a counter electrode and a working electrode, applies a voltage between the counter electrode and the working electrode, and detects a current flowing at that time to detect a specific component (for example, , Glucose) concentration.

例えば、電気化学式のバイオセンサを構成する3極式の電極チップが特許文献1に開示されている。図10は、特許文献1に開示された電極チップを示す。絶縁基体1上に導電性カーボンペーストをスクリーン印刷して対極2、作用電極3、及び参照電極4が設けられている。絶縁基体1及び電極2〜4上には、接点端子部と電極本体部2’,3’,4’を残して絶縁層5が設けられている。換言すれば、絶縁層5に開口部5aが設けられており、この開口部5aによって対極2、作用電極3、及び参照電極4の電極本体部2’〜4’が規定されている。また、電極本体部2’〜4の表面には親水性高分子及び酸化還元酵素の層であるCMC(カルボキシメチルセルロース)−GOD(グルコースオキシターゼ)層が設けられている。特許文献2にも、電極を覆う絶縁層に形成された開口部によって電極本体部を規定する構造の電極チップが開示されている。   For example, Patent Document 1 discloses a tripolar electrode chip constituting an electrochemical biosensor. FIG. 10 shows the electrode tip disclosed in Patent Document 1. A counter electrode 2, a working electrode 3, and a reference electrode 4 are provided on the insulating substrate 1 by screen printing a conductive carbon paste. An insulating layer 5 is provided on the insulating substrate 1 and the electrodes 2 to 4, leaving the contact terminal portions and the electrode main body portions 2 ′, 3 ′ and 4 ′. In other words, the opening 5 a is provided in the insulating layer 5, and the electrode body 2 ′ to 4 ′ of the counter electrode 2, the working electrode 3, and the reference electrode 4 are defined by the opening 5 a. In addition, a CMC (carboxymethylcellulose) -GOD (glucose oxidase) layer, which is a layer of a hydrophilic polymer and an oxidoreductase, is provided on the surfaces of the electrode body portions 2 ′ to 4 ′. Patent Document 2 also discloses an electrode chip having a structure in which an electrode main body is defined by an opening formed in an insulating layer covering the electrode.

しかしながら、電極本体部と接点端子部とを除いた電極全体を覆う絶縁層を設けると、電極チップの構造が複雑化し、製造工程も煩雑となる。また、特に電極本体部の寸法を微細化する場合、絶縁層の開口部の寸法も微細化する必要があり、絶縁層の開口部と個々の電極の位置合わせも高い精度が求められるので、絶縁層を高精度で形成することが要求される。さらに、絶縁層の形成を加熱印刷のような加熱を含む工程で行う場合、熱変形特性に関して絶縁基体の材料の選択に制約が生じる。例えば、コストや使い捨て性の観点から一般に絶縁基体の材料として樹脂が選択されるが、加熱印刷により絶縁層を形成するためには、ガラス転移温度が高く熱変形しにくい樹脂を絶縁基体の材料として選択する必要が生じる。以上の点から、絶縁層により個々の電極の電極本体部を規定する構造は複雑で取り扱い性や量産性が良好でない。   However, providing an insulating layer that covers the entire electrode excluding the electrode main body and the contact terminal portion complicates the structure of the electrode tip and complicates the manufacturing process. In particular, when the dimensions of the electrode body are miniaturized, it is necessary to reduce the dimensions of the openings of the insulating layer, and the alignment of the openings of the insulating layer and the individual electrodes is required to be highly accurate. It is required to form the layer with high accuracy. Furthermore, when the insulating layer is formed in a process including heating such as thermal printing, there is a restriction on the selection of the insulating base material with respect to thermal deformation characteristics. For example, a resin is generally selected as a material for an insulating substrate from the viewpoint of cost and disposableness. However, in order to form an insulating layer by thermal printing, a resin that has a high glass transition temperature and is not easily thermally deformed is used as a material for the insulating substrate. There is a need to choose. From the above points, the structure that defines the electrode main body portion of each electrode by the insulating layer is complicated, and the handleability and mass productivity are not good.

特開平2−62952号公報Japanese Patent Laid-Open No. 2-62952 特開平2−310457号公報Japanese Patent Laid-Open No. 2-310457

前記従来の問題に鑑み、本発明はバイオセンサを含む電気化学センサとして利用可能な電極チップにおいて、絶縁層を設けることなく電極本体部の面積を正確に規定し、かつ取り扱い性と量産性を向上することを課題とする。   In view of the above-described conventional problems, the present invention provides an electrode chip that can be used as an electrochemical sensor including a biosensor, accurately defines the area of the electrode body without providing an insulating layer, and improves handling and mass productivity. The task is to do.

本発明の第1の態様は、液体中の反応を電気化学的に検出するための電極チップであって、絶縁基体と、前記絶縁基体上に形成され、かつ前記絶縁基体上の一つの領域にその一部が配置されている作用電極と、前記絶縁基体上に前記作用電極とは間隔を隔てて形成され、かつ前記絶縁基体上の前記領域にその一部が配置されている対極と、前記液体を保持可能であり、前記領域において前記絶縁基体、前記作用電極、及び前記対極と直接接触して被覆する液体保持層とを備え、前記作用電極及び前記対極のうち前記液体保持層と接触する部分がそれぞれ前記液体と電気化学的に作用する電極本体部として機能する、電極チップを提供する。   According to a first aspect of the present invention, there is provided an electrode chip for electrochemically detecting a reaction in a liquid, wherein the electrode chip is formed on an insulating base, and is formed on the insulating base and in one region on the insulating base. A working electrode partially disposed thereon, a counter electrode formed on the insulating substrate at a distance from the working electrode, and partially disposed in the region on the insulating substrate; A liquid holding layer capable of holding a liquid and covering the region in direct contact with and covering the insulating substrate, the working electrode, and the counter electrode, and being in contact with the liquid holding layer of the working electrode and the counter electrode Provided is an electrode tip in which each part functions as an electrode body part that electrochemically acts on the liquid.

液体保持層が液体を保持し、絶縁基体のうち液体保持層が配置されている領域のみが液体によって濡れる。従って、作用電極及び対極のうち電気化学的に作用する部分の面積、すなわち作用電極及び対極の電極本体部の面積は、作用電極及び対極の液体保持層に対する接触面積として正確に規定される。換言すれば、絶縁層を形成することなく作用電極及び対極の電極本体部の面積を正確に規定でき、高い測定精度と測定の再現性が得られる。また、電極チップは絶縁層を設けていない簡易な構造であるので、取り扱いが容易であると共に、製造が容易で量産に適している。   The liquid holding layer holds the liquid, and only the region of the insulating substrate where the liquid holding layer is disposed is wetted by the liquid. Therefore, the area of the working electrode and the counter electrode that act electrochemically, that is, the area of the electrode body portion of the working electrode and the counter electrode is accurately defined as the contact area of the working electrode and the counter electrode with the liquid holding layer. In other words, the area of the working electrode and the electrode main body of the counter electrode can be accurately defined without forming an insulating layer, and high measurement accuracy and measurement reproducibility can be obtained. In addition, since the electrode tip has a simple structure without an insulating layer, it is easy to handle and easy to manufacture and suitable for mass production.

具体的には、前記作用電極の前記電極本体部の面積は、前記対極の前記電極本体部の面積よりも小さい。   Specifically, the area of the electrode body portion of the working electrode is smaller than the area of the electrode body portion of the counter electrode.

本発明の電極チップは2極式に限らず3極式であってもよい。3極式とすることで自然電位の測定や高精度の電流測定が可能となる。具体的には、電極チップは、前記絶縁基体上に前記作用電極及び前記対極とは間隔を隔てて形成され、かつ前記絶縁基体上の前記領域にその一部が配置されている参照電極をさらに備え、前記参照電極のうち前記液体保持層と接触する部分が前記液体と電気化学的に作用する電極本体部として機能してもよい。   The electrode tip of the present invention is not limited to a two-pole type, and may be a three-pole type. By using the three-pole system, it is possible to measure the natural potential and measure the current with high accuracy. Specifically, the electrode tip further includes a reference electrode formed on the insulating base with a distance from the working electrode and the counter electrode, and a part of the reference electrode disposed in the region on the insulating base. The portion of the reference electrode that contacts the liquid holding layer may function as an electrode main body that electrochemically acts on the liquid.

参照電極の電極本体部を銀−塩化銀とすることで、基準電位が安定してより高精度での測定が可能となる。   By making the electrode body portion of the reference electrode silver-silver chloride, the reference potential is stabilized and measurement with higher accuracy is possible.

作用電極や対極の電極本体部を導電性が高く化学的に安定した金、白金、パラジウム、又はカーボンとすることで、測定精度を向上できる。   The measurement accuracy can be improved by using gold, platinum, palladium, or carbon that is highly conductive and chemically stable for the working electrode and the electrode main body of the counter electrode.

