JP2007292947A - Method and apparatus of measuring optical waveguide - Google Patents

Method and apparatus of measuring optical waveguide Download PDF

Info

Publication number
JP2007292947A
JP2007292947A JP2006119537A JP2006119537A JP2007292947A JP 2007292947 A JP2007292947 A JP 2007292947A JP 2006119537 A JP2006119537 A JP 2006119537A JP 2006119537 A JP2006119537 A JP 2006119537A JP 2007292947 A JP2007292947 A JP 2007292947A
Authority
JP
Japan
Prior art keywords
optical waveguide
waveguide
optical
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006119537A
Other languages
Japanese (ja)
Inventor
Kazuya Takayama
一也 高山
Shinya Shibata
慎弥 柴田
Okihiro Sugihara
興浩 杉原
Toshikuni Kaino
俊邦 戒能
Shinji Koike
真司 小池
Ikutake Yagi
生剛 八木
Takemasa Ushiwatari
剛真 牛渡
Mitsuki Hirano
光樹 平野
Masahito Morimoto
政仁 森本
Yoko Matsui
洋子 松井
Kozo Tajiri
浩三 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Furukawa Electric Co Ltd
Hitachi Cable Ltd
Nippon Shokubai Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Furukawa Electric Co Ltd
Hitachi Cable Ltd
Nippon Shokubai Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Furukawa Electric Co Ltd, Hitachi Cable Ltd, Nippon Shokubai Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Priority to JP2006119537A priority Critical patent/JP2007292947A/en
Publication of JP2007292947A publication Critical patent/JP2007292947A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the waveguide loss estimation time of an optical waveguide for shortening the depelopment process of the optical waveguide. <P>SOLUTION: The estimation time is shortened, by simultaneously manufacturing optical waveguides having different lengths, and using an optical fiber array having the same interval and the same cut angle as those of the optical waveguide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に光製品に使用され、光導波路の導波損失値を簡単に測定できる方法および測定装置に関する。   The present invention relates to a method and a measurement apparatus that are mainly used in optical products and can easily measure the waveguide loss value of an optical waveguide.

近年の情報通信技術における発展は目覚ましく、光通信は、超高速、大容量という優れた特徴を有するため次世代のブロードキャスティングにとって必要不可欠な通信手段である。また、インフラの面でも光ファイバーを家庭まで敷設する高速通信サービス「FTTH(Fiber to the home)」が提供され、加入者数が増加している。光ファイバー網の普及のためには、光合分波器や光スイッチ等の光導波路を備える装置(以下、光導波路装置)がキーデバイスである。   In recent years, the development of information communication technology has been remarkable, and optical communication is an indispensable communication means for next-generation broadcasting because it has excellent features such as ultra-high speed and large capacity. Also, in terms of infrastructure, a high-speed communication service “FTTH (Fiber to the home)” for laying optical fibers to homes is provided, and the number of subscribers is increasing. In order to spread the optical fiber network, a device including an optical waveguide such as an optical multiplexer / demultiplexer or an optical switch (hereinafter referred to as an optical waveguide device) is a key device.

光導波路装置は通信用光信号の合波および分波等の処理用回路部品であり、通信用光ファイバーや受発光素子と組み合わせて用いられる。したがって、光導波路装置の通信特性は帯域や信号強度等の光信号処理モジュールの特性を決定する重要な役割を持っている。光導波路装置はその構成において、周囲より屈折率が高く光が導波する部分(以下、光導波路またはコアと記す。)およびコアを取り囲む部分(以下、クラッドと記す。)を持つ。主な光導波路の作製法には、(1)フォトリソグラフィーおよび異方性エッチングを用いる方法、(2)金属或いは石英等の透明材料によるスタンプ式複製作製法、(3)紫外線硬化樹脂をマスク露光により硬化させる直接露光法等が挙げられる。 An optical waveguide device is a circuit component for processing such as multiplexing and demultiplexing of a communication optical signal, and is used in combination with a communication optical fiber or a light emitting / receiving element. Therefore, the communication characteristics of the optical waveguide device have an important role in determining the characteristics of the optical signal processing module such as the band and the signal intensity. The optical waveguide device has, in its configuration, a portion where the refractive index is higher than that of the surroundings (hereinafter referred to as an optical waveguide or a core) and a portion surrounding the core (hereinafter referred to as a clad). The main optical waveguide fabrication methods are (1) a method using photolithography and anisotropic etching, (2) a stamp-type replication fabrication method using a transparent material such as metal or quartz, and (3) UV-curing resin mask exposure. For example, a direct exposure method for curing by the above method may be used.

