JP2007294136A - Separator for fuel cell and its manufacturing method - Google Patents

Separator for fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2007294136A
JP2007294136A JP2006117874A JP2006117874A JP2007294136A JP 2007294136 A JP2007294136 A JP 2007294136A JP 2006117874 A JP2006117874 A JP 2006117874A JP 2006117874 A JP2006117874 A JP 2006117874A JP 2007294136 A JP2007294136 A JP 2007294136A
Authority
JP
Japan
Prior art keywords
fuel cell
flow path
notch
separator
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006117874A
Other languages
Japanese (ja)
Inventor
Nobufumi Oe
伸史 大江
Kazuto Ueno
和人 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006117874A priority Critical patent/JP2007294136A/en
Publication of JP2007294136A publication Critical patent/JP2007294136A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator which prevents its deformation with high sealing performance. <P>SOLUTION: The manufacturing method includes a preforming step for forming a concavo-convex shaped flow path at a region contributing to the power generation by means of the press working of a metal plate, a finishing step for molding the flow path formed by the preforming step into the predetermined form, a trimming step for cutting off undesired portions of the metal plate which are generated in the finishing step, and a reforming step for forming a primary notch continuing along the longitudinal direction of the flow path simultaneously with the finishing step or the trimming step or after these steps. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池用セパレータ及びその製造方法に関し、詳細には、金属板をプレス加工して流路を形成した時に発生したセパレータの変形(反りやうねり)を矯正するための技術に関する。   The present invention relates to a separator for a fuel cell and a method for manufacturing the same, and more particularly to a technique for correcting deformation (warping or undulation) of a separator that occurs when a flow path is formed by pressing a metal plate.

例えば、高分子電解質膜の両面に水素と酸素を供給して起電力を発生させる燃料電池では、単位体積当たりの起電力をより一層高めるために、金属製の薄板をプレス加工して凹凸形状の流路を形成する、いわゆる薄板金属セパレータの開発がなされている(例えば、特許文献1など参照)。   For example, in a fuel cell in which hydrogen and oxygen are supplied to both sides of a polymer electrolyte membrane to generate electromotive force, a metal thin plate is pressed to form an uneven shape in order to further increase the electromotive force per unit volume. A so-called thin metal separator that forms a flow path has been developed (for example, see Patent Document 1).

通常、金属セパレータは、プレスマシン及び金型を用いたプレス成形にて形成され、予備成形、仕上げ成形及びトリミング工程を経て製造される。そして、このようにして得られた金属セパレータは、2枚重ね合わせることで、燃料ガス、酸化剤ガス及び冷却水(冷媒)をそれぞれ流通させる燃料ガス流路、酸化剤ガス流路及び冷媒流路を形成してなるセパレータとされる。
特開2002−367665号公報
Usually, a metal separator is formed by press molding using a press machine and a mold, and is manufactured through preliminary molding, finish molding, and trimming processes. Then, two metal separators obtained in this way are stacked so that the fuel gas, the oxidant gas, and the coolant (refrigerant) flow through the fuel gas channel, the oxidant gas channel, and the refrigerant channel, respectively. It is set as the separator formed.
JP 2002-367665 A

しかしながら、プレス工程の予備成形及び仕上げ工程は何れも材料を引き延ばして成形する張り出し成形であるため、引き延ばされた材料が戻ろうとし、プレス成形後の変形(反りやうねり)が発生する。   However, since both the preforming and finishing steps of the press process are stretch forming in which the material is stretched and formed, the stretched material tends to return and deformation (warping and waviness) after press forming occurs.

特に、燃料電池に使用されるセパレータでは、凹凸形状をなす規則性を持った流路とされていることから、流路と交差する方向に大きく曲がり易い。このように変形したセパレータ同士を重ね合て接合一体化した場合、接合部分に隙間が生じて流路からガスや冷媒が漏れる可能性がある。   In particular, in a separator used in a fuel cell, since it has a regular flow path having an uneven shape, it is likely to bend greatly in a direction intersecting the flow path. When the separators thus deformed are overlapped and joined together, a gap may be formed at the joined portion, and gas or refrigerant may leak from the flow path.

そこで、本発明は、セパレータの変形を抑制し、シール性の高いセパレータを提供し得る燃料電池用セパレータ及びその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the separator for fuel cells which can suppress the deformation | transformation of a separator, and can provide a separator with high sealing performance, and its manufacturing method.

