JP2007295502A - Amplifier circuit - Google Patents

Amplifier circuit Download PDF

Info

Publication number
JP2007295502A
JP2007295502A JP2006144626A JP2006144626A JP2007295502A JP 2007295502 A JP2007295502 A JP 2007295502A JP 2006144626 A JP2006144626 A JP 2006144626A JP 2006144626 A JP2006144626 A JP 2006144626A JP 2007295502 A JP2007295502 A JP 2007295502A
Authority
JP
Japan
Prior art keywords
winding
amplification
cold
hot
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006144626A
Other languages
Japanese (ja)
Inventor
Katsuyuki Doi
克之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECHOLLE Inc
Original Assignee
ECHOLLE Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECHOLLE Inc filed Critical ECHOLLE Inc
Priority to JP2006144626A priority Critical patent/JP2007295502A/en
Publication of JP2007295502A publication Critical patent/JP2007295502A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that a maximum output that can be extracted is small in conventional single end amplification and odd-order distortion or zero-cross distortion easily occurs in push-pull amplification when using a vacuum tube as an amplification element, it is necessary to always pay attention to maintenance of operational balancing, it is required to consider to a maximum a pairing property of elements and the maintenance of operational balance in amplification by a vacuum tube SEPP that is configured of a plurality of elements or complementary push-pull amplification using a semiconductor element, and both positive and negative large-scaled power sources extremely excellent in regulation performance is needed. <P>SOLUTION: Two winding wires of the same inductance capacitance are regarded as an equivalently single winding wire, and a hot side winding wire and a cold side winding wire thereof are swung with opposite phases only by a single electrode vacuum tube or a complementary single pair semiconductor elements. A large output beyond the conventional circuit is extracted to attain enhancement in various characteristics and to also ensure operational stability or reliability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、主に音声信号増幅を司るあらゆる装置の性能改良に関する。勿論、本発明回路によって有効性のある信号増幅装置、或はインダクタ型駆動装置など他の技術分野においても摘要可能である。  The present invention mainly relates to the improvement of the performance of all apparatuses that control audio signal amplification. Of course, the present invention can be applied to other technical fields such as a signal amplifying device or an inductor type driving device which is effective.

真空管を増幅素子として使う音声信号増幅回路の場合、トランスを負荷として、単電極真空管によるシングルエンド増幅(図7)、或は二電極真空管によるプッシュプル増幅(図6)、更には複数電極によるSEPP(Single Ended Push Pull)増幅のOTL(Output Trasfomer Less)出力(図9)、などが多用されてきた。  In the case of an audio signal amplifying circuit using a vacuum tube as an amplifying element, a transformer is used as a load, single-ended amplification using a single electrode vacuum tube (FIG. 7), push-pull amplification using a two-electrode vacuum tube (FIG. 6), or SEPP using multiple electrodes. An OTL (Output Transformer Less) output (FIG. 9) of (Single Ended Push Pull) amplification has been frequently used.

単電極真空管による従来回路のシングルエンド増幅(図7)の場合、音質性能にはある程度優れているものの、負荷トランス15のコアに生じる直流磁化を遅らせる為のエア・ギャップや、一次側巻線の片側端子のみスイングする動作によって、一般オーディオ真空管では数Wから十数W程度に留まり、更には真空管自身がもつ非直線性から歪率特性に劣るものが殆ど。また、負荷トランスの性能や真空管そのものの動作・性能によっては必ずしも優れた音質性能にならない。  In the case of a single-ended amplification of a conventional circuit using a single electrode vacuum tube (FIG. 7), the sound quality performance is excellent to some extent, but an air gap for delaying the DC magnetization generated in the core of the load transformer 15 and the primary side winding Due to the operation of swinging only one terminal, in general audio vacuum tubes, it stays at about several tens to several tens of watts, and most of them are inferior in distortion characteristics due to the nonlinearity of the vacuum tubes themselves. Also, depending on the performance of the load transformer and the operation and performance of the vacuum tube itself, the sound quality performance is not always excellent.