好ましくは、前記液体保持層は、前記液体が供給される前は乾燥状態で前記絶縁基体の前記表面に担持され、かつ前記液体が供給されると溶解してゲル化する高分子材料からなる。液体保持層がゲル化して高粘度となることにより、作用電極等の電極の液体保持層に対する接触面積、すなわち作用電極等の電極の電極本体部の面積を確実に所望の広さで維持できる。例えば、ゲル化した液体保持層が2〜100cp(センチポワズ)程度の粘度を有することが好ましい。   Preferably, the liquid holding layer is made of a polymer material that is supported on the surface of the insulating base in a dry state before the liquid is supplied, and dissolves and gels when the liquid is supplied. When the liquid holding layer is gelled and becomes highly viscous, the contact area of the electrode such as the working electrode with the liquid holding layer, that is, the area of the electrode main body of the electrode such as the working electrode can be reliably maintained at a desired width. For example, the gelled liquid holding layer preferably has a viscosity of about 2 to 100 cp (centipoise).

好ましくは、前記液体保持層は、前記液体に含まれる前記電極部に対して酸化還元体として機能する低分子量の分子は通過させるが、前記電極部に対して非特異吸着性を有する分子を含む高分子量の分子は通過させない分子網目構造を有する。液体に含まれる酸化還元体と電極本体部との電気的ないしは電気化学的な相互作用を確保しつつ、タンパク質等が非特異吸着することに起因して電極本体部の電気的特性が時間経過に伴って低下するのを防止できる。   Preferably, the liquid holding layer contains a molecule having a non-specific adsorption property to the electrode part while allowing a low molecular weight molecule functioning as a redox substance to pass through the electrode part contained in the liquid. High molecular weight molecules have a molecular network structure that does not allow passage. While the electrical or electrochemical interaction between the redox substance contained in the liquid and the electrode main body is ensured, the electrical characteristics of the electrode main body over time have been caused by non-specific adsorption of proteins, etc. Along with this, it can be prevented from decreasing.

液体保持層は親水性材料からなることが好ましい。電極本体部の濡れ性が向上するので、電極本体部の面積をより高精度で規定できる。   The liquid holding layer is preferably made of a hydrophilic material. Since the wettability of the electrode body is improved, the area of the electrode body can be defined with higher accuracy.

液体保持層を構成する材料として、例えばデンプン系、カルボキシメチルセルロース系、ゼラチン系、アクリル酸塩系、ビニルアルコール系、ビニルピロリドン系、無水マレイン酸系から選択された一つの系の物質もしくは二種類以上の系の混合物を採用できる。セルロース系の親水性高分子材料の一種であって非特異吸着抑制効果を有するカルボキシメチルセルロース(CMC)は、液体保持層を構成する材料として特に適している。   As a material constituting the liquid holding layer, for example, one type of material selected from starch type, carboxymethyl cellulose type, gelatin type, acrylate type, vinyl alcohol type, vinyl pyrrolidone type, maleic anhydride type or two or more types It is possible to employ a mixture of the following systems. Carboxymethylcellulose (CMC), which is a kind of cellulose-based hydrophilic polymer material and has a nonspecific adsorption inhibiting effect, is particularly suitable as a material constituting the liquid holding layer.

第2の発明は、絶縁基体上の一つの領域にその一部がそれぞれ配置されるように、前記絶縁基体上に少なくとも作用電極と対極を含む電極を形成し、前記絶縁基体上の前記領域に液体を保持可能な液体保持層を形成し、前記領域において前記絶縁基体及び前記電極に前記液体保持層を直接接触させて被覆する、電極チップの製造方法を提供する。   According to a second aspect of the present invention, an electrode including at least a working electrode and a counter electrode is formed on the insulating substrate so that a part thereof is disposed in one region on the insulating substrate, and the region on the insulating substrate is formed in the region. A method of manufacturing an electrode chip is provided, wherein a liquid holding layer capable of holding a liquid is formed, and the liquid holding layer is covered with the insulating substrate and the electrode in the region.

具体的には、前記領域と一致する形状を有し、かつ厚み方向に貫通する開口が形成された開口部材を準備し、前記開口が前記領域に位置合わせされるように、前記開口部材を前記絶縁基体上に配置し、高分子材料を溶媒に分散させた高分子分散液を前記開口の内部に注入し、かつ前記開口の内部に注入された前記高分子分散液から前記溶媒を蒸発させて高分子分散液を乾燥させることにより前記液体保持層を形成する。   Specifically, an opening member having a shape coinciding with the region and having an opening penetrating in the thickness direction is prepared, and the opening member is arranged so that the opening is aligned with the region. A polymer dispersion liquid disposed on an insulating substrate and having a polymer material dispersed in a solvent is injected into the opening, and the solvent is evaporated from the polymer dispersion liquid injected into the opening. The liquid holding layer is formed by drying the polymer dispersion.

高分子分散液の乾燥の手法は特に限定されず、例えば常温乾燥、真空乾燥、又は凍結乾燥を採用できる。   The method for drying the polymer dispersion is not particularly limited, and for example, room temperature drying, vacuum drying, or freeze drying can be employed.

本発明に係る電極チップは、作用電極、対極等のうち液体と電気化学的に作用する電極本体部の面積が液体保持層との接触面積として正確に規定されるので、高い測定精度と再現性が得られる。また、絶縁層を設けていないので、取り扱いが容易であると共に、製造が容易で量産に適している。従って、本発明に係る電極チップは、生体中に存在するタンパク質、酵素、低分子複合体等の物質を測定するバイオセンサを含む種々の電気化学測定チップとして有用である。   The electrode tip according to the present invention has a high measurement accuracy and reproducibility because the area of the electrode main body portion that acts electrochemically with the liquid among the working electrode and the counter electrode is accurately defined as the contact area with the liquid holding layer. Is obtained. In addition, since an insulating layer is not provided, it is easy to handle and easy to manufacture and suitable for mass production. Therefore, the electrode chip according to the present invention is useful as various electrochemical measurement chips including biosensors for measuring substances such as proteins, enzymes, and low molecular complexes present in living bodies.

次に、添付図面を参照して本発明の実施形態を詳細に説明する。構造の理解を容易にするために、図面中の厚み方向の寸法の長さ及び幅方向の寸法に対する比率は実際よりも大きく表している。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In order to facilitate understanding of the structure, the ratio of the dimension in the thickness direction to the dimension in the thickness direction and the dimension in the width direction in the drawings is shown to be larger than actual.

(第1実施形態)
図1から図3は本発明の第1実施形態に係る電気化学センサとして利用可能な2極式の電極チップ11を示す。この電極チップ11は、絶縁基体12に開口部材13を接合した2層構造を有する。具体的には、後述する作用電極14、対極15、及び液体保持層21が形成されている板状の絶縁基体12の上面12aに、板状の開口部材13の下面13aが接合されている。開口部材13には厚み方向に貫通する開口13bが設けられている。
(First embodiment)
1 to 3 show a bipolar electrode tip 11 that can be used as an electrochemical sensor according to a first embodiment of the present invention. The electrode tip 11 has a two-layer structure in which an opening member 13 is joined to an insulating base 12. Specifically, the lower surface 13a of the plate-shaped opening member 13 is joined to the upper surface 12a of the plate-shaped insulating base 12 on which a working electrode 14, a counter electrode 15, and a liquid holding layer 21 to be described later are formed. The opening member 13 is provided with an opening 13b penetrating in the thickness direction.

本実施形態では、絶縁基体12と開口部材13は幅が等しい矩形板であり、図において左側ではこれらの端面が互いに揃えられている。一方、図において右側では絶縁基体12の端面が開口部材13の端面から突出している。換言すれば、この部分では絶縁基体12は開口部材13で覆われておらず、上面12aが露出している。   In the present embodiment, the insulating base 12 and the opening member 13 are rectangular plates having the same width, and these end faces are aligned with each other on the left side in the drawing. On the other hand, on the right side in the figure, the end surface of the insulating base 12 protrudes from the end surface of the opening member 13. In other words, in this portion, the insulating base 12 is not covered with the opening member 13, and the upper surface 12a is exposed.

図3に最も明瞭に示すように、絶縁基体12の上面12aには、2個の互いに分離された導電体パターンである作用電極14と対極15とが間隔をあけて形成されている。作用電極14は電極本体部14a、電極本体部14aから延びる配線部14b、及び配線部14bの他端に設けられた外部機器との電気的導通のための接点端子部14cを備える。同様に、対極15は電極本体部15a、電極本体部15aから延びる配線部15b、及び配線部15bの他端に設けられた接点端子部15cを備える。   As shown most clearly in FIG. 3, on the upper surface 12a of the insulating base 12, two working electrodes 14 and counter electrodes 15 which are conductor patterns separated from each other are formed with a space therebetween. The working electrode 14 includes an electrode main body portion 14a, a wiring portion 14b extending from the electrode main body portion 14a, and a contact terminal portion 14c for electrical continuity with an external device provided at the other end of the wiring portion 14b. Similarly, the counter electrode 15 includes an electrode body portion 15a, a wiring portion 15b extending from the electrode body portion 15a, and a contact terminal portion 15c provided at the other end of the wiring portion 15b.

