JP2007292651A - Moving living being detector and detecting method - Google Patents

Moving living being detector and detecting method Download PDF

Info

Publication number
JP2007292651A
JP2007292651A JP2006122064A JP2006122064A JP2007292651A JP 2007292651 A JP2007292651 A JP 2007292651A JP 2006122064 A JP2006122064 A JP 2006122064A JP 2006122064 A JP2006122064 A JP 2006122064A JP 2007292651 A JP2007292651 A JP 2007292651A
Authority
JP
Japan
Prior art keywords
detection
temperature
series data
value
coordinate value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006122064A
Other languages
Japanese (ja)
Other versions
JP4173900B2 (en
Inventor
Hideki Toda
英城 戸田
Hajime Kondo
肇 近藤
Kei Takahashi
圭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Electronics Co Ltd
Original Assignee
Chuo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Electronics Co Ltd filed Critical Chuo Electronics Co Ltd
Priority to JP2006122064A priority Critical patent/JP4173900B2/en
Publication of JP2007292651A publication Critical patent/JP2007292651A/en
Application granted granted Critical
Publication of JP4173900B2 publication Critical patent/JP4173900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a moving living being detector for detecting precisely a moving living being such as a human body, without being affected by sunshine or the like. <P>SOLUTION: This moving living being detector is constituted of an infrared detecting element constituted to receive an infrared ray in each section from a detection area partitioned into the plurality of sections, and to output a detection signal of a level in response to each received light quantity, a temperature detecting part for acquiring a measured temperature value in the each section, based on the each detection signal, a control part for detecting the moving living being in the detection area, based on the measured temperature value in the each section, and an output part for issuing a living being detection alarm by control of the control part. The detector finds the center coordinate value corresponding to all the sections where a prescribed temperature or more of temperature is detected, acquires a time serial data within a fixed time range from a time serial data of the center coordinate value to find a frequency spectrum thereof, analyzes the frequency spectrum to detect the presence of regularity in a change of the time serial data, and determines the presence of the moving living being when irregular. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物体から放射される赤外線を赤外線検知素子で検知することによって検知領域内の温度変化を検知し、検知領域の移動生物を検知する技術に関する。   The present invention relates to a technology for detecting a temperature change in a detection region by detecting infrared rays emitted from an object with an infrared detection element and detecting a moving organism in the detection region.

人体と背景との温度差を赤外線のエネルギー量の差として焦電素子等の赤外線検知素子を用いて検出させることにより、人体の存在を検知する赤外線受光式の人体検知装置がある。この人体検知装置では、赤外線検知素子からの検知領域内に見かけ上の温度変化が生じた場合に、人体が存在すると判定するよう構成されている(例えば特許文献1を参照)。
特開平5−346994号公報
There is an infrared light receiving type human body detection device that detects the presence of a human body by detecting a temperature difference between a human body and a background as an infrared energy amount difference using an infrared detection element such as a pyroelectric element. This human body detection device is configured to determine that a human body exists when an apparent temperature change occurs in a detection region from an infrared detection element (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 5-346994

従来の人体検知装置では、検知領域から受光した赤外線の受光量が予め設定した値を超えたか否かを判定するのみで検知領域における人体の有無を判定していたため、人体以外の理由で検知領域において温度変化が生じても、人体を検知したものと誤認していた。
特に従来の人体検知装置は日照による影響を受けやすく、日照等によって床面が暖められて所定温度以上になると、当該温度変化によって人体を検知したものと誤認してしまったり、日照によって所定温度以上に暖められたカーテンが翻るなどしたときに人体を検知したものと誤認してしまったりしていた。
また、着用衣服等の影響によって人体の表面温度が人体温度(36℃程度)よりも低く検出されることがあるため、人体の検知感度を高くするためには検知領域の温度変化を判定する基準値(温度レベル)を低く設定しておくことが好ましいが、前記温度レベルを低くすると誤認が増加してしまうといった問題点があった。
In the conventional human body detection device, the presence or absence of a human body in the detection area is determined only by determining whether or not the amount of received infrared light received from the detection area exceeds a preset value. Even if a temperature change occurred, the human body was mistakenly detected.
In particular, conventional human body detection devices are easily affected by sunshine, and if the floor surface is warmed by the sunshine etc. and exceeds the specified temperature, it may be mistaken as a human body detected due to the temperature change, or by the sunshine above the specified temperature. When the heated curtain flickers, it was mistaken for the detection of the human body.
In addition, since the surface temperature of the human body may be detected lower than the human body temperature (about 36 ° C.) due to the influence of the worn clothes, etc., the criterion for determining the temperature change in the detection region is to increase the human body detection sensitivity. Although it is preferable to set the value (temperature level) low, there is a problem in that misidentification increases when the temperature level is low.

そこで本発明は、複数の区画に区切られた検知領域から各区画毎の赤外線を受光してその各受光量に応じた出力レベルの検知信号を出力するように構成された赤外線検知素子と、この赤外線検知素子から出力される各検知信号に基づいて各区画毎の測定温度値を取得する温度検知部と、前記温度検知部からの各区画毎の測定温度値に基づいて検知領域の移動生物を検知する制御部と、前記制御部の制御によって生物検知警報を発報する出力部とから構成される移動生物検知装置において、温度検知部から出力される各区画毎の測定温度値に基づいて、所定温度以上の温度が検出された区画を検出して検知領域における所定温度以上の全区画に対応する中心座標値を求めるとともに、この中心座標値を時系列データとして記憶装置に記憶し、その時系列データから、ある一定時間範囲の時系列データを取得してその周波数スペクトルを求め、さらに前記周波数スペクトルを解析して前記時系列データの推移に規則性があるか否かを検出し、規則性がなければ移動生物が存在すると判定する方法と、この方法を用いた機能を有する本装置である。   Therefore, the present invention provides an infrared detection element configured to receive infrared rays for each section from a detection region divided into a plurality of sections and output a detection signal having an output level corresponding to each received light amount. A temperature detection unit that acquires a measured temperature value for each section based on each detection signal output from the infrared detection element, and a moving organism in the detection area based on the measured temperature value for each section from the temperature detection unit In the moving organism detection device constituted by the control unit to detect and the output unit that issues a biological detection alarm by the control of the control unit, based on the measured temperature value for each section output from the temperature detection unit, A zone where a temperature equal to or higher than the predetermined temperature is detected and the central coordinate values corresponding to all the zones higher than the predetermined temperature in the detection area are obtained, and the central coordinate value is stored in the storage device as time series data. From the time series data, obtain time series data in a certain time range and obtain its frequency spectrum, further analyze the frequency spectrum to detect whether the transition of the time series data has regularity, If there is no sex, this is a method for determining that a moving organism exists, and this apparatus having a function using this method.