本発明に係る燃料電池用セパレータは、金属板をプレス加工して発電に寄与する領域に凹凸形状からなる流路を複数形成した燃料電池用セパレータにおいて、少なくとも前記流路の長手方向に沿って連続する第1切欠き部を設けたことを特徴とする。ここでは、燃料ガス、酸化剤ガス及び冷媒が流れる部分を流路とし、それらガス及び冷媒が流れる部分の反対側を流路の裏面と定義する。   The fuel cell separator according to the present invention is a fuel cell separator in which a plurality of uneven channels are formed in a region that contributes to power generation by pressing a metal plate, and is continuous along at least the longitudinal direction of the channels. The 1st notch part which provides is characterized by the above-mentioned. Here, the part where the fuel gas, the oxidant gas and the refrigerant flow is defined as a flow path, and the opposite side of the part where the gas and the refrigerant flow is defined as the back surface of the flow path.

本発明に係る燃料電池用セパレータの製造方法は、金属板をプレス加工して発電に寄与する領域に凹凸形状からなる流路を形成する予備成形工程と、予備成形工程で形成した流路を所定形状に成形する仕上げ工程と、仕上げ工程で得られた金属板の不要部分を切り落とすトリミング工程と、仕上げ工程またはトリミング工程と同時またはこれらの工程後に、前記流路の長手方向に沿って連続する第1切欠き部を形成する形状矯正工程とを備えたことを特徴とする。   The manufacturing method of a separator for a fuel cell according to the present invention includes a preforming step in which a metal plate is pressed to form an uneven channel in a region contributing to power generation, and a channel formed in the preforming step is predetermined. A finishing process for forming into a shape, a trimming process for cutting off unnecessary portions of the metal plate obtained in the finishing process, and a process continuous along the longitudinal direction of the flow path at the same time after or after the finishing process or the trimming process. And a shape correcting step for forming one notch.

本発明の燃料電池用セパレータによれば、流路の長手方向に沿って連続する第1切欠き部を流路部分に形成したので、プレス加工によって材料に残る引っ張りの残留応力が、この第1切欠き部を形成することによって相殺され、残存する応力が無くなり反りやうねりの発生が抑制される。したがって、本発明によれば、反りやうねりの無い金属セパレータ同士を重ね合わせることで、流路からのガス及び冷媒の漏れを無くすことができる。   According to the fuel cell separator of the present invention, the first notch portion that is continuous along the longitudinal direction of the flow path is formed in the flow path portion. The formation of the notch cancels out the residual stress and suppresses the occurrence of warpage and undulation. Therefore, according to the present invention, it is possible to eliminate leakage of gas and refrigerant from the flow path by overlapping metal separators having no warpage or undulation.

一方、本発明の燃料電池用セパレータの製造方法によれば、仕上げ工程またはトリミング工程と同時またはこれらの工程後に、流路の長手方向に沿って連続する第1切欠き部を形成することで、これらプレス加工時に材料に残る引っ張りの残留応力が、この第1切欠き部を形成することによって相殺され、残留する応力を無くすことができる。したがって、本発明方法によれば、反りやうねりの発生が抑制された燃料電池用セパレータを得ることができる。   On the other hand, according to the method for manufacturing a separator for a fuel cell of the present invention, by forming the first notch continuous along the longitudinal direction of the flow path at the same time as the finishing step or the trimming step or after these steps, The residual stress of the tension remaining in the material during the press working is offset by forming the first notch, and the residual stress can be eliminated. Therefore, according to the method of the present invention, it is possible to obtain a fuel cell separator in which the occurrence of warpage and undulation is suppressed.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

「燃料電池スタックの全体構成」
先ず、本発明の燃料電池用セパレータが使用される燃料電池スタックの全体構成について簡単に説明する。図1は燃料電池スタックの全体構成を示す斜視図、図2は燃料電池単セルの拡大断面図、図3は燃料電池単セルの要部拡大断面図である。
"Overall structure of fuel cell stack"
First, the overall configuration of a fuel cell stack in which the fuel cell separator of the present invention is used will be briefly described. FIG. 1 is a perspective view showing the overall configuration of the fuel cell stack, FIG. 2 is an enlarged cross-sectional view of a single fuel cell, and FIG. 3 is an enlarged cross-sectional view of a main part of the single fuel cell.

燃料電池スタック1は、図1に示すように、燃料ガス(水素ガス)と酸化剤ガス(酸素)の反応により起電力を生じる単位電池としての燃料電池単セル2を所定数だけ積層した積層体3とされ、その積層体3の両端に集電板4、絶縁板5およびエンドプレート6を配置し、該積層体3をタイロッド7で締め付け、そのタイロッド7の端部にナット100を螺合させることで構成されている。   As shown in FIG. 1, a fuel cell stack 1 is a laminate in which a predetermined number of fuel cell single cells 2 as unit cells that generate an electromotive force by reaction of fuel gas (hydrogen gas) and oxidant gas (oxygen) are stacked. 3, the current collector plate 4, the insulating plate 5 and the end plate 6 are arranged at both ends of the laminate 3, the laminate 3 is fastened with a tie rod 7, and a nut 100 is screwed onto the end of the tie rod 7. It is composed of that.