材料等については後に詳述するが、液体保持層21は試料溶液を保持する機能を有する。具体的には、試料溶液を液体保持層21に滴下すると、液体保持層21の全体に均一に試料溶液が拡がるが、適切な量である限り液体保持層21から試料溶液が漏れ出ることがない。液体保持層21は絶縁基体12の上面12aの所定の領域22に設けられている。本実施形態では、この領域22は開口部材13の開口13bの平面視での形状と一致している。換言すれば、本実施形態における液体保持層21は開口部材13の開口13b内に形成されている。作用電極14の一部、すなわち図において左側の先端付近は液体保持層21が形成されている領域22に配置されている。同様に、対極15の一部、すなわち図において左側の先端付近は液体保持層21が形成されている領域22に配置されている。換言すれば、液体保持層21は作用電極14と対極15を跨るように配置されている。   Although the materials and the like will be described in detail later, the liquid holding layer 21 has a function of holding the sample solution. Specifically, when the sample solution is dropped onto the liquid holding layer 21, the sample solution spreads uniformly over the entire liquid holding layer 21, but the sample solution does not leak from the liquid holding layer 21 as long as the amount is appropriate. . The liquid holding layer 21 is provided in a predetermined region 22 on the upper surface 12 a of the insulating substrate 12. In the present embodiment, this region 22 matches the shape of the opening 13b of the opening member 13 in plan view. In other words, the liquid holding layer 21 in the present embodiment is formed in the opening 13 b of the opening member 13. A part of the working electrode 14, that is, the vicinity of the tip on the left side in the drawing, is arranged in a region 22 where the liquid holding layer 21 is formed. Similarly, a part of the counter electrode 15, that is, the vicinity of the tip on the left side in the drawing is arranged in a region 22 where the liquid holding layer 21 is formed. In other words, the liquid holding layer 21 is disposed so as to straddle the working electrode 14 and the counter electrode 15.

液体保持層21は、領域22内において絶縁基体12、作用電極14、及び対極15に対して、絶縁層等の他の層を介することなく直接的に接触しており、領域22内では絶縁基体12、作用電極14、及び対極15は液体保持層21によって被覆されている。従って、作用電極14のうち液体保持層21と接触する部分が試料溶液中の酸化還元体と電気化学的に作用する部分、すなわち前述の電極本体部14aとして機能する。同様に、対極15のうち液体保持層21と接触する部分が試料溶液中の酸化還元体と電気化学的に作用する部分、すなわち前述の電極本体部15aとして機能する。対極15よりも作用電極14の幅を小さく設定しており、作用電極14の電極本体部14aの面積は、対極15の電極本体部15aの面積よりも小さく設定されている。作用電極14の電極本体部14a以外の部分(配線部14bや接点端子部14c)と対極15の電極本体部15a以外の部分(配線部15bや接点端子部15c)は試料溶液と接触しない。従って、配線部14b,15bを絶縁材料等で被覆する必要はない。   The liquid holding layer 21 is in direct contact with the insulating substrate 12, the working electrode 14, and the counter electrode 15 in the region 22 without passing through other layers such as an insulating layer. 12, the working electrode 14, and the counter electrode 15 are covered with a liquid holding layer 21. Accordingly, the portion of the working electrode 14 that comes into contact with the liquid holding layer 21 functions as a portion that acts electrochemically with the redox substance in the sample solution, that is, the above-described electrode body portion 14a. Similarly, a portion of the counter electrode 15 that contacts the liquid holding layer 21 functions as a portion that electrochemically acts on the redox material in the sample solution, that is, the above-described electrode main body portion 15a. The width of the working electrode 14 is set smaller than that of the counter electrode 15, and the area of the electrode main body portion 14 a of the working electrode 14 is set smaller than the area of the electrode main body portion 15 a of the counter electrode 15. Parts other than the electrode main body part 14a of the working electrode 14 (wiring part 14b and contact terminal part 14c) and parts other than the electrode main body part 15a of the counter electrode 15 (wiring part 15b and contact terminal part 15c) do not contact the sample solution. Therefore, it is not necessary to cover the wiring portions 14b and 15b with an insulating material or the like.

本実施形態の電極チップ11による電気化学的測定を概説すると、液体試料(例えば血液、血清等を含む生体試料)に反応試薬を加えた試料溶液が開口部材13の開口から液体保持層21に供給され、例えば対極15と作用電極14との間に電圧を印加し、その際に対極15と作用電極14との間に流れる電流を検出することにより測定液体中に含まれる特定の成分の濃度等が測定される。   When the electrochemical measurement by the electrode chip 11 of this embodiment is outlined, a sample solution obtained by adding a reaction reagent to a liquid sample (for example, a biological sample including blood, serum, etc.) is supplied to the liquid holding layer 21 from the opening of the opening member 13. For example, by applying a voltage between the counter electrode 15 and the working electrode 14 and detecting a current flowing between the counter electrode 15 and the working electrode 14 at that time, the concentration of a specific component contained in the measurement liquid, etc. Is measured.

図4Aは、電極チップ11の液体保持層21に試料溶液23を供給した状態を示す(開口部材13は理解を容易にするために図示を省略している)。一方、図4Bは、液体保持層21を設けていない構成で作用電極14と対極15の先端付近(本実施形態の電極チップ11における電極本体部14a,15aに対応する領域に)に同様に試料溶液23を供給した状態を示す。図4Aに示すように、本実施形態の電極チップ11では、試料溶液23は液体保持層21に保持されるので作用電極14と対極15は電解質溶液である試料溶液23を介して電気的に導通する。また、試料溶液23は液体保持層21の全体に拡がるが、液体保持層21から外部へ漏れ出ないので、作用電極14及び対極15のうち電気化学的に作用する電極本体14a,15aの面積は正確に規定される。従って、試料溶液23中の成分が変わらない限り、対極15と作用電極14との間をある電位差に保持した場合に流れる抵抗は一定である。換言すれば、高精度で再現性の高い測定が可能である。一方、図4Bの液体保持層21のない構成では、絶縁基体12上に試料溶液23が不規則に拡がるため、測定を繰り返す度に作用電極14及び対極15と試料溶液23の接触面積は変化して一定とならない。対極15と試料溶液23の接触面積が作用電極14と試料溶液23の接触面積よりも十分に大きい場合、電流値は作用電極14と試料溶液23の接触面積に比例する。従って、図4Bの液体保持層21のない構成では、試料溶液23中の成分と電位差が同一であっても電流値が変動し、測定精度及び再現性が低い。   FIG. 4A shows a state in which the sample solution 23 is supplied to the liquid holding layer 21 of the electrode chip 11 (the opening member 13 is not shown for easy understanding). On the other hand, FIG. 4B shows a configuration in which the liquid holding layer 21 is not provided and the sample is similarly formed in the vicinity of the working electrode 14 and the tip of the counter electrode 15 (in the region corresponding to the electrode main body portions 14a and 15a in the electrode tip 11 of this embodiment). The state where the solution 23 is supplied is shown. As shown in FIG. 4A, in the electrode chip 11 of the present embodiment, the sample solution 23 is held in the liquid holding layer 21, so that the working electrode 14 and the counter electrode 15 are electrically connected via the sample solution 23 which is an electrolyte solution. To do. In addition, the sample solution 23 spreads over the entire liquid holding layer 21, but does not leak outside from the liquid holding layer 21. Therefore, the area of the electrode bodies 14 a and 15 a that act electrochemically out of the working electrode 14 and the counter electrode 15 is as follows. Accurately defined. Therefore, as long as the components in the sample solution 23 do not change, the resistance flowing when the counter electrode 15 and the working electrode 14 are held at a certain potential difference is constant. In other words, measurement with high accuracy and high reproducibility is possible. On the other hand, in the configuration without the liquid holding layer 21 in FIG. 4B, the sample solution 23 spreads irregularly on the insulating substrate 12, so that the contact area between the working electrode 14, the counter electrode 15, and the sample solution 23 changes each time the measurement is repeated. Is not constant. When the contact area between the counter electrode 15 and the sample solution 23 is sufficiently larger than the contact area between the working electrode 14 and the sample solution 23, the current value is proportional to the contact area between the working electrode 14 and the sample solution 23. Therefore, in the configuration without the liquid holding layer 21 of FIG. 4B, the current value varies even if the potential difference is the same as the component in the sample solution 23, and the measurement accuracy and reproducibility are low.

以上のように、本実施形態の電極チップ11では液体保持層21を設けて、作用電極14と対極15のうち試料溶液と電気化学的に作用する電極本体部14a,15aの面積を正確に規定しているので、高い測定精度と再現性が得られる。また、絶縁層を設けていない簡易な構造であるので、取り扱いが容易であると共に、製造が容易で量産に適している。   As described above, in the electrode chip 11 of the present embodiment, the liquid holding layer 21 is provided to accurately define the areas of the electrode main body portions 14a and 15a that electrochemically act on the sample solution among the working electrode 14 and the counter electrode 15. Therefore, high measurement accuracy and reproducibility can be obtained. In addition, since it has a simple structure without an insulating layer, it is easy to handle and easy to manufacture and suitable for mass production.