上述した光導波路を作製した後に評価される光学特性としては、例えば、光ファイバーと光導波路との接続点における信号強度の減衰を示す接続損失値、光信号が光導波路を伝搬する際の単位長さ当たりの信号強度減衰を示す導波損失値等が挙げられる。導波損失値を測定する方法には、例えば、測定毎に同一導波路の長さを切断により徐々に短くし、各長さにおける挿入損失値の1次回帰曲線の傾きから単位長さ辺りの導波損失値を算出すると共に、該1次回帰曲線の切片から接続損失値を算出するカットバック法が挙げられる(例えば、非特許文献1)。
西原 浩、春名 正光、栖原 敏明 共著、「光集積回路」、改訂増補版、オーム社、1993年8月発行、p263
The optical characteristics evaluated after the above-described optical waveguide is manufactured include, for example, a connection loss value indicating attenuation of signal intensity at a connection point between the optical fiber and the optical waveguide, and a unit length when the optical signal propagates through the optical waveguide. For example, a waveguide loss value indicating signal strength attenuation per hit. As a method for measuring the waveguide loss value, for example, the length of the same waveguide is gradually shortened by cutting for each measurement, and the unit loss is obtained from the slope of the linear regression curve of the insertion loss value at each length. There is a cut back method for calculating a waveguide loss value and calculating a connection loss value from an intercept of the linear regression curve (for example, Non-Patent Document 1).
Nishihara Hiroshi, Haruna Masamitsu, Sugawara Toshiaki, “Optical Integrated Circuits”, revised edition, Ohm, August 1993, p263

上述した光導波路装置としては、例えば、波長の異なる複数の光信号が多重化された光信号をそれぞれの波長の光に分波する波長分波器や、一個の光信号を複数個の光信号に任意の強度で分岐する分岐器等、多様な機能を有する光導波路装置が求められている。単位長さ当たりに減衰する光信号強度を示す導波損失値は、導波路作製に用いられる材料および導波路作製プロセス等により異なり、光導波路装置の設計において、製造可能な光導波路長を決定する大きな要素となる。   As the above-described optical waveguide device, for example, a wavelength demultiplexer that demultiplexes an optical signal obtained by multiplexing a plurality of optical signals having different wavelengths into light of each wavelength, or a single optical signal into a plurality of optical signals. Therefore, there is a demand for optical waveguide devices having various functions such as a branching device that branches at an arbitrary strength. The waveguide loss value indicating the optical signal intensity attenuated per unit length varies depending on the material used for waveguide fabrication, the waveguide fabrication process, etc., and determines the length of the optical waveguide that can be manufactured in the design of the optical waveguide device. It becomes a big element.

しかしながら、従来の光導波路の導波損失値の測定方法は、同一の光導波路を切断により一定の長さ毎に短くしていき、各導波路長さにおける損失を測定することで単位長さ当たりの導波損失値を決定していたため、切断および調芯・測定の繰り返しに時間がかかってしまい、測定時間が長くなってしまうという問題があった。   However, the conventional method for measuring the waveguide loss value of an optical waveguide is to shorten the length of the same optical waveguide by a certain length by cutting, and measure the loss at each waveguide length. Therefore, there has been a problem that it takes time to repeat cutting and alignment / measurement, resulting in a long measurement time.

そこで本発明は、上記事情に鑑みて、光導波路装置の開発工程の短縮化のために、光導波路の導波損失評価時間を短縮する測定方法および測定装置を提供することを課題として掲げた。   In view of the above circumstances, an object of the present invention is to provide a measurement method and a measurement apparatus that reduce the waveguide loss evaluation time of an optical waveguide in order to shorten the development process of the optical waveguide device.

上記課題を解決し得た本発明の光導波路の測定方法は、同一基板上に複数の導波路長が異なる光導波路を形成し、前記各光導波路の挿入損失値を測定し、前記各光導波路の測定結果から、単位長あたりの前記光導波路の導波損失値を算出するところに要旨を有する。   The method for measuring an optical waveguide of the present invention that has solved the above-described problem is that a plurality of optical waveguides having different waveguide lengths are formed on the same substrate, an insertion loss value of each optical waveguide is measured, and each optical waveguide is measured. From this measurement result, the gist is obtained by calculating the waveguide loss value of the optical waveguide per unit length.