この燃料電池スタック1では、燃料ガス、酸化剤ガスおよび冷媒(冷却水)をそれぞれ各燃料電池単セル2のセパレータ(図示は省略する)に形成された各流路に流通させるための燃料ガス導入口8、燃料ガス排出口9、酸化剤ガス導入口10、酸化剤ガス排出口11、冷媒導入口12および冷媒排出口13を、一方のエンドプレート6に形成している。   In this fuel cell stack 1, fuel gas introduction for allowing fuel gas, oxidant gas and refrigerant (cooling water) to flow through each flow path formed in a separator (not shown) of each fuel cell single cell 2. A port 8, a fuel gas outlet 9, an oxidant gas inlet 10, an oxidant gas outlet 11, a refrigerant inlet 12 and a refrigerant outlet 13 are formed in one end plate 6.

かかる構成の燃料電池スタック1においては、燃料ガスは、燃料ガス導入口8より導入されてセパレータに形成された燃料ガス流路を流れ、燃料ガス排出口9より排出される。酸化剤ガスは、酸化剤ガス導入口10より導入されてセパレータに形成された酸化剤ガス流路を流れ、酸化剤ガス排出口11より排出される。冷媒は、冷媒導入口12より導入されてセパレータに形成された冷媒流路を流れ、冷媒排出口13より排出される。   In the fuel cell stack 1 having such a configuration, the fuel gas is introduced from the fuel gas inlet 8, flows through the fuel gas passage formed in the separator, and is discharged from the fuel gas outlet 9. The oxidant gas is introduced from the oxidant gas introduction port 10, flows through the oxidant gas flow path formed in the separator, and is discharged from the oxidant gas discharge port 11. The refrigerant is introduced from the refrigerant introduction port 12, flows through the refrigerant flow path formed in the separator, and is discharged from the refrigerant discharge port 13.

燃料電池単セル2は、図2に示すように、膜電極接合体(MEA:membrane electrode assembly)14と、この膜電極接合体14の両面にそれぞれ配置される燃料電池用セパレータ(以下、単にセパレータという)15とから構成される。   As shown in FIG. 2, the fuel cell single cell 2 includes a membrane electrode assembly (MEA) 14 and fuel cell separators (hereinafter simply referred to as separators) disposed on both surfaces of the membrane electrode assembly 14, respectively. 15).

膜電極接合体14は、例えば水素イオンを通す高分子電解質膜である固体高分子電解質膜と、アノード触媒とガス拡散層からなるアノード電極と、カソード触媒とガス拡散層からなるカソード電極(何れも図示は省略する)とからなる。かかる膜電極接合体14は、アノード電極とカソード電極によって、固体高分子電解質膜をその両側から挟み込んだ積層構造とされている。   The membrane electrode assembly 14 includes, for example, a solid polymer electrolyte membrane that is a polymer electrolyte membrane that passes hydrogen ions, an anode electrode that includes an anode catalyst and a gas diffusion layer, and a cathode electrode that includes a cathode catalyst and a gas diffusion layer (both are (Illustration is omitted). The membrane electrode assembly 14 has a laminated structure in which a solid polymer electrolyte membrane is sandwiched from both sides by an anode electrode and a cathode electrode.

セパレータ15は、例えば厚みの薄いステンレスなどの金属板からなり、発電に寄与するアクティブ領域(膜電極接合体14と接する中央部分の領域)に、プレス加工によって凹条部16と凸条部17を交互に形成した凹凸形状(いわゆるコルゲート形状)を形成している。   The separator 15 is made of, for example, a thin metal plate such as stainless steel, and the concave stripe portion 16 and the convex stripe portion 17 are formed by pressing in an active area contributing to power generation (a central area in contact with the membrane electrode assembly 14). Alternating concavo-convex shapes (so-called corrugated shapes) are formed.

膜電極接合体14のアノード側に接して配置された凹条部16は、膜電極接合体14との間に燃料ガス(水素H)を流通させる燃料ガス流路18を形成する。一方、膜電極接合体14のカソード側に接して配置された凹条部16は、膜電極接合体14との間に酸化剤ガス(酸素O)を流通させる酸化剤ガス流路19を形成する。そして、セパレータ15、15同士が接合された凸条部17、17で囲まれた空間部は、冷却水(LLC)を流通させる冷媒流路20を形成する。   The recess 16 disposed in contact with the anode side of the membrane electrode assembly 14 forms a fuel gas flow path 18 through which fuel gas (hydrogen H) flows. On the other hand, the concave strip 16 disposed in contact with the cathode side of the membrane electrode assembly 14 forms an oxidant gas flow path 19 through which an oxidant gas (oxygen O) flows. . And the space part enclosed by the protruding strip parts 17 and 17 with which separators 15 and 15 were joined forms the refrigerant flow path 20 which distribute | circulates cooling water (LLC).