本発明の移動生物検知装置および移動生物検知方法によれば、赤外線検知素子(サーモパイル素子)を使用して複数の区画に区切られた検知領域の各区画毎の測定温度値を取得し、所定温度以上の温度が検出された区画の中心座標値の移動性を解析することによって人体などの移動生物の存否を判定するため、日照などの影響を受けることなく移動生物を検知することができる。
また前記中心座標値の推移に対する周波数スペクトルを解析することによって、中心座標値の移動に規則性があるか否かを判定し、前記規則性がない場合には移動生物が存在すると判定するため、検知領域から検出される温度基準値(温度レベル)を低くして検知領域から検出する温度値を高感度にしても誤認を抑制することができ、移動生物を高精度で検知することができる。
According to the moving organism detection apparatus and the moving organism detection method of the present invention, a measurement temperature value is obtained for each section of a detection region divided into a plurality of sections using an infrared detection element (thermopile element), and a predetermined temperature is obtained. By analyzing the mobility of the central coordinate value of the section where the above temperature is detected, it is possible to detect the moving organism without being affected by sunlight or the like because the presence or absence of the moving organism such as a human body is determined.
Further, by analyzing the frequency spectrum with respect to the transition of the central coordinate value, it is determined whether there is regularity in the movement of the central coordinate value, and if there is no regularity, it is determined that there is a moving organism, Even if the temperature reference value (temperature level) detected from the detection region is lowered and the temperature value detected from the detection region is high sensitivity, misperception can be suppressed, and moving organisms can be detected with high accuracy.

この発明による移動生物検知装置の好適な実施例について、図1から図8を参照して説明する。   A preferred embodiment of the moving organism detection apparatus according to the present invention will be described with reference to FIGS.

図1は、本発明による移動生物検知装置を説明する図である。
本発明による移動生物検知装置10は、図1(a)に示すように、監視したい領域(以下、検知領域という)の天井等に設定され、赤外線の受光量によって物体の表面温度を計測できる赤外線検知素子(サーモパイル素子)を使用して検知領域内をある一定範囲(以下、区画という)毎に温度測定し、前記各区画毎の測定温度値に基づいて人体などの移動生物の存否を判定し、移動生物が存在すると判定したときは警報等を発報して検知領域内を監視・警備するものである。
FIG. 1 is a diagram illustrating a moving organism detection device according to the present invention.
As shown in FIG. 1A, the moving organism detection device 10 according to the present invention is set on the ceiling or the like of an area to be monitored (hereinafter referred to as a detection area), and can detect the surface temperature of an object by the amount of received infrared light. Measure the temperature in the detection area for each certain range (hereinafter referred to as a section) using a detection element (thermopile element), and determine the presence or absence of a moving organism such as a human body based on the measured temperature value for each section. When it is determined that a moving organism is present, an alarm is issued to monitor and guard the detection area.

本発明の実施例による移動生物検知装置10は、図1(b)のブロック図に示すように、集光レンズ1と、特定波長帯域の赤外線のみを透過させる光学フィルタ2と、検知領域からの赤外線を受光してその受光量に応じた出力レベルの検知信号を出力するにあたって各区画毎に検知信号を出力するように構成された赤外線検知素子3と、赤外線検知素子3から出力される検知信号を増幅する増幅部4と、当該増幅部4に接続される温度検知部5と、前記温度検知部5から出力される各区画毎の測定温度値を入力とする制御部6と、前記制御部6の制御によって警報を発報する出力部7とを備える。   As shown in the block diagram of FIG. 1B, the moving organism detection device 10 according to the embodiment of the present invention includes a condenser lens 1, an optical filter 2 that transmits only infrared rays in a specific wavelength band, and a detection region. An infrared detection element 3 configured to output a detection signal for each section when receiving infrared light and outputting a detection signal having an output level corresponding to the amount of received light, and a detection signal output from the infrared detection element 3 An amplifying unit 4, a temperature detecting unit 5 connected to the amplifying unit 4, a control unit 6 having as input a measured temperature value output from the temperature detecting unit 5 for each section, and the control unit And an output unit 7 that issues an alarm by the control of 6.

前記赤外線検知素子3は、複数の区画に区切られた検知領域から各区画毎の赤外線を受光してその各受光量に応じた出力レベルの検知信号を各区画毎に出力するように構成される。例えば、ひとつの検知素子でひとつの区画に対応した検知信号を出力するように構成したものや、あるいは、モータ等を用いて検知素子を制御して検知素子が検知する区画を随時変更する等の手段によって、ひとつの検知素子で検知領域内の複数の区画の検知信号を各区画毎に出力可能とし、各区画毎の検知信号をそれぞれ出力するように構成したものを使用する。
そして前記温度検知部5では、赤外線検知素子3からの検知信号に基づいて複数の区画に区切られた検知領域に在る物体の表面温度を計測し、前記各区画毎の測定温度値を取得することができる。
また前記制御部6では、温度検知部5から出力される各区画毎の測定温度値を取得し、当該温度値に基づいて検知領域における移動生物の存否を判定し、移動生物が存在すると判定したときは出力部7から警報を発報するよう制御する。
The infrared detection element 3 is configured to receive infrared light for each section from a detection region divided into a plurality of sections and output a detection signal of an output level corresponding to each received light amount for each section. . For example, one detection element configured to output a detection signal corresponding to one section, or a section that the detection element detects by controlling the detection element using a motor, etc. According to the means, one detection element can be used to output detection signals for a plurality of sections in the detection area for each section, and a detection signal for each section is output.
The temperature detection unit 5 measures the surface temperature of the object in the detection area divided into a plurality of sections based on the detection signal from the infrared detection element 3, and acquires the measured temperature value for each section. be able to.
Further, the control unit 6 obtains the measured temperature value for each section output from the temperature detection unit 5, determines the presence or absence of the moving organism in the detection region based on the temperature value, and determines that the moving organism exists. At this time, the output unit 7 is controlled to issue an alarm.

この発明による移動生物検知装置10では、温度検知部5から出力される各区画毎の測定温度値が制御部6に逐次入力され、該制御部6では逐次入力される測定温度値に基づいて、その都度、所定温度以上の温度が検出された区画を検出して検知領域における所定温度以上の全区画に対応する中心座標値を求める。
そして、この中心座標値を時系列データとして記憶装置に記憶し、その時系列データから、ある一定時間範囲の時系列データを取得してその周波数スペクトルを求め、さらに前記周波数スペクトルを解析して前記時系列データの推移に規則性があるか否かを検出し、規則性がなければ移動生物が存在すると判定する。
In the moving organism detection device 10 according to the present invention, the measurement temperature value for each section output from the temperature detection unit 5 is sequentially input to the control unit 6, and the control unit 6 is based on the measurement temperature value sequentially input. Each time, a section where a temperature equal to or higher than a predetermined temperature is detected is detected, and central coordinate values corresponding to all the sections equal to or higher than the predetermined temperature in the detection area are obtained.
Then, the central coordinate value is stored in the storage device as time series data, and from the time series data, time series data in a certain time range is obtained to obtain a frequency spectrum thereof, and the frequency spectrum is analyzed to analyze the time series data. It is detected whether there is regularity in the transition of the series data. If there is no regularity, it is determined that there is a moving organism.

図2から図6を参照して、本発明の第1実施例による移動生物検知方法について説明する。   With reference to FIGS. 2 to 6, the moving organism detection method according to the first embodiment of the present invention will be described.