また、本発明の光導波路の測定装置は、同一基板上に複数の導波路長が異なる光導波路が形成された測定対象の基板が設置される基板ユニットと、前記基板ユニットに接続される測定光の入射部および受光部とを備え、前記各光導波路の端部には入射部もしくは受光部の接続構造が形成され、測定対象の光導波路の一端に前記入射部が接続され、別の一端には前記受光部が接続されて、前記入射部から測定光が入射され前記受光部で測定光の光強度を測定することにより前記光導波路の損失値を測定し、この損失値の測定を複数の前記光導波路で行うところに要旨を有する。   The optical waveguide measurement apparatus of the present invention includes a substrate unit on which a measurement target substrate in which a plurality of optical waveguides having different waveguide lengths are formed on the same substrate, and measurement light connected to the substrate unit. The incident portion or the light receiving portion is formed at the end portion of each optical waveguide, and the incident portion or the light receiving portion is connected to the one end of the optical waveguide to be measured. Measuring the loss value of the optical waveguide by measuring the light intensity of the measurement light when the measurement light is incident from the incident part and the light reception part is connected, and the loss value is measured in a plurality of ways. The gist of the present invention is that of the optical waveguide.

本発明の測定方法では、長さの異なる光導波路を一度に作製できるので、導波損失測定にかかる時間を短縮することができる。また、光導波路と同じ導波路間隔および切断角度を持つ光ファイバーアレイ等を備えた簡易評価が可能な測定装置を用いることで、評価時間をさらに短縮できる。   In the measurement method of the present invention, since optical waveguides having different lengths can be produced at a time, it is possible to reduce the time required for waveguide loss measurement. In addition, the evaluation time can be further shortened by using a measuring device capable of simple evaluation including an optical fiber array having the same waveguide interval and cutting angle as the optical waveguide.

本発明における光導波路の測定方法を用いた導波損失値の測定方法は、光導波路の導波方向に対して任意の角度で基板を切断し、長さの異なる複数の光導波路を一度に作製する工程と、前記光導波路を用いて導波損失値を測定する工程と、測定結果から単位長さあたりの導波損失値を算出する工程とを有する。   The waveguide loss measurement method using the optical waveguide measurement method of the present invention cuts the substrate at an arbitrary angle with respect to the waveguide direction of the optical waveguide, and produces a plurality of optical waveguides having different lengths at a time. A step of measuring a waveguide loss value using the optical waveguide, and a step of calculating a waveguide loss value per unit length from the measurement result.

以下、本発明の光導波路の測定方法に関する実施の形態を、図面を参照しながら詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments relating to the optical waveguide measuring method of the present invention will be described in detail below with reference to the drawings.

まず、導波路長の異なる複数の光導波路を一度に作製する工程について説明する。図1は、測定対象の光導波路サンプルの原型の斜視図であり、図2は測定対象の光導波路の斜視図である。   First, a process of manufacturing a plurality of optical waveguides having different waveguide lengths at once will be described. FIG. 1 is a perspective view of an original optical waveguide sample to be measured, and FIG. 2 is a perspective view of the optical waveguide to be measured.