また、セパレータ15には、前記した燃料ガス導入口8、燃料ガス排出口9、酸化剤ガス導入口10、酸化剤ガス排出口11、冷却水導入口12および冷却水排出口13と連通するそれぞれのマニホールド(図示は省略する)が形成されている。そして、特に本実施形態では、セパレータ15の反りやうねりを無くすために、凹凸形状をなす凹条部16と凸条部17に、図3に示すように流路の長手方向(図3の紙面と直交する方向)に沿って連続する第1切欠き部25を形成してある。   The separator 15 communicates with the fuel gas inlet 8, fuel gas outlet 9, oxidant gas inlet 10, oxidant gas outlet 11, cooling water inlet 12, and cooling water outlet 13. The manifold (not shown) is formed. In particular, in this embodiment, in order to eliminate warpage and undulation of the separator 15, the concave and convex portions 16 and 17 having the concave and convex shapes are arranged in the longitudinal direction of the flow path (the surface of FIG. 3) as shown in FIG. The first notch portion 25 is formed along the direction perpendicular to the direction.

第1切欠き部25は、断面略V字状の溝として、燃料ガス、酸化剤ガスまたは冷媒が流れる側とは反対側の面、すなわち流路の裏面に形成されている。この実施形態では、2つの第1切欠き部25を互いに平行に形成している。なお、図示は省略するが、第1切欠き部25と交差する方向(ガス及び冷媒の流れ方向と直角に交差する方向)にも同様の断面略V字状の溝を第2切欠き部として形成してある。全体から見ると、凹条部16と凸条部17には、第1切欠き部25と第2切欠き部とにより菱目形状の溝が形成されていることになる。   The first notch 25 is formed as a groove having a substantially V-shaped cross section on the surface opposite to the side through which the fuel gas, oxidant gas or refrigerant flows, that is, on the back surface of the flow path. In this embodiment, the two first cutout portions 25 are formed in parallel to each other. Although not shown, a groove having a substantially V-shaped cross section is also used as the second notch in the direction intersecting the first notch 25 (the direction perpendicular to the gas and refrigerant flow direction). It is formed. When viewed from the whole, the concave strip portion 16 and the convex strip portion 17 are formed with a rhombus-shaped groove by the first cutout portion 25 and the second cutout portion.

このように構成された膜電極接合体14とセパレータ15とからなる燃料電池単セル2は、一対のセパレータ15、15で膜電極接合体14を挟み込むようにして積層され、当該膜電極接合体14の平坦面とされた外周縁部に設けられた第1シール部材23を介して上下のセパレータ15、15同士を結合一体化してある。そして、この燃料電池単セル2は、外周縁部に第2シール部材24を介在させることにより複数層積層されて燃料電池スタック1を構成する。   The fuel cell single cell 2 composed of the membrane electrode assembly 14 and the separator 15 configured as described above is stacked so that the membrane electrode assembly 14 is sandwiched between the pair of separators 15 and 15, and the membrane electrode assembly 14. The upper and lower separators 15 and 15 are coupled and integrated with each other through a first seal member 23 provided on the outer peripheral edge portion of the flat surface. The fuel cell single cell 2 is laminated in a plurality of layers by interposing the second seal member 24 at the outer peripheral edge portion to constitute the fuel cell stack 1.

「セパレータの製造方法」
図4はセパレータ製造工程のうち予備成形工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図、図5はセパレータ製造工程のうち仕上げ工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図、図6はセパレータ製造工程のうちトリミング工程を示し、その工程におけるセパレータの平面図、図7は形状矯正工程で使用する金型を示し、(A)はその金型の斜視図、(B)はその金型に形成された突起の要部拡大図、図8はワークに引っ張り応力が残存していることを示す図、図9は第1切欠き部及び第2切欠き部の形成状態を示す図、図10はセパレータに残存する応力が第1切欠き部及び第2切欠き部によって打ち消された状態を示す図、図11は予備成形高さと歪みとの関係を示す図である。
"Manufacturing method of separator"
4A and 4B show a preforming process in the separator manufacturing process, FIG. 4A is a plan view of the separator in the process, FIG. 4B is an enlarged cross-sectional view of a main part of the flow path portion, and FIG. (A) is a plan view of a separator in the process, (B) is an enlarged cross-sectional view of a main part of the flow path portion, and FIG. 6 shows a trimming process in the separator manufacturing process. 7A and 7B show a mold used in the shape correction process, FIG. 7A is a perspective view of the mold, FIG. 7B is an enlarged view of a main part of a protrusion formed on the mold, and FIG. FIG. 9 is a diagram showing a state in which a tensile stress remains, FIG. 9 is a diagram showing a formation state of the first notch and the second notch, and FIG. 10 is a diagram showing stress remaining in the separator in the first notch and the second notch. The figure which shows the state canceled by the notch part, 11 is a diagram showing the relationship between the preforming height and distortion.

