JP2007297942A - Ignition device for internal combustion engine - Google Patents

Ignition device for internal combustion engine Download PDF

Info

Publication number
JP2007297942A
JP2007297942A JP2006125166A JP2006125166A JP2007297942A JP 2007297942 A JP2007297942 A JP 2007297942A JP 2006125166 A JP2006125166 A JP 2006125166A JP 2006125166 A JP2006125166 A JP 2006125166A JP 2007297942 A JP2007297942 A JP 2007297942A
Authority
JP
Japan
Prior art keywords
combustion chamber
ignition device
internal combustion
combustion engine
nozzle hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125166A
Other languages
Japanese (ja)
Inventor
Koichi Mori
浩一 森
Shunichi Mitsuishi
俊一 三石
Masaaki Ashida
雅明 芦田
Satoshi Nishii
聡 西井
Hajime Yasuda
肇 安田
Koichi Inoue
浩一 井上
Masayoshi Nishizawa
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006125166A priority Critical patent/JP2007297942A/en
Publication of JP2007297942A publication Critical patent/JP2007297942A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve combustibility in a device igniting by torch shape flame blowing out of an auxiliary chamber. <P>SOLUTION: This device is provided with the auxiliary chamber 15 projecting toward lower side in a cylinder axis direction from a ceiling surface 14 of a combustion chamber 12 and communicating to the combustion chamber (main combustion chamber) 12 via at least one injection hole 11a, and a spark plug 8 having a center electrode 8a face to the auxiliary chamber 11 and discharging between the center electrode 8a and some section of an inner wall surface of the auxiliary chamber 15. Opening area of a main combustion chamber side opening part 11c of the injection hole 11a is formed greater than an auxiliary combustion chamber side opening part 11b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、副燃焼室を備える内燃機関に関する。   The present invention relates to an internal combustion engine including a sub-combustion chamber.

内燃機関の燃焼性を改善するために、燃焼室(主燃焼室)の他に、前記主燃焼室と噴孔を介して連通する副燃焼室を設け、前記副燃焼室内に点火栓を備えるものが知られている。   In order to improve the combustibility of an internal combustion engine, in addition to a combustion chamber (main combustion chamber), a sub-combustion chamber communicating with the main combustion chamber via an injection hole is provided, and an ignition plug is provided in the sub-combustion chamber It has been known.

例えば、特許文献1に記載の副燃焼室付きの内燃機関では、圧縮行程において、主燃焼室内の混合気が副燃焼室内に導入されて、圧縮上死点近傍で火花点火する。燃焼が開始すると副燃焼室内は急激に圧力が上昇して主燃焼室と副燃焼室とのあいだに圧力差が生じ、副燃焼室内の燃焼ガスが噴孔から主燃焼室内に向けてトーチ状火炎となって噴出する。   For example, in an internal combustion engine with a sub-combustion chamber described in Patent Document 1, an air-fuel mixture in the main combustion chamber is introduced into the sub-combustion chamber and sparks are ignited near the compression top dead center in the compression stroke. When combustion starts, the pressure in the sub-combustion chamber suddenly increases, creating a pressure difference between the main combustion chamber and the sub-combustion chamber, and the combustion gas in the sub-combustion chamber is directed to the main combustion chamber from the nozzle hole. And erupts.

このトーチ状火炎により主燃焼室内の混合気に点火することで、主燃焼室全体として火炎伝播速度は速まり、燃焼性が改善される。また、トーチ状火炎が燃焼室外周付近まで到達すれば、シリンダ壁面での冷却損失等により消炎するおそれのある燃焼室外周付近の混合気を確実に燃焼させることができるので、排気性能の向上やノッキング防止等の効果も得られる。
特開平8−284665号公報
By igniting the air-fuel mixture in the main combustion chamber with this torch-like flame, the flame propagation speed of the main combustion chamber as a whole is increased and the combustibility is improved. In addition, if the torch-like flame reaches near the outer periphery of the combustion chamber, the air-fuel mixture near the outer periphery of the combustion chamber, which may be extinguished due to cooling loss on the cylinder wall surface, can be surely burned. Effects such as knocking prevention can also be obtained.
JP-A-8-284665

ところが、特許文献1に記載されている副燃焼室の構成では、主燃焼室と副燃焼室とを連通する噴孔は、主燃焼室側開口部から副燃焼室側開口部まで流路断面が略一定である。このため、燃焼性をより向上させるためには、噴孔の開口面積を小さくすることで燃焼開始時に副燃焼室内の圧力をより上昇させて、トーチ状火炎をより勢いよくかつ遠くまで到達するように噴出させる必要がある。ところが、噴孔の開口面積を小さくすると、圧縮行程時に主燃焼室から副燃焼室へガスが流入しにくくなるため、燃焼開始時の副燃焼室内の圧力が上昇しにくくなり、燃焼性向上の効果が低減されてしまう。また、排気行程においても主燃焼室内のガスによる掃気がされにくくなるので、ガス交換性が悪化して副燃焼室内に既燃ガスが滞留しやすくなり、副燃焼室内の燃焼性が悪化するおそれがある。一方、噴孔の開口面積を大きくすると、副燃焼室内の既燃ガスは排出され易くなるが、燃焼時には副燃焼室内が十分に圧力上昇する前に燃焼ガスが主燃焼室に噴出してしまうので、副燃焼室内の圧力の上昇代が小さくなる。このためトーチ状火炎の到達距離が短くなり燃焼性向上の効果が小さくなる。   However, in the configuration of the sub-combustion chamber described in Patent Document 1, the nozzle hole communicating the main combustion chamber and the sub-combustion chamber has a flow passage cross section from the main combustion chamber side opening to the sub combustion chamber side opening. It is almost constant. For this reason, in order to further improve the combustibility, the pressure in the auxiliary combustion chamber is increased at the start of combustion by reducing the opening area of the nozzle hole so that the torch-like flame reaches more vigorously and far away. It is necessary to erupt. However, if the opening area of the nozzle hole is made smaller, it becomes difficult for gas to flow from the main combustion chamber to the sub-combustion chamber during the compression stroke. Will be reduced. In addition, since it is difficult for the gas in the main combustion chamber to be scavenged in the exhaust stroke, the gas exchange property is deteriorated, and the burned gas tends to stay in the sub-combustion chamber, which may deteriorate the combustibility in the sub-combustion chamber. is there. On the other hand, when the opening area of the nozzle hole is increased, the burned gas in the auxiliary combustion chamber is easily discharged, but during combustion, the combustion gas is injected into the main combustion chamber before the pressure in the auxiliary combustion chamber is sufficiently increased. The increase in the pressure in the auxiliary combustion chamber is reduced. For this reason, the reach distance of the torch-like flame is shortened, and the effect of improving the combustibility is reduced.

