JP2007297474A - Sulfonated natural rubber copolymer, method for producing the same and catalyst consisting of the copolymer, used for esterification reaction in water - Google Patents

Sulfonated natural rubber copolymer, method for producing the same and catalyst consisting of the copolymer, used for esterification reaction in water Download PDF

Info

Publication number
JP2007297474A
JP2007297474A JP2006125400A JP2006125400A JP2007297474A JP 2007297474 A JP2007297474 A JP 2007297474A JP 2006125400 A JP2006125400 A JP 2006125400A JP 2006125400 A JP2006125400 A JP 2006125400A JP 2007297474 A JP2007297474 A JP 2007297474A
Authority
JP
Japan
Prior art keywords
natural rubber
copolymer
sulfonated
styrene
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006125400A
Other languages
Japanese (ja)
Other versions
JP4997497B2 (en
Inventor
Narimoto Kawahara
成元 河原
Hirobumi Azeta
博文 畔田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Nagaoka University of Technology NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC, Institute of National Colleges of Technologies Japan filed Critical Nagaoka University of Technology NUC
Priority to JP2006125400A priority Critical patent/JP4997497B2/en
Publication of JP2007297474A publication Critical patent/JP2007297474A/en
Application granted granted Critical
Publication of JP4997497B2 publication Critical patent/JP4997497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new sulfonated natural rubber copolymer produced by a simple process by using a main raw material without giving an environmental load and useful as a catalyst for promoting an esterification reaction in water in a good efficiency. <P>SOLUTION: This sulfonated natural rubber copolymer having sulfonic acid groups in its side chains is obtained by sulfonating a deproteinized natural rubber-styrene-based copolymer, preferably a copolymer obtained by graft-polymerizing a styrene-based monomer with the deproteinized natural rubber. The copolymer can be produced e.g. by deproteinizing the natural rubber in a latex state, graft-polymerizing the styrene-based monomer and then sulfonating in an organic solvent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱蛋白質化天然ゴム・スチレン系共重合体をスルホン化してなる側鎖にスルホン酸基を有するスルホン化天然ゴム共重合体、該共重合体の製造方法並びに該共重合体からなる水中エステル化反応用触媒に関する。   The present invention comprises a sulfonated natural rubber copolymer having a sulfonic acid group in the side chain formed by sulfonating a deproteinized natural rubber / styrene copolymer, a method for producing the copolymer, and the copolymer. The present invention relates to an underwater esterification catalyst.

多くの有機反応は、均一触媒存在下、有機溶媒中で行われる。例えば、人工果実エッセンス、生体内の脂質およびポリエステルなどに用いられているエステルは、通常有機溶媒中でカルボン酸とアルコールを酸またはアルカリ触媒を用いて反応させることにより合成される。この反応に用いられる触媒や溶媒は、反応後に廃棄物となるため、環境を汚染することが問題視されており、無毒無害の水を用い、触媒を不均一触媒にして反応混合物から分離することが注目されている。
しかしながら、エステル化は脱水を伴う平衡反応であるため水中では進行しがたいことが知られており、大量の水が存在する生体内で行なわれるエステル化のように疎水的反応場を利用する新しい触媒を開発する必要がある。
Many organic reactions are carried out in an organic solvent in the presence of a homogeneous catalyst. For example, esters used for artificial fruit essence, in vivo lipids and polyesters are usually synthesized by reacting a carboxylic acid and an alcohol in an organic solvent using an acid or an alkali catalyst. Since the catalyst and solvent used in this reaction become waste after the reaction, it is regarded as a problem to pollute the environment. Use non-toxic and non-toxic water to separate the catalyst from the reaction mixture. Is attracting attention.
However, since esterification is an equilibrium reaction involving dehydration, it is known that it is difficult to proceed in water, and a new reaction that uses a hydrophobic reaction field, such as esterification performed in vivo in the presence of a large amount of water. There is a need to develop a catalyst.

回収および再利用可能な触媒として疎水的に修飾したポリスチレン樹脂を用いることにより、水中でのエステル化が可能になることが2002年に報告された。(非特許文献1参照)
そして、この触媒を用いてカルボン酸とアルコールの水中エステル化を行なうことにより、45〜96%の高い収率で目的とするエステルが得られたと報告されている。
S. Kobayashi, Adv. Synth. Catal., 270(2002).
It was reported in 2002 that esterification in water is possible by using hydrophobically modified polystyrene resin as a recoverable and recyclable catalyst. (See Non-Patent Document 1)
And it is reported that the target ester was obtained with a high yield of 45-96% by carrying out esterification of carboxylic acid and alcohol in water using this catalyst.
S. Kobayashi, Adv. Synth. Catal., 270 (2002).

しかしながら上記の方法では、触媒はポリスチレンを使用し、フリーデルクラフツ反応、還元、スルホン酸化の4工程で調製されるため、合成が煩雑であるという問題がある。さらに、基質であるポリスチレンは環境負荷を伴う化石燃料を原料として合成される有機材料であるため、環境負荷を低減するためには、植物由来の基質を原料として触媒を合成する必要がある。   However, in the above method, since the catalyst uses polystyrene and is prepared in four steps of Friedel-Crafts reaction, reduction, and sulfonation, there is a problem that the synthesis is complicated. Furthermore, since polystyrene, which is a substrate, is an organic material synthesized using fossil fuel with environmental load as a raw material, it is necessary to synthesize a catalyst using a plant-derived substrate as a raw material in order to reduce the environmental load.

したがって、本発明は環境負荷のない主原料を使用して簡単な工程で、効率良く水中エステル化反応を促進することのできる触媒として有用な、新規なスルホン化天然ゴム共重合体を提供することを目的とする。   Therefore, the present invention provides a novel sulfonated natural rubber copolymer that is useful as a catalyst that can efficiently promote the esterification reaction in water by a simple process using a main raw material having no environmental impact. With the goal.