本実施形態のセパレータ15を製造するには、先ず、金属板をプレス加工してアクティブ領域に凹凸形状からなる流路を形成する予備成形工程行う。予備成形工程では、図4に示すように、ステンレスからなる金属板26に、前記凹条部16と凸条部17からなる凹凸形状をなす流路をなだらかに形成する。   In order to manufacture the separator 15 of the present embodiment, first, a preforming process is performed in which a metal plate is pressed to form a flow path having an uneven shape in the active region. In the preforming step, as shown in FIG. 4, a flow path having an uneven shape composed of the concave stripe portion 16 and the convex stripe portion 17 is gently formed in a metal plate 26 made of stainless steel.

この予備成形工程では、通常の成形高さ(図4(B)の点線で示す)よりもその成形高さH1を十分高くして成形する。このときの成形高さH1は、予備成形時と仕上げ成形時それぞれの周長における比率である周長比(予備成形周長/仕上げ成形周長)が100%近辺で歪みが極小となることから(図11参照)、そのときの予備成形高さH1(0.8mm)以上で予備成形を行う。   In this preforming step, the molding is performed with the molding height H1 sufficiently higher than the normal molding height (indicated by the dotted line in FIG. 4B). The molding height H1 at this time is such that the distortion is minimized when the circumference ratio (preliminary molding circumference / finish molding circumference), which is the ratio of the circumferences at the time of preliminary molding and finish molding, is around 100%. (Refer to FIG. 11) Preliminary molding is carried out at a preforming height H1 (0.8 mm) or more at that time.

次に、予備成形工程で形成した流路を所定形状に成形する仕上げ工程を行う。仕上げ工程では、予備成形工程で成形高さH1を十分高くして成形してあるため、図5に示すように引っ張り成形ではなく材料を潰しながらの圧縮成形となる。そのため、ワーク内部に残存する引っ張りの残留応力が圧縮加工によって相殺され、加工部分が未加工部分を引っ張ろうとすることで生じる歪みの影響が抑制される。   Next, the finishing process which shape | molds the flow path formed at the preforming process in a predetermined shape is performed. In the finishing process, since the molding height H1 is sufficiently increased in the preliminary molding process, the molding is not the tension molding but the compression molding while crushing the material as shown in FIG. For this reason, the residual stress of the tension remaining inside the workpiece is offset by the compression process, and the influence of distortion caused by the processed part trying to pull the unprocessed part is suppressed.

次に、仕上げ工程で得られた金属板26の不要部分を切り落とすトリミング工程を行う。トリミング工程では、金属板26の不要部分(図6の斜線部分)を切り落とすと共に、各流路に燃料ガス、酸化剤ガスまたは冷媒を供給するためのマニホルド孔27を形成する。   Next, a trimming process for cutting off unnecessary portions of the metal plate 26 obtained in the finishing process is performed. In the trimming step, unnecessary portions (shaded portions in FIG. 6) of the metal plate 26 are cut off, and manifold holes 27 for supplying fuel gas, oxidant gas or refrigerant are formed in each flow path.

次に、トリミング工程と同時またはトリミング工程後に、流路の長手方向に沿って連続する第1切欠き部25と、第1切欠き部25と交差する方向に第2切欠き部を形成する形状矯正工程を行う。形状矯正工程で使用する金型27は、図7に示すように、流路に沿う方向に連続する2本の逆V字状をなす第1突起部28と、この第1突起部28と交差する方向に連続する逆V字状をなす第2突起部29とを有している。第1突起部28は、流路の数だけ形成されており、第2突起部29は、適当数設けられている。第1突起部28としては、例えば突起高さ0.2mm、先端角度45度、突起間ピッチ0.2mmにて形成されている。   Next, at the same time as the trimming step or after the trimming step, a first notch portion 25 that is continuous along the longitudinal direction of the flow path and a shape that forms the second notch portion in a direction intersecting the first notch portion 25. Perform the correction process. As shown in FIG. 7, the mold 27 used in the shape correction process intersects with the first protrusions 28 having two inverted V-shapes continuous in the direction along the flow path, and the first protrusions 28. And a second projecting portion 29 having an inverted V-shape that is continuous in the direction in which the second protrusion is formed. The first protrusions 28 are formed as many as the number of flow paths, and an appropriate number of second protrusions 29 are provided. The first protrusions 28 are formed with, for example, a protrusion height of 0.2 mm, a tip angle of 45 degrees, and a protrusion-to-projection pitch of 0.2 mm.