二電極真空管によるプッシュプル増幅(図6)や複数電極による真空管SEPP増幅回路(図9)の場合、ある程度大きな出力を取り出せるものの、特性が揃った真空管が複数ペア必要となり、動作上のバランス保守に留意する必要がある。また、トランス負荷の場合、回路構成及び巻線構造から負荷トランス14のコアの直流磁化は打ち消し合う作用で防げるが、同トランスの二次側に出力される電力はあくまでホット側スイングとコールド側スイングの差分のみとなる。これは同トランス内部で生じる打ち消し作用、言わば強度な減算誘導作用に起因する為であり、当然音質性能を劣化させてしまう大きな要因となる。A級プッシュプル動作の場合は特にこの影響を顕著に受け、単電極真空管によるシングルエンド増幅の2倍程度の出力のみ取り出せるに留まる。  In the case of push-pull amplification with a two-electrode vacuum tube (Fig. 6) and a vacuum tube SEPP amplification circuit with multiple electrodes (Fig. 9), although a large output can be obtained to some extent, multiple pairs of vacuum tubes with uniform characteristics are required for balance maintenance in operation. It is necessary to keep in mind. In the case of a transformer load, the direct current magnetization of the core of the load transformer 14 can be prevented by canceling out the circuit configuration and winding structure, but the power output to the secondary side of the transformer is only the hot side swing and the cold side swing. It becomes only the difference of. This is due to the canceling action that occurs inside the transformer, that is, the strong subtractive induction action, and naturally becomes a major factor that degrades the sound quality performance. In the case of class A push-pull operation, this influence is particularly noticeable, and only an output that is about twice that of single-ended amplification by a single electrode vacuum tube can be taken out.

B級プッシュプル動作ではホット側がスイング中はコールド側がカットオフ状態になる、或はその逆の状態になる為、減算誘導作用の影響は殆ど無くなり、ある程度大きな出力を取り出せる。が、その反面、+B高圧電源部のレギュレーション性能に大きく影響され、二電極の動的結合部にゼロクロス歪、或は奇数次歪が現れ易い。よって優れた音質性能を取り出す事は容易に実現できない。  In the class B push-pull operation, the cold side is cut off while the hot side is swinging, or vice versa, so that the influence of the subtraction inducing action is almost eliminated and a somewhat large output can be taken out. On the other hand, however, it is greatly influenced by the regulation performance of the + B high-voltage power supply section, and zero-cross distortion or odd-order distortion tends to appear in the dynamic coupling portion of the two electrodes. Therefore, it is not easy to take out excellent sound quality performance.

半導体を増幅素子に使う音声信号増幅回路の場合、一般的にNch素子8とPch素子9を組み合わせたコンプリメンタリ・プッシュプル回路(図8)を構成する。この両素子の中点をゼロ電位出力として直接スピーカーをドライブする為に、大電力素子の複数並列接続とレギュレーション性能に優れる大規模正負両電源が求められる。
また両素子の温度変化による電圧ドリフトを抑える為、或は両素子のゼロクロス歪を抑える為にも各コンプリメンタリ素子には優れたペア性が求められる。更には半導体素子の故障などによって引き起こされる過電流事故からスピーカーを保護する為の保護回路も必要不可欠となる。
In the case of an audio signal amplifying circuit using a semiconductor as an amplifying element, a complementary push-pull circuit (FIG. 8) in which an Nch element 8 and a Pch element 9 are generally combined is configured. In order to drive a speaker directly with the midpoint of both elements as a zero potential output, a large-scale positive and negative power supply excellent in regulation performance and multiple parallel connection of large power elements is required.
In addition, in order to suppress voltage drift due to temperature changes of both elements, or to suppress zero cross distortion of both elements, each complementary element is required to have excellent pair characteristics. Furthermore, a protection circuit for protecting the speaker from an overcurrent accident caused by a failure of a semiconductor element is indispensable.

発明が解決しようとする課題Problems to be solved by the invention

従来の単電極真空管によるシングルエンド増幅(図7)の場合に、一般オーディオ用の真空管素子では近年大勢を占める低能率スピーカーを十分に鳴らしきる為の出力を取り出す事が難しい。仮に感度100dBのスピーカーを出力5Wの電力で鳴らす事を基準にした場合、近年の製品に多い感度90dB以下では10倍の50Wもの出力を必要としてしまう計算になる。この出力値を実現する増幅装置は、単電極真空管によるシングルエンド増幅ではもはや一般的とは言いがたい大規模真空管を求めなければならない。またこの増幅形態では必ず真空管そのものがもつ非直線性の影響から優れた歪率特性にできずらい。  In the case of conventional single-ended amplification with a single electrode vacuum tube (FIG. 7), it is difficult to extract an output for sufficiently playing low-efficiency speakers, which have recently been popular in general vacuum tube elements for audio. Assuming that a speaker with a sensitivity of 100 dB is sounded with a power of 5 W, the calculation will require 10 times as much as 50 W if the sensitivity is 90 dB or less, which is often found in recent products. An amplifying apparatus that realizes this output value must find a large-scale vacuum tube that is no longer common in single-ended amplification with a single-electrode vacuum tube. In this amplification mode, it is difficult to achieve excellent distortion characteristics due to the non-linearity of the vacuum tube itself.