第1実施例では、図2に示すように、8つの赤外線検知素子(サーモパイル素子)を1列に配列した一次元構成の赤外線検知素子(x=1〜X,X=8)を使用した移動生物検知装置10によって移動生物を検知する。
この実施例では、8つの赤外線検知素子〔8×1〕によって、検知領域内を8つの区画〔8×1〕に区切るようにして各区画毎の検知信号がそれぞれ出力される。つまり各検知素子の座標値xが検知領域内の各区画の座標値に対応する。
そして、複数の区画に区切られた検知領域からの赤外線を受光してその受光量に応じた出力レベルの検知信号を出力する赤外線検知素子(x=1〜X)によって現時刻tにおける検知領域の各区画毎の温度を測定し、前記8つの検知素子各々における測定温度値がそれぞれ所定温度(TPL)以上の温度であるか否かを判定し、所定温度以上の温度が検出された検知素子の座標値合計(sum_x)と、所定温度以上の温度が検出された検知素子の数(count_x)とを算出し、所定温度以上の温度が検出された検知素子の中心座標値(average_x(t)=sum_x/count_x)を求める。
なお各検知素子の座標値を「x=1,2,3,4,5,6,7,8」と定義し、検知素子の最小座標値(初期値)を「1」、最大座標値を「X=8」とする。
In the first embodiment, as shown in FIG. 2, a movement using an infrared detection element (x = 1 to X, X = 8) having a one-dimensional configuration in which eight infrared detection elements (thermopile elements) are arranged in a row. A living organism is detected by the organism detection device 10.
In this embodiment, the detection signal for each section is output by the eight infrared detection elements [8 × 1] so that the detection area is divided into eight sections [8 × 1]. That is, the coordinate value x of each detection element corresponds to the coordinate value of each section in the detection region.
A detection region at the current time t n is received by an infrared detection element (x = 1 to X) that receives infrared rays from a detection region divided into a plurality of sections and outputs a detection signal having an output level corresponding to the received light amount. The temperature of each section is measured, it is determined whether or not the measured temperature value in each of the eight sensing elements is equal to or higher than a predetermined temperature (TPL), and the sensing element in which the temperature equal to or higher than the predetermined temperature is detected The coordinate value sum (sum_x) and the number of sensing elements (count_x) in which a temperature equal to or higher than a predetermined temperature is calculated, and the center coordinate value (average_x (t n ) of the sensing elements in which a temperature equal to or higher than the predetermined temperature is detected. ) = Sum_x / count_x).
The coordinate value of each detection element is defined as “x = 1, 2, 3, 4, 5, 6, 7, 8”, the minimum coordinate value (initial value) of the detection element is “1”, and the maximum coordinate value is “X = 8”.

例えば図2(a)に示すように、現時刻tにおける測定温度値t[x]が所定温度以上であると判定された検知素子が、座標値3の検知素子のみである場合(図中のドット領域を参照)、その中心座標値(average_x(t)=sum_x/count_x)は、「3」として求められる。つまり、複数の区画〔8×1〕に区切られた検知領域において所定温度以上の温度が検出された全区画の中心座標値は、「3」として求められる。
また図2(b)に示すように、現時刻tにおける測定温度値t[x]が所定温度以上であると判定された検知素子が、座標値3の検知素子と座標値4の検知素子である場合(図中のドット領域を参照)、中心座標値(average_x(t)=sum_x/count_x)は、「3.5」として求められる。つまり、複数の区画〔8×1〕に区切られた検知領域において所定温度以上の温度が検出された全区画の中心座標値は、「3.5」として求められる。
For example, as shown in FIG. 2A, the detection element determined that the measured temperature value t n [x] at the current time t n is equal to or higher than a predetermined temperature is only the detection element having the coordinate value 3 (FIG. 2). The center coordinate value (average_x (t n ) = sum_x / count_x) is obtained as “3”. That is, the center coordinate value of all the sections in which the temperature equal to or higher than the predetermined temperature is detected in the detection area divided into a plurality of sections [8 × 1] is obtained as “3”.
Further, as shown in FIG. 2B, the detection element determined that the measured temperature value t n [x] at the current time t n is equal to or higher than the predetermined temperature is the detection element with the coordinate value 3 and the detection with the coordinate value 4. In the case of an element (see the dot area in the figure), the center coordinate value (average_x (t n ) = sum_x / count_x) is obtained as “3.5”. That is, the central coordinate value of all the sections in which the temperature equal to or higher than the predetermined temperature is detected in the detection area divided into a plurality of sections [8 × 1] is obtained as “3.5”.

図3及び図5のフローチャートを参照して、第1実施例による移動生物の検知方法を説明する。
制御部6は一定時間毎に温度検知部5から逐次入力される出力信号(検知素子毎の測定温度値)をもとに所定温度以上の温度が検出された検知素子の中心座標値を求めるとともに、現時刻までに求まっている時系列の値(中心座標値の時系列データ)を用いて周波数スペクトルを解析し、移動生物の存否を判定する。
この実施例では、各検知素子の座標値が検知領域の各区画の座標値に対応するため、所定温度以上の温度が検出された検知素子の座標値を求めることによって、検知領域において所定温度以上の温度が検出された区画の座標値(位置)が求められる。つまり、各検知素子毎の座標値およびその測定温度値とから、検知領域の各区画で発生した温度変化の時系列推移を求めることができる。
なお各検知素子毎に現時刻tにおける測定温度値t[x]を取得して温度判定(TPL検出)し、所定温度(TPL)以上の温度が検出された検知素子の中心座標値を求めるにあたって、温度判定(TPL検出)の対象となる検知素子を一つずつ隣に移行しながら温度判定を繰り返すことによって全検知素子をそれぞれ温度判定し、検知素子毎の測定温度値に基づいて所定温度以上の温度が検出された検知素子の中心座標値を取得する。
With reference to the flowcharts of FIG. 3 and FIG. 5, a moving organism detection method according to the first embodiment will be described.
The control unit 6 obtains the center coordinate value of the detection element in which the temperature above the predetermined temperature is detected based on the output signal (measured temperature value for each detection element) sequentially input from the temperature detection unit 5 at regular intervals. The frequency spectrum is analyzed using the time-series values obtained up to the present time (time-series data of the center coordinate value), and the presence / absence of the moving organism is determined.
In this embodiment, since the coordinate value of each detection element corresponds to the coordinate value of each section of the detection area, by obtaining the coordinate value of the detection element in which a temperature equal to or higher than the predetermined temperature is obtained, The coordinate value (position) of the section where the temperature is detected is obtained. That is, the time series transition of the temperature change generated in each section of the detection region can be obtained from the coordinate value for each detection element and the measured temperature value.
For each sensing element, the measured temperature value t n [x] at the current time t n is acquired and temperature is determined (TPL detection), and the center coordinate value of the sensing element in which a temperature equal to or higher than a predetermined temperature (TPL) is detected is obtained. In determining, all the detection elements are subjected to temperature determination by repeating temperature determination while shifting one detection element to be subjected to temperature determination (TPL detection) one by one, and predetermined based on a measured temperature value for each detection element. The center coordinate value of the sensing element in which a temperature equal to or higher than the temperature is detected is acquired.