光導波路1は、基板(図示しない)と、コア2と、クラッド3により構成され、本実施形態では、図1に示すように、上面から見て四角形状の光導波路サンプルを使用した。なお、コア2は5本形成され、互いに平行な位置関係となっている(コア2の位置関係については、図2の光導波路を面方向に切断したものの平面図である図3参照)。光導波路1の一方の導波路端面を任意の角度θをもつ切断面4をもってダイシングソー等の精密切断装置により切断する。その結果、図2に示すように、非平行な一対の導波路端面を持つ光導波路1が形成され、導波路長の異なる5本の光導波路(コア2)が一度に作製される。なお、各光導波路(コア2)の導波路長は、各光導波路(コア2)が平行に形成されている場合、切断面4の角度θと隣り合う2本の導波路(コア2)の距離(以下、ピッチ)により決定される。この各光導波路(コア2)の導波路長は、特に制限は無く、測定数(n数)およびピッチに応じて、適宜角度θを選択すればよい。本実施形態では、角度θを5°〜60°の範囲で切断面4を形成した。なお、種々の切削角度で損失値を測定したが、損失値の切削角度θへの依存性は認められないことを確認している(図4参照)。   The optical waveguide 1 includes a substrate (not shown), a core 2, and a clad 3. In this embodiment, as shown in FIG. 1, a rectangular optical waveguide sample is used as viewed from above. Note that five cores 2 are formed and have a parallel positional relationship (see FIG. 3 which is a plan view of the optical waveguide of FIG. 2 cut in the plane direction for the positional relationship of the cores 2). One waveguide end face of the optical waveguide 1 is cut by a precision cutting device such as a dicing saw with a cut surface 4 having an arbitrary angle θ. As a result, as shown in FIG. 2, the optical waveguide 1 having a pair of non-parallel waveguide end faces is formed, and five optical waveguides (cores 2) having different waveguide lengths are produced at one time. The waveguide length of each optical waveguide (core 2) is the same as that of the two waveguides (core 2) adjacent to the angle θ of the cut surface 4 when each optical waveguide (core 2) is formed in parallel. It is determined by the distance (hereinafter referred to as pitch). The waveguide length of each optical waveguide (core 2) is not particularly limited, and the angle θ may be appropriately selected according to the number of measurements (number n) and the pitch. In the present embodiment, the cut surface 4 is formed with the angle θ in the range of 5 ° to 60 °. Although the loss values were measured at various cutting angles, it was confirmed that the dependency of the loss values on the cutting angle θ was not recognized (see FIG. 4).

次に、図2に示す光導波路の導波損失値を測定する工程について説明する。図3に示すように、本実施形態における導波損失値の測定工程は、まず、光導波路1のいずれかのコア2の一方の端部(図3では紙面上向って左側端部)に測定用光ファイバ5を設置し、もう一方の端部(図3では紙面上向って右側端部)に受光用光ファイバ6を設置する。次に、測定用光ファイバ5から任意の光強度の測定光を光導波路1のコア2に入射し、コア2内を伝播した測定光を受光用光ファイバ6で受光し、挿入損失値を測定する。図3ではこの測定を5回繰り返し、各光導波路(各コア2)の挿入損失値を測定する。   Next, the process of measuring the waveguide loss value of the optical waveguide shown in FIG. 2 will be described. As shown in FIG. 3, the waveguide loss value measurement process in the present embodiment is first measured at one end of one of the cores 2 of the optical waveguide 1 (the left end in FIG. 3 as viewed from the top of the paper). The optical fiber 5 for installation is installed, and the optical fiber 6 for light reception is installed at the other end (upward side in FIG. 3). Next, measurement light having an arbitrary light intensity is incident on the core 2 of the optical waveguide 1 from the measurement optical fiber 5, and the measurement light propagated in the core 2 is received by the light reception optical fiber 6 to measure the insertion loss value. To do. In FIG. 3, this measurement is repeated five times, and the insertion loss value of each optical waveguide (each core 2) is measured.

なお、図示しないが、5本の測定用光ファイバがアレイ状に形成された測定用光ファイバアレイと、5本の受光用光ファイバがアレイ状に形成された受光用光ファイバアレイを使用し、測定回数を1回としても良い。この測定回数および光ファイバアレイの光ファイバの本数は、特に限定されることはなく、必要に応じて決定すればよい。   Although not shown, a measurement optical fiber array in which five measurement optical fibers are formed in an array and a light reception optical fiber array in which five light reception optical fibers are formed in an array are used. The number of measurements may be one. The number of measurements and the number of optical fibers in the optical fiber array are not particularly limited, and may be determined as necessary.

また、測定用光ファイバ5および受光用光ファイバ6の種類、コア径、開口数(NA)および、入射モード等は特に限定されず、測定に用いる波長や光導波路のNAに応じて適切なものを用いればよい。測定用光ファイバ5のコア径については、入射側では光導波路1のコア2のコア径よりも小さい方が好ましく、受光用光ファイバ6では光導波路1のコア2のコア径よりも大きいコア径を有する光ファイバーが好ましい。   Further, the type, core diameter, numerical aperture (NA), incident mode, etc. of the measurement optical fiber 5 and the light receiving optical fiber 6 are not particularly limited, and are appropriate according to the wavelength used for measurement and the NA of the optical waveguide. May be used. The core diameter of the measurement optical fiber 5 is preferably smaller than the core diameter of the core 2 of the optical waveguide 1 on the incident side, and the core diameter of the optical fiber 6 for reception is larger than the core diameter of the core 2 of the optical waveguide 1. An optical fiber having