すなわち、特許文献1に記載されている副燃焼室の構成では、燃焼性向上の効果が小さい。そこで、本発明では燃焼性をより向上させることを目的とする。   That is, in the structure of the auxiliary combustion chamber described in Patent Document 1, the effect of improving combustibility is small. Accordingly, an object of the present invention is to further improve the combustibility.

本発明の内燃機関の点火装置は、主燃焼室の天井面からシリンダ軸方向下方に向けて突出し、少なくとも一以上の噴孔を介して前記燃焼室と連通する副燃焼室と、中心電極が前記副燃焼室に臨み、かつ前記中心電極と前記副燃焼室の内壁面のいずれかの部分との間で放電する点火栓と、を備え、前記噴孔の燃焼室側開口部を副燃焼室側開口部より開口面積を大きく形成する。   The ignition device for an internal combustion engine of the present invention projects from the ceiling surface of the main combustion chamber downward in the cylinder axial direction, communicates with the combustion chamber through at least one or more injection holes, and a center electrode includes the center electrode. An ignition plug that faces the sub-combustion chamber and discharges between the central electrode and any part of the inner wall surface of the sub-combustion chamber, and the combustion chamber side opening of the nozzle hole is on the side of the sub-combustion chamber The opening area is formed larger than the opening.

本発明によれば、主燃焼室側の方が副燃焼室側よりも開口面積が大きいので、主燃焼室から副燃焼室へガスが流入し易く、かつ、燃焼開始後は副燃焼室内の圧力が上昇するまで燃焼ガスが噴出しにくくなる。これにより、副燃焼室内の圧力上昇代が大きくなり、トーチ状の火炎の到達距離が長くなるので、燃焼性をより向上させることができる。   According to the present invention, since the opening area on the main combustion chamber side is larger than that on the sub-combustion chamber side, gas easily flows from the main combustion chamber to the sub-combustion chamber, and the pressure in the sub-combustion chamber after starting combustion It becomes difficult for the combustion gas to be ejected until the temperature rises. Thereby, the pressure increase margin in the sub-combustion chamber is increased, and the reach distance of the torch-like flame is increased, so that the combustibility can be further improved.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態を適用する内燃機関の概略構成図である。1はエンジン本体(以下、単に「エンジン」という)、2は吸気通路、3は排気通路、4は吸気バルブ、5は排気バルブ、6は吸気カムシャフト、7は排気カムシャフト、8は点火栓、9は燃焼噴射弁、10はピストン、11はドーム部、12は燃焼室(主燃焼室)、13はスワールコントロールバルブ(以下、SCVという)、15はドーム部11の内部に形成される副燃焼室である。なお、エンジン1は気筒当り吸気バルブ4、排気バルブ5をそれぞれ2つ備えるものとする。したがって、吸気通路2、排気通路3は、それぞれ途中で分岐、合流している。   FIG. 1 is a schematic configuration diagram of an internal combustion engine to which the present embodiment is applied. 1 is an engine body (hereinafter simply referred to as “engine”), 2 is an intake passage, 3 is an exhaust passage, 4 is an intake valve, 5 is an exhaust valve, 6 is an intake camshaft, 7 is an exhaust camshaft, and 8 is a spark plug , 9 is a combustion injection valve, 10 is a piston, 11 is a dome portion, 12 is a combustion chamber (main combustion chamber), 13 is a swirl control valve (hereinafter referred to as SCV), and 15 is a sub-portion formed inside the dome portion 11. It is a combustion chamber. The engine 1 is provided with two intake valves 4 and two exhaust valves 5 per cylinder. Therefore, the intake passage 2 and the exhaust passage 3 are branched and merged on the way.