トリミング工程後では、その前の工程で図8に示すようにセパレータ15の内部に引っ張りの残留応力(同図中矢印で示す)が残っているが、これを図9に示すように第1突起部28と第2突起部29が形成された金型27でセパレータ15に第1切欠き部25と第2切欠き部30を形成する。第1突起部28と第2突起部29をワークに押し付けて溝を形成すれば、引っ張り残留応力を打ち消す方向に力が作用するので、図10に示すようにセパレータ15に反りやうねり等による変形(歪み)が無くなる。それにより、加工部分が未加工部分を引っ張ろうとする歪みが無くなる。   After the trimming process, a tensile residual stress (indicated by an arrow in the figure) remains in the separator 15 as shown in FIG. 8 in the previous process. This is shown in FIG. The first notch portion 25 and the second notch portion 30 are formed in the separator 15 with the mold 27 in which the portion 28 and the second protrusion portion 29 are formed. If the first projecting portion 28 and the second projecting portion 29 are pressed against the workpiece to form a groove, a force acts in a direction to cancel the tensile residual stress, so that the separator 15 is deformed by warpage or undulation as shown in FIG. (Distortion) disappears. Thereby, the distortion that the processed part tries to pull the unprocessed part is eliminated.

以上のように、本実施形態によれば、トリミング工程後に、流路の長手方向に沿って連続する第1切欠き部25及び第2切欠き部30を形成することで、これらプレス加工によって材料に残る引っ張りの残留応力が、この第1切欠き部25及び第2切欠き部30を形成することによって相殺され、残留する応力を無くすことができる。したがって、本発明方法によれば、反りやうねりの発生が抑制された燃料電池用セパレータを得ることができる。   As described above, according to the present embodiment, after the trimming step, the first cutout portion 25 and the second cutout portion 30 that are continuous along the longitudinal direction of the flow path are formed, and thus the material is obtained by pressing these materials. The residual stress of the remaining tension is offset by forming the first cutout portion 25 and the second cutout portion 30, and the residual stress can be eliminated. Therefore, according to the method of the present invention, it is possible to obtain a fuel cell separator in which the occurrence of warpage and undulation is suppressed.

また、本実施形態によれば、第1切欠き部25だけで十分に引っ張り残留応力を打ち消すことができるが、この第1切欠き部25に加えて第2切欠き部30を形成し菱目形状とすることで、さらにセパレータの変形をより一層抑制することが可能となる。   In addition, according to the present embodiment, the tensile residual stress can be sufficiently canceled only by the first cutout portion 25, but in addition to the first cutout portion 25, the second cutout portion 30 is formed to form a rhombus. By adopting the shape, it is possible to further suppress the deformation of the separator.

また、本実施形態によれば、通常の予備成形とは異なり、その成形高さを十分に高くして成形した後に仕上げ成形を行うため、この仕上げ成形では引っ張り成形ではなく圧縮成形となることからワーク内部に残存する縮もうとする力を無くすことができ、セパレータの歪みを解消することができる。   In addition, according to the present embodiment, unlike normal preliminary molding, since the molding height is sufficiently high and molding is performed after molding, this final molding is not tensile molding but compression molding. It is possible to eliminate the force of shrinking remaining inside the workpiece, and it is possible to eliminate the distortion of the separator.

また、本実施形態によれば、流路のうち燃料ガス、酸化剤ガスまたは冷却水が流れる側とは反対側の面(流体が流れる面とは反対側の裏面)に第1切欠き部25及び第2切欠き部30を形成しているので、流路を流れるガスや冷却水に流体抵抗が掛からない。   Further, according to the present embodiment, the first cutout portion 25 is formed on the surface of the flow path opposite to the side through which the fuel gas, the oxidant gas, or the cooling water flows (the back surface opposite to the surface through which the fluid flows). And since the 2nd notch part 30 is formed, fluid resistance is not applied to the gas and cooling water which flow through a flow path.

以上、本発明を適用した具体的な実施の形態について説明したが、本発明は上述の実施の形態に制限されることなく種々の変更が可能である。   Although specific embodiments to which the present invention is applied have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.

上記した実施の形態では、トリミング工程後に形状矯正工程を行ったが、このトリミング工程と同時に形状矯正工程を行っても良いし、或いは仕上げ工程と同時、或いは仕上げ工程後に形状矯正工程を行っても良い。   In the above embodiment, the shape correction process is performed after the trimming process. However, the shape correction process may be performed simultaneously with the trimming process, or the shape correction process may be performed simultaneously with the finishing process or after the finishing process. good.