さらに、測定用光ファイバ5のクラッド径については、特に限定されないが、切断面4の角度θによっては、受光用光ファイバ6のコアと、光導波路1のコア2との間にギャップが出来てしまう。つまり、受光用光ファイバ6のクラッドが光導波路1のクラッド3に接触し、受光用光ファイバ6のコアと光導波路1のコア2とが十分に近接できない可能性がある。この構成を考慮すると、受光用光ファイバ6のクラッド径は小さい方が好ましい。なお、光導波路1と受光用光ファイバ6の間にギャップが生じた場合は、適切な屈折率を持つ屈折率調整液等をそのギャップに充填させればよい。例えば、コア2の径70μm(NA0.39)、測定用光ファイバ5のコア径50μm(クラッド径125μm、NA0.22)、受光用ファイバ6のコア径200μm(クラッド径230μm、NA0.48)、屈折率1.56の屈折率調整液を用いた場合における切断面4の角度θと導波損失値の関係は、角度θに殆ど依存しないことが、測定の結果判明している(図4を参照)。   Further, the clad diameter of the measurement optical fiber 5 is not particularly limited, but a gap may be formed between the core of the light receiving optical fiber 6 and the core 2 of the optical waveguide 1 depending on the angle θ of the cut surface 4. End up. That is, there is a possibility that the cladding of the light receiving optical fiber 6 is in contact with the cladding 3 of the optical waveguide 1 and the core of the light receiving optical fiber 6 and the core 2 of the optical waveguide 1 cannot be sufficiently close to each other. In consideration of this configuration, the cladding diameter of the light receiving optical fiber 6 is preferably small. In addition, when a gap arises between the optical waveguide 1 and the optical fiber 6 for light reception, what is necessary is just to fill the gap with the refractive index adjustment liquid etc. with an appropriate refractive index. For example, the diameter of the core 2 is 70 μm (NA 0.39), the core diameter of the measurement optical fiber 5 is 50 μm (cladding diameter 125 μm, NA 0.22), the core diameter of the light receiving fiber 6 is 200 μm (cladding diameter 230 μm, NA 0.48), As a result of the measurement, it has been found that the relationship between the angle θ of the cut surface 4 and the waveguide loss value in the case of using a refractive index adjusting liquid having a refractive index of 1.56 is almost independent of the angle θ (see FIG. 4). reference).

次に、測定結果から単位長さあたりの導波損失値を算出する工程を説明する。上述のように、複数の異なる導波路長を有する各光導波路の導波損失値を測定した後、各長さにおける挿入損失値の1次回帰曲線の傾きから単位長さ当たりの導波損失値、また、該1次回帰曲線の切片から接続損失値を算出する。図3に示すような5本の光導波路が形成されている場合、挿入損失値を5つ測定した後、各長さにおける挿入損失値の1次回帰曲線の傾きから光導波路1(コア2)の導波損失値が得られることになる。   Next, a process of calculating a waveguide loss value per unit length from the measurement result will be described. As described above, after measuring the waveguide loss value of each optical waveguide having a plurality of different waveguide lengths, the waveguide loss value per unit length is determined from the slope of the linear regression curve of the insertion loss value at each length. In addition, a connection loss value is calculated from the intercept of the linear regression curve. When five optical waveguides as shown in FIG. 3 are formed, after measuring five insertion loss values, the optical waveguide 1 (core 2) is determined from the slope of the linear regression curve of the insertion loss value at each length. The waveguide loss value of is obtained.

次に、光導波路の測定装置について説明する。測定装置については、特に限定されないが、例えば、前記測定用光ファイバアレイおよび受光用光ファイバアレイを備えたマルチチャンネル測定器、または光導波路1のピッチおよび切断面4の角度θに合わせて測定用光ファイバ5および受光用光ファイバ6を移動させる光ファイバ移動機構を備えた自動調芯装置を用いるのが好ましい。   Next, an optical waveguide measuring device will be described. The measuring device is not particularly limited, but for example, a multi-channel measuring device including the measuring optical fiber array and the receiving optical fiber array, or measuring according to the pitch of the optical waveguide 1 and the angle θ of the cut surface 4. It is preferable to use an automatic alignment device provided with an optical fiber moving mechanism for moving the optical fiber 5 and the light receiving optical fiber 6.