絶縁基体12の材料としては、シリコン、ゲルマニウム等の半導体、石英ガラス、鉛ガラス、ホウ珪酸ガラス等のガラス、セラミック、樹脂等を選択することができる。ディスポーサブルのバイオセンサとしての用途を考慮すると、加工性やコストの点から樹脂材料が絶縁基体12の材料として適している。絶縁基体12に適した樹脂材料としては、ポリスチレン(PS)、ポリプロピレン(PP)、ポリイミド(PI)、ポリ四フッ化エチレン(PTFE)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリエチレン−2,6−ナフタレート(PEN)等がある。特に、作用電極14や対極15を金のスパッタリングで形成する場合、金との密着性が高いポリエチレンテレフタレートが絶縁基体12の材料として適している。   As a material of the insulating base 12, a semiconductor such as silicon or germanium, glass such as quartz glass, lead glass, borosilicate glass, ceramic, resin, or the like can be selected. Considering the use of the disposable biosensor, a resin material is suitable as the material of the insulating substrate 12 in terms of processability and cost. As resin materials suitable for the insulating substrate 12, polystyrene (PS), polypropylene (PP), polyimide (PI), polytetrafluoroethylene (PTFE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyethylene Examples include terephthalate (PET), polymethyl methacrylate (PMMA), and polyethylene-2,6-naphthalate (PEN). In particular, when the working electrode 14 and the counter electrode 15 are formed by sputtering of gold, polyethylene terephthalate having high adhesion to gold is suitable as a material for the insulating substrate 12.

作用電極14及び対極15の電極本体部14a,15aの材料としては、導電性が高く化学的に安定している金、白金、パラジウム等の貴金属やカーボン等から選択することが可能である。特に、表面状態の安定性等の観点から、電極本体部14a,15aの材料として金を選択することが好ましい。製造工程の効率化等の観点から、作用電極14及び対極15の他の部分、すなわち配線部14b,15bや接点端子部14c,15cも電極本体部14a,15aと同様の材料で形成することが好ましい。   The material of the electrode main body portions 14a and 15a of the working electrode 14 and the counter electrode 15 can be selected from noble metals such as gold, platinum, and palladium, carbon, and the like that are highly conductive and chemically stable. In particular, it is preferable to select gold as the material of the electrode main body portions 14a and 15a from the viewpoint of the stability of the surface state. From the viewpoint of improving the efficiency of the manufacturing process, the other portions of the working electrode 14 and the counter electrode 15, that is, the wiring portions 14b and 15b and the contact terminal portions 14c and 15c may be formed of the same material as the electrode main body portions 14a and 15a. preferable.

次に、液体保持層21の材質等について詳細に説明する。本実施形態では、後述する材料を乾燥状態で担持させることにより液体保持層21を形成しており、試料溶液が供給されると、液体保持層21を構成する材料が溶解し、水分を含んでゲル化する。液体保持層21がゲル化して高粘度となることにより、作用電極14や対極15の液体保持層21に対する接触面積、すなわち電極本体部14a,15aの面積を確実に所望の大きさに維持できる。例えば、ゲル化した液体保持層が2〜100cp(センチポワズ)程度の粘度を有することが好ましい。ただし、液体保持層21は試料溶液が供給される前の段階からゲル化していてもよい。   Next, the material of the liquid holding layer 21 will be described in detail. In the present embodiment, the liquid holding layer 21 is formed by supporting a material described later in a dry state. When the sample solution is supplied, the material constituting the liquid holding layer 21 is dissolved and contains moisture. Gels. When the liquid holding layer 21 is gelled and becomes highly viscous, the contact area of the working electrode 14 and the counter electrode 15 with respect to the liquid holding layer 21, that is, the area of the electrode main body portions 14a and 15a can be reliably maintained at a desired size. For example, the gelled liquid holding layer preferably has a viscosity of about 2 to 100 cp (centipoise). However, the liquid holding layer 21 may be gelated from the stage before the sample solution is supplied.

ゲル化した液体保持層21が電極コーティング特性、すなわち試料溶液に含まれるタンパク質等の金属電極に非特異的吸着する成分電極本体部14a,15aに到達するのを遮断する阻止する性質を有することが好ましい。かかる電極コーティング特性を有する材料は、試料溶液に含まれている電極本体部14a,15aに対して酸化還元体として機能する低分子量の分子は通過させるが、電極本体部14a,15aに対して非特異吸着性を有するタンパク質等の高分子量(分子構造の大きい)の分子は通過させない分子網目構造を有する。液体保持層21が電極コーティング特性を有することにより、試料溶液中に非特異的吸着性を有する成分が含まれていても、そのような成分の吸着に起因して作用電極14と対極15との間に流れる電流が測定開始後の時間経過に伴って減少するのを防止できる。換言すれば、作用電極14と対極15との間に電流の測定は非特異的吸着を有する成分の影響を受けず、安定した測定が可能である。   The gelled liquid holding layer 21 has an electrode coating characteristic, that is, a property of blocking the arrival of the component electrode main body portions 14a and 15a that adsorb nonspecifically to a metal electrode such as protein contained in the sample solution. preferable. The material having such electrode coating characteristics allows low molecular weight molecules that function as redox substances to pass through the electrode body portions 14a and 15a contained in the sample solution, but does not pass through the electrode body portions 14a and 15a. High molecular weight (large molecular structure) molecules such as proteins having specific adsorptivity have a molecular network structure that does not allow passage. Since the liquid holding layer 21 has an electrode coating characteristic, even if a component having non-specific adsorptivity is contained in the sample solution, the working electrode 14 and the counter electrode 15 are caused by the adsorption of such a component. It is possible to prevent the current flowing between them from decreasing with the passage of time after the start of measurement. In other words, current measurement between the working electrode 14 and the counter electrode 15 is not affected by components having nonspecific adsorption, and stable measurement is possible.

液体保持層21は親水性を有することが好ましい。液体保持層21に親水性を持たせて濡れ性を高めることにより、作用電極14や対極15と液体保持層21内の試料溶液との接触面積、すなわち電極本体部14a,15aの面積がより高精度で規定でき、測定の精度と再現性をさらに高めることができる。   The liquid holding layer 21 preferably has hydrophilicity. By increasing the wettability by imparting hydrophilicity to the liquid holding layer 21, the contact area between the working electrode 14 and the counter electrode 15 and the sample solution in the liquid holding layer 21, that is, the area of the electrode main body portions 14 a and 15 a is higher. The accuracy can be specified, and the accuracy and reproducibility of the measurement can be further improved.

具体的には、液体保持層21を構成する材料として、例えばデンプン系、カルボキシメチルセルロース系、ゼラチン系、アクリル酸塩系、ビニルアルコール系、ビニルピロリドン系、無水マレイン酸系から選択された一つの系の物質もしくは二種類以上の系の混合物を採用できる。これらの高分子材料は容易に溶液にでき、適切な濃度と量の溶液を滴下して乾燥することにより、適度の厚みを有する薄膜を形成できる。また、これらの高分子材料は、前述の電極コーティング特性と親水性を有する。特に、セルロース系の親水性高分子材料の一種であって非特異吸着抑制効果を有するカルボキシメチルセルロース(CMC)が液体保持層21を構成する材料として適している。   Specifically, one material selected from, for example, starch, carboxymethyl cellulose, gelatin, acrylate, vinyl alcohol, vinyl pyrrolidone, and maleic anhydride as a material constituting the liquid holding layer 21. Or a mixture of two or more systems. These polymer materials can be easily made into a solution, and a thin film having an appropriate thickness can be formed by dropping a solution of an appropriate concentration and amount and drying. Further, these polymer materials have the aforementioned electrode coating characteristics and hydrophilicity. In particular, carboxymethyl cellulose (CMC), which is a kind of cellulosic hydrophilic polymer material and has a non-specific adsorption suppressing effect, is suitable as a material constituting the liquid holding layer 21.

開口部材13の材料は、試料溶液や後述する高分子分散液に対する耐食性を有する限り特に限定されない。シリコン、ゲルマニウム等の半導体、石英ガラス、鉛ガラス、ホウ珪酸ガラス等のガラス、セラミック、樹脂等を開口部材13の材料として選択することができる。加工性やコストの点から樹脂材料が開口部材13の材料として適している。開口部材に適した樹脂材料としては、ポリスチレン(PS)、ポリプロピレン(PP)、ポリイミド(PI)、ポリ四フッ化エチレン(PTFE)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリエチレン−2,6−ナフタレート(PEN)、環状オレフィン共重合体(COC)、ポリジメチルシルオキサン(PDMS)等を選択することができる。ポリジメチルオキサンは、透明で、微細な加工が容易であり、絶縁基体12にわずかな粘着性をもって接合できるので特に好ましい。   The material of the opening member 13 is not particularly limited as long as it has corrosion resistance to the sample solution and the polymer dispersion described later. A semiconductor such as silicon or germanium, glass such as quartz glass, lead glass, or borosilicate glass, ceramic, resin, or the like can be selected as the material of the opening member 13. A resin material is suitable as a material for the opening member 13 in terms of workability and cost. As resin materials suitable for the opening member, polystyrene (PS), polypropylene (PP), polyimide (PI), polytetrafluoroethylene (PTFE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyethylene-2,6-naphthalate (PEN), cyclic olefin copolymer (COC), polydimethylsiloxane (PDMS) and the like can be selected. Polydimethyloxane is particularly preferable because it is transparent, easily processed finely, and can be bonded to the insulating substrate 12 with slight adhesiveness.