二電極真空管及びトランス負荷によるプッシュプル増幅(図6)の場合に、A級増幅では負荷トランス14内部で生じる減算誘導作用に起因する出力低下が起こってしまう為に低効率の増幅になる。またB級増幅では完全同一動作特性とはなり得ない二素子を逆位相スイングする為に奇数次歪やゼロクロス歪を起こし易く、A級増幅のような減算誘導作用は無くなる代わりに+B高圧電源に優れたレギュレーション性能を求める。更に、この増幅形態では常に動作上のバランス保守に留意する必要があり、バランスが崩れる事で歪率特性悪化や音質性能劣化を招いてしまう。  In the case of push-pull amplification using a two-electrode vacuum tube and a transformer load (FIG. 6), in class A amplification, the output is reduced due to the subtraction induction action that occurs inside the load transformer 14, resulting in low-efficiency amplification. In addition, because class B amplification causes two elements that cannot have exactly the same operating characteristics to swing in opposite phases, odd-order distortion and zero-cross distortion are likely to occur. Require excellent regulation performance. Furthermore, in this amplification mode, it is necessary to always pay attention to balance maintenance in operation. If the balance is lost, distortion characteristics and sound quality performance are deteriorated.

特に複数素子の回路構成になる真空管SEPP増幅(図9)、或は半導体素子によるコンプリメンタリ・プッシュプル増幅(図8)の場合は、コンプリメンタリ両素子の中点をゼロ電位出力として直接スピーカーをドライブする為、素子のペア性と動作上のバランス保守に最大限の配慮が求められる。同バランスが崩れる事で増幅素子の異常な発熱やスピーカーの破壊という事故を起こしかねない。またレギュレーション性能に極めて優れる大規模正負両電源を必要とする。  Especially in the case of vacuum tube SEPP amplification (FIG. 9) or complementary push-pull amplification (FIG. 8) using a multi-element circuit configuration, the speaker is directly driven using the midpoint of both complementary elements as the zero potential output. Therefore, maximum consideration is required for the maintenance of the balance of the element pairing and operation. If the balance is lost, an accident such as abnormal heat generation of the amplifying element and destruction of the speaker may occur. In addition, it requires a large-scale positive and negative power source with excellent regulation performance.

本発明はこれら従来回路が持つ諸問題を解決する、まったく新しい増幅動作原理を提案するものである。  The present invention proposes a completely new amplifying operation principle that solves the problems of these conventional circuits.

課題を解決する為の手段Means to solve the problem

同インダクタンス容量の二巻線を等価的に単一巻線と考え、そのホット側巻線とコールド側巻線を逆位相にスイングする事で損失の少ない極めて良質な大出力を取り出せる作用を、真空管増幅回路と半導体増幅回路に摘要する。  Two tubes with the same inductance capacity are equivalently considered as a single winding, and the action of taking out an extremely high quality output with little loss by swinging its hot side coil and cold side coil in opposite phases is a vacuum tube. This is necessary for amplifier circuits and semiconductor amplifier circuits.

真空管素子を使う場合、一つの共通コアにホット用巻線及びコールド用巻線を同インダクタンス容量でスプリット構造に持つ負荷インダクタ2にて、或は同インダクタに二次側巻線を備えた負荷トランス3にて、単電極真空管1のプレート電極とホット用巻線のホット端子を、同カソード電極とコールド用巻線のコールド端子を接続する回路(図1、図2)を構成する。  In the case of using a vacuum tube element, a load transformer 2 having a hot winding and a cold winding in a common core in a split structure with the same inductance capacity, or a load transformer having a secondary side winding in the same inductor. 3, a circuit (FIGS. 1 and 2) is configured to connect the plate electrode of the single electrode vacuum tube 1 and the hot terminal of the hot winding, and the cathode electrode and the cold terminal of the cold winding.

半導体素子を使う場合、一つの共通コアにホット用巻線及びコールド用巻線を同インダクタンス容量でスプリット構造に持つ負荷トランス16にて、コンプリメンタリNch素子8のドレイン電極とホット用巻線のホット端子を、同Pch素子9のドレイン電極とコールド用巻線のコールド端子を接続する回路(図5)を構成する。  In the case of using a semiconductor element, the drain electrode of the complementary Nch element 8 and the hot terminal of the hot winding are used in a load transformer 16 having a common core and a hot winding and a cold winding in the split structure with the same inductance capacity. Constitutes a circuit (FIG. 5) for connecting the drain electrode of the Pch element 9 and the cold terminal of the cold winding.