上述したような構成のエンジン1では、例えば、排気行程中に燃焼噴射弁9から吸気通路2に向けて燃焼が噴射され、この燃料は吸気行程中に空気と混合しながら燃焼室12内に導入され、混合気を形成する。燃焼室12の混合気は、圧縮行程中に噴孔11aを介してドーム部11の内部の副燃焼室15に導入される。そして、ピストン10が圧縮上死点近傍に到達したときに点火栓8によって火花点火されて燃焼を開始する。燃焼開始とともに、燃焼ガスの膨張によって副燃焼室15は圧力が上昇し、燃焼ガスが噴孔11aから主燃焼室12に向けてトーチ状の火炎となって噴出する。排気行程では、一般的なエンジンと同様にピストン10が上昇がすることによって排気通路へ排気が排出される。このとき、ドーム部11内部の既燃ガスも噴孔11aを介して排出される。ここで、ドーム部11内の副燃焼室15での燃焼を初期燃焼、主燃焼室12内での燃焼を主燃焼と呼ぶこととする。   In the engine 1 configured as described above, for example, combustion is injected from the combustion injection valve 9 toward the intake passage 2 during the exhaust stroke, and this fuel is introduced into the combustion chamber 12 while being mixed with air during the intake stroke. To form an air-fuel mixture. The air-fuel mixture in the combustion chamber 12 is introduced into the sub-combustion chamber 15 inside the dome portion 11 through the nozzle hole 11a during the compression stroke. When the piston 10 reaches the vicinity of the compression top dead center, the spark plug 8 sparks and starts combustion. As the combustion starts, the pressure in the auxiliary combustion chamber 15 increases due to the expansion of the combustion gas, and the combustion gas is ejected as a torch-like flame from the nozzle hole 11a toward the main combustion chamber 12. In the exhaust stroke, the exhaust is discharged into the exhaust passage when the piston 10 rises as in a general engine. At this time, the burned gas inside the dome portion 11 is also discharged through the nozzle hole 11a. Here, the combustion in the sub-combustion chamber 15 in the dome portion 11 is referred to as initial combustion, and the combustion in the main combustion chamber 12 is referred to as main combustion.

SCV13は、分岐した吸気通路2のいずれか一方に設けられ、流路断面積を調整することができるよう構成されている。その作動は図示しないコントロールユニットによって運転条件に応じて制御される。例えば、冷機始動時のように燃焼が安定しない運転条件や、低負荷運転時のように燃焼速度が低い運転条件下において、吸気通路2の流路断面積を絞ることでSCV13を設けない吸気通路2と流量差を設け、これにより主燃焼室12内部にスワール流動を生成させる。   The SCV 13 is provided in any one of the branched intake passages 2 and is configured to be able to adjust the flow path cross-sectional area. The operation is controlled according to operating conditions by a control unit (not shown). For example, an intake passage in which the SCV 13 is not provided by reducing the flow passage cross-sectional area of the intake passage 2 under an operating condition where combustion is not stable as in cold start or an operating condition where the combustion speed is low as in low load operation. 2, and a swirl flow is generated inside the main combustion chamber 12.

なお、SCV13に替えて、タンブル流動を生成させるためのタンブルコントロールバルブを備えるようにしてもよい。   Note that a tumble control valve for generating a tumble flow may be provided instead of the SCV 13.

次に、ドーム部11について説明する。   Next, the dome part 11 will be described.

図2は図1のドーム部11周辺を拡大した図である。図に示すように、ドーム部11は点火栓8の燃焼室天井面14からの突出部分を覆うように形成されており、主燃焼室12とドーム部11内部の副燃焼室15とを連通する噴孔11aを複数備える。また、ドーム部11は接地電極としての役割も果たす。噴孔11aは、トーチ状の火炎が図中に矢印で示したように燃焼室12内へ放射状に広がるように、かつ点火栓8の中心電極8aからの距離が略同等となるように配置する。なお、各噴孔11aの開口面積はすべて略同等とする。なお、点火栓8はいわゆる側方電極を備えず、後述するようにドーム部11内壁との間で放電を行うものである。   FIG. 2 is an enlarged view of the periphery of the dome portion 11 of FIG. As shown in the figure, the dome portion 11 is formed so as to cover the protruding portion of the spark plug 8 from the combustion chamber ceiling surface 14, and communicates the main combustion chamber 12 with the auxiliary combustion chamber 15 inside the dome portion 11. A plurality of nozzle holes 11a are provided. The dome portion 11 also serves as a ground electrode. The nozzle hole 11a is arranged so that the torch-shaped flame spreads radially into the combustion chamber 12 as indicated by the arrow in the figure, and the distance from the center electrode 8a of the spark plug 8 is substantially equal. . In addition, all the opening areas of each nozzle hole 11a are made substantially equal. The spark plug 8 does not include a so-called side electrode and discharges between the inner wall of the dome portion 11 as will be described later.

このように点火栓8を覆うようにドーム部11を形成することによって、スワール流動を生成した場合にも、点火栓8の中心電極8a近傍はスワール流動の影響を受けにくくなる。これにより、点火時に火炎がスワール流動によって吹き消されることを防止し、主燃焼の安定化を図ることができる。なお、噴孔11aは必ずしも複数設ける必要はない。   By forming the dome portion 11 so as to cover the spark plug 8 in this way, even when a swirl flow is generated, the vicinity of the center electrode 8a of the spark plug 8 is less affected by the swirl flow. Thereby, it is possible to prevent the flame from being blown off by the swirl flow at the time of ignition, and to stabilize the main combustion. Note that it is not always necessary to provide a plurality of nozzle holes 11a.

図3はドーム部11の別の例を示す図である。基本的には図2と同様の構成であるが、ドーム部11内壁の、中心電極8aの軸方向延長線上の部分に突起部16を設ける。突起部16はドーム部11内壁から突出しているので、中心電極8aから放電した場合に接地電極となる。このように接地電極として突起部16を設けることで、火花をより安定して発生させることが可能となり、主燃焼のさらなる安定化を図ることができる。   FIG. 3 is a diagram showing another example of the dome portion 11. The configuration is basically the same as that in FIG. 2, but the protrusion 16 is provided on the inner wall of the dome 11 on the axial extension line of the center electrode 8a. Since the protruding portion 16 protrudes from the inner wall of the dome portion 11, it becomes a ground electrode when discharged from the center electrode 8a. Thus, by providing the projection 16 as the ground electrode, it is possible to generate a spark more stably, and further stabilization of the main combustion can be achieved.