本発明では、ゼロエミッションの基質としてゴムの樹から産出される天然ゴムに着眼し、脱蛋白質化した天然ゴムとスチレン系モノマーとの共重合体に、スルホン酸基を導入することによって上記課題が解決されることを見出し、本発明を完成したものである。
すなわち、本発明では次の1〜7の構成を採用する。
1.脱蛋白質化天然ゴム・スチレン系共重合体をスルホン化してなる側鎖にスルホン酸基を有するスルホン化天然ゴム共重合体。
2.天然ゴム・スチレン系共重合体が脱蛋白質化天然ゴムにスチレン系モノマーをグラフト重合した共重合体であることを特徴とする1に記載のスルホン化天然ゴム共重合体。
3.天然ゴム・スチレン系共重合体におけるポリスチレン系成分の含有量が、共重合体全体を基準として5〜80重量%であることを特徴とする1又は2に記載のスルホン化天然ゴム共重合体。
4.スルホン化天然ゴム共重合体のスルホン酸基の含有量が硫黄として0.01〜20重量%であることを特徴とする1〜3のいずれかに記載のスルホン化天然ゴム共重合体。
5.天然ゴムを脱蛋白質化した後に、スチレン系モノマーをグラフト重合させ、ついでスルホン酸化することを特徴とするスルホン化天然ゴム共重合体の製造方法。
6.天然ゴムをラテックスの状態で脱蛋白質化した後に、スチレン系モノマーをグラフト重合させ、ついで有機溶媒中でスルホン酸化することを特徴とする5に記載のスルホン化天然ゴム共重合体の製造方法。
7.1〜4のいずれかに記載された、脱蛋白質化天然ゴム・スチレン系共重合体をスルホン化してなる側鎖にスルホン酸基を有するスルホン化天然ゴム共重合体からなる水中エステル化反応用触媒。
The present invention focuses on natural rubber produced from rubber trees as a substrate for zero emission, and introduces a sulfonic acid group into a copolymer of natural rubber and styrene monomer deproteinized. The present invention has been completed by finding out that the problem is solved.
That is, in the present invention, the following configurations 1 to 7 are adopted.
1. A sulfonated natural rubber copolymer having a sulfonic acid group in the side chain formed by sulfonating a deproteinized natural rubber / styrene copolymer.
2. 2. The sulfonated natural rubber copolymer according to 1, wherein the natural rubber / styrene copolymer is a copolymer obtained by graft polymerizing a styrene monomer to a deproteinized natural rubber.
3. The sulfonated natural rubber copolymer according to 1 or 2, wherein the content of the polystyrene-based component in the natural rubber / styrene-based copolymer is 5 to 80% by weight based on the entire copolymer.
4). The sulfonated natural rubber copolymer according to any one of 1 to 3, wherein the sulfonate group content of the sulfonated natural rubber copolymer is 0.01 to 20% by weight as sulfur.
5). A method for producing a sulfonated natural rubber copolymer, characterized in that after deproteinization of natural rubber, a styrene monomer is graft-polymerized and then sulfonated.
6). 6. The method for producing a sulfonated natural rubber copolymer according to 5, wherein the natural rubber is deproteinized in a latex state, and then a styrene monomer is graft-polymerized and then sulfonated in an organic solvent.
7. The underwater esterification reaction comprising a sulfonated natural rubber copolymer having a sulfonic acid group in the side chain formed by sulfonating a deproteinized natural rubber / styrene copolymer described in any one of 1 to 4 Catalyst.

本発明によれば、環境負荷のない主原料を使用して簡単な工程で、効率良く新規なスルホン化天然ゴム共重合体を得ることができる。このスルホン化天然ゴム共重合体は、無毒無害の水を用いる水中エステル化反応を促進することのできる触媒として有用であり、使用後も不均一触媒として反応混合物から分離することが可能で、廃棄をする際にも環境に対する負荷が小さいものである。   According to the present invention, a novel sulfonated natural rubber copolymer can be efficiently obtained by a simple process using a main raw material having no environmental load. This sulfonated natural rubber copolymer is useful as a catalyst that can promote an underwater esterification reaction using non-toxic and harmless water, and can be separated from the reaction mixture as a heterogeneous catalyst after use. The load on the environment is small even when performing.

以下、本発明のスルホン化天然ゴム共重合体及びその製造方法、並びに該共重合体の水中エステル化触媒としての作用について、詳細に説明する。
天然ゴムには酸または塩基として働く骨格は存在しないため、水中でのエステル化反応の酸触媒として機能を付与するためには、スルホン酸基等を導入しなければならない。本発明では、脱蛋白質化した天然ゴムにスチレン又はスチレン誘導体をグラフト共重合した後に、クロロスルホン酸等のスルホン化剤を用いてスルホン化天然ゴムを合成する。
Hereinafter, the sulfonated natural rubber copolymer of the present invention, the production method thereof, and the action of the copolymer as an underwater esterification catalyst will be described in detail.
Since natural rubber does not have a skeleton that acts as an acid or a base, a sulfonic acid group or the like must be introduced in order to provide a function as an acid catalyst for an esterification reaction in water. In the present invention, styrene or a styrene derivative is graft copolymerized with deproteinized natural rubber, and then a sulfonated natural rubber is synthesized using a sulfonating agent such as chlorosulfonic acid.

(原料ラテックス)
本発明のスルホン化天然ゴム共重合体を得るための出発原料となる天然ゴムラテックスは、天然のゴムの木から得られたラテックスを意味し、当該ラテックスには新鮮なフィールドラテックスや、市販のアンモニア処理ラテックス等のいずれをも使用することができる。
(Raw material latex)
The natural rubber latex used as a starting material for obtaining the sulfonated natural rubber copolymer of the present invention means a latex obtained from a natural rubber tree. The latex includes fresh field latex and commercially available ammonia. Any of the treated latexes can be used.