発明の効果The invention's effect

真空管を増幅素子とする場合、単電極真空管のみで従来の二電極型プッシュプル増幅(図6)同等以上の出力を取り出す事を可能にする。何故なら、単電極真空管1のプレート電極が負荷インダクタ2のホット用巻線のホット端子を、同カソード電極が同インダクタ2のコールド用巻線のコールド端子を、それぞれ逆位相にスイングし、その出力信号にて出力トランスをドライブする(図3、図4)、或は負荷トランス3にて同様にスイングし誘導合成する(図2)事で、BTL(Bridge Tied Load)出力作用(図10)を実現できるからである。  When a vacuum tube is used as an amplifying element, an output equivalent to or higher than that of a conventional two-electrode push-pull amplification (FIG. 6) can be obtained using only a single electrode vacuum tube. This is because the plate electrode of the single electrode vacuum tube 1 swings the hot terminal of the hot winding of the load inductor 2, and the cathode electrode swings the cold terminal of the cold winding of the inductor 2 in the opposite phase, and the output By driving the output transformer with a signal (FIGS. 3 and 4) or by similarly swinging and inductively synthesizing with the load transformer 3 (FIG. 2), a BTL (Bridge Tied Load) output action (FIG. 10) can be achieved. This is because it can be realized.

この時、負荷インダクタ或は負荷トランスの1次側巻線にDCアイドル電流が同一方向に流れ、誘導電力も同位相に生じる為、ホット側スイングとコールド側スイングが加算合成的に作用して出力インピーダンスを低下させ、プレート側スイング及びカソード側スイングそれぞれの非直線性が相殺し合うように平均化されて歪率が大幅に改善される。よって音質性能にも多大な改善効果がもたらされる。また従来の真空管プッシュプル増幅(図6)のように二電極間の特性のバラつきや動作上のバランス保守に留意する必要性が無く、顕著な劣化に至るまでの経時変化についても同様。  At this time, the DC idle current flows in the same direction in the primary winding of the load inductor or load transformer, and the induced power is also generated in the same phase. Therefore, the hot side swing and the cold side swing act additively and output. The impedance is lowered and averaged so that the nonlinearities of the plate-side swing and the cathode-side swing cancel each other, thereby greatly improving the distortion rate. Therefore, the sound quality performance is greatly improved. Further, unlike the conventional vacuum tube push-pull amplification (FIG. 6), there is no need to pay attention to the variation in characteristics between the two electrodes and the balance maintenance in operation, and the same applies to the change over time until the significant deterioration.

半導体を増幅素子とする場合、Nch/Pchコンプリメンタリ・シングルペア及び単一電源電圧のみで、通常使われる複数パラレル構成の正負両電源OTL(Output Trasformer Less)増幅回路(図8)同等以上の出力を取り出す事を可能にする。何故なら、Nch/Pchコンプリメンタリ増幅素子をB級増幅に近い動作とする時、Nch素子8のドレイン電極が負荷トランス16の一次側ホット用巻線のホット端子を、Pch素子9のドレイン電極が同トランスの同コールド用巻線のコールド端子を、それぞれ逆位相にスイングし、誘導合成された出力信号を取り出せるからである(図5)。  When a semiconductor is used as an amplifying element, an NTL / Pch complementary single pair and a single power supply voltage are used, and a positive / negative double power supply OTL (Output Transformer Less) amplifier circuit (FIG. 8) with a parallel structure that is normally used is used. It can be taken out. This is because when the Nch / Pch complementary amplifying element is operated close to class B amplification, the drain electrode of the Nch element 8 is the hot terminal of the primary hot winding of the load transformer 16 and the drain electrode of the Pch element 9 is the same. This is because the cold terminals of the cold windings of the transformer can be swung in opposite phases, and the output signal inductively synthesized can be taken out (FIG. 5).

この時、ホット側がスイング中はコールド側がカット・オフ、或はその逆の状態になる為、及び負荷トランスの1次側巻線にDCアイドル電流が同一方向に流れ、誘導電力も同位相に生じる事から、ホット側スイングとコールド側スイングが加算合成的に作用して、負荷トランス内部に減算誘導作用はまったく起こらない。またコンプリメンタリ二素子間のアイドル電流に多少差異が生じたとしても、信号が磁気的に合成される事でゼロクロス歪が現れたり歪率が悪化する事はない。よって従来の複数パラレル構成(図8)のように各コンプリメンタリ素子への優れたペア性や動作上のバランス保守に最大限の配慮を求めたり、大規模正負両電源を求める必要性は無くなる。更にはコンプリメンタリ二素子の電圧ドリフトに対する配慮や過電流事故からスピーカーを護る保護回路の必要性も皆無となる。  At this time, while the hot side is swinging, the cold side is cut off or vice versa, and the DC idle current flows in the same direction in the primary winding of the load transformer, and the induced power is also generated in the same phase. For this reason, the hot-side swing and the cold-side swing act in an additive manner, and no subtraction induction action occurs in the load transformer. Even if there is a slight difference in the idle current between the complementary two elements, zero cross distortion does not appear or the distortion rate does not deteriorate due to the magnetic synthesis of the signals. Therefore, there is no need to obtain maximum consideration for excellent pairability and operational balance maintenance for each complementary element as in the conventional multiple parallel configuration (FIG. 8), or to obtain a large-scale positive and negative power supply. Furthermore, there is no need for a protection circuit that protects the speaker from overcurrent accidents and consideration of the voltage drift of the complementary two elements.