この実施例では、図3に示すように先ず各変数を初期化する。つまり、所定温度以上の温度が検出された検知素子の座標値合計(sum_x)と、所定温度以上の温度が検出された検知素子の数(count_x)とをリセットし(sum_x=0,count_x=0)、さらに温度判定の対象となる検知素子の座標値を「1」に設定する(ステップS1)。
また温度判定の対象となる検知素子の座標値xが最大座標値(X=8)を超えないかを判定し(ステップS2)、超えない場合は当該検知素子の測定温度値が所定温度以上であるか否かを判定する(ステップS3)。
In this embodiment, each variable is first initialized as shown in FIG. That is, the coordinate value sum (sum_x) of the sensing elements in which a temperature equal to or higher than the predetermined temperature is detected and the number of sensing elements (count_x) in which the temperature equal to or higher than the predetermined temperature is reset (sum_x = 0, count_x = 0). ) Further, the coordinate value of the sensing element that is the target of temperature determination is set to “1” (step S1).
Further, it is determined whether or not the coordinate value x of the sensing element to be temperature-determined exceeds the maximum coordinate value (X = 8) (step S2). If not, the measured temperature value of the sensing element is equal to or higher than a predetermined temperature. It is determined whether or not there is (step S3).

座標値(x)の検知素子について、現時刻tにおける測定温度値t[x]が所定温度(TPL)以上である場合(YES)、その座標値を「所定温度以上の温度が検出された検知素子の座標値合計(sum_x)」に加算し(ステップS4)、さらに「所定温度以上の温度が検出された検知素子の数(count_x)」に1を加算し(ステップS5)、その後、検知素子の座標値に1を加算することによって温度判定の対象となる検知素子を隣に1つ移行させ(ステップS6)、ステップS2へ戻る。
一方、現時刻tにおける測定温度値t[x]が所定温度(TPL)以上でない場合(NO)、ステップS4とS5を経ずに温度判定の対象となる検知素子を隣に1つ移行させ(ステップS6)、ステップS2へ戻る。
When the measured temperature value t n [x] at the current time t n is equal to or higher than a predetermined temperature (TPL) for the detection element with the coordinate value (x) (YES), the coordinate value is set to “a temperature higher than the predetermined temperature is detected. Is added to the “total coordinate value of the sensing elements (sum_x)” (step S4), and 1 is further added to the “number of sensing elements in which a temperature equal to or higher than the predetermined temperature (count_x)” is detected (step S5). By adding 1 to the coordinate value of the detection element, one detection element to be subjected to temperature determination is shifted to the next (step S6), and the process returns to step S2.
On the other hand, when the measured temperature value t n [x] at the current time t n is not equal to or higher than the predetermined temperature (TPL) (NO), one detection element to be subjected to temperature determination is shifted to the next without passing through steps S4 and S5. (Step S6), and return to Step S2.

温度判定の対象となる検知素子を隣に一つずつ移行させながら温度判定を繰り返し、全検知素子(x=1〜X,X=8)について温度判定が終了し、ステップ2の判定において検知素子の座標値xが最大座標値(X=8)を超えた場合、「所定温度以上の温度が検出された検知素子の座標値合計(sum_x)」と、「所定温度以上の温度が検出された検知素子の数(count_x)」とから、現時刻tにおいて所定温度以上の温度が検出された検知素子の中心座標値(average_x(t)=sum_x/count_x)を求める(ステップS7)。 The temperature determination is repeated while shifting the detection elements to be subjected to temperature determination one by one, and the temperature determination is completed for all the detection elements (x = 1 to X, X = 8). When the coordinate value x of exceeds the maximum coordinate value (X = 8), “the total coordinate value of the sensing elements in which the temperature equal to or higher than the predetermined temperature is detected (sum_x)” and “the temperature higher than the predetermined temperature is detected From the “number of sensing elements (count_x)”, the central coordinate value (average_x (t n ) = sum_x / count_x) of the sensing elements in which a temperature equal to or higher than the predetermined temperature is detected at the current time t n is obtained (step S7).

そして、上記ステップS1からS7の工程を一定周期毎に逐次繰り返し、その中心座標値を逐次記憶しておくことによって、中心座標値の時系列データを得る。そして、この時系列データのある一定時間範囲、つまり、過去のある時刻(tn−(N−1))から現時刻(t)までの中心座標値の時系列データ(average_x(t),tn−(N−1)≦t≦t)を用いて、周波数スペクトルを求め(ステップS8)、その周波数スペクトルを解析することによって、移動生物の存否を判定する(図4及び図5を参照)。ここで、「tn−(N−1)」におけるNは周波数スペクトルを求めるために用いる時系列データの個数を現わす。 Then, the steps S1 to S7 are repeated at regular intervals, and the central coordinate values are sequentially stored, thereby obtaining time series data of the central coordinate values. The time series data (average_x (t), time series data of the center coordinate values from a certain time range of the time series data, that is, a past time (t n− (N−1) ) to the current time (t n ). t n− (N−1) ≦ t ≦ t n ), a frequency spectrum is obtained (step S8), and the presence or absence of a moving organism is determined by analyzing the frequency spectrum (FIGS. 4 and 5). reference). Here, N in “t n− (N−1) ” represents the number of time series data used for obtaining a frequency spectrum.

この実施例では、ある一定時間範囲での中心座標値の時系列データをもとに、フーリエ変換による周波数スペクトル解析を適用し、所定温度以上の温度が検出された検知素子の中心座標値の移動性を解析する。
つまり「現時刻よりも一定時間過去にさかのぼった時刻(tn−(N−1))」から「現時刻(t)」までの一定時間範囲において離散フーリエ変換をする。
そして所定温度以上の温度が検出された検知素子の中心座標値の時系列データ(average_x(t),tn−(N−1)≦t≦t)をもとに、周波数スペクトルFx(m)(m=0〜M,M≦N)を計算し、その周波数スペクトルFx(m)(m=0〜M,M≦N)を解析することによって中心座標値の移動に規則性が在るか否かを判定し、移動に規則性が無い場合、移動生物が存在すると判定する。
In this embodiment, frequency spectrum analysis by Fourier transform is applied based on time-series data of center coordinate values in a certain fixed time range, and movement of center coordinate values of sensing elements in which a temperature equal to or higher than a predetermined temperature is detected. Analyze sex.
That is, the discrete Fourier transform is performed in a certain time range from “time (t n− (N−1) )” going back a certain time before the current time to “current time (t n )”.
Then, based on the time series data (average_x (t), t n− (N−1) ≦ t ≦ t n ) of the center coordinate value of the sensing element in which a temperature equal to or higher than the predetermined temperature is detected, the frequency spectrum Fx (m ) (M = 0 to M, M ≦ N) is calculated, and the frequency spectrum Fx (m) (m = 0 to M, M ≦ N) is analyzed so that the movement of the central coordinate value is regular. If there is no regularity in movement, it is determined that a moving organism exists.