(脱蛋白質化)
これらの天然ゴムラテックスの脱蛋白質化は、1)ラテックスに蛋白質分解酵素又はバクテリアを添加して蛋白質を分解させる方法(特許文献1)や、2)石鹸等の界面活性剤により繰り返し洗浄する方法等、公知の方法により行なうことができる。
また、本発明者等が先に提案した、天然ゴムラテックスに下記一般式(1)で表される尿素系化合物及びNaClOからなる群から選択された蛋白質変成剤を添加し、ラテックス中の蛋白質を変成除去する方法により行うこともできる。(特許文献2)
RNHCONH (1)
(式中、RはH、炭素数1〜5のアルキル基を表す)
天然ゴムラテックスの脱蛋白質化は、天然ゴム粒子の窒素含有率が0.1重量%以下、好ましくは0.05重量%以下になるようにすることが好ましい。
特開平6−56902号公報 特開2004−99696号公報
(Deproteinization)
Deproteinization of these natural rubber latices is 1) a method of degrading proteins by adding proteolytic enzymes or bacteria to the latex (Patent Document 1), 2) a method of repeatedly washing with a surfactant such as soap, etc. Can be carried out by a known method.
In addition, a protein denaturant selected from the group consisting of urea compounds represented by the following general formula (1) and NaClO is added to the natural rubber latex previously proposed by the present inventors, and the protein in the latex is added. It can also be carried out by a method of transformation removal. (Patent Document 2)
RNHCONH 2 (1)
(Wherein R represents H, an alkyl group having 1 to 5 carbon atoms)
The deproteinization of the natural rubber latex is preferably performed so that the nitrogen content of the natural rubber particles is 0.1% by weight or less, preferably 0.05% by weight or less.
JP-A-6-56902 JP 2004-99696 A

(グラフト化)
脱蛋白質化天然ゴムにスチレン系モノマーをグラフトさせるには、モノマーを脱蛋白質化天然ゴムラテックスに加え、適当な重合開始剤を加えて反応させることにより行なわれる。
スチレン系モノマーとしては、スチレンをはじめ、ケイ皮酸誘導体及びケイ皮酸アルデヒド誘導体等のスチレン系モノマーを使用することができる。
(Grafting)
Grafting of the styrenic monomer to the deproteinized natural rubber is carried out by adding the monomer to the deproteinized natural rubber latex and adding an appropriate polymerization initiator for reaction.
As the styrene monomer, styrene monomers such as styrene, cinnamic acid derivatives and cinnamic aldehyde derivatives can be used.

グラフトするスチレン系モノマーをラテックスに添加する際には、あらかじめラテックス中に乳化剤を加えておくか、あるいは不飽和結合を有する有機化合物を乳化した後、ラテックスに加える。乳化剤としては、とくに限定されず、アニオン系、ノニオン系等の各種界面活性剤が好適に使用される。スチレン系モノマーの添加量は、脱蛋白質化天然ゴム100重量部に対して5〜500重量部程度、好ましくは10〜100重量部程度、特に好ましくは10〜30重量部程度とすることが好ましい。スチレン系モノマーの添加量がこの範囲を超えるときはホモポリマーの生成が増加してしまいグラフト効率が低下し、逆にこの範囲を下回るときはスチレン系モノマーのグラフト量が少なくなり、目的とするスルホン化天然ゴム共重合体を得ることが困難となる。   When the styrene monomer to be grafted is added to the latex, an emulsifier is added to the latex in advance, or an organic compound having an unsaturated bond is emulsified and then added to the latex. The emulsifier is not particularly limited, and various anionic and nonionic surfactants are preferably used. The addition amount of the styrene monomer is preferably about 5 to 500 parts by weight, preferably about 10 to 100 parts by weight, particularly preferably about 10 to 30 parts by weight with respect to 100 parts by weight of the deproteinized natural rubber. When the addition amount of the styrenic monomer exceeds this range, the production of homopolymer increases and the grafting efficiency decreases. Conversely, when the addition amount falls below this range, the grafting amount of the styrene monomer decreases and the target sulfone is reduced. It becomes difficult to obtain a natural rubber copolymer.

重合開始剤としては、例えば過酸化ベンゾイル、過酸化水素、クメンハイドロパーオキサイド、tert−ブチルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、2,2−アゾビスイソブチロニトリル、過硫酸カリウムなどの過酸化物があげられ、とくにレドックス系の重合開始剤を使用するのが重合温度を低減させる上で好ましい。かかるレドックス系の重合開始剤において、過酸化物と組み合わされる還元剤としては、例えばテトラエチレンペンタミン、メルカプタン類、酸性亜硫酸ナトリウム、還元性金属イオン、アスコルビン酸などがあげられる。レドックス系の重合性開始剤における好ましい組み合わせ例としては、tert−ブチルハイドロパーオキサイドとテトラエチレンペンタミン、過酸化水素とFe2+塩、KSOとNaHSOなどがある。 Examples of the polymerization initiator include benzoyl peroxide, hydrogen peroxide, cumene hydroperoxide, tert-butyl hydroperoxide, di-tert-butyl peroxide, 2,2-azobisisobutyronitrile, potassium persulfate, and the like. In particular, it is preferable to use a redox polymerization initiator in order to reduce the polymerization temperature. In the redox polymerization initiator, examples of the reducing agent combined with the peroxide include tetraethylenepentamine, mercaptans, acidic sodium sulfite, reducing metal ions, ascorbic acid and the like. Preferable examples of combinations in the redox type polymerization initiator include tert-butyl hydroperoxide and tetraethylenepentamine, hydrogen peroxide and Fe 2+ salt, K 2 SO 2 O 8 and NaHSO 3 and the like.