発明の実施形態Embodiment of the Invention

本発明に共通する課題は、負荷インダクタ或は負荷トランスに専用の構成を求める事にある。つまり、負荷インダクタも負荷トランスも同等インダクタンス容量の二巻線を必要とし、負荷トランスには更に二次側巻線を必要とする。更に負荷トランスの場合は一次側巻線に流れるDCアイドル電流によるコアの直流磁化が生じてしまうため、コアにはシングルエンド増幅用トランス同様にエア・ギャップを設ける必要がある。が、これらは一般的に用いられるトランス製造技術の範囲内であり、他に特殊な構造や素材・技術を求めるものではない。  A problem common to the present invention is to obtain a dedicated configuration for a load inductor or a load transformer. That is, both the load inductor and the load transformer require two windings having the same inductance capacity, and the load transformer further requires a secondary winding. Furthermore, in the case of a load transformer, direct current magnetization of the core is caused by a DC idle current flowing in the primary side winding, so that it is necessary to provide an air gap in the core as in the case of the single-end amplification transformer. However, these are within the scope of commonly used transformer manufacturing techniques, and no other special structures, materials, or technologies are required.

真空管を増幅素子に使う場合、ホット側スイングとコールド側スイングを負荷トランス3にて誘導合成して出力を取り出す増幅回路(図2)と、共通コアにある2つの同容量インダクタ2を負荷として取り出した信号出力をコンデンサー結合にて出力トランス6をドライブする増幅回路(図3、図4)が考えられる。両回路とも単電極真空管のみを増幅素子として使い、出力或は負荷トランスのホット/コールド両スイングによるBTL動作(図10)をさせる処に本発明の最大の特長がある。また本発明回路は出力段に限らずあらゆる音声信号増幅段に使用可能である。  When a vacuum tube is used as an amplifying element, an amplifier circuit (FIG. 2) that extracts the output by inductively synthesizing the hot-side swing and the cold-side swing with the load transformer 3 and two equal-capacity inductors 2 in the common core are extracted as loads. An amplifying circuit (FIGS. 3 and 4) for driving the output transformer 6 with the capacitor output by the capacitor coupling can be considered. In both circuits, the greatest advantage of the present invention resides in that only a single-electrode vacuum tube is used as an amplifying element and BTL operation (FIG. 10) is performed by both hot / cold swings of the output or load transformer. The circuit according to the present invention can be used not only in the output stage but also in any audio signal amplification stage.

半導体を増幅素子に使う場合、ホット側スイングとコールド側スイングを負荷トランス16にて誘導合成して取り出す増幅回路(図5)が考えられる。半導体素子を真空管に置き換えて考える事も可能であるが、その際はA級増幅にすべき事、及び片側反転位相の入力信号を用意する事が求められる。  When a semiconductor is used for an amplifying element, an amplifying circuit (FIG. 5) is conceivable in which a hot side swing and a cold side swing are inductively synthesized by a load transformer 16. It is possible to replace the semiconductor element with a vacuum tube, but in that case, it is required to perform class A amplification and to prepare an input signal of one side inversion phase.

実施形態の効果Effects of the embodiment

真空管を増幅素子に使う場合、単電極真空管のみで従来のシングルエンド増幅(図7)の十数倍、二電極型プッシュプル増幅(図6)の数倍もの出力を取り出す事が可能になる。しかもA級増幅である為もあって従来回路より出力インピーダンスが低く、諸特性に優れ、遥かに優れる音質性能が期待できる。  When a vacuum tube is used as an amplifying element, it is possible to take out an output several times that of a conventional single-end amplification (FIG. 7) and several times that of a two-electrode push-pull amplification (FIG. 6) using only a single electrode vacuum tube. Moreover, because of class A amplification, the output impedance is lower than that of the conventional circuit, excellent in various characteristics, and far superior sound quality performance can be expected.