以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these.

実施例
《光導波路の切断》
コア径70μm角の高分子光導波路をシリコンウエハー上に作製した。光導波路の長さは42.5mmであった。ダイシングソーを用い、θを45度とする、台形状の測定試料を上記シリコンウエハー基板から切り出した。導波路(コア)同士の間隔は250μmであり、長さが42.5mmから23mmまで変化する導波路(コア)が250μm間隔で形成された光導波路を一度の切断作業により作製した。
Example << Cut optical waveguide >>
A polymer optical waveguide having a core diameter of 70 μm was fabricated on a silicon wafer. The length of the optical waveguide was 42.5 mm. Using a dicing saw, a trapezoidal measurement sample having a θ of 45 degrees was cut from the silicon wafer substrate. An interval between the waveguides (cores) was 250 μm, and an optical waveguide in which the waveguides (cores) whose length changed from 42.5 mm to 23 mm was formed at intervals of 250 μm was produced by a single cutting operation.

《光導波路の導波損失測定》
最大長さ42.5mmの上記測定試料を用いて、波長850nmの光源による導波損失測定を行った。比較のために、同一の基板を用いて従来のカットバック法による評価も同時に行った。結果を図5に示す。導波損失値は、本発明法では0.08dB/cm、カットバック法(導波路1と導波路2について測定した)では0.09dB/cmと算出され、非常に良い一致を得た。
<< Measurement of waveguide loss in optical waveguide >>
Using the above measurement sample having a maximum length of 42.5 mm, waveguide loss was measured with a light source having a wavelength of 850 nm. For comparison, a conventional cutback method was also used for evaluation using the same substrate. The results are shown in FIG. The waveguide loss value was calculated to be 0.08 dB / cm in the method of the present invention, and 0.09 dB / cm in the cutback method (measured with respect to the waveguide 1 and the waveguide 2).

本発明の光導波路測定方法を説明する斜視説明図である。It is a perspective explanatory view explaining the optical waveguide measuring method of the present invention. 本発明の光導波路測定方法の測定試料の斜視説明図である。It is an isometric view explanatory drawing of the measurement sample of the optical waveguide measuring method of the present invention. 図2の測定試料の面方向断面を上から見た平面図である。It is the top view which looked at the surface direction cross section of the measurement sample of FIG. 2 from the top. 本発明の光導波路測定方法における挿入損失の角度(θ)依存性を示すグラフである。It is a graph which shows the angle ((theta)) dependence of the insertion loss in the optical waveguide measuring method of this invention. 本発明の光導波路測定方法における挿入損失の測定結果とカットバック法における挿入損失の測定結果を示すグラフである。It is a graph which shows the measurement result of the insertion loss in the optical waveguide measuring method of the present invention, and the measurement result of the insertion loss in the cutback method.

符号の説明Explanation of symbols

1 光導波路
2 光導波路コア
3 光導波路クラッド
4 光導波路切断面
5 測定用光ファイバ
6 受光用光ファイバ
DESCRIPTION OF SYMBOLS 1 Optical waveguide 2 Optical waveguide core 3 Optical waveguide clad 4 Optical waveguide cut surface 5 Optical fiber for measurement 6 Optical fiber for light reception

Claims (5)