燃料電池スタックの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of a fuel cell stack. 燃料電池単セルの拡大断面図である。It is an expanded sectional view of a fuel cell single cell. 燃料電池単セルの要部拡大断面図である。It is a principal part expanded sectional view of a fuel cell single cell. セパレータ製造工程のうち予備成形工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図である。A preforming process is shown among separator manufacturing processes, (A) is a top view of the separator in the process, (B) is a principal part expanded sectional view of the flow-path part. セパレータ製造工程のうち仕上げ工程を示し、(A)はその工程におけるセパレータの平面図、(B)はその流路部分の要部拡大断面図である。A finishing process is shown among separator manufacturing processes, (A) is a top view of the separator in the process, and (B) is an important section expanded sectional view of the channel part. セパレータ製造工程のうちトリミング工程を示し、その工程におけるセパレータの平面図である。It is a top view of the separator in the process which shows a trimming process among separator manufacturing processes. 形状矯正工程で使用する金型を示し、(A)はその金型の斜視図、(B)はその金型に形成された突起の要部拡大図である。The metal mold | die used at a shape correction process is shown, (A) is the perspective view of the metal mold | die, (B) is the principal part enlarged view of the processus | protrusion formed in the metal mold | die. ワークに引っ張り応力が残存していることを示す図である。It is a figure which shows that the tensile stress remains in a workpiece | work. 第1切欠き部及び第2切欠き部の形成状態を示す図である。It is a figure which shows the formation state of a 1st notch part and a 2nd notch part. セパレータに残存する応力が第1切欠き部及び第2切欠き部によって打ち消された状態を示す図である。It is a figure which shows the state by which the stress which remain | survives in a separator was canceled by the 1st notch part and the 2nd notch part. 予備成形高さと歪みとの関係を示す図である。It is a figure which shows the relationship between preforming height and distortion.

符号の説明Explanation of symbols

1…燃料電池スタック
2…燃料電池単セル
14…膜電極接合体
15…セパレータ
16…凹条部(凹凸形状)
17…凸条部(凹凸形状)
18…燃料ガス流路(流路)
19…酸化剤ガス流路(流路)
20…冷媒流路(流路)
25…第1切欠き部
27…形状矯正工程で使用する金型
28…第1突起部
29…第2突起部
30…第2切欠き部
DESCRIPTION OF SYMBOLS 1 ... Fuel cell stack 2 ... Fuel cell single cell 14 ... Membrane electrode assembly 15 ... Separator 16 ... Concave part (concavo-convex shape)
17 ... ridge (uneven shape)
18 ... Fuel gas flow path (flow path)
19 ... Oxidant gas channel (channel)
20: Refrigerant flow path (flow path)
25 ... 1st notch part 27 ... Metal mold | die used by a shape correction process 28 ... 1st projection part 29 ... 2nd projection part 30 ... 2nd notch part

Claims (6)

金属板をプレス加工して発電に寄与する領域に凹凸形状からなる流路を複数形成した燃料電池用セパレータにおいて、
少なくとも前記流路の長手方向に沿って連続する第1切欠き部を設けた
ことを特徴とする燃料電池用セパレータ。
In the fuel cell separator in which a plurality of channels having irregularities are formed in a region that contributes to power generation by pressing a metal plate,
A fuel cell separator, comprising at least a first cutout portion continuous along a longitudinal direction of the flow path.
請求項1に記載の燃料電池用セパレータであって、
前記第1切欠き部と交差する方向に第2切欠き部を設けた
ことを特徴とする燃料電池用セパレータ。
The fuel cell separator according to claim 1,
A fuel cell separator, wherein a second notch is provided in a direction intersecting with the first notch.
請求項1または請求項2に記載の燃料電池用セパレータであって、
燃料ガス、酸化剤ガスまたは冷却水が流れる流路の裏面に、前記第1切欠き部、第2切欠き部が形成されている
ことを特徴とする燃料電池用セパレータ。
The fuel cell separator according to claim 1 or 2,
The fuel cell separator, wherein the first notch and the second notch are formed on the back surface of the flow path through which the fuel gas, the oxidant gas, or the cooling water flows.
金属板をプレス加工して発電に寄与する領域に凹凸形状からなる流路を形成する予備成形工程と、
予備成形工程で形成した流路を所定形状に成形する仕上げ工程と、
仕上げ工程で得られた金属板の不要部分を切り落とすトリミング工程と、
仕上げ工程またはトリミング工程と同時またはこれらの工程後に、前記流路の長手方向に沿って連続する第1切欠き部を形成する形状矯正工程とを備えた
ことを特徴とする燃料電池用セパレータの製造方法。
A preforming step of forming a flow path having a concavo-convex shape in a region contributing to power generation by pressing a metal plate;
A finishing step of forming the flow path formed in the preforming step into a predetermined shape;
A trimming process for cutting off unnecessary portions of the metal plate obtained in the finishing process;
A fuel cell separator characterized by comprising a shape correcting step for forming a first notch continuous along the longitudinal direction of the flow path at the same time after the finishing step or the trimming step or after these steps. Method.
請求項4に記載の燃料電池用セパレータの製造方法であって、
前記形状矯正工程において、前記第1切欠き部と交差する方向に第2切欠き部を形成する
ことを特徴とする燃料電池用セパレータの製造方法。
It is a manufacturing method of the separator for fuel cells according to claim 4,
In the shape correction step, a second notch is formed in a direction intersecting with the first notch. A method for manufacturing a fuel cell separator, wherein:
請求項4または請求項5に記載の燃料電池用セパレータの製造方法であって、
前記仕上げ工程では、前記金属板を潰して成形する圧縮成形とする
ことを特徴とする燃料電池用セパレータの製造方法。
A method for producing a fuel cell separator according to claim 4 or 5, wherein
In the finishing step, compression molding is performed by crushing and molding the metal plate. A method for producing a fuel cell separator.
JP2006117874A 2006-04-21 2006-04-21 Separator for fuel cell and its manufacturing method Pending JP2007294136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117874A JP2007294136A (en) 2006-04-21 2006-04-21 Separator for fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117874A JP2007294136A (en) 2006-04-21 2006-04-21 Separator for fuel cell and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012222843A Division JP2013008701A (en) 2012-10-05 2012-10-05 Method of manufacturing separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2007294136A true JP2007294136A (en) 2007-11-08