重合開始剤の添加量は、スチレン系モノマー100モルに対して0.3〜10モル%、好ましくは0.5〜1モル%である。これらの成分を反応容器に仕込み、30〜80℃で2〜10時間反応を行わせることにより、脱蛋白質化天然ゴムにスチレン系モノマーがグラフトしたグラフト化天然ゴムが得られる。   The addition amount of a polymerization initiator is 0.3-10 mol% with respect to 100 mol of styrene-type monomers, Preferably it is 0.5-1 mol%. By charging these components into a reaction vessel and reacting at 30 to 80 ° C. for 2 to 10 hours, a grafted natural rubber obtained by grafting a deproteinized natural rubber with a styrene monomer is obtained.

(スルホン化)
得られたグラフト化天然ゴムには酸または塩基として働く骨格が存在しないため、水中でのエステル化反応の酸触媒として機能を付与するために、スルホン酸基を導入する。スルホン酸基の導入は、クロロスルホン酸等の公知のスルホン化剤を用いて定法により行うことができる。グラフト化天然ゴムに導入するスルホン酸基の量は、硫黄として0.01〜20重量%程度、特に0.05〜5重量%程度とすることが好ましい。
(Sulfonation)
Since the obtained grafted natural rubber does not have a skeleton that acts as an acid or a base, a sulfonic acid group is introduced in order to provide a function as an acid catalyst for an esterification reaction in water. Introduction of a sulfonic acid group can be performed by a conventional method using a known sulfonating agent such as chlorosulfonic acid. The amount of the sulfonic acid group introduced into the grafted natural rubber is preferably about 0.01 to 20% by weight, particularly about 0.05 to 5% by weight as sulfur.

つぎに、実施例により本発明のスルホン化天然ゴム共重合体及びその製造方法について、さらに説明するが、以下の具体例は本発明を限定するものではない。
以下の実施例および比較例においては、天然ゴムラテックスとして、ソクテック社(マレーシア国)製のハイアンモニアラテックス(ゴム分濃度60.2重量%、アンモニア分0.2重量%、ゴム粒子の平均粒径約1μm)を使用した。
Next, the sulfonated natural rubber copolymer of the present invention and the method for producing the same will be further described with reference to examples, but the following specific examples do not limit the present invention.
In the following examples and comparative examples, as natural rubber latex, high ammonia latex manufactured by Soctech (Malaysia) (rubber content concentration 60.2 wt%, ammonia content 0.2 wt%, average particle diameter of rubber particles) About 1 μm) was used.

(製造例1:脱蛋白質化天然ゴムラテックスの製造)
アニオン界面活性剤硫酸ドデシルナトリウム(SDS)3gを水150gに溶かした溶液に、原料ラテックス150gを加えて攪拌し、ここへ尿素0.3gを少量の水に溶かした溶液を加えた。容器を遮光し、30℃で1時間攪拌した。この溶液を200メッシュの金網でろ過し、遠心分離(9000G、30分)で脱蛋白質化天然ゴム(DPNR)を濃縮した。
SDS3gを水150gに溶かした溶液にこの濃縮したDPNRを加え一時間攪拌し、200メッシュの金網でろ過し、上記と同様に遠心分離機によりゴム成分を濃縮した。同様にこの洗浄操作を2回繰り返し、得られた濃縮ゴム成分をSDS0.3gを水150gに溶かした溶液に分散させDPNRラテックスとした。
(Production Example 1: Production of deproteinized natural rubber latex)
To a solution obtained by dissolving 3 g of anionic surfactant sodium dodecyl sulfate (SDS) in 150 g of water, 150 g of raw material latex was added and stirred, and a solution prepared by dissolving 0.3 g of urea in a small amount of water was added thereto. The vessel was shielded from light and stirred at 30 ° C. for 1 hour. This solution was filtered through a 200-mesh wire mesh, and deproteinized natural rubber (DPNR) was concentrated by centrifugation (9000 G, 30 minutes).
The concentrated DPNR was added to a solution of 3 g of SDS in 150 g of water, stirred for 1 hour, filtered through a 200 mesh wire net, and the rubber component was concentrated by a centrifuge as described above. Similarly, this washing operation was repeated twice, and the resulting concentrated rubber component was dispersed in a solution of 0.3 g of SDS in 150 g of water to obtain a DPNR latex.

(製造例2:グラフト共重合体の製造)
窒素置換した三口フラスコの中に、製造例1で得られたDPNR(ゴム分濃度23重量%)116.6gを入れ、次にSDS0.1878gを水93.40gに溶かした溶液を入れた。フラスコをアルミホイルで遮光し、窒素ガスを一時間通気して攪拌しながら脱気を行った。ついで重合開始剤の70%t−ブチルヒドロペルオキシド(TBHPO)0.13g(0.1mmol)と0.9%w/wテトラエチレンペンタミン(TEPA)水溶液1.8335g(0.0087mmol)を加えた後、スチレンを5.3636g(5.15mmol、20PHR(Per Hundred Rubber))加え、30℃で2時間攪拌することによりグラフト共重合を行った。
反応後、未反応のスチレンを除去するため、反応混合物をメタノールへ投入し、ゴム成分を凝固させ、凝固したグラフト共重合ゴムをろ過した。この共重合ゴムをメタノールでよく洗浄し、減圧下(5mmHg)、60℃で乾燥することにより30.802gのスチレン共重合天然ゴム(DPNR−g−PSt)を得た。この共重合天然ゴム中のスチレン含有量は約12重量%であった。
(Production Example 2: Production of graft copolymer)
Into a nitrogen-substituted three-necked flask, 116.6 g of DPNR (rubber concentration 23 wt%) obtained in Production Example 1 was added, and then a solution of 0.1878 g of SDS dissolved in 93.40 g of water was added. The flask was shielded from light with aluminum foil, and degassed while agitating with a nitrogen gas bubble for 1 hour. Next, 0.13 g (0.1 mmol) of 70% t-butyl hydroperoxide (TBHPO) as a polymerization initiator and 1.8335 g (0.0087 mmol) of a 0.9% w / w tetraethylenepentamine (TEPA) aqueous solution were added. Thereafter, 5.3636 g (5.15 mmol, 20 PHR (Per Hundred Rubber)) of styrene was added, and the mixture was stirred at 30 ° C. for 2 hours for graft copolymerization.
After the reaction, in order to remove unreacted styrene, the reaction mixture was put into methanol to coagulate the rubber component, and the coagulated graft copolymer rubber was filtered. The copolymer rubber was thoroughly washed with methanol and dried at 60 ° C. under reduced pressure (5 mmHg) to obtain 30.802 g of a styrene copolymer natural rubber (DPNR-g-PSt). The styrene content in the copolymer natural rubber was about 12% by weight.