仮に最大スイング電圧幅が200V、負荷インピーダンス2kΩ(×2):8Ωであるとした場合、((200V÷√2)×2)×0.06(昇圧比)≒17Vrms(36W)の最大出力を取り出せる。この値は従来のシングルエンド増幅回路(図7)の十数倍にもなる。また二電極型プッシュプル増幅回路(図6)の数倍にもなり、これと同等出力を同増幅回路(図6)にて得るには約400Vもの最大スイング電圧幅と大規模高圧電源が必要になる。更に、本発明回路(図1〜図4)の動作はすべてA級増幅である為、B電圧×アイドル電流のDC電力を安定的に供給するレギュレーション性能の単一電源があればよい。  Assuming that the maximum swing voltage width is 200 V and the load impedance is 2 kΩ (× 2): 8Ω, the maximum output of ((200 V ÷ √2) × 2) × 0.06 (step-up ratio) ≈17 Vrms (36 W) is obtained. I can take it out. This value is more than ten times that of the conventional single-ended amplifier circuit (FIG. 7). In addition, it is several times as large as the two-electrode push-pull amplifier circuit (Fig. 6), and a maximum swing voltage width of about 400V and a large-scale high-voltage power supply are required to obtain the same output with this amplifier circuit (Fig. 6). become. Further, since all the operations of the circuit of the present invention (FIGS. 1 to 4) are class A amplification, a single power supply having a regulation performance that stably supplies DC power of B voltage × idle current is sufficient.

半導体を増幅素子に使う場合、Nch/Pchコンプリメンタリ・シングルペア及び単一電源電圧のみで、通常使われる複数パラレル構成の正負両電源OTL(Output Trasfomer Less)増幅回路(図8)同等以上の出力を取り出す事が可能となる。更には、従来回路のように各コンプリメンタリ素子への優れたペア性や電圧ドリフトに対するバランス保守に最大限の配慮、及び大規模正負両電源を必要とせず、過電流事故からスピーカーを護る保護回路の必要性も無くなる。  When a semiconductor is used for an amplifying element, an NTL / Pch complementary single pair and a single power supply voltage are used, and a multi-parallel positive / negative power supply OTL (Output Transformer Less) amplifier circuit (Figure 8) with an output equivalent to or higher than that normally used It can be taken out. Furthermore, as in the conventional circuit, excellent pairing for each complementary element and balance maintenance for voltage drift are considered, and a protection circuit that protects the speaker from overcurrent accidents without requiring a large-scale positive and negative power supply is required. There is no need.

仮に最大スイング電圧幅が100V、負荷インピーダンス30Ω(×2):8Ωであるとした場合、((100V÷√2)×2)×0.5(昇圧比)≒71Vrms(628W)の最大出力を取り出せる。この場合、電源には最大出力時に必要な電流約3.3Aを余裕をもって供給するレギュレーション性能の単一電源があればよい。これと同等出力を従来増幅回路(図8)にて得るには、最低でもNch/Pchコンプリメンタリ素子を5組以上、及び700〜800VA級の大規模正負両電源が求められる。  Assuming that the maximum swing voltage width is 100 V and the load impedance is 30Ω (× 2): 8Ω, the maximum output of ((100V ÷ √2) × 2) × 0.5 (step-up ratio) ≈71 Vrms (628 W) is obtained. I can take it out. In this case, the power source only needs to have a single power source with a regulation performance for supplying about 3.3 A of current necessary for maximum output with a margin. In order to obtain an output equivalent to this with the conventional amplifier circuit (FIG. 8), at least five sets of Nch / Pch complementary elements and a large-scale positive and negative power source of 700 to 800 VA class are required.

共通コアにある2つの同容量インダクタを負荷として単電極真空管をスイングさせる、本発明の基本増幅回路。  The basic amplifier circuit of the present invention that swings a single-electrode vacuum tube with two equal-capacity inductors in a common core as loads. 共通コアに2つの同容量インダクタをもつ負荷トランスを単電極真空管にてスイングさせる増幅回路。  An amplification circuit that swings a load transformer with two identical-capacity inductors in a common core using a single-electrode vacuum tube. 共通コアに2つの同容量インダクタを負荷として単電極真空管にてスイングさせ、そのホット/コールド両信号出力をコンデンサー結合にて取り出し、出力トランスをドライブする増幅回路。  An amplification circuit that drives two transformers with a common core and swings them with a single electrode vacuum tube as a load. 共通コアに2つの同容量インダクタを負荷として単電極真空管にてスイングさせ、そのホット/コールド両信号出力にて出力トランスを直接ドライブする増幅回路。  An amplifier circuit that swings with a single-electrode vacuum tube using two identical-capacity inductors as a load on a common core, and directly drives the output transformer with both hot and cold signal outputs. 共通コアに2つの同容量インダクタをもつ負荷トランスをNch/Pchコンプリメシタリ半導体素子シングルペア及び単一電源電圧のみでスイングする増幅回路。  An amplifying circuit that swings a load transformer having two same-capacity inductors in a common core only by a single pair of Nch / Pch complementary semiconductor elements and a single power supply voltage. 従来の二電極型真空管プッシュプル増幅回路  Conventional two-electrode vacuum tube push-pull amplifier circuit 従来の単電極型真空管シングルエンド増幅回路  Conventional single electrode type vacuum tube single-ended amplifier circuit 従来の半導体コンプリメンタリ・プッシュプル複数パラレル構成の正負両電源OTL(Output Trasformer Less)増幅回路  Conventional semiconductor complementary push-pull multiple parallel power supply positive / negative power supply OTL (Output Transformer Less) amplifier circuit 真空管SEPP(Single−Ended Push−Pull)構成の正負両電源OTL増幅回路  Positive and negative power supply OTL amplifier circuit of vacuum tube SEPP (Single-Ended Push-Pull) configuration (a)BTL(Bridge Tied Load)増幅動作概要 (b)トランスによるBTL増幅動作概要  (A) Outline of BTL (Bridge Tied Load) amplification operation (b) Outline of BTL amplification operation by transformer