図4はドーム部11のさらに別の例を示す図である。噴孔11aの配置は図2、図3と同様であるが、複数の噴孔11aのうちの一部を、開口面積の異なる噴孔11aとする点が異なる。例えば、ドーム部11の下端側に配置する噴孔11aの開口面積を、それより上部に配置する噴孔11aの開口面積よりも大きくする。   FIG. 4 is a view showing still another example of the dome portion 11. The arrangement of the nozzle holes 11a is the same as that shown in FIGS. 2 and 3, except that some of the plurality of nozzle holes 11a are used as the nozzle holes 11a having different opening areas. For example, the opening area of the nozzle hole 11a arranged on the lower end side of the dome portion 11 is made larger than the opening area of the nozzle hole 11a arranged on the upper side.

このような構成にすると、例えば排気行程において、ピストン10の上昇に伴って燃焼室12からドーム11内部へ既燃ガスが流入する際に、開口面積の大きな噴孔11aから流入しやすくなる。そして、開口面積の大きな噴孔11aから多くのガスが流入してドーム11内部の圧力が上昇すると、開口面積の小さな噴孔11aからはドーム11内部に流入しにくくなり、ドーム11内部と燃焼室12との圧力差によって、ドーム11内部から燃焼室12へガスが流出することとなる。このように、開口面積の大きな噴孔11aから流入して開口面積の小さい噴孔11aから流出するというガスの流れが生成されることでドーム11内と燃焼室12とのガス交換性が向上するので、ドーム11内に滞留する既燃ガス量を抑制することができ、より安定した初期火炎を得ることができる。   With such a configuration, for example, in the exhaust stroke, when the burned gas flows from the combustion chamber 12 into the dome 11 as the piston 10 moves up, it easily flows from the nozzle hole 11a having a large opening area. When a large amount of gas flows in from the nozzle hole 11a having a large opening area and the pressure inside the dome 11 rises, it becomes difficult to flow into the dome 11 from the nozzle hole 11a having a small opening area. Due to the pressure difference from the gas 12, the gas flows out from the inside of the dome 11 to the combustion chamber 12. Thus, the gas exchange property between the inside of the dome 11 and the combustion chamber 12 is improved by generating a gas flow that flows in from the nozzle hole 11a having a large opening area and flows out from the nozzle hole 11a having a small opening area. Therefore, the amount of burned gas staying in the dome 11 can be suppressed, and a more stable initial flame can be obtained.

なお、開口面積の異なる噴孔11aの分布のさせ方は上記のものに限らない。   The method of distributing the nozzle holes 11a having different opening areas is not limited to the above.

図5はドーム部11の別の例を示す図である。図5において、点火栓8を含み気筒列方向に延びる断面で燃焼室12を二分し、一方を吸気弁6側、他方を排気弁7側とする。噴孔11aは火炎が前記吸気弁6側方向に噴出するように設ける。燃焼室12内の温度は、吸気弁6側の方が排気弁7側よりも相対的に低い。これは、排気弁7が排気通路3から排出される燃焼後の高温のガスによって暖められるのに対して、吸気弁6は膨張行程で高温のガスに曝された後に、吸気行程において吸気通路2から流入する吸入空気によって冷却されるためである。このような燃焼室12内の温度分布により、火炎の伝播速度にも差が生じ、吸気弁6側は排気弁7側と比較して相対的に燃焼速度が遅くなる。そこで、図5に示すようにトーチ状の火炎を吸気弁6側に向けて噴出させることにより、吸気弁6側の燃焼速度が上昇して燃焼室12内の燃焼速度の勾配が低減され、燃焼の安定性が向上する。なお、図5には噴孔11aを一つだけ示したが、トーチ状の火炎が点火栓8よりも吸気弁6側に向けて噴出するのであれば、複数の噴孔11aを設けても構わない。   FIG. 5 is a diagram showing another example of the dome portion 11. In FIG. 5, the combustion chamber 12 is divided into two parts by a cross section including the ignition plug 8 and extending in the cylinder row direction, and one is an intake valve 6 side and the other is an exhaust valve 7 side. The nozzle hole 11a is provided so that the flame is ejected toward the intake valve 6 side. The temperature in the combustion chamber 12 is relatively lower on the intake valve 6 side than on the exhaust valve 7 side. This is because the exhaust valve 7 is warmed by the high-temperature gas after combustion discharged from the exhaust passage 3, whereas the intake valve 6 is exposed to the high-temperature gas in the expansion stroke and then the intake passage 2 in the intake stroke. This is because the air is cooled by the intake air flowing in from the air. Due to the temperature distribution in the combustion chamber 12, there is a difference in the propagation speed of the flame, and the combustion speed on the intake valve 6 side is relatively slower than that on the exhaust valve 7 side. Therefore, as shown in FIG. 5, the torch-like flame is ejected toward the intake valve 6, thereby increasing the combustion speed on the intake valve 6 side and reducing the gradient of the combustion speed in the combustion chamber 12. Improves stability. Although only one injection hole 11a is shown in FIG. 5, a plurality of injection holes 11a may be provided if a torch-like flame is emitted toward the intake valve 6 side from the spark plug 8. Absent.