(実施例1:スルホン化天然ゴム共重合体の製造)
上記の製造例2で得られたDPNR−g−PSt5gを0℃で、クロロスルホン酸2.6295g(ゴム固形分に対して53重量%)をクロロホルム100mLに溶解した溶液に加え、4時間攪拌しながらスルホン化を行なった。酢酸50mLを加えてさらに30分間攪拌した。
反応後メタノールへ反応混合物を注ぎ、析出したゴム成分をろ過した。メタノールでこの沈殿物を洗浄し、減圧下(5mmHg)、60℃で乾燥を行い、4.4115gのスルホン化天然ゴム・スチレン共重合体(DPNR−PS−SOH)を得た。元素分析測定装置(ヤナコ分析工業株式会社製「CHNコーダーMT−6」)により定量した、この共重合体中のスルホン酸基の含有量は硫黄として0.8重量%であった。以下、この共重合体を、「DPNR−PS−S53」と表記する。
(Example 1: Production of sulfonated natural rubber copolymer)
5 g of DPNR-g-PSt obtained in Production Example 2 above was added at 0 ° C. to a solution of 2.6295 g of chlorosulfonic acid (53% by weight based on the rubber solid content) dissolved in 100 mL of chloroform and stirred for 4 hours. Sulfonation was carried out. Acetic acid 50mL was added and it stirred for further 30 minutes.
After the reaction, the reaction mixture was poured into methanol, and the precipitated rubber component was filtered. This precipitate was washed with methanol and dried at 60 ° C. under reduced pressure (5 mmHg) to obtain 4.4115 g of a sulfonated natural rubber / styrene copolymer (DPNR-PS—SO 3 H). The content of the sulfonic acid group in the copolymer determined by an elemental analyzer (“CHN coder MT-6” manufactured by Yanaco Analytical Industries, Ltd.) was 0.8% by weight as sulfur. Hereinafter, this copolymer is referred to as “DPNR-PS-S53”.

(実施例2)
実施例1において、クロロスルホン酸の使用量をゴム固形分に対して18重量%とした以外は、実施例1と同様にしてスルホン化天然ゴム・スチレン共重合体を製造した。この共重合体中のスルホン酸基の含有量は硫黄として0.1重量%であった。以下、得られた共重合体を「DPNR−PS−S18」と表記する。
(Example 2)
In Example 1, a sulfonated natural rubber / styrene copolymer was produced in the same manner as in Example 1 except that the amount of chlorosulfonic acid used was 18% by weight based on the rubber solid content. The content of sulfonic acid groups in this copolymer was 0.1% by weight as sulfur. Hereinafter, the obtained copolymer is referred to as “DPNR-PS-S18”.

(実施例3)
実施例1において、クロロスルホン酸の使用量をゴム固形分に対して35重量%とした以外は、実施例1と同様にしてスルホン化天然ゴム・スチレン共重合体を製造した。この共重合体中のスルホン酸基の含有量は硫黄として0.2重量%であった。以下、得られた共重合体を「DPNR−PS−S35」と表記する。
(Example 3)
In Example 1, a sulfonated natural rubber / styrene copolymer was produced in the same manner as in Example 1 except that the amount of chlorosulfonic acid used was 35% by weight based on the rubber solid content. The content of sulfonic acid groups in this copolymer was 0.2% by weight as sulfur. Hereinafter, the obtained copolymer is referred to as “DPNR-PS-S35”.

[水中エステル化反応におけるDPNR−PS−SOHの触媒機能の検討]
これらの実施例で調製したDPNR−PS−SOHが水中エステル化反応で触媒として作用するかを調べるため、スルホン化天然ゴム共重合体を触媒とするオレイン酸(純度60%)とイソアミルアルコールとの水中でのエステル化反応を行った。また、他の酸触媒と比較するため、パラトルエンスルホン酸(PTSA)、及び市販の酸性イオン交換樹脂(商品名:IR−120B)を用いて同様にエステル化反応を行った。エステル化は下記のScheme(1)にしたがって、80℃で24時間攪拌することにより行い、得られた粗生成物のHNMRスペクトルからエステル化率を求めた。
[Examination of catalytic function of DPNR-PS-SO 3 H in water esterification]
In order to investigate whether DPNR-PS-SO 3 H prepared in these examples acts as a catalyst in an esterification reaction in water, oleic acid (purity 60%) and isoamyl alcohol catalyzed by a sulfonated natural rubber copolymer And the esterification reaction in water. Moreover, in order to compare with another acid catalyst, esterification reaction was similarly performed using para-toluenesulfonic acid (PTSA) and a commercially available acidic ion exchange resin (trade name: IR-120B). Esterification was performed by stirring at 80 ° C. for 24 hours according to the following Scheme (1), and the esterification rate was determined from the 1 HNMR spectrum of the obtained crude product.