符号の説明Explanation of symbols

1 真空管素子
2 負荷インダクタ
3 真空管用負荷トランス
4 ホット側巻線
5 コールド側巻線
6 出力トランス
7 二次側巻線
8 Nch半導体素子
9 Pch半導体素子
10 信号源(入力信号)
11 結合コンデンサー
12 有効信号波形及び位相
13 従来型真空管用プッシュプル負荷トランス
14 従来型真空管用シングルエンド負荷トランス
15 半導体用負荷トランス
+B/−B 電源電圧
+C/−C バイアス電圧
DESCRIPTION OF SYMBOLS 1 Vacuum tube element 2 Load inductor 3 Vacuum tube load transformer 4 Hot side winding 5 Cold side winding 6 Output transformer 7 Secondary side winding 8 Nch semiconductor element 9 Pch semiconductor element 10 Signal source (input signal)
11 Coupling capacitor 12 Effective signal waveform and phase 13 Push-pull load transformer for conventional vacuum tube 14 Single-ended load transformer for conventional vacuum tube 15 Load transformer for semiconductor + B / −B Power supply voltage + C / −C Bias voltage

Claims (5)

真空管を増幅素子とする場合、単電極のみで、従来から使われてきた単電極型シングルエンド増幅回路(図7)及び二電極型プッシュプル増幅回路(図6)の最大出力を超える大出力を可能にする増幅回路。  When a vacuum tube is used as an amplifying element, a large output exceeding the maximum output of a single-electrode single-ended amplifier circuit (FIG. 7) and a two-electrode push-pull amplifier circuit (FIG. 6) that has been conventionally used can be achieved with only a single electrode. Amplification circuit that enables. 半導体を増幅素子とする場合、Nch/Pchコンプリメンタリ・シングルペア及び単一電源電圧のみで、通常使われる複数パラレル構成の正負両電源OTL(Output Transformer Less)増幅回路(図8)同等以上の出力を取り出す事を可能にする増幅回路。  When a semiconductor is used as an amplifying element, an NTL / Pch complementary single pair and a single power supply voltage are used, and an output equal to or higher than that of a normally used multi-parallel positive / negative power supply OTL (Output Transformer Less) amplifier circuit (FIG. 8) is provided. Amplification circuit that enables extraction. 一つの共通コアにホット(プレート)用巻線及びコールド(カソード)用巻線を同インダクタンス容量でスプリット構造に持つ負荷インダクタを、単電極真空管のプレート電極とホット用巻線のホット端子を、同カソード電極とコールド用巻線のコールド端子をそれぞれ接続する回路(図1)を構成する事で、低インピーダンスの位相差180°の二信号を取り出す事を可能にし、更に出力トランスを接続する事でBTL(Bridge Tried Load)増幅(図10)作用を実現する増幅回路(図3、図4)。  A common inductor has a hot (plate) winding and a cold (cathode) winding in a split structure with the same inductance capacity, and a single electrode vacuum tube plate electrode and a hot winding hot terminal. By constructing a circuit (Fig. 1) that connects the cathode electrode and the cold terminal of the cold winding respectively, it is possible to extract two signals with a low impedance phase difference of 180 °, and by connecting an output transformer. An amplifier circuit (FIGS. 3 and 4) that realizes a BTL (Bridge Tried Load) amplification (FIG. 10) function. 一つの共通コアにホット(プレート)用巻線及びコールド(カソード)用巻線を同インダクタンス容量でスプリット構造に持ち、且つ二次側巻線を備える負荷トランスを用い、単電極真空管のプレート電極とホット用巻線のホット端子を、同カソード電極とコールド用巻線のコールド端子を接続する回路を構成する事で、負荷トランスの二次側出力にBTL(Bridge Tied Load)増幅(図10)作用を実現する増幅回路(図2)。  Using a load transformer that has a split structure with the same inductance capacity and a secondary winding on the hot (plate) winding and cold (cathode) winding on one common core, By constructing a circuit that connects the hot terminal of the hot winding to the cold terminal of the cathode electrode and the cold winding, BTL (Bridge Tied Load) amplification (FIG. 10) acts on the secondary output of the load transformer. An amplifier circuit that realizes (FIG. 2). 一つの共通コアにホット(Nch)用巻線及びコールド(Pch)用巻線を同インダクタンス容量でスプリット構造に持ち、且つ二次側巻線を備える負荷トランスを用い、半導体Nchトランジスタ素子のドレイン電極とホット用巻線のホット端子を、同素子のソース電極を接地、同Pchトランジスタ素子のドレイン電極とコールド用巻線のコールド端子を、同素子のソース電極を+B電源電圧に接続する回路(図5)を構成する事で、一般に使われる複数パラレル構成の正負両電源電圧OTL(Output Trasformer−Less)増幅回路(図8)同等以上の大出力を取り出し、尚且つ優れた保守性・信頼性及び音質性能をも実現する増幅回路。  The drain electrode of the semiconductor Nch transistor element using a load transformer having a split structure with the same inductance capacity and a secondary side winding with a hot (Nch) winding and a cold (Pch) winding on one common core And a hot terminal of the hot winding, a source electrode of the same element is grounded, a drain electrode of the Pch transistor element and a cold terminal of the cold winding are connected to a + B power supply voltage (FIG. By configuring 5), it is possible to obtain a large output equivalent to or higher than that of a commonly used multiple parallel configuration positive and negative power supply voltage OTL (Output Transformer-Less) amplifier circuit (FIG. 8), and to have excellent maintainability and reliability. An amplifier circuit that also achieves sound quality performance.
JP2006144626A 2006-04-25 2006-04-25 Amplifier circuit Pending JP2007295502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144626A JP2007295502A (en) 2006-04-25 2006-04-25 Amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144626A JP2007295502A (en) 2006-04-25 2006-04-25 Amplifier circuit