開口部材13に形成された開口13bは、樹脂材料の場合、切除加工の他、金型による成型、熱転写によるエンボス加工等により形成できる。また、貫通孔を有する複数のシートを積層状態で貼り合わせることにより、開口13bを有する開口部材13を形成してもよい。   In the case of a resin material, the opening 13b formed in the opening member 13 can be formed not only by cutting, but also by molding using a mold, embossing using thermal transfer, or the like. Moreover, you may form the opening member 13 which has the opening 13b by bonding the some sheet | seat which has a through-hole in a lamination | stacking state.

次に、本実施形態に係る電極チップ11の製造方法を説明する。電極チップ11の製造方法は、絶縁基体12上の領域22にその一部がそれぞれ配置されるように、作用電極14と対極15を形成する工程(図5A)と、領域22に液体保持層21を形成して絶縁基体12、作用電極14、対極15を被覆する工程(図5B及び図5C)からなる。   Next, a method for manufacturing the electrode tip 11 according to this embodiment will be described. In the method of manufacturing the electrode tip 11, the step of forming the working electrode 14 and the counter electrode 15 (FIG. 5A) so that a part thereof is disposed in the region 22 on the insulating substrate 12, and the liquid holding layer 21 in the region 22. To cover the insulating substrate 12, the working electrode 14, and the counter electrode 15 (FIGS. 5B and 5C).

絶縁基体12の上面12aに作用電極14と対極15を形成する方法としては、導電性材料の印刷、導電性材料のスパッタリング又は蒸着後のエッチング又はレーザによる除去加工、マスクを使用したスパッタリングによる除去加工を伴わない形成等がある。   As a method of forming the working electrode 14 and the counter electrode 15 on the upper surface 12a of the insulating substrate 12, the conductive material is printed, the conductive material is sputtered or deposited after etching or laser removal, or the mask is used for sputtering. There is formation without accompanying.

絶縁基体12上の所定の領域22に液体保持層21を形成する工程としては、まず図5B及び図5Cに示すように、開口13bが所定の領域22に位置合わせされるように、開口部材13を絶縁基体12上に配置する。本実施形態では前述のように開口部材13の下面13aを絶縁基体12の上面12aに接合させる。次に、前述した液体保持層21に適した高分子材料を溶媒に分散させた高分子分散液を開口13bの内部に注入する。その後、前記開口の内部に注入された前記高分子分散液から前記溶媒を蒸発させて高分子分散液を乾燥させ、液体保持層21を形成する。   As a step of forming the liquid holding layer 21 in the predetermined region 22 on the insulating base 12, first, as shown in FIGS. 5B and 5C, the opening member 13 so that the opening 13 b is aligned with the predetermined region 22. Is disposed on the insulating substrate 12. In the present embodiment, the lower surface 13a of the opening member 13 is joined to the upper surface 12a of the insulating base 12 as described above. Next, a polymer dispersion liquid in which a polymer material suitable for the liquid holding layer 21 is dispersed in a solvent is injected into the opening 13b. Thereafter, the solvent is evaporated from the polymer dispersion injected into the opening to dry the polymer dispersion, thereby forming the liquid holding layer 21.

高分子分散液を作製するための溶媒としては、水、蒸留水、又は純水、超純水等の水類、生理食塩水、各種化学物質・塩等を融解したバッファー溶液、トルエン、キシレン等の芳香族炭化水素類、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ノルマルブタノール、エタノール、メタノール等のアルコール類、石油類等から適宜選択される。特に、超純水を溶媒として採用、高分子液を所定の濃度に溶解して高分子分散液として用いるのが好ましい。高分子分散液中の高分子材料の濃度としては、0.01重量%から30重量%の範囲が好ましく、特に2.5重量%が好ましい。   Solvents for preparing the polymer dispersion include water, distilled water, water such as pure water and ultrapure water, physiological saline, buffer solutions in which various chemical substances and salts are melted, toluene, xylene, etc. Aromatic hydrocarbons, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alcohols such as normal butanol, ethanol and methanol, petroleum and the like. In particular, it is preferable to use ultrapure water as a solvent and dissolve the polymer solution in a predetermined concentration and use it as a polymer dispersion. The concentration of the polymer material in the polymer dispersion is preferably in the range of 0.01% to 30% by weight, particularly preferably 2.5% by weight.

開口13b中に注入した高分子分散液の乾燥方法は特に限定されず、当業者にとって公知の技術を適用できる。例えば、常温乾燥、真空乾燥、減圧乾燥、凍結乾燥、回転乾燥、加熱乾燥等を適用できる。液体保持層21と絶縁基体12との密着性、製造容易性、及び迅速性の点から真空乾燥が特に好ましい。   The drying method of the polymer dispersion injected into the opening 13b is not particularly limited, and techniques known to those skilled in the art can be applied. For example, room temperature drying, vacuum drying, reduced pressure drying, freeze drying, rotary drying, heat drying and the like can be applied. Vacuum drying is particularly preferable from the viewpoints of adhesion between the liquid holding layer 21 and the insulating substrate 12, ease of manufacture, and rapidity.

以上のように、本実施形態の電極チップ11は、作用電極14、対極15のうち試料溶液と電気化学的に作用する電極本体部14a,15aの面積が液体保持層21との接触面積として正確に規定されるので、高い測定精度と再現性が得られる。また、絶縁層を設けていないので、取り扱いが容易であると共に、製造が容易で量産に適している。従って、本発明に係る電極チップは、生体中に存在するタンパク質、酵素、低分子複合体等の物質を測定するバイオセンサを含む種々の電気化学測定チップとして有用である。なお、本実施形態では液体保持層21を形成した後も開口部材13を絶縁基体12の上面12aに貼り付けたままとしているが、液体保持層21の形成後に絶縁基体12から開口部材13を除去してもよい(図4A参照)。   As described above, in the electrode tip 11 of the present embodiment, the area of the electrode main body portions 14 a and 15 a that electrochemically act on the sample solution of the working electrode 14 and the counter electrode 15 is accurate as the contact area with the liquid holding layer 21. Therefore, high measurement accuracy and reproducibility can be obtained. In addition, since an insulating layer is not provided, it is easy to handle and easy to manufacture and suitable for mass production. Therefore, the electrode chip according to the present invention is useful as various electrochemical measurement chips including biosensors for measuring substances such as proteins, enzymes, and low molecular complexes present in living bodies. In the present embodiment, the opening member 13 remains attached to the upper surface 12a of the insulating base 12 after the liquid holding layer 21 is formed. However, the opening member 13 is removed from the insulating base 12 after the liquid holding layer 21 is formed. (See FIG. 4A).

(第2実施形態)
図6から図8は、本発明の第2実施形態に係る電極チップ11を示す。第1実施形態の電極チップ11が作用電極14と対極15を備える2極式であるのに対し、第2実施形態の電極チップ11は作用電極14と対極15に加えて参照電極16を有する3極式である。絶縁基体12上に作用電極14及び対極15と間隔を隔てて形成された参照電極16は、領域22内で液体保持層21が直接的に接触した被覆する部分である電極本体部16a、電極本体部16aから延びる配線部16b、及び配線部16bの他端に設けられた接点端子部16cを備える。作用電極14と対極15の電極本体部14a,15aと同様に、参照電極16の電極本体部16aの面積は液体保持層21との接触面積として正確に規定される。また、試料溶液は液体保持層21内に保持されるので、参照電極16の配線部16bや接点端子部16cを絶縁材料等で被覆する必要がない。
(Second Embodiment)
6 to 8 show an electrode tip 11 according to a second embodiment of the present invention. The electrode tip 11 of the first embodiment is a bipolar type having a working electrode 14 and a counter electrode 15, whereas the electrode tip 11 of the second embodiment has a reference electrode 16 in addition to the working electrode 14 and the counter electrode 3 3. It is a polar type. The reference electrode 16 formed on the insulating substrate 12 at a distance from the working electrode 14 and the counter electrode 15 is an electrode main body portion 16a, which is a covering portion where the liquid holding layer 21 is in direct contact within the region 22, and an electrode main body. The wiring part 16b extended from the part 16a and the contact terminal part 16c provided in the other end of the wiring part 16b are provided. Similar to the electrode main body portions 14 a and 15 a of the working electrode 14 and the counter electrode 15, the area of the electrode main body portion 16 a of the reference electrode 16 is accurately defined as a contact area with the liquid holding layer 21. Further, since the sample solution is held in the liquid holding layer 21, it is not necessary to cover the wiring portion 16b and the contact terminal portion 16c of the reference electrode 16 with an insulating material or the like.