Figure 2007297474
Figure 2007297474

(実施例4:水中エステル化反応)
オレイン酸0.5g(1.77mmol)、イソアミルアルコール0.4680g(5.31mmol)、実施例1で製造したスルホン化天然ゴム共重合体(DPNR−PS−S53)0.5gを水11mL中に入れ、80℃に加熱しながら、24時間攪拌した。反応後、この溶液をジエチルエーテル50mL中に入れ、30分間攪拌した。ついで、ろ過により触媒と反応混合物に分離し、水層と分離した触媒をジエチルエーテルにより抽出した。あわせたエーテル溶媒抽出物を硫酸マグネシウムで乾燥後、濃縮して生成物を得た。この生成物の組成をHNMR測定により分析した。得られた有機成分のHNMRスペクトルを図1に示す。エステル化率は、4ppm付近に認められるエステルに結合するメチレンプロトンのピークと、1ppm付近に認められるメチル基のプロトンの積分比により求めた。この反応におけるエステル化率は、55%であった。
(Example 4: esterification reaction in water)
0.5 g (1.77 mmol) of oleic acid, 0.4680 g (5.31 mmol) of isoamyl alcohol and 0.5 g of the sulfonated natural rubber copolymer (DPNR-PS-S53) produced in Example 1 were added to 11 mL of water. The mixture was stirred for 24 hours while heating to 80 ° C. After the reaction, this solution was placed in 50 mL of diethyl ether and stirred for 30 minutes. Subsequently, the catalyst and the reaction mixture were separated by filtration, and the catalyst separated from the aqueous layer was extracted with diethyl ether. The combined ether solvent extracts were dried over magnesium sulfate and concentrated to give the product. The composition of this product was analyzed by 1 HNMR measurement. The 1 HNMR spectrum of the obtained organic component is shown in FIG. The esterification rate was determined by the integral ratio of the peak of methylene protons bonded to the ester found around 4 ppm and the proton of the methyl group found around 1 ppm. The esterification rate in this reaction was 55%.

(比較例1)
オレイン酸0.5g(1.77mmol)、イソアミルアルコール0.4680g(5.31mmol)、パラトルエンスルホン酸0.03048g(0.177mmol)を水11mL中に入れ、80℃に加熱しながら24時間攪拌した。反応後、この溶液を飽和重曹水に注ぎ、ジエチルエーテル25mLで3回抽出した。有機層を硫酸マグネシウムで乾燥後、濃縮して粗生成物を得、HNMR測定により分析した。この反応におけるエステル化率は、0%であった。
(Comparative Example 1)
0.5 g (1.77 mmol) of oleic acid, 0.4680 g (5.31 mmol) of isoamyl alcohol and 0.03048 g (0.177 mmol) of paratoluenesulfonic acid were placed in 11 mL of water and stirred for 24 hours while heating to 80 ° C. did. After the reaction, this solution was poured into saturated aqueous sodium hydrogen carbonate and extracted three times with 25 mL of diethyl ether. The organic layer was dried over magnesium sulfate and concentrated to obtain a crude product, which was analyzed by 1 HNMR measurement. The esterification rate in this reaction was 0%.

(比較例2)
オレイン酸0.5g(1.77mmol)、イソアミルアルコール0.4680g(5.31mmol)、酸性イオン交換樹脂(IR−120B)0.5gを水11mL中に入れ、80℃に加熱しながら24時間攪拌した。反応後、この溶液をジエチルエーテル50mL中に入れ、30分間攪拌し、吸引ろ過により1R−120Bと反応混合物に分離した。分離したイオン交換樹脂をエーテルでよく洗浄し、得られた有機層を硫酸マグネシウムにより乾燥し濃縮により粗生成物を得て、HNMR測定により分析した。この反応のエステル化率は、0%であった。
(Comparative Example 2)
0.5 g (1.77 mmol) of oleic acid, 0.4680 g (5.31 mmol) of isoamyl alcohol and 0.5 g of acidic ion exchange resin (IR-120B) were placed in 11 mL of water and stirred for 24 hours while heating to 80 ° C. did. After the reaction, this solution was put into 50 mL of diethyl ether, stirred for 30 minutes, and separated into 1R-120B and the reaction mixture by suction filtration. The separated ion exchange resin was thoroughly washed with ether, and the obtained organic layer was dried over magnesium sulfate and concentrated to obtain a crude product, which was analyzed by 1 HNMR measurement. The esterification rate of this reaction was 0%.

従来触媒として使用されている、パラトルエンスルホン酸と酸性イオン交換樹脂を用いた場合、エステル化率は0%であり、水中エステル化は進行しなかった。これに対して、実施例1で製造したDPNR−PS−S53を用いた場合は、55%のエステル化率で反応が進行した。このことからDPNR−PS−S53は、水中エステル化において触媒の機能を持つことが判明した。また、このHNMRスペクトルにおいてエステル、原料基質、溶媒以外のピークが認められなかったことから、DPNR−PS−S53の存在下、副反応を伴わす反応が進行することが確認された。 When paratoluenesulfonic acid and an acidic ion exchange resin, which have been used as conventional catalysts, were used, the esterification rate was 0%, and the esterification in water did not proceed. On the other hand, when DPNR-PS-S53 produced in Example 1 was used, the reaction proceeded with an esterification rate of 55%. This indicates that DPNR-PS-S53 has a catalytic function in esterification in water. In addition, since peaks other than the ester, the raw material substrate, and the solvent were not observed in this 1 HNMR spectrum, it was confirmed that the reaction accompanied by the side reaction proceeded in the presence of DPNR-PS-S53.