Family

ID=38764557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117874A Pending JP2007294136A (en) 2006-04-21 2006-04-21 Separator for fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007294136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060518A2 (en) 2007-11-13 2009-05-20 Konica Minolta Business Technologies, INC. Sheet Feeding Device and Image Forming Apparatus Provided Therewith
JP2009187757A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
WO2015198825A1 (en) * 2014-06-24 2015-12-30 新日鐵住金株式会社 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138065A (en) * 1998-11-02 2000-05-16 Toyota Motor Corp Metal separator for fuel cell
JP2002117866A (en) * 2000-10-04 2002-04-19 Honda Motor Co Ltd Fuel cell and its separator
JP2002151097A (en) * 2000-11-15 2002-05-24 Suncall Corp Separator for fuel cell
JP2003249237A (en) * 2002-02-25 2003-09-05 Miyoshi Kogyo Kk Manufacturing method of metal separator for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138065A (en) * 1998-11-02 2000-05-16 Toyota Motor Corp Metal separator for fuel cell
JP2002117866A (en) * 2000-10-04 2002-04-19 Honda Motor Co Ltd Fuel cell and its separator
JP2002151097A (en) * 2000-11-15 2002-05-24 Suncall Corp Separator for fuel cell
JP2003249237A (en) * 2002-02-25 2003-09-05 Miyoshi Kogyo Kk Manufacturing method of metal separator for fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060518A2 (en) 2007-11-13 2009-05-20 Konica Minolta Business Technologies, INC. Sheet Feeding Device and Image Forming Apparatus Provided Therewith
JP2009187757A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Method and apparatus for manufacturing metal separator for fuel cell
WO2015198825A1 (en) * 2014-06-24 2015-12-30 新日鐵住金株式会社 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator
JPWO2015198825A1 (en) * 2014-06-24 2017-04-20 新日鐵住金株式会社 Fine mold for molding fuel cell separator, method for manufacturing fuel cell separator, and fuel cell separator

Similar Documents

Publication Publication Date Title
JP4899339B2 (en) Fuel cell separator
JP2006228533A (en) Molding method of separator for fuel cell and separator shape correcting device
US7776490B2 (en) Fuel cell having closure seal
JP3569491B2 (en) Fuel cell separator and fuel cell
JP2011113806A (en) Separator for fuel cell and method of manufacturing the same
US10014548B2 (en) Fuel cell
JP5157047B2 (en) Method for producing electrolyte membrane for use in solid polymer electrolyte fuel cell
JP2006269208A (en) Fuel cell and separator for the fuel cell
US20050271926A1 (en) Fuel cell and metal separator for fuel cell
JP6003863B2 (en) Separator and fuel cell
KR20140068153A (en) Fuel cell assembly
JP2009059513A (en) Fuel cell
US7344794B2 (en) Fuel cell with deformable seal members
JP2005276582A (en) Fuel cell
JP2007294136A (en) Separator for fuel cell and its manufacturing method
JP6783695B2 (en) Manufacturing method of fuel cell single cell
JP2008041456A (en) Method of manufacturing separator for fuel cell, and separator for fuel cell
JP2006302702A (en) Sealing structure of separator and method of manufacturing separator with seal
JP6068218B2 (en) Operation method of fuel cell
KR102100053B1 (en) Seperator for fuel cell
JP2013008701A (en) Method of manufacturing separator for fuel cell
JP2007157578A (en) Fuel cell
JP2006127948A (en) Fuel cell stack
JP4534780B2 (en) Fuel cell separator and method for producing fuel cell separator
JP3641622B2 (en) Fuel cell and processing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121219