なお下記の数式にて、周波数スペクトルFx(m)を求める。ここで、iは虚数単位、πは円周率、mは離散周波数サンプル番号、kは時系列サンプル番号を表わしており、
表記の簡略化のため、中心座標値の時系列データ(average_x(t),tn−(N−1)≦t≦t)を(average_x(n),0≦n≦(N−1))と表わしている。

Figure 2007292651
The frequency spectrum Fx (m) is obtained by the following formula. Here, i is an imaginary unit, π is a pi, m is a discrete frequency sample number, k is a time-series sample number,
In order to simplify the notation, the time-series data (average_x (t), t n− (N−1) ≦ t ≦ t n ) of the center coordinate values is changed to (average_x (n), 0 ≦ n ≦ (N−1). ).
Figure 2007292651

図4は、一定時間範囲の中心座標値の時系列データと、フーリエ変換による周波数スペクトルを示す図である。
図4(a)は、温度検知部5から逐次入力される検知素子毎の測定温度値に基づいて、過去のある時刻から現時刻まで一定時間範囲、所定温度以上の温度が検出された検知素子の中心座標値の時系列データ(average_x(t),tn−(N−1)≦t≦t)を示すものであって、中心座標値の移動に規則性がない状態を示すものである。
図4(b)は、図4(a)に示す時系列データをフーリエ変換によって周波数スペクトルFx(m)を求めたデータを示すものであって、中心座標値の移動に規則性が無い場合、スペクトル強度判定基準値Sを連続して超えるFx(m)の数、つまり、離散帯スペクトル幅値Bが規則性判定基準値Tよりも大きくなる。つまり規則性判定基準値Tよりも長い帯スペクトルが検出される。
なお周波数スペクトルの解析に用いるスペクトル強度判定基準値Sや、規則性判定基準値Tは、移動生物を検知する環境や条件によって予め適当な値を設定しておく。
FIG. 4 is a diagram showing time-series data of center coordinate values in a certain time range and a frequency spectrum by Fourier transform.
FIG. 4A shows a detection element in which a temperature within a certain time range from a certain past time to the current time is detected based on a measured temperature value for each detection element sequentially input from the temperature detection unit 5. This shows the time-series data (average_x (t), t n− (N−1) ≦ t ≦ t n ) of the center coordinate value of FIG. is there.
FIG. 4B shows data obtained by obtaining the frequency spectrum Fx (m) by Fourier transform of the time series data shown in FIG. 4A, and there is no regularity in the movement of the center coordinate value. The number of Fx (m) continuously exceeding the spectrum intensity determination reference value S, that is, the discrete band spectrum width value B is larger than the regularity determination reference value T. That is, a band spectrum longer than the regularity determination reference value T is detected.
Note that the spectrum intensity determination reference value S and the regularity determination reference value T used for the analysis of the frequency spectrum are set to appropriate values in advance according to the environment and conditions for detecting the moving organism.

フーリエ変換による周波数スペクトル解析では、図5に示すように、まず変数を初期化する。つまり、離散帯スペクトル幅値Bと、離散周波数サンプル番号m(m=0〜M,M≦N)をリセットする(m=0,B=0)(ステップS11)。
また周波数スペクトル解析の対象となる離散周波数サンプル番号(m)が最大値(M)を超えないかを判定し(ステップS12)、超えない場合は当該サンプルの周波数スペクトルFx(m)がスペクトル強度判定基準値S以上であるか否かを判定する(ステップS13)。
そして、周波数スペクトルがスペクトル強度判定基準値Sを超えない場合は離散帯スベクトル幅値Bを0とした後(ステップS14)、次のサンプルに移行する(ステップS17)。
In frequency spectrum analysis by Fourier transform, variables are first initialized as shown in FIG. That is, the discrete band spectral width value B and the discrete frequency sample number m (m = 0 to M, M ≦ N) are reset (m = 0, B = 0) (step S11).
In addition, it is determined whether the discrete frequency sample number (m) to be subjected to frequency spectrum analysis does not exceed the maximum value (M) (step S12). If not, the frequency spectrum Fx (m) of the sample is determined as the spectrum intensity. It is determined whether or not it is equal to or greater than the reference value S (step S13).
If the frequency spectrum does not exceed the spectral intensity determination reference value S, the discrete band vector width value B is set to 0 (step S14), and the process proceeds to the next sample (step S17).

一方、周波数スペクトルFx(m)がスペクトル強度判定基準値S以上の場合は、離散帯スペクトル幅値Bに1を加算し(ステップS15)、離散帯スペクトル幅値Bが規則性判定基準値Tよりも大きいか否かを判定する(ステップS16)。
そして規則性判定基準値T以上のときは、中心座標値の移動に規則性が無いと判定し、人体などの移動生物が存在する(有人)と判定する(ステップS18)。
また規則性判定基準値T未満のときは、次のサンプルに移行する(ステップS17)。
On the other hand, when the frequency spectrum Fx (m) is equal to or greater than the spectral intensity determination reference value S, 1 is added to the discrete band spectral width value B (step S15), and the discrete band spectral width value B is determined from the regularity determination reference value T. Is also larger (step S16).
If it is equal to or greater than the regularity determination reference value T, it is determined that there is no regularity in the movement of the central coordinate value, and it is determined that a moving organism such as a human body exists (manned) (step S18).
If it is less than the regularity determination reference value T, the process proceeds to the next sample (step S17).

図5に示す周波数スペクトルの解析では、離散帯スペクトル幅値Bの判定(ステップS16)において、離散帯スペクトル幅値Bが規則性判定基準値T以上になるまで(有人と判定するまで)、上記ステップS12からS17の工程を繰り返す。
そしてステップS12においてサンプル番号mが総サンプル数Mよりも大きくなったら、つまり全サンプルについて解析したら、規則性判定基準値T以上の離散帯スペクトル幅値Bが存在せず中心座標値の移動に規則性があると判定し、検知領域に所定温度以上の温度範囲が発生してもそれは人体などの移動生物によるものではないと判定し、移動生物が存在しない(無人)と判定する(ステップS19)。
In the analysis of the frequency spectrum shown in FIG. 5, in the determination of the discrete band spectral width value B (step S16), until the discrete band spectral width value B becomes equal to or greater than the regularity determination reference value T (until determined to be manned), Steps S12 to S17 are repeated.
If the sample number m becomes larger than the total number M of samples in step S12, that is, if all the samples are analyzed, there is no discrete band spectral width value B equal to or greater than the regularity determination reference value T, and the center coordinate value is moved. Even if a temperature range equal to or higher than a predetermined temperature occurs in the detection region, it is determined that it is not caused by a moving organism such as a human body, and it is determined that no moving organism exists (unmanned) (step S19). .


図6は、移動生物に起因しない環境下における、所定温度以上の温度が検出された検知素子の中心座標値の時系列データと周波数スペクトルデータとを示すグラフである。
熱源が移動生物に起因するものではなく移動性がない場合、図6(a)に示すように、所定温度以上の温度が検出された検知素子の中心座標値が移動せず、時系列データをフーリエ変換して周波数スペクトルを解析すると、規則性判定基準値T以上の離散帯スペクトル幅値Bが検出されない。
また日照によって暖められた床面のように熱源がゆっくりと規則性をもって移動する場合、図6(b)に示すように、所定温度以上の温度が検出された検知素子の中心座標値がゆっくりと規則性をもって移動し、時系列データをフーリエ変換して周波数スペクトルを解析すると、規則性判定基準値T以上の離散帯スペクトル幅値Bが検出されない。
さらに日照によって暖められたカーテンの翻りのように熱源が規則性(周期性)をもって移動する場合、図6(c)に示すように、所定温度以上の温度が検出された検知素子の中心座標値が規則性をもって移動し、時系列データをフーリエ変換して周波数スペクトルを解析すると、規則性判定基準値T以上の離散帯スペクトル幅Bが検出されない。
,
FIG. 6 is a graph showing time-series data and frequency spectrum data of the center coordinate value of a sensing element in which a temperature equal to or higher than a predetermined temperature is detected in an environment not caused by a moving organism.
When the heat source is not caused by a moving organism and has no mobility, as shown in FIG. 6 (a), the center coordinate value of the detection element in which the temperature equal to or higher than the predetermined temperature is detected does not move, and the time series data is When the frequency spectrum is analyzed by Fourier transform, a discrete band spectrum width value B greater than the regularity determination reference value T is not detected.
In addition, when the heat source moves slowly and regularly like a floor surface warmed by sunlight, the center coordinate value of the sensing element in which a temperature equal to or higher than the predetermined temperature is detected slowly as shown in FIG. 6B. When moving with regularity and analyzing the frequency spectrum by Fourier transforming the time series data, the discrete band spectral width value B greater than the regularity determination reference value T is not detected.
Further, when the heat source moves with regularity (periodicity) like a curtain heated by sunlight, the center coordinates of the sensing element in which a temperature equal to or higher than a predetermined temperature is detected as shown in FIG. When the values move with regularity and the frequency spectrum is analyzed by Fourier transforming the time series data, the discrete band spectral width B greater than the regularity determination reference value T is not detected.