参照電極16の材料としては、作用電極14及び対極15と同様に、金、白金、パラジウム等の貴金属やカーボン等から選択することが可能であり、特に金を選択することが好ましい。参照電極部16の電極本体部16aの表面は、電界めっきやペースト塗布等の当業者に公知の方法で塩化銀化している。電界めっきの場合、ジシアン銀(I)酸イオン等を含むメッキ液中で、白金電極に対して−1.0V程度の電圧を印加することによって金や白金等で形成された参照電極16の所定の部位上に銀めっきを施し、さらに3MのNaCl中で+1.2V程度の電圧を印加して塩化銀化する。また、ペースト塗布の場合、例えば銀塩化銀ペースト材料を表面に点着する。これにより、銀の脱脂洗浄や塩化銀処理、洗浄・乾燥工程等を省略できるので、低コスト化を図ることができる。   The material of the reference electrode 16 can be selected from noble metals such as gold, platinum and palladium, carbon, and the like, as with the working electrode 14 and the counter electrode 15, and gold is particularly preferable. The surface of the electrode body portion 16a of the reference electrode portion 16 is silver chloride by a method known to those skilled in the art, such as electroplating or paste coating. In the case of electroplating, the reference electrode 16 formed of gold, platinum, or the like is applied by applying a voltage of about −1.0 V to the platinum electrode in a plating solution containing dicyanic silver (I) acid ions. Then, silver plating is performed on this part, and silver chloride is formed by applying a voltage of about +1.2 V in 3 M NaCl. Further, in the case of paste application, for example, a silver-silver chloride paste material is spotted on the surface. As a result, silver degreasing cleaning, silver chloride treatment, cleaning / drying steps, and the like can be omitted, thereby reducing costs.

試料溶液は液体保持層21で保持される。電位測定の場合には、この状態で作用電極14と参照電極16との電位差が測定される。また、電流測定(定電位測定)の場合には、作用電極14と参照電極16との電位差を外部回路によって一定に維持しつつ、作用電極14と対極15との間に流れる電流が測定される。試料溶液との接触面積である、作用電極14、対極15、及び参照電極16の電極本体部14a,15a,16aの面積が正確に規定されるので、高精度で再現性の高い測定が可能である。   The sample solution is held by the liquid holding layer 21. In the case of potential measurement, the potential difference between the working electrode 14 and the reference electrode 16 is measured in this state. In the case of current measurement (constant potential measurement), the current flowing between the working electrode 14 and the counter electrode 15 is measured while the potential difference between the working electrode 14 and the reference electrode 16 is kept constant by an external circuit. . Since the areas of the electrode main body portions 14a, 15a and 16a of the working electrode 14, the counter electrode 15, and the reference electrode 16, which are contact areas with the sample solution, are accurately defined, highly accurate and highly reproducible measurement is possible. is there.

第2実施形態の電極チップ11についても液体保持層21の形成後に絶縁基体12から開口部材13を除去してもよい。第2実施形態のその他の構成、製造方法、作用効果は第1実施形態と同様であるので、同一の要素には同一の符号を付して説明を省略する。   Also in the electrode chip 11 of the second embodiment, the opening member 13 may be removed from the insulating base 12 after the liquid holding layer 21 is formed. Since other configurations, manufacturing methods, and operational effects of the second embodiment are the same as those of the first embodiment, the same elements are denoted by the same reference numerals and description thereof is omitted.

(実施例)
本発明の第2実施形態に係る電極チップ11を実際に製作し、基本的な電気化学測定である定電位測定を行った。
(Example)
The electrode tip 11 according to the second embodiment of the present invention was actually manufactured, and constant potential measurement, which is basic electrochemical measurement, was performed.

まず、電極チップ11の製作について説明する。絶縁基体12である1mmのポリエチレンテレフタレート(PET)上に2000Åの金属膜をスパッタリングにより成膜し、フォトリソグラフィによって作用電極14、対極15、及び参照電極16を形成した。また、参照電極16の電極本体部16aには銀−塩化銀ペーストを滴下し、2日間乾燥して固定させた。開口部材13はポリジメチルシロキサンで作製した。開口部材13の厚さは1mmとし、開口13bは直径3mmの円形として作製した。この開口部材13を作用電極14、対極15、及び参照電極16を形成済みの絶縁基体12上に載せ、上方から圧力を加えて軽く粘着させた。開口13b内の作用電極14、対極15、及び参照電極16の面積、すなわち電極本体部14a,15a,16aの面積は、それぞれ1mm、2.1mm、0.8mmとした。高分子分散液は、カルボキシルメチルセルロース(CMC)を終濃度2.5重量%となるように超純水に分散させて調整した。この高分子分散液を11μL注入した。続いて、デシケータ内に電極チップ11を配置して外部からターボポンプにより室温で15分間真空引きし、高分子分散液から溶媒である超純水を蒸発させた。その結果、カルボキシルメチルセルロースからなる液体保持層21が領域22内で作用電極14、対極15、及び参照電極16上に膜状に乾燥固定された。液体保持層21を設けた実施例の電極チップ11(以下、電極チップ11Aという。)と、作用電極14、対極15、及び参照電極16を形成済みの絶縁基体12上に開口部材13を貼り付けたが液体保持層21は形成しなかった比較例の電極チップ(以下、電極チップ11Bという。)をそれぞれ2枚製作した。 First, manufacture of the electrode tip 11 will be described. A 2000 mm metal film was formed on 1 mm polyethylene terephthalate (PET), which is an insulating substrate 12, by sputtering, and the working electrode 14, the counter electrode 15, and the reference electrode 16 were formed by photolithography. Further, a silver-silver chloride paste was dropped onto the electrode body 16a of the reference electrode 16, and dried and fixed for 2 days. The opening member 13 was made of polydimethylsiloxane. The thickness of the opening member 13 was 1 mm, and the opening 13b was formed as a circle having a diameter of 3 mm. The opening member 13 was placed on the insulating substrate 12 on which the working electrode 14, the counter electrode 15, and the reference electrode 16 had been formed, and pressure was applied from above to lightly adhere. Area of the working electrode 14, counter electrode 15 and reference electrode 16, in the opening 13b, i.e. the electrode body portion 14a, 15a, the area of 16a, respectively 1 mm 2, 2.1 mm 2, and a 0.8 mm 2. The polymer dispersion was prepared by dispersing carboxymethyl cellulose (CMC) in ultrapure water so as to have a final concentration of 2.5% by weight. 11 μL of this polymer dispersion was injected. Subsequently, the electrode tip 11 was placed in a desiccator and vacuumed for 15 minutes at room temperature by a turbo pump from the outside to evaporate ultrapure water as a solvent from the polymer dispersion. As a result, the liquid holding layer 21 made of carboxymethyl cellulose was dried and fixed in a film shape on the working electrode 14, the counter electrode 15, and the reference electrode 16 in the region 22. The opening member 13 is pasted on the insulating base 12 on which the working electrode 14, the counter electrode 15, and the reference electrode 16 are formed, and the electrode tip 11 (hereinafter referred to as the electrode tip 11 </ b> A) provided with the liquid holding layer 21. However, two electrode chips of comparative examples (hereinafter referred to as electrode chips 11B) in which the liquid holding layer 21 was not formed were manufactured.

これらの電極チップ11A,11Bを使用して酸化還元体の電子授受、つまり電極で観察される電流値を測定した。試料溶液としては、フェロシアン化カリウムとフェリシアン化カリウムの混合液を使用した。具体的には、以下の表1に示す濃度1〜3の3種類の濃度でフェロシアン化カリウムとフェリシアン化カリウムを50mM Trisバッファー(pH 8.5)に混合した。濃度1〜3におけるフェロシアンカリウムの終濃度は、それぞれ0、0.5mM、1.0mMである。3種類の濃度1〜3のそれぞれについて、試料溶液10μLを実施例の電極チップ11Aの液体保持層21に滴下した。また、3種類の濃度1〜3のそれぞれについて、試料溶液10μLを比較例の電極チップ11の開口13b内に注入した。各電極試料溶液の供給後、各電極チップ11A,11Bの参照電極16と作用電極14の間に+400mVの定電圧を印加して、作用電極14と対極15の間に流れる電流を60秒間測定した。   Using these electrode tips 11A and 11B, the electron transfer of the redox substance, that is, the current value observed at the electrode was measured. As a sample solution, a mixed liquid of potassium ferrocyanide and potassium ferricyanide was used. Specifically, potassium ferrocyanide and potassium ferricyanide were mixed in 50 mM Tris buffer (pH 8.5) at three concentrations from 1 to 3 shown in Table 1 below. The final concentrations of ferrocyanic potassium at concentrations 1 to 3 are 0, 0.5 mM, and 1.0 mM, respectively. For each of the three types of concentrations 1 to 3, 10 μL of the sample solution was dropped onto the liquid holding layer 21 of the electrode tip 11A of the example. Moreover, 10 microliters of sample solutions were inject | poured in the opening 13b of the electrode tip 11 of a comparative example about each of three types of density | concentrations 1-3. After supplying each electrode sample solution, a constant voltage of +400 mV was applied between the reference electrode 16 and the working electrode 14 of each electrode tip 11A, 11B, and the current flowing between the working electrode 14 and the counter electrode 15 was measured for 60 seconds. .