図6はドーム部11の別の例を示す図である。ここでは、トーチ状の火炎が燃焼室天井面14付近を燃焼室天井面14の傾斜に沿って噴出するように噴孔11aを設ける。一般的な火花点火によって燃焼室12の中央部から火炎伝播させる場合には、燃焼室天井面14付近での冷却損失により、伝播途中で火炎が消炎するおそれがある。また、ピストン10の冠面でも同様に冷却損失によって火炎が消炎するおそれがある。このように火炎が伝播途中で消炎すると、燃焼室12の外周近傍では混合気が燃焼せず、未燃HCを排出する原因となる。ところが、図6に示すようにトーチ状の火炎を燃焼室天井面14に沿うように噴出させると、燃焼室12の外周近傍まで火炎が到達するので、未燃HCの排出を抑制することができる。   FIG. 6 is a diagram showing another example of the dome portion 11. Here, the nozzle hole 11 a is provided so that the torch-like flame is ejected in the vicinity of the combustion chamber ceiling surface 14 along the inclination of the combustion chamber ceiling surface 14. When the flame is propagated from the central portion of the combustion chamber 12 by general spark ignition, there is a risk that the flame is extinguished during the propagation due to a cooling loss near the ceiling surface 14 of the combustion chamber. Further, the flame may be extinguished on the crown surface of the piston 10 due to the cooling loss. If the flame extinguishes in the middle of propagation in this way, the air-fuel mixture does not burn near the outer periphery of the combustion chamber 12 and causes unburned HC to be discharged. However, as shown in FIG. 6, when the torch-like flame is ejected along the combustion chamber ceiling surface 14, the flame reaches the vicinity of the outer periphery of the combustion chamber 12, so that the discharge of unburned HC can be suppressed. .

次に、上述したドーム部11に設ける噴孔11aについて図を用いて説明する。   Next, the nozzle hole 11a provided in the dome part 11 mentioned above is demonstrated using figures.

図7は噴孔11aの一例を示す図であり、ドーム部11の噴孔11a部分の断面図である。図7に示すように、噴孔11aはドーム部11内面から外面に向けて流路断面積が徐々に拡大する形状、いわゆるオリフィス状になっている。すなわち、燃焼室12側の開口部11cが副燃焼室15側の開口部11bよりも大きく、両開口部が円錐面でつながっている。   FIG. 7 is a view showing an example of the nozzle hole 11 a and is a cross-sectional view of the nozzle hole 11 a portion of the dome portion 11. As shown in FIG. 7, the nozzle hole 11 a has a so-called orifice shape in which the flow path cross-sectional area gradually increases from the inner surface to the outer surface of the dome portion 11. That is, the opening 11c on the combustion chamber 12 side is larger than the opening 11b on the sub-combustion chamber 15 side, and both the openings are connected by a conical surface.

なお、本実施形態では、噴孔11aの流路断面形状は略円形とするが、これに限られるわけではない。   In addition, in this embodiment, although the flow-path cross-sectional shape of the nozzle hole 11a is substantially circular, it is not necessarily restricted to this.

噴孔11aを上記のようなオリフィス状にすると、混合気が燃焼室12側から副燃焼室15方向へ流れる際には、噴孔11a通過時の損失係数が小さくなる。したがって、混合気が副燃焼室15に速やかに流入する。そして、副燃焼室15側から燃焼室12方向へ流れる際にも、より速やかに流れることとなる。したがって、エンジン1の圧縮行程時の燃焼室12と副燃焼室15との間のガス交換性が向上する。   When the nozzle hole 11a is formed in the above-described orifice shape, when the air-fuel mixture flows from the combustion chamber 12 side toward the auxiliary combustion chamber 15, the loss coefficient when passing through the nozzle hole 11a is reduced. Therefore, the air-fuel mixture quickly flows into the auxiliary combustion chamber 15. And when it flows to the combustion chamber 12 direction from the subcombustion chamber 15 side, it will flow more rapidly. Therefore, the gas exchange property between the combustion chamber 12 and the auxiliary combustion chamber 15 during the compression stroke of the engine 1 is improved.

また、副燃焼室15側の開口部11bの開口面積が相対的に小さいので、燃焼開始直後の圧力が十分に高くなっていない状態では、噴孔11aから燃焼ガスが噴出し難い。したがって燃焼室15内部の圧力が上昇し易くなり、圧力が高まったときに燃焼ガスがトーチ状の火炎となって勢い良く噴出することとなる。   Further, since the opening area of the opening 11b on the side of the auxiliary combustion chamber 15 is relatively small, it is difficult for the combustion gas to be ejected from the nozzle hole 11a when the pressure immediately after the start of combustion is not sufficiently high. Accordingly, the pressure inside the combustion chamber 15 is likely to rise, and when the pressure increases, the combustion gas becomes a torch-like flame and is ejected vigorously.

これらにより、副燃焼室15内の燃焼及び燃焼室12内での主燃焼を安定化させ、かつ燃焼速度を上昇させることができる。また、主燃焼が安定することにより、点火時期を遅角量を大きくすることができるので、エンジン1の燃焼性を確保しつつ、冷機始動時等の後燃え効果によるエミッションの排出を大幅に削減することができる。   Thus, the combustion in the auxiliary combustion chamber 15 and the main combustion in the combustion chamber 12 can be stabilized and the combustion speed can be increased. In addition, because the ignition timing can be increased by stabilizing the main combustion, emissions from the afterburning effect such as when the engine is started can be significantly reduced while ensuring the combustion of the engine 1. can do.