(実施例5)
実施例4において、反応温度を40、60、80℃に設定した以外は実施例4と同様に反応を行い、DPNR−PS−S53を用いる水中エステル化における反応温度の影響を検討した。得られた粗生成物のHNMRスペクトルからエステル化率および収率を求めた。この結果を表1に示す。
(Example 5)
In Example 4, the reaction was performed in the same manner as in Example 4 except that the reaction temperature was set to 40, 60, and 80 ° C., and the influence of the reaction temperature in the esterification in water using DPNR-PS-S53 was examined. The esterification rate and yield were determined from the 1 HNMR spectrum of the obtained crude product. The results are shown in Table 1.

Figure 2007297474
Figure 2007297474

表1によれば、反応温度を上げるほど高いエステル化率が得られ、80℃で最も高い55%のエステル化率が得られた。よって、80℃で反応を行うことにより高いエステル化率が得られることが分かった。また、エステル化率と同等の収率が得られたことから、ろ過と抽出操作で反応混合物から有機成分を、損なうことなく効率的に得ることが出来ることも判明した。   According to Table 1, the higher the reaction temperature, the higher the esterification rate, and the highest esterification rate of 55% at 80 ° C. was obtained. Therefore, it was found that a high esterification rate can be obtained by performing the reaction at 80 ° C. Moreover, since the yield equivalent to esterification rate was obtained, it turned out that an organic component can be efficiently obtained from a reaction mixture by filtration and extraction operation, without impairing.

(実施例6)
実施例4において、触媒として実施例2で得られたDPNR−PS−S18を使用した以外は、実施例4と同様に反応を行った。得られた粗生成物のHNMRスペクトルからエステル化率および収率を求めた。この結果を表2示す。
(Example 6)
In Example 4, the reaction was performed in the same manner as in Example 4 except that DPNR-PS-S18 obtained in Example 2 was used as the catalyst. The esterification rate and yield were determined from the 1 HNMR spectrum of the obtained crude product. The results are shown in Table 2.

(実施例7)
実施例4において、触媒として実施例3で得られたDPNR−PS−S35を使用した以外は、実施例4と同様に反応を行った。得られた粗生成物のHNMRスペクトルからエステル化率および収率を求めた。この結果を表2示す。
(Example 7)
In Example 4, the reaction was performed in the same manner as in Example 4 except that DPNR-PS-S35 obtained in Example 3 was used as the catalyst. The esterification rate and yield were determined from the 1 HNMR spectrum of the obtained crude product. The results are shown in Table 2.

Figure 2007297474
Figure 2007297474

この結果から、DPNR−g−PStに供給するクロロスルホン酸の量を増やして調製したDPNR−PS−SOHを用いることにより、高いエステル化率が得られることが判明した。 From this result, it was found that a high esterification rate can be obtained by using DPNR-PS-SO 3 H prepared by increasing the amount of chlorosulfonic acid supplied to DPNR-g-PSt.

本発明の実施例4の水中エステル化反応により得られた生成物のHNMRスペクトルである。It is a 1 HNMR spectrum of the product obtained by water esterification reaction of Example 4 of the present invention.

Claims (7)

脱蛋白質化天然ゴム・スチレン系共重合体をスルホン化してなる側鎖にスルホン酸基を有するスルホン化天然ゴム共重合体。   A sulfonated natural rubber copolymer having a sulfonic acid group in the side chain formed by sulfonating a deproteinized natural rubber / styrene copolymer. 天然ゴム・スチレン系共重合体が脱蛋白質化天然ゴムにスチレン系モノマーをグラフト重合した共重合体であることを特徴とする請求項1に記載のスルホン化天然ゴム共重合体。   2. The sulfonated natural rubber copolymer according to claim 1, wherein the natural rubber / styrene copolymer is a copolymer obtained by graft polymerization of a styrene monomer to a deproteinized natural rubber. 天然ゴム・スチレン系共重合体におけるポリスチレン系成分の含有量が、共重合体全体を基準として5〜80重量%であることを特徴とする請求項1又は2に記載のスルホン化天然ゴム共重合体。   The sulfonated natural rubber copolymer according to claim 1 or 2, wherein the content of the polystyrene component in the natural rubber / styrene copolymer is 5 to 80 wt% based on the entire copolymer. Coalescence. スルホン化天然ゴム共重合体のスルホン酸基の含有量が硫黄として0.01〜20重量%であることを特徴とする請求項1〜3のいずれかに記載のスルホン化天然ゴム共重合体。   The sulfonated natural rubber copolymer according to any one of claims 1 to 3, wherein the content of the sulfonic acid group of the sulfonated natural rubber copolymer is 0.01 to 20% by weight as sulfur. 天然ゴムを脱蛋白質化した後に、スチレン系モノマーをグラフト重合させ、ついでスルホン酸化することを特徴とするスルホン化天然ゴム共重合体の製造方法。   A method for producing a sulfonated natural rubber copolymer, characterized in that after deproteinization of natural rubber, a styrene monomer is graft-polymerized and then sulfonated. 天然ゴムをラテックスの状態で脱蛋白質化した後に、スチレン系モノマーをグラフト重合させ、ついで有機溶媒中でスルホン酸化することを特徴とする請求項5に記載のスルホン化天然ゴム共重合体の製造方法。   6. The method for producing a sulfonated natural rubber copolymer according to claim 5, wherein after deproteinization of the natural rubber in a latex state, a styrene monomer is graft-polymerized and then sulfonated in an organic solvent. . 請求項1〜4のいずれかに記載された、脱蛋白質化天然ゴム・スチレン系共重合体をスルホン化してなる側鎖にスルホン酸基を有するスルホン化天然ゴム共重合体からなる水中エステル化反応用触媒。






















The esterification reaction in water comprising a sulfonated natural rubber copolymer having a sulfonic acid group in the side chain formed by sulfonating the deproteinized natural rubber / styrene copolymer according to any one of claims 1 to 4. Catalyst.






