一方、移動に規則性がない移動生物の存在に起因する場合、図4に示すように、所定温度以上の温度が検出された検知素子の中心座標値の移動に規則性がなく、時系列データをフーリエ変換して周波数スペクトルを解析すると、規則性判定基準値T以上の離散帯スペクトル幅値Bが検出される。   On the other hand, when the movement is caused by the presence of a moving organism having no regularity, as shown in FIG. 4, there is no regularity in the movement of the center coordinate value of the sensing element in which a temperature equal to or higher than a predetermined temperature is detected. When the frequency spectrum is analyzed by Fourier transform, a discrete band spectrum width value B greater than the regularity determination reference value T is detected.

以上のように、この実施例では各検知素子の座標値及びその測定温度値とをもとに、検知領域を各区画毎に温度測定し、各区画毎の測定温度値に基づいて検知領域の移動生物を検知するものである。
つまりこの実施例では、検知素子毎に測定温度値を取得して所定温度以上の温度が検出されるか否かを判定し、所定温度以上の温度が検出された検知素子の中心座標値を求めることによって、検知領域における各区画毎の測定温度値を取得して所定温度以上の温度であるか否かを判定し、所定温度以上の温度が検出された全ての区画に対応する中心座標値を求める。
そして、前記中心座標値を時系列データとして記憶し、この時系列データから、ある一定時間範囲の時系列データを取得してその周波数スペクトルを解析し、前記時系列データの推移に規則性があるか否かを検出する。そして、規則性が無い場合は移動生物が存在すると判定する。
As described above, in this embodiment, based on the coordinate value of each detection element and its measured temperature value, the temperature of the detection area is measured for each section, and based on the measured temperature value for each section, the detection area It detects moving organisms.
That is, in this embodiment, a measured temperature value is acquired for each sensing element, it is determined whether or not a temperature equal to or higher than a predetermined temperature is detected, and a center coordinate value of the sensing element where a temperature equal to or higher than the predetermined temperature is detected is obtained. Thus, the measured temperature value for each section in the detection area is acquired to determine whether the temperature is equal to or higher than a predetermined temperature, and the central coordinate values corresponding to all the sections where the temperature equal to or higher than the predetermined temperature is detected are determined. Ask.
Then, the central coordinate value is stored as time series data, and from this time series data, time series data in a certain fixed time range is obtained and its frequency spectrum is analyzed, and the transition of the time series data has regularity. Whether or not is detected. And when there is no regularity, it determines with a moving organism existing.

次に図7及び図8を参照して、本発明の第2実施例による移動生物検知方法について説明する。   Next, with reference to FIG.7 and FIG.8, the moving organism detection method by 2nd Example of this invention is demonstrated.

第2実施例では、図7に示すように、8つの赤外線検知素子(サーモパイル素子)を8列に配列した二次元構成(x,y)の赤外線検知素子(x=1〜X,y=1〜Y)を使用した移動生物検知装置10によって移動生物を検知する。
この実施例では、64の赤外線検知素子〔8×8〕によって、検知領域内を64の区画〔8×8〕に区切るようにして各区画毎の検知信号がそれぞれ出力される。つまり、各検知素子の座標値が検知領域の各区画の座標値に対応する。
そして、複数の区画に区切られた検知領域からの赤外線を受光してその受光量に応じた出力レベルの検知信号を出力する赤外線検知素子(x=1〜X,y=1〜Y,)によって検知領域を区画毎に温度測定し、前記64の検知素子各々における測定温度値がそれぞれ所定温度(TPL)以上であるか否かを判定し、所定温度以上の温度が検出された検知素子の座標値合計(sum_x、sum_y)と、所定温度以上の温度が検出された検知素子の数(count_x、count_y)とをx座標値とy座標値毎に算出し、所定温度以上の温度が検出された検知素子のx座標における中心座標値(average_x(t)=sum_x/count_x)と、y座標における中心座標値(average_y(t)=sum_y/count_y)とを求める。
なお、各検知素子のx座標値を「x=1,2,3,4,5,6,7,8」と定義するとともに、y座標値を「y=1,2,3,4,5,6,7,8」と定義し、各最小座標値(初期値)を「1」、最大座標値X,Yをそれぞれ「8」とする。
In the second embodiment, as shown in FIG. 7, an infrared detection element (x = 1 to X, y = 1) having a two-dimensional configuration (x, y) in which eight infrared detection elements (thermopile elements) are arranged in eight rows. The moving organism is detected by the moving organism detection device 10 using ~ Y).
In this embodiment, 64 infrared detection elements [8 × 8] output detection signals for each section so that the detection area is divided into 64 sections [8 × 8]. That is, the coordinate value of each detection element corresponds to the coordinate value of each section of the detection region.
And by the infrared detection element (x = 1-X, y = 1-Y,) which receives the infrared rays from the detection area divided into a plurality of sections, and outputs the detection signal of the output level according to the amount of received light The temperature of the detection region is measured for each section, it is determined whether or not the measured temperature value in each of the 64 detection elements is equal to or higher than a predetermined temperature (TPL), and the coordinates of the detection element where the temperature equal to or higher than the predetermined temperature is detected The sum of values (sum_x, sum_y) and the number of sensing elements (count_x, count_y) in which a temperature equal to or higher than a predetermined temperature is calculated for each x coordinate value and y coordinate value, and a temperature equal to or higher than the predetermined temperature is detected. A center coordinate value (average_x (t n ) = sum_x / count_x) in the x coordinate and a center coordinate value (average_y (t n ) = sum_y / count_y) in the y coordinate are obtained.
The x-coordinate value of each sensing element is defined as “x = 1, 2, 3, 4, 5, 6, 7, 8”, and the y-coordinate value is defined as “y = 1, 2, 3, 4, 5 , 6, 7, 8 ”, each minimum coordinate value (initial value) is“ 1 ”, and each maximum coordinate value X, Y is“ 8 ”.