図8は噴孔11aの別の例を示す図である。図に示すように、燃焼室12側の開口部11c方が副燃焼室15側の開口部11bより開口面積が大きく、かつ、中間に流路断面を燃焼室側の開口部11bよりも絞った絞り部分20を備える。副燃焼室15側の開口部11bから絞り部分20の副燃焼室15側の端部まで、及び燃焼室12側の開口部から絞り部分20の燃焼室12側の端部までは、それぞれ絞り部分20に向けて流路が徐々に絞られている。   FIG. 8 is a view showing another example of the nozzle hole 11a. As shown in the figure, the opening 11c on the combustion chamber 12 side has a larger opening area than the opening 11b on the sub-combustion chamber 15 side, and the flow passage section is narrowed in the middle than the opening 11b on the combustion chamber side. A diaphragm portion 20 is provided. From the opening portion 11b on the auxiliary combustion chamber 15 side to the end portion on the auxiliary combustion chamber 15 side of the throttle portion 20, and from the opening portion on the combustion chamber 12 side to the end portion on the combustion chamber 12 side of the throttle portion 20, respectively. The flow path is gradually narrowed toward 20.

このような形状にすると、絞り部分20による整流効果が得られるので、噴孔11aから噴出する火炎を図7に示した形状と比較してさらに安定化させることができる。   With such a shape, a rectifying effect by the throttle portion 20 can be obtained, so that the flame ejected from the nozzle hole 11a can be further stabilized as compared with the shape shown in FIG.

図9(a)は噴孔11aの別の例を示す図である。図に示すように、ドーム部11内面から外面に向けて、所定深さだけ流路断面積一定のザグリ穴21を設け、ザグリ穴21の底面21aとドーム部11外面との間を、図7と同様に徐々に流路断面積が拡がる構成とする。なお、図9(a)では、ザグリ穴21の径と燃焼室12側開口部の径が略同等となっているが、これに限られるわけではない。   Fig.9 (a) is a figure which shows another example of the nozzle hole 11a. As shown in the figure, a counterbore hole 21 having a constant flow path cross-sectional area by a predetermined depth is provided from the inner surface to the outer surface of the dome portion 11, and the space between the bottom surface 21 a of the counterbore hole 21 and the outer surface of the dome portion 11 is changed to In the same manner as the above, the cross-sectional area of the flow path gradually increases. In FIG. 9A, the diameter of the counterbore hole 21 and the diameter of the opening on the combustion chamber 12 side are substantially the same, but the present invention is not limited to this.

このような形状にすると、図9(b)に示すように、着火直後の燃焼ガスの一部はザグリ穴21の底面21aに衝突して、噴孔11aの中心方向に旋回する。この旋回流によって噴孔11aは塞がれ、噴孔11aからの燃焼ガスの噴出が妨げられる。したがって、図7、図8に示した形状と比較してドーム部11内の副燃焼室15の圧力をより上昇させることができ、圧力が高まった状態で噴孔11aから燃焼ガスをトーチ状の火炎として噴出させることができる。これにより、噴孔11aから噴出する火炎をさらに安定化させ、かつ遠くまで飛散させることが可能となるので、主燃焼のさらなる安定化、及び燃焼速度の上昇を図ることができる。   If it makes such a shape, as shown in FIG.9 (b), a part of combustion gas immediately after ignition will collide with the bottom face 21a of the counterbore hole 21, and will turn in the center direction of the nozzle hole 11a. The swirl flow blocks the nozzle hole 11a and prevents the combustion gas from being ejected from the nozzle hole 11a. Therefore, compared with the shape shown in FIGS. 7 and 8, the pressure of the auxiliary combustion chamber 15 in the dome portion 11 can be further increased, and the combustion gas is torch-shaped from the nozzle hole 11a in a state where the pressure is increased. Can be ejected as a flame. As a result, it is possible to further stabilize the flame ejected from the nozzle hole 11a and to disperse it far away, so that it is possible to further stabilize the main combustion and increase the combustion speed.

図10は、噴孔11aの別の例を示す図である。基本的には図9に示した噴孔11aと同様であるが、燃焼室12側からザグリ穴21の底面21aまでの間を漏斗状にしたものである。   FIG. 10 is a diagram illustrating another example of the nozzle hole 11a. Basically, it is the same as the injection hole 11a shown in FIG. 9, but the portion from the combustion chamber 12 side to the bottom surface 21a of the counterbore hole 21 is formed in a funnel shape.

このような形状にすると、図9に示した噴孔11aと同様の効果に加え、さらに、火炎が噴出する際に、火炎が噴孔11a壁面から滑らかに剥離するようになり、火炎をより遠くまで飛散させることが可能となるので、主燃焼のさらなる安定化、及び燃焼速度の上昇を図ることができる。   With such a shape, in addition to the same effect as the nozzle hole 11a shown in FIG. 9, when the flame is ejected, the flame smoothly separates from the wall surface of the nozzle hole 11a, and the flame is further distant. Therefore, the main combustion can be further stabilized and the combustion speed can be increased.

図7から図10に示した噴孔11aは、図2から図6に示したドーム部11のいずれと組み合わせてもよい。   The injection hole 11a shown in FIGS. 7 to 10 may be combined with any of the dome parts 11 shown in FIGS.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

本実施形態を適用するエンジンの概略構成図である。It is a schematic block diagram of the engine to which this embodiment is applied. ドーム部の一例を表す図である。It is a figure showing an example of a dome part. ドーム部の一例を表す図である。It is a figure showing an example of a dome part. ドーム部の一例を表す図である。It is a figure showing an example of a dome part. ドーム部の一例を表す図である。It is a figure showing an example of a dome part. ドーム部の一例を表す図である。It is a figure showing an example of a dome part. 噴孔の一例を表す図である。It is a figure showing an example of a nozzle hole. 噴孔の一例を表す図である。It is a figure showing an example of a nozzle hole. 噴孔の一例を表す図である。It is a figure showing an example of a nozzle hole. 噴孔の一例を表す図である。It is a figure showing an example of a nozzle hole.