Figure 2007298325
Figure 2007298325

電極チップ11A,11Bの個々の濃度1〜3についての測定結果を図9に示す。この図9では、縦軸に電流値(nA)を示し、横軸にフェロシアンカリウム濃度(濃度1〜3)を示す。また、白丸が実施例の電極チップ11Aの測定データを示し、黒丸が比較例の測定データを示す。以下の表2は電極チップ11A,11Bについての測定結果の決定係数Rを示す。また、電極チップ11A,11Bのそれぞれについてフェロシアン化カリウム0.5mM(濃度2)に対して10回定電圧測定を行った測定値の変動係数CVを表2に併せて示す。 The measurement result about each density | concentration 1-3 of electrode tip 11A, 11B is shown in FIG. In FIG. 9, the vertical axis represents the current value (nA), and the horizontal axis represents the ferrocyanic potassium concentration (concentrations 1 to 3). Moreover, a white circle shows the measurement data of the electrode tip 11A of an Example, and a black circle shows the measurement data of a comparative example. Table 2 below shows the electrode tip 11A, the coefficient of determination R 2 measurements for 11B. Table 2 also shows the coefficient of variation CV of measured values obtained by performing constant voltage measurement 10 times for 0.5 mM (concentration 2) of potassium ferrocyanide for each of the electrode tips 11A and 11B.

Figure 2007298325
Figure 2007298325

図9及び表2から明らかなように、実施例の電極チップ11Aでは、フェロシアン化カリウムの濃度と反応開始後60秒後の電流値は良好な相関関係を示した。一方、比較例の電極チップ11Bでは、フェロシアン化カリウムの濃度に対して電流のばらつきが大きく、良好な相関関係を示さなかった。具体的には、決定係数Rについては、電極チップ11Aでは0.99であるのに対して、電極チップ11Bでは0.81であり、実施例の方が比較例よりもフェロシアン化カリウムの濃度と電流値の間の相関がより強い。また、変動係数CVについては電極チップ11Bでは21.85%であるのに対して、電極チップ11Aでは2.85%であり、実施例の方が比較例よりもフェロシアン化カリウムの濃度が同一である場合の電流値のばらつきが大幅に小さい。 As is apparent from FIG. 9 and Table 2, in the electrode tip 11A of the example, the concentration of potassium ferrocyanide and the current value 60 seconds after the start of the reaction showed a good correlation. On the other hand, in the electrode tip 11B of the comparative example, the variation in current was large with respect to the concentration of potassium ferrocyanide, and a good correlation was not shown. Specifically, for the coefficient of determination R 2, whereas a 0.99 in electrode tip 11A, 0.81 in electrode tip 11B, and the concentration of potassium ferrocyanide than the comparative example better examples The correlation between current values is stronger. The coefficient of variation CV is 21.85% for the electrode tip 11B, and 2.85% for the electrode tip 11A, and the concentration of potassium ferrocyanide in the example is the same as that in the comparative example. In this case, the variation in current value is significantly small.

定電位測定中の目視によって観察される測定溶液の状態は、電極チップ11Aについては前述の図4Aで示した状態と同様であり、測定溶液は概ね液体保持層21内に保持されていた。一方、電極チップ11Bについては、前述の図4Bで示した状態と同様であり、測定溶液は電極上に不規則に拡がった。以上の結果より、実施例の電極チップ11Aにより高精度で安定した電気化学反応が可能であることが確認できた。   The state of the measurement solution observed visually during the constant potential measurement was the same as that shown in FIG. 4A for the electrode tip 11A, and the measurement solution was generally held in the liquid holding layer 21. On the other hand, the electrode tip 11B was the same as the state shown in FIG. 4B described above, and the measurement solution spread irregularly on the electrode. From the above results, it was confirmed that the electrode tip 11A of the example can perform a highly accurate and stable electrochemical reaction.

なお、実施例では反応の安定性を考慮してフェリシアン化カリウム−フェロシアン化カリウムの系を電子受容体として使用した。電子受容体としてP−ベンゾキノンを使用しても安定した反応が可能である。P−ベンゾキノンを使用すれば反応速度が速くなるので、測定の高速化を図ることができる。また、2,6−ジクロロフェノールインドフェノール、メチレンブルー、フェナジンメトサルフェート、β−ナフトキン、4−スルホン酸カリウム、フェロセン等が使用できる。   In the examples, in consideration of reaction stability, a potassium ferricyanide-potassium ferrocyanide system was used as an electron acceptor. A stable reaction is possible even when P-benzoquinone is used as an electron acceptor. If P-benzoquinone is used, the reaction rate is increased, so that the measurement can be speeded up. In addition, 2,6-dichlorophenolindophenol, methylene blue, phenazine methosulfate, β-naphthoquinone, potassium 4-sulfonate, ferrocene and the like can be used.

本発明の第1実施形態に係る電気化学測定チップ(電極チップ)を示す斜視図。1 is a perspective view showing an electrochemical measurement chip (electrode chip) according to a first embodiment of the present invention. 本発明の第1実施形態に係る電気化学測定チップを示す平面図。The top view which shows the electrochemical measurement chip | tip which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る電気化学測定チップを示す分解斜視図。1 is an exploded perspective view showing an electrochemical measurement chip according to a first embodiment of the present invention. 第1実施形態に係る電気化学測定チップにおける液体試料と電極の接触面積を示す模式的な斜視図。The typical perspective view which shows the contact area of the liquid sample and electrode in the electrochemical measuring chip which concerns on 1st Embodiment. 液体保持層を有しない電気化学測定チップにおける液体試料と電極の接触面積を示す模式的な斜視図。The typical perspective view which shows the contact area of the liquid sample and electrode in the electrochemical measurement chip | tip which does not have a liquid holding layer. 絶縁基体への導電パターンの形成を示す斜視図。The perspective view which shows formation of the conductive pattern to an insulation base | substrate. 絶縁基体への開口部材の取り付けを示す斜視図。The perspective view which shows attachment of the opening member to an insulation base | substrate. 開口部材を取り付けた絶縁基体を示す斜視図。The perspective view which shows the insulation base | substrate which attached the opening member. 本発明の第2実施形態に係る電気化学測定チップを示す斜視図。The perspective view which shows the electrochemical measurement chip | tip which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る電気化学測定チップを示す平面図。The top view which shows the electrochemical measurement chip | tip which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る電気化学測定チップを示す分解斜視図。The disassembled perspective view which shows the electrochemical measuring chip which concerns on 2nd Embodiment of this invention. フェロシアンカリウム濃度と電流値の関係を示すグラフ。The graph which shows the relationship between a ferrocyan potassium concentration and an electric current value. 従来の電気化学測定チップの一例を示す斜視図。The perspective view which shows an example of the conventional electrochemical measurement chip | tip.

符号の説明Explanation of symbols

11 電極チップ
12 絶縁基体
12a 上面
13 開口部材
13a 下面
13b 開口
14 作用電極
14a 電極本体部
14b 配線部
14c 接点端子部
15 対極
15a 電極本体部
15b 配線部
15c 接点端子部
16 参照電極
16a 電極本体部
16b 配線部
16c 接点端子部
21 液体保持層
22 領域
23 試料溶液
DESCRIPTION OF SYMBOLS 11 Electrode chip 12 Insulation base | substrate 12a Upper surface 13 Opening member 13a Lower surface 13b Opening 14 Working electrode 14a Electrode main-body part 14b Wiring part 14c Contact terminal part 15 Counter electrode 15a Electrode main-body part 15b Wiring part 15c Contact terminal part 16 Reference electrode 16a Electrode main-body part 16b Wiring portion 16c Contact terminal portion 21 Liquid holding layer 22 Region 23 Sample solution

Claims (12)