Publications (1)

Publication Number Publication Date
JP2007295502A true JP2007295502A (en) 2007-11-08

Family

ID=38765639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144626A Pending JP2007295502A (en) 2006-04-25 2006-04-25 Amplifier circuit

Country Status (1)

Country Link
JP (1) JP2007295502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140915A (en) * 2012-01-06 2013-07-18 Isao Osato Transformer for amplifier circuit, power amplifier
JP2015192300A (en) * 2014-03-28 2015-11-02 株式会社オーディオテクニカ Sound quality adjustment circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140915A (en) * 2012-01-06 2013-07-18 Isao Osato Transformer for amplifier circuit, power amplifier
JP2015192300A (en) * 2014-03-28 2015-11-02 株式会社オーディオテクニカ Sound quality adjustment circuit

Similar Documents

Publication Publication Date Title
JP5670355B2 (en) Low loss amplifier
US9099969B2 (en) Class AB amplifiers
US6836183B2 (en) Chireix architecture using low impedance amplifiers
US20080164941A1 (en) Systems and methods for power amplifiers with voltage boosting multi-primary transformers
US20050195031A1 (en) Switched mode power amplifier using lumped element impedance inverter for parallel combining
JP2002290158A (en) Self-oscillating power amplifier
JP2007295502A (en) Amplifier circuit
US10236841B2 (en) Differential amplifier
US9496829B2 (en) Amplifier arrangement comprising a low-pass filter device
JP2021197586A (en) Power amplifier circuit
TWI442786B (en) Speaker system and speaker amplifier circuit
JP2009507403A (en) Method and apparatus for soft switching in a class D amplifier
JP5816559B2 (en) Power amplifier
JP5524358B2 (en) Push-pull amplifier with inductive common mode decoupling
US20060284677A1 (en) Switching amplifier and control method thereof
US6265938B1 (en) Linear high-voltage drive stage and cathode-follower high-fidelity power amplifier implementing same
JP3205209U (en) Differential direct connection OTL vacuum tube amplifier
JP2020516192A (en) Broadband power amplifier device
US10797654B2 (en) Amplifying device comprising a compensation circuit
JP2013191930A (en) Amplitude modulation device
JPS58100514A (en) Broad band power amplifier
JPH081221U (en) Electron tube coupling circuit using a transformer
JPH0794960A (en) Single amplifier
JPH09181537A (en) Coupling circuit for electronic tube using transformer
JP2001237649A (en) Amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110222