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
3 排気通路
4 吸気弁
5 排気弁
6 吸気カムシャフト
7 排気カムシャフト
8 点火栓
9 燃料噴射弁
10 ピストン
11 ドーム部
12 燃焼室
13 スワールコントロールバルブ(SCV)
14 燃焼室天井面
DESCRIPTION OF SYMBOLS 1 Engine 2 Intake passage 3 Exhaust passage 4 Intake valve 5 Exhaust valve 6 Intake camshaft 7 Exhaust camshaft 8 Spark plug 9 Fuel injection valve 10 Piston 11 Dome part 12 Combustion chamber 13 Swirl control valve (SCV)
14 Combustion chamber ceiling

Claims (12)

主燃焼室の天井面からシリンダ軸方向下方に向けて突出し、少なくとも一以上の噴孔を介して前記燃焼室と連通する副燃焼室と、
中心電極が前記副燃焼室に臨み、かつ前記中心電極と前記副燃焼室の内壁面のいずれかの部分との間で放電する点火栓と、
を備え、
前記噴孔の主燃焼室側開口部を副燃焼室側開口部より開口面積を大きく形成することを特徴とする内燃機関の点火装置。
A sub-combustion chamber that projects downward from the ceiling surface of the main combustion chamber in the cylinder axial direction and communicates with the combustion chamber via at least one nozzle hole;
A spark plug that discharges between the center electrode and any part of the inner wall surface of the sub-combustion chamber, with the center electrode facing the sub-combustion chamber;
With
An ignition device for an internal combustion engine, wherein an opening area of a main combustion chamber side opening of the nozzle hole is formed larger than that of an auxiliary combustion chamber side opening.
前記副燃焼室の内壁面に突起部を設けることを特徴とする請求項1に記載の内燃機関の点火装置。   2. The ignition device for an internal combustion engine according to claim 1, wherein a protrusion is provided on an inner wall surface of the auxiliary combustion chamber. 前記突起部は、前記中心電極の軸方向の前記副燃焼室内壁面に設けることを特徴とする請求項2に記載の内燃機関の点火装置。   The ignition device for an internal combustion engine according to claim 2, wherein the protrusion is provided on a wall surface of the auxiliary combustion chamber in the axial direction of the center electrode. 前記噴孔を複数設け、かつ、すべての噴孔を前記中心電極と前記副燃焼室側開口部の図心との間の距離が略同等となるように配置することを特徴とする請求項1から3のいずれか一つに記載の内燃機関の点火装置。   2. A plurality of the nozzle holes are provided, and all the nozzle holes are arranged so that distances between the center electrode and the centroid of the auxiliary combustion chamber side opening are substantially equal. The ignition device for an internal combustion engine according to any one of claims 1 to 3. 前記噴孔を複数設け、前記複数の噴孔のうちの一部はその他の噴孔と開口面積を異ならせることを特徴とする請求項1から4のいずれか一つに記載の内燃機関の点火装置。   5. The internal combustion engine ignition according to claim 1, wherein a plurality of the nozzle holes are provided, and a part of the nozzle holes has an opening area different from that of the other nozzle holes. apparatus. 前記噴孔を、前記主燃焼室の吸気弁側部分と連通するように設けたことを特徴とする請求項1から5のいずれか一つに記載の内燃機関の点火装置。   The ignition device for an internal combustion engine according to any one of claims 1 to 5, wherein the nozzle hole is provided so as to communicate with an intake valve side portion of the main combustion chamber. 前記噴孔は、トーチ状の火炎が前記主燃焼室天井面付近を前記主燃焼室天井面の傾斜に沿って噴出するように開口することを特徴とする請求項1から6のいずれか一つに記載の内燃機関の点火装置。   The said nozzle hole is opened so that a torch-like flame may be jetted in the vicinity of the main combustion chamber ceiling surface along the inclination of the main combustion chamber ceiling surface. An ignition device for an internal combustion engine according to 1. 前記噴孔は、前記副燃焼室側から主燃焼室側に向けて開口面積が徐々に大きくなることを特徴とする請求項1から7のいずれか一つに記載の内燃機関の点火装置。   The ignition device for an internal combustion engine according to any one of claims 1 to 7, wherein an opening area of the nozzle hole gradually increases from the sub-combustion chamber side to the main combustion chamber side. 前記噴孔は、前記副燃焼室側から主燃焼室側に向けて漏斗状に形成されることを特徴とする請求項8に記載の内燃機関の点火装置。   The ignition device for an internal combustion engine according to claim 8, wherein the injection hole is formed in a funnel shape from the sub-combustion chamber side toward the main combustion chamber side. 前記噴孔は、前記副燃焼室側と主燃焼室側との間に絞り部分を有することを特徴とする請求項8又は9に記載の内燃機関の点火装置。   The ignition device for an internal combustion engine according to claim 8 or 9, wherein the injection hole has a throttle portion between the sub-combustion chamber side and the main combustion chamber side. 前記絞り部分の流路断面積は前記副燃焼室側の開口面積よりも小さいことを特徴とする請求項10に記載の内燃機関の点火装置。   The ignition device for an internal combustion engine according to claim 10, wherein a flow passage cross-sectional area of the throttle portion is smaller than an opening area on the side of the auxiliary combustion chamber. 前記噴孔は、前記副燃焼室側開口部の周囲に所定深さの座繰りを有することを特徴とする請求項8から11のいずれか一つに記載の内燃機関の点火装置。   The ignition device for an internal combustion engine according to any one of claims 8 to 11, wherein the nozzle hole has a countersink of a predetermined depth around the opening portion on the side of the auxiliary combustion chamber.
JP2006125166A 2006-04-28 2006-04-28 Ignition device for internal combustion engine Pending JP2007297942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125166A JP2007297942A (en) 2006-04-28 2006-04-28 Ignition device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125166A JP2007297942A (en) 2006-04-28 2006-04-28 Ignition device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007297942A true JP2007297942A (en) 2007-11-15