JP2006125400A 2006-04-28 2006-04-28 Catalyst for esterification reaction in water consisting of sulfonated natural rubber copolymer Active JP4997497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125400A JP4997497B2 (en) 2006-04-28 2006-04-28 Catalyst for esterification reaction in water consisting of sulfonated natural rubber copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125400A JP4997497B2 (en) 2006-04-28 2006-04-28 Catalyst for esterification reaction in water consisting of sulfonated natural rubber copolymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011256460A Division JP2012062481A (en) 2011-11-24 2011-11-24 Sulfonated natural rubber copolymer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007297474A true JP2007297474A (en) 2007-11-15
JP4997497B2 JP4997497B2 (en) 2012-08-08

Family

ID=38767246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125400A Active JP4997497B2 (en) 2006-04-28 2006-04-28 Catalyst for esterification reaction in water consisting of sulfonated natural rubber copolymer

Country Status (1)

Country Link
JP (1) JP4997497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150485A (en) * 2008-12-26 2010-07-08 Toyo Tire & Rubber Co Ltd Method for producing natural rubber masterbatch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4621644B1 (en) * 1968-03-27 1971-06-19
JPS5849338A (en) * 1981-09-17 1983-03-23 Mitsui Toatsu Chem Inc Preparation of alpha, beta-unsaturated carboxylate
JPH11349560A (en) * 1998-06-08 1999-12-21 Arakawa Chem Ind Co Ltd Production of peracid compound
JP2004155884A (en) * 2002-11-06 2004-06-03 Nagaoka Univ Of Technology Nanomatrix-dispersed natural rubber and method for producing the same
JP2004176014A (en) * 2002-11-29 2004-06-24 Nagaoka University Of Technology Liquid epoxidized natural rubber composition and polymer electrolyte material comprizing the same
JP2005036046A (en) * 2003-07-16 2005-02-10 Sumitomo Rubber Ind Ltd Deproteinized natural rubber latex with high gel content, its preparation method, and deproteinized natural rubber using the latex
JP2005097410A (en) * 2003-09-24 2005-04-14 Sumitomo Rubber Ind Ltd Deproteinized natural rubber latex and method for producing the same, and dipped rubber goods using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4621644B1 (en) * 1968-03-27 1971-06-19
JPS5849338A (en) * 1981-09-17 1983-03-23 Mitsui Toatsu Chem Inc Preparation of alpha, beta-unsaturated carboxylate
JPH11349560A (en) * 1998-06-08 1999-12-21 Arakawa Chem Ind Co Ltd Production of peracid compound
JP2004155884A (en) * 2002-11-06 2004-06-03 Nagaoka Univ Of Technology Nanomatrix-dispersed natural rubber and method for producing the same
JP2004176014A (en) * 2002-11-29 2004-06-24 Nagaoka University Of Technology Liquid epoxidized natural rubber composition and polymer electrolyte material comprizing the same
JP2005036046A (en) * 2003-07-16 2005-02-10 Sumitomo Rubber Ind Ltd Deproteinized natural rubber latex with high gel content, its preparation method, and deproteinized natural rubber using the latex
JP2005097410A (en) * 2003-09-24 2005-04-14 Sumitomo Rubber Ind Ltd Deproteinized natural rubber latex and method for producing the same, and dipped rubber goods using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150485A (en) * 2008-12-26 2010-07-08 Toyo Tire & Rubber Co Ltd Method for producing natural rubber masterbatch

Also Published As

Publication number Publication date
JP4997497B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4163948B2 (en) Method for producing acrylonitrile-butadiene-styrene latex having a high total solid content
JP2003246812A5 (en)
CN106565869B (en) A kind of solid super-strong acid and its preparation method and application
KR100708991B1 (en) Method for preparing of acrylonitrile butadiene styrene latex
CN105008406B (en) Transparent ABS Resin and transparent ABS resin composition
KR100988962B1 (en) Method for preparing rubber latex of a small diameter with a high polymerization rate together with reduced coagulum contents
JP4997497B2 (en) Catalyst for esterification reaction in water consisting of sulfonated natural rubber copolymer
CN108855229A (en) A kind of supported catalyst/polymerization inhibitor macroreticular resin bead preparation method and purposes
JP2008208368A (en) Monodispersed weak acidic cation exchanger
JP2012062481A (en) Sulfonated natural rubber copolymer and method for producing the same
JP5506679B2 (en) Modified natural rubber particles, method for producing the same, and modified natural rubber latex
JP4810568B2 (en) Modified natural rubber and method for producing the same
CN105944689B (en) A kind of compound adsorbent
EP1647558A1 (en) Process for preparing enlarged latex particles
JP2006519301A (en) Use of accelerators in free radical polymerization of styrene.
CN109312020B (en) Method for producing aminomethylated bead polymers
JP2007063555A (en) Weakly acidic cation exchanger
CN102585044A (en) Preparation method for dendritic polyfunctional group RAFT (Reversible Addition-Fragmentation Chain Transfer) reagent
KR102445219B1 (en) Method for producing amino methylated bead polymerizates from n-carboxylic acid methylphthalimide esters
KR20190098994A (en) Steam stripping method of organic extender particle dispersion
WO2000068283A1 (en) Process for producing rubber latex
CN107098840B (en) A kind of method of oxidation of isobutane preparation tert-butyl hydroperoxide
RU2017126247A (en) A method of producing aminomethylated bead polymers
CN109312021B (en) Process for producing amidomethylated vinylaromatic bead polymers
CN110483697A (en) A kind of preparation method and application of the Janus nanoparticle of morphology controllable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150