例えば図7(a)に示すように、現時刻tにおける測定温度値t[x,y]が所定温度以上であると判定された検知素子が、座標値(x,y)=(3,3)の検知素子のみである場合、x座標における中心座標値(average_x(t)=sum_x/count_x)は「3」、y座標における中心座標値(average_y(t)=sum_y/count_y)は「3」として求められる。つまり、複数の区画〔8×8〕に区切られた検知領域において、所定温度以上の温度が検出された全区画の中心座標値は、x座標における中心座標値が「3」、y座標における中心座標値が「3」として求められる。
また図7(b)に示すように、現時刻tにおける測定温度値t[x,y]が所定温度以上であると判定された検知素子が、座標値(3,3)≦(x,y)≦(4,3)の検知素子の場合、x座標における中心座標値(average_x(t)=sum_x/count_x)は「3.5」、y座標における中心座標値(average_y(t)=sum_y/count_y)は「3」として求められる。つまり、複数の区画〔8×8〕に区切られた検知領域において所定温度以上の温度が検出された全区画の中心座標値は、x座標における中心座標値が「3」、y座標における中心座標値が「3.5」として求められる。
For example, as shown in FIG. 7 (a), the detection element determined that the measured temperature value t n [x, y] at the current time t n is equal to or higher than a predetermined temperature is represented by coordinate value (x, y) = (3 3), the center coordinate value in the x coordinate (average_x (t n ) = sum_x / count_x) is “3”, and the center coordinate value in the y coordinate (average_y (t n ) = sum_y / count_y) Is calculated as “3”. That is, in the detection area divided into a plurality of sections [8 × 8], the center coordinate value of all sections in which a temperature equal to or higher than the predetermined temperature is detected is “3” as the center coordinate value in the x coordinate, and the center in the y coordinate. The coordinate value is obtained as “3”.
Further, as shown in FIG. 7B, the detection element determined that the measured temperature value t n [x, y] at the current time t n is equal to or higher than a predetermined temperature is represented by coordinate value (3, 3) ≦ (x , Y) ≦ (4,3), the center coordinate value (average_x (t n ) = sum_x / count_x) in the x coordinate is “3.5”, and the center coordinate value in the y coordinate (average_y (t n) ) = Sum_y / count_y) is obtained as “3”. That is, the center coordinate value of all the sections in which the temperature equal to or higher than the predetermined temperature is detected in the detection area divided into a plurality of sections [8 × 8] is “3” in the x coordinate, and the center coordinates in the y coordinate. The value is determined as “3.5”.

そしてこの実施例では、第1実施例と同様に、制御部6は温度検知部5から逐次入力される出力信号(検知素子毎の測定温度値)をもとに所定温度以上の温度が検出された検知素子の中心座標値を求めるとともに、一定時間範囲での各中心座標値を取得してその周波数スペクトルを解析し、移動生物の存否を判定する。
なおこの実施例でも、第1実施例と同様に、各検知素子の座標値が検知領域の各区画の座標値に対応するため、所定温度以上の温度が検出された検知素子の座標値を求めることによって、検知領域で所定温度以上の温度が検出された区画の座標値(位置)が求められ、各検知素子の座標値およびその測定温度値とから、検知領域の各区画で発生した温度変化の時系列推移を求めることができる。
なお検知素子毎に取得した測定温度値(t[x,y])を温度判定(TPL検出)し、所定温度(TPL)以上の温度が検出された検知素子の中心座標値を求めるにあたって、温度判定(TPL検出)の対象となる検知素子を一つずつ隣に移行しながら温度判定を繰り返すことによって全検知素子をそれぞれ温度判定し、検知素子毎の測定温度値に基づいて所定温度以上の温度が検出された検知素子の中心座標値を取得する。
In this embodiment, as in the first embodiment, the controller 6 detects a temperature equal to or higher than a predetermined temperature based on an output signal (measured temperature value for each sensing element) sequentially input from the temperature detector 5. The center coordinate value of the detected element is obtained, and each center coordinate value in a certain time range is acquired and the frequency spectrum is analyzed to determine the presence or absence of a moving organism.
In this embodiment as well, as in the first embodiment, the coordinate value of each detection element corresponds to the coordinate value of each section of the detection region, so that the coordinate value of the detection element in which a temperature equal to or higher than a predetermined temperature is detected is obtained. Thus, the coordinate value (position) of the section where the temperature above the predetermined temperature is detected in the detection area is obtained, and the temperature change generated in each section of the detection area from the coordinate value of each detection element and its measured temperature value Can be obtained.
Note that the temperature determination (TPL detection) of the measured temperature value (t n [x, y]) acquired for each sensing element is performed, and the center coordinate value of the sensing element in which a temperature equal to or higher than the predetermined temperature (TPL) is obtained is determined. The temperature determination is repeated by repeating the temperature determination while shifting the detection elements to be subjected to temperature determination (TPL detection) one by one, and the temperature of each detection element is determined based on the measured temperature value for each detection element. The center coordinate value of the sensing element where the temperature is detected is acquired.

この実施例では、図8に示すように先ず各変数を初期化する。つまり、所定温度以上の温度が検出された検知素子の座標値合計(sum_x,sum_y)と、所定温度以上の温度が検出された検知素子の数(count_x、count_y)とをリセットし(sum_x=0,sum_y=0,count_x=0,count_y=0)、さらに温度判定の対象となる検知素子の座標値(x,y)を(1,1)に設定する(ステップS21)。
また温度判定の対象となる検知素子(x,y)のx座標値が最大座標値(X=8)を超えないかを判定するとともにy座標値が最大座標値(Y=8)を超えないか判定し(ステップS22,S23)、何れも超えない場合は当該検知素子の測定温度値が所定温度以上であるか否かを判定する(ステップS24)。
In this embodiment, each variable is first initialized as shown in FIG. That is, the coordinate value sum (sum_x, sum_y) of the sensing elements in which the temperature equal to or higher than the predetermined temperature is detected and the number of sensing elements (count_x, count_y) in which the temperature equal to or higher than the predetermined temperature is detected are reset (sum_x = 0). , Sum_y = 0, count_x = 0, count_y = 0), and further, the coordinate value (x, y) of the sensing element to be subjected to temperature determination is set to (1, 1) (step S21).
In addition, it is determined whether the x coordinate value of the sensing element (x, y) that is the target of temperature determination does not exceed the maximum coordinate value (X = 8), and the y coordinate value does not exceed the maximum coordinate value (Y = 8). If neither exceeds (step S22, S23), it is determined whether the measured temperature value of the sensing element is equal to or higher than a predetermined temperature (step S24).