Family

ID=38767646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125166A Pending JP2007297942A (en) 2006-04-28 2006-04-28 Ignition device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007297942A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137083A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Auxiliary chamber-type gas engine
JP2012149655A (en) * 2012-05-18 2012-08-09 Osaka Gas Co Ltd Engine, and engine ignition plug
JP2012149654A (en) * 2012-05-18 2012-08-09 Osaka Gas Co Ltd Engine, and engine ignition plug
WO2012159756A1 (en) * 2011-05-25 2012-11-29 Mtu Friedrichshafen Gmbh Spark plug, gas engine
WO2014046185A1 (en) * 2012-09-20 2014-03-27 三菱重工業株式会社 Prechamber gas engine
WO2014094808A1 (en) * 2012-12-21 2014-06-26 Caterpillar Energy Solutions Gmbh Ignition plug tip of an internal combustion engine
JP2014129788A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Precombustion chamber type gas engine
EP3361068A1 (en) * 2017-02-13 2018-08-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
FR3088678A1 (en) * 2018-11-15 2020-05-22 Renault S.A.S. OPTIMIZATION OF DIFFUSION CHANNELS OF PRE-CHAMBER OF COMBUSTION OF ENGINE
US11261778B2 (en) 2018-10-11 2022-03-01 Scania Cv Ab Pre-chamber arrangement for a gas engine and a gas engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012137083A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Auxiliary chamber-type gas engine
WO2012159756A1 (en) * 2011-05-25 2012-11-29 Mtu Friedrichshafen Gmbh Spark plug, gas engine
JP2012149655A (en) * 2012-05-18 2012-08-09 Osaka Gas Co Ltd Engine, and engine ignition plug
JP2012149654A (en) * 2012-05-18 2012-08-09 Osaka Gas Co Ltd Engine, and engine ignition plug
US10202891B2 (en) 2012-09-20 2019-02-12 Mitsubishi Heavy Industries, Ltd. Precombustion chamber gas engine
WO2014046185A1 (en) * 2012-09-20 2014-03-27 三菱重工業株式会社 Prechamber gas engine
WO2014094808A1 (en) * 2012-12-21 2014-06-26 Caterpillar Energy Solutions Gmbh Ignition plug tip of an internal combustion engine
EP2935865B1 (en) * 2012-12-21 2020-06-24 Caterpillar Energy Solutions GmbH Ignition plug tip of an internal combustion engine
JP2014129788A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Precombustion chamber type gas engine
EP3361068A1 (en) * 2017-02-13 2018-08-15 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2018131911A (en) * 2017-02-13 2018-08-23 トヨタ自動車株式会社 Internal combustion engine
US11261778B2 (en) 2018-10-11 2022-03-01 Scania Cv Ab Pre-chamber arrangement for a gas engine and a gas engine
US11608772B2 (en) 2018-10-11 2023-03-21 Scania Cv Ab Pre-chamber arrangement for a gas engine and a gas engine
FR3088678A1 (en) * 2018-11-15 2020-05-22 Renault S.A.S. OPTIMIZATION OF DIFFUSION CHANNELS OF PRE-CHAMBER OF COMBUSTION OF ENGINE

Similar Documents

Publication Publication Date Title
JP2007297942A (en) Ignition device for internal combustion engine
JP4501950B2 (en) Combustion control device for internal combustion engine
JP4609357B2 (en) Sub-chamber internal combustion engine
JP2008133759A (en) Sub-chamber type internal combustion engine
CN108291476B (en) Passive precombustor direct injection combustion
JP2007040174A (en) Indirect injection combustion engine
KR20070095370A (en) Cylinder injection type spark ignition internal combustion engine
JP2006177249A (en) Divided chamber type internal combustion engine
WO2018105501A1 (en) Auxiliary-chamber-type gas engine
JP2007315383A (en) Spark-ignition internal combustion engine
JP2001227344A (en) Nozzle hole structure of torch ignition-type gas engine
JP2009191734A (en) Combustion control device of internal combustion engine and control method thereof
JP2007138780A (en) Auxiliary chamber type internal combustion engine
JP2007278257A (en) Direct injection type spark ignition internal combustion engine
JP2009121251A (en) Cylinder injection type spark ignition internal combustion engine
JP2009215973A (en) Internal combustion engine with divided combustion chamber
JP5140836B2 (en) Sub-chamber gas engine
JP2007064175A (en) Cylinder injection type spark ignition internal combustion engine
JP4609227B2 (en) Internal combustion engine
JP2007285205A (en) Cylinder injection type spark ignition internal combustion engine
WO2004099584A1 (en) Combustion chamber structure of divided gas engine and divided gas engine
JP5263818B2 (en) Sub-chamber gas engine
JP2006274890A (en) Cylinder injection type internal combustion engine
JP2006299888A (en) Cylinder injection type spark ignition internal combustion engine
JP2006132415A (en) Divided-chamber pilot ignition type gas engine