液体中の反応を電気化学的に検出するための電極チップであって、
絶縁基体と、
前記絶縁基体上に形成され、かつ前記絶縁基体上の一つの領域にその一部が配置されている作用電極と、
前記絶縁基体上に前記作用電極とは間隔を隔てて形成され、かつ前記絶縁基体上の前記領域にその一部が配置されている対極と、
前記液体を保持可能であり、前記領域において前記絶縁基体、前記作用電極、及び前記対極と直接接触して被覆する液体保持層とを備え、
前記作用電極及び前記対極のうち前記液体保持層と接触する部分がそれぞれ前記液体と電気化学的に作用する電極本体部として機能する、電極チップ。
An electrode chip for electrochemically detecting a reaction in a liquid,
An insulating substrate;
A working electrode formed on the insulating substrate and partially disposed in a region on the insulating substrate;
A counter electrode formed on the insulating substrate at a distance from the working electrode and partially disposed in the region on the insulating substrate;
A liquid holding layer capable of holding the liquid and covering the region in direct contact with the insulating substrate, the working electrode, and the counter electrode;
An electrode tip in which portions of the working electrode and the counter electrode that are in contact with the liquid holding layer function as electrode main bodies that electrochemically act on the liquid.
前記作用電極の前記電極本体部の面積は、前記対極の前記電極本体部の面積よりも小さい、請求項1に記載の電極チップ。   The electrode tip according to claim 1, wherein an area of the electrode main body portion of the working electrode is smaller than an area of the electrode main body portion of the counter electrode. 前記絶縁基体上に前記作用電極及び前記対極と間隔を隔てて形成され、かつ前記絶縁基体上の前記領域にその一部が配置されている参照電極をさらに備え、
前記参照電極のうち前記液体保持層と接触する部分が前記液体と電気化学的に作用する電極本体部として機能する、請求項1に記載の電極チップ。
A reference electrode formed on the insulating substrate at a distance from the working electrode and the counter electrode, and a part of the reference electrode being disposed in the region on the insulating substrate;
The electrode tip according to claim 1, wherein a portion of the reference electrode that contacts the liquid holding layer functions as an electrode main body portion that electrochemically acts on the liquid.
前記参照電極の前記電極本体部が銀−塩化銀からなる、請求項3に記載の電極チップ。   The electrode tip according to claim 3, wherein the electrode body portion of the reference electrode is made of silver-silver chloride. 前記作用電極及び前記対極の前記電極本体部が金、白金、パラジウム、又はカーボンのいずれかである、請求項1に記載の電極チップ。   The electrode tip according to claim 1, wherein the working electrode and the electrode main body portion of the counter electrode are gold, platinum, palladium, or carbon. 前記液体保持層は、前記液体が供給される前は乾燥状態で前記絶縁基体の前記表面に担持され、かつ前記液体が供給されると溶解してゲル化する高分子材料からなる、請求項1に記載の電極チップ。   The liquid holding layer is made of a polymer material that is supported on the surface of the insulating substrate in a dry state before the liquid is supplied and that dissolves and gels when the liquid is supplied. The electrode tip according to 1. 前記液体保持層は、前記液体に含まれる前記電極部に対して酸化還元体として機能する低分子量の分子は通過させるが、前記電極部に対して非特異吸着性を有する分子を含む高分子量の分子は通過させない分子網目構造を有する、請求項1に記載の電極チップ。   The liquid holding layer allows low molecular weight molecules that function as a redox substance to pass through the electrode part contained in the liquid, but has a high molecular weight containing molecules that have non-specific adsorptivity to the electrode part. The electrode tip according to claim 1, which has a molecular network structure that prevents molecules from passing therethrough. 前記液体保持層は親水性材料からなる、請求項1に記載の電極チップ。   The electrode tip according to claim 1, wherein the liquid holding layer is made of a hydrophilic material. 前記液体保持層はカルボキシメチルセルロースである、請求項1に記載の電極チップ。   The electrode tip according to claim 1, wherein the liquid holding layer is carboxymethylcellulose. 絶縁基体上の一つの領域にその一部がそれぞれ配置されるように、前記絶縁基体上に少なくとも作用電極と対極を含む電極を形成し、
前記絶縁基体上の前記領域に液体を保持可能な液体保持層を形成し、前記領域において前記絶縁基体及び前記電極に前記液体保持層を直接接触させて被覆する、電極チップの製造方法。
Forming an electrode including at least a working electrode and a counter electrode on the insulating substrate so that a part thereof is disposed in one region on the insulating substrate;
A method of manufacturing an electrode chip, wherein a liquid holding layer capable of holding a liquid is formed in the region on the insulating substrate, and the liquid holding layer is covered with the insulating substrate and the electrode in direct contact with the region.
前記領域と一致する形状を有し、かつ厚み方向に貫通する開口が形成された開口部材を準備し、
前記開口が前記領域に位置合わせされるように、前記開口部材を前記絶縁基体上に配置し、
高分子材料を溶媒に分散させた高分子分散液を前記開口の内部に注入し、かつ
前記開口の内部に注入された前記高分子分散液から前記溶媒を蒸発させて高分子分散液を乾燥させることにより前記液体保持層を形成する、請求項10に記載の電極チップの製造方法。
Preparing an opening member having a shape that matches the region and having an opening penetrating in the thickness direction;
Placing the opening member on the insulating substrate such that the opening is aligned with the region;
A polymer dispersion in which a polymer material is dispersed in a solvent is injected into the opening, and the solvent is evaporated from the polymer dispersion injected into the opening to dry the polymer dispersion. The method of manufacturing an electrode tip according to claim 10, wherein the liquid holding layer is formed.
前記高分子分散液の乾燥は、常温乾燥、真空乾燥、又は凍結乾燥のいずれかである請求項11に記載の電極チップの製造方法。   The method for producing an electrode chip according to claim 11, wherein the polymer dispersion is dried by room temperature drying, vacuum drying, or freeze drying.
JP2006125106A 2006-04-28 2006-04-28 Electrode chip and manufacturing method therefor Pending JP2007298325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125106A JP2007298325A (en) 2006-04-28 2006-04-28 Electrode chip and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125106A JP2007298325A (en) 2006-04-28 2006-04-28 Electrode chip and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007298325A true JP2007298325A (en) 2007-11-15

Family

ID=38767941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125106A Pending JP2007298325A (en) 2006-04-28 2006-04-28 Electrode chip and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007298325A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212631A (en) * 2014-05-01 2015-11-26 学校法人 日本歯科大学 Mastication ability measurement device and mastication ability measurement method
JP2016512895A (en) * 2013-03-28 2016-05-09 リードウェイ (エイチケイ) リミテッドLeadway (Hk) Limited Biosensor
JP2016512894A (en) * 2013-03-28 2016-05-09 リードウェイ (エイチケイ) リミテッドLeadway (Hk) Limited Biosensor and manufacturing method thereof
JP2019184390A (en) * 2018-04-09 2019-10-24 凸版印刷株式会社 Electrode chip for electrochemical sensor and method for manufacturing the same
CN114216942A (en) * 2021-11-23 2022-03-22 广东省科学院化工研究所 Method for depositing Prussian blue on flexible gold three-electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512895A (en) * 2013-03-28 2016-05-09 リードウェイ (エイチケイ) リミテッドLeadway (Hk) Limited Biosensor
JP2016512894A (en) * 2013-03-28 2016-05-09 リードウェイ (エイチケイ) リミテッドLeadway (Hk) Limited Biosensor and manufacturing method thereof
JP2015212631A (en) * 2014-05-01 2015-11-26 学校法人 日本歯科大学 Mastication ability measurement device and mastication ability measurement method
JP2019184390A (en) * 2018-04-09 2019-10-24 凸版印刷株式会社 Electrode chip for electrochemical sensor and method for manufacturing the same
JP7127339B2 (en) 2018-04-09 2022-08-30 凸版印刷株式会社 ELECTROCHEMICAL SENSOR ELECTRODE CHIP AND MANUFACTURING METHOD THEREOF
CN114216942A (en) * 2021-11-23 2022-03-22 广东省科学院化工研究所 Method for depositing Prussian blue on flexible gold three-electrode
CN114216942B (en) * 2021-11-23 2023-11-21 广东省科学院化工研究所 Method for depositing Prussian blue on flexible gold three-electrode

Similar Documents

Publication Publication Date Title
JP4592961B2 (en) Method for producing electrochemical biosensor specimen
Hu et al. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices
CN1205474C (en) Biosensor
JP3948627B2 (en) Electrochemical biosensor
TW548095B (en) Electrochemical electrode test piece and method for producing the same
JP3947356B2 (en) Microsphere-containing sensor
CA2407249C (en) Determination of sample volume adequacy in biosensor devices
JP2007507711A (en) Biosensor
CN101203748B (en) Protein-immobilized membrane, method for immobilization of protein, enzyme-immobilized electrode, and biosensor
RU2009115202A (en) BIOSENSOR SYSTEM HAVING AN INCREASED STABILITY AND HEMATOCRITAL EFFICIENCY
JP2005003679A (en) Electrochemical biosensor
JPH0658338B2 (en) Biosensor
AU2005245694A1 (en) Electrochemical assay device and related methods
KR20030096453A (en) Electrochemical Cell
JPWO2008047842A1 (en) Method for measuring hematocrit value of blood sample, method for measuring concentration of analyte in blood sample, sensor chip and sensor unit
CN107422011A (en) Enzyme electrode and the biology sensor for having used the enzyme electrode
WO2014149611A1 (en) Paper-based reference electrode and potentiometric ion sensing
KR20020088521A (en) Biosensors with porous chromatographic membranes and enhanced sampling capability
JP2010230369A (en) Electrode structure, manufacturing method of the same, and electrochemical sensor
JP2007298325A (en) Electrode chip and manufacturing method therefor
US20040035699A1 (en) Method and fabrication of the potentiometric chemical sensor and biosensor based on an uninsulated solid material
JP2007248281A (en) Electrode chip and its manufacturing method
US7638157B2 (en) Method of fabricating electrode assembly of sensor
JP2018517909A (en) Method and test element for electrochemical detection of at least one analyte in a body fluid sample
JP2006275819A (en) Biosensor