同一基板上に複数の導波路長が異なる光導波路を形成し、
前記各光導波路の挿入損失値を測定し、
前記各光導波路の測定結果から、単位長あたりの前記光導波路の導波損失値を算出することを特徴とする光導波路の測定方法。
Forming multiple optical waveguides with different waveguide lengths on the same substrate,
Measure the insertion loss value of each optical waveguide,
A method for measuring an optical waveguide, comprising: calculating a waveguide loss value of the optical waveguide per unit length from a measurement result of each optical waveguide.
前記各光導波路を平行に形成することを特徴とする請求項1に記載の光導波路の測定方法。   The method for measuring an optical waveguide according to claim 1, wherein the optical waveguides are formed in parallel. 前記各光導波路を、前記基板を光導波路の光軸方向に対して任意の角度で切断することにより一度に作製することを特徴とする請求項2に記載の光導波路の測定方法。   3. The method of measuring an optical waveguide according to claim 2, wherein each of the optical waveguides is manufactured at a time by cutting the substrate at an arbitrary angle with respect to the optical axis direction of the optical waveguide. 同一基板上に複数の導波路長が異なる光導波路が形成された測定対象の基板が設置される基板ユニットと、
前記基板ユニットに接続される測定光の入射部および受光部とを備え、
前記各光導波路の端部には入射部もしくは受光部の接続構造が形成され、
測定対象の光導波路の一端に前記入射部が接続され、別の一端には前記受光部が接続されて、前記入射部から測定光が入射され前記受光部で測定光の光強度を測定することにより前記光導波路の損失値を測定し、
この損失値の測定を複数の前記光導波路で行うことを特徴とする光導波路の測定装置。
A substrate unit on which a substrate to be measured in which optical waveguides having different waveguide lengths are formed on the same substrate;
The measuring light incident portion and the light receiving portion connected to the substrate unit,
A connection structure of the incident part or the light receiving part is formed at the end of each optical waveguide,
The incident portion is connected to one end of the optical waveguide to be measured, the light receiving portion is connected to the other end, the measurement light is incident from the incident portion, and the light intensity of the measurement light is measured by the light receiving portion. To measure the loss value of the optical waveguide,
An apparatus for measuring an optical waveguide, wherein the loss value is measured by a plurality of the optical waveguides.
前記入射部および受光部は、複数設置されていることを特徴とする請求項4に記載の光導波路の測定装置。   The optical waveguide measuring device according to claim 4, wherein a plurality of the incident portions and the light receiving portions are provided.
JP2006119537A 2006-04-24 2006-04-24 Method and apparatus of measuring optical waveguide Withdrawn JP2007292947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119537A JP2007292947A (en) 2006-04-24 2006-04-24 Method and apparatus of measuring optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119537A JP2007292947A (en) 2006-04-24 2006-04-24 Method and apparatus of measuring optical waveguide

Publications (1)

Publication Number Publication Date
JP2007292947A true JP2007292947A (en) 2007-11-08

Family

ID=38763642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119537A Withdrawn JP2007292947A (en) 2006-04-24 2006-04-24 Method and apparatus of measuring optical waveguide

Country Status (1)

Country Link
JP (1) JP2007292947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350772A (en) * 2020-10-23 2021-02-09 西安空间无线电技术研究所 Method for testing waveguide by using insertion loss value

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350772A (en) * 2020-10-23 2021-02-09 西安空间无线电技术研究所 Method for testing waveguide by using insertion loss value

Similar Documents

Publication Publication Date Title
US10261255B2 (en) Bent and tapered optical waveguide component for mode converter and polarization rotator
JP2011018072A (en) Optical waveguide structure
US8615146B2 (en) Planar optical waveguide
JP2003240992A (en) Waveguide element and waveguide device
US6539158B2 (en) Optical waveguide circuit
US11137548B2 (en) Retro reflector and associated methods
JP2007292947A (en) Method and apparatus of measuring optical waveguide
US7260295B2 (en) Optical waveguide and optical transmitting/receiving module
Takenobu et al. A polymer waveguide material optimized for on-board optical links and Si photonic interfaces
JP4654901B2 (en) Optical waveguide device, temperature measuring device, and temperature measuring method
US9312958B2 (en) Optical communication transmitting device and method of manufacturing the same
JP2007147740A (en) Multimode single core bidirectional device
US20050018970A1 (en) Method for coupling planar lightwave circuit and optical fiber
JP7215584B2 (en) wavelength checker
Fu et al. Experimental Demonstration of a Horseshoe-shaped 16-channel Arrayed Waveguide Grating (De) multiplexer
Huang et al. Polarization Insensitive Echelle Grating Demultitiplexer Based on 3-μm SOI Platform
Ab-Rahman et al. Effects of sidewall roughness on optical power splitter
JP6029703B2 (en) Optical waveguide device
JP2019138954A (en) Optical waveguide element and method for acquiring reflectance
JP2004355036A (en) Planar optical circuit and optical circuit
KR20170141319A (en) Wavelength multiplexing device
JP2009250850A (en) Device for detecting gas using optical waveguide
JP2007233079A (en) Optical parts and method for manufacturing optical parts
JP2006293345A (en) Optical waveguide with mode-exciting device
Howley et al. Polymer waveguides and thermo-optic switches for an optical true time delay phased array antenna

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707