座標値(x,y)の検知素子について、現時刻tにおける測定温度値t[x,y]が所定温度(TPL)以上である場合(YES)、その検知素子のx座標値を「所定温度以上の温度が検出された検知素子のx座標値合計(sum_x)」に加算するとともに、y座標値を「所定温度以上の検知素子のy座標値合計(sum_y)」に加算し(ステップS25)、さらに「所定温度以上の検知素子の数(count_xとcount_y)」にそれぞれ1を加算し(ステップS26)、その後、x座標値に1を加算して検知素子を隣に1つ移行させ(ステップS27)、ステップS23へ戻り、ステップS24からS27の工程を繰り返す。
一方、現時刻tにおける測定温度値t[x,y]が所定温度(TPL)以上でない場合(NO)、ステップS25とS26を経ずに検知素子を隣に1つ移行させ(ステップS27)、ステップS23へ戻りステップS24からS27の工程を繰り返す。
なおステップS23の判定でx座標値が最大座標値(X=8)を超えた場合は、y座標値に1を加算し、かつx座標値を最小座標値(初期値)「1」にしてから(ステップS28)、ステップS22へ戻り、ステップS23からS28の工程を繰り返す。
For the sensing element with the coordinate value (x, y), when the measured temperature value t n [x, y] at the current time t n is equal to or higher than a predetermined temperature (TPL) (YES), the x coordinate value of the sensing element is expressed as “ In addition to adding to the x-coordinate value sum (sum_x) of sensing elements in which a temperature equal to or higher than a predetermined temperature is detected, the y-coordinate value is added to “summing y-coordinate values of sensing elements above a predetermined temperature (sum_y)” (step S25) Further, 1 is added to each of “the number of sensing elements above a predetermined temperature (count_x and count_y)” (step S26), and then 1 is added to the x-coordinate value to move one sensing element to the next. (Step S27), the process returns to Step S23, and Steps S24 to S27 are repeated.
On the other hand, when the measured temperature value t n [x, y] at the current time t n is not equal to or higher than the predetermined temperature (TPL) (NO), one detection element is shifted to the next without passing through steps S25 and S26 (step S27). ), Returning to step S23, the steps S24 to S27 are repeated.
If the x coordinate value exceeds the maximum coordinate value (X = 8) in the determination of step S23, 1 is added to the y coordinate value, and the x coordinate value is set to the minimum coordinate value (initial value) “1”. (Step S28), the process returns to step S22, and steps S23 to S28 are repeated.

検知素子を隣に一つずつ移行させながら温度判定を繰り返し、全検知素子(x=1〜8,y=1〜8)について温度判定が終了し、ステップ22の判定において検知素子のy座標値が最大座標値(Y=8)を超えた場合、「所定温度以上の温度が検知された検知素子のx座標値合計(sum_x)及びy座標値合計(sum_y)」と、「所定温度以上の温度が検知された検知素子の数(count_xとcount_y)」とから、所定温度以上の温度が検出された検知素子のx座標における中心座標値(average_x(t)=sum_x/count_x)と、y座標における中心座標値(average_y(t)=sum_y/count_y)とを求める(ステップS29)。 The temperature determination is repeated while shifting the detection elements one by one to complete the temperature determination for all the detection elements (x = 1 to 8, y = 1 to 8), and the y-coordinate value of the detection element in the determination of step 22 Exceeds the maximum coordinate value (Y = 8), “the total x coordinate value (sum_x) and y coordinate value (sum_y) of the sensing elements in which a temperature equal to or higher than a predetermined temperature is detected”, From the number of sensing elements in which the temperature is detected (count_x and count_y), the center coordinate value (average_x (t n ) = sum_x / count_x) of the x-coordinate of the sensing element in which a temperature equal to or higher than a predetermined temperature is detected, y A center coordinate value (average_y (t n ) = sum_y / count_y) in coordinates is obtained (step S29).

そして、上記ステップS21からS29の工程を一定周期毎に逐次繰り返繰り返し、その中心座標値を逐次記憶しておくことによって、x座標における中心座標値の時系列データと、y座標における中心座標値の時系列データとを得る。そして、過去の時刻(tn−(N−1))から現時刻(t)までの一定時間範囲で、x座標における中心座標値の時系列データ(average_x(t),tn−(N−1)≦t≦t)とy座標における中心座標値の時系列データ(average_y(t),tn−(N−1)≦t≦t)とを取得し、それぞれの周波数スペクトルを求め(ステップS30)、これら各周波数スペクトルをx座標毎、y座標毎にそれぞれ解析することによって、移動生物の存否を判定する。 Then, by repeating the steps S21 to S29 repeatedly at regular intervals and storing the center coordinate value sequentially, the time-series data of the center coordinate value in the x coordinate and the center coordinate value in the y coordinate. Time series data. Then, the time series data (average_x (t), t n− (N ) of the central coordinate value in the x coordinate in a certain time range from the past time (t n− (N−1) ) to the current time (t n ). −1) ≦ t ≦ t n ) and time series data (average_y (t), t n− (N−1) ≦ t ≦ t n ) of the center coordinate values in the y coordinate, and the respective frequency spectra are obtained. It is determined (step S30), and the presence or absence of a moving organism is determined by analyzing each frequency spectrum for each x-coordinate and each y-coordinate.

この実施例では、x座標における中心座標値の一定時間範囲の時系列データ(average_x(t),tn−(N−1)≦t≦t)と、y座標における中心座標値の一定時間範囲の時系列データ(average_y(t),tn−(N−1)≦t≦t)とをもとに、それぞれフーリエ変換による周波数スペクトル解析を適用し、所定温度以上の検知素子の中心座標値の移動性を解析する。
つまりx座標とy座標の時系列データのそれぞれについて、「現時刻よりも一定時間過去にさかのぼった時刻(tn−(N−1))」から「現時刻(t)」までの一定時間範囲において離散フーリエ変換をする。
そして所定温度以上の温度が検出された検知素子のx座標における中心座標値の時系列データ(average_x(t),tn−(N−1)≦t≦t)をもとに、M個の周波数スペクトルFx(m)を計算するとともに、所定温度以上の温度が検出された検知素子のy座標における中心座標値の時系列データ(average_y(t),tn−(N−1)≦t≦t)をもとに、M個の周波数スペクトルFy(m)を計算し、これらの周波数スペクトルFx(m)、Fy(m)をそれぞれ解析することによって中心座標値の移動に規則性が在るか否かを判定し、移動に規則性が無い場合、移動生物が存在すると判定する。
In this embodiment, time series data (average_x (t), t n− (N−1) ≦ t ≦ t n ) in a certain time range of the center coordinate value in the x coordinate and a certain time of the center coordinate value in the y coordinate. Based on the time-series data of the range (average_y (t), t n− (N−1) ≦ t ≦ t n ), the frequency spectrum analysis by Fourier transform is applied, respectively, and the center of the sensing element above the predetermined temperature Analyzes the mobility of coordinate values.
That is, for each of the time series data of the x-coordinate and the y-coordinate, a certain time from “time (t n− (N−1) )” going back a certain time before the current time to “current time (t n )”. Perform a discrete Fourier transform on the range.
Based on the time series data (average_x (t), t n− (N−1) ≦ t ≦ t n ) of the center coordinate value in the x coordinate of the sensing element in which the temperature equal to or higher than the predetermined temperature is detected, M The frequency spectrum Fx (m) of the sensor element is calculated, and time series data (average_y (t), t n− (N−1) ≦ t of the center coordinate value in the y coordinate of the sensing element in which a temperature equal to or higher than a predetermined temperature is detected. Based on ≦ t n ), M frequency spectra Fy (m) are calculated, and by analyzing these frequency spectra Fx (m) and Fy (m), the movement of the central coordinate value has regularity. It is determined whether or not there is a moving organism when there is no regularity in movement.

なお下記の数式にて、x座標における周波数スペクトルFx(m)と、y座標における周波数スペクトルFy(m)とを求める。ここで、iは虚数単位、πは円周率、mは離散周波数サンプル番号、kは時系列サンプル番号を表わしており、表記の簡略化のため、x座標における中心座標値の時系列データ(average_x(t),tn−(N−1)≦t≦t)を(average_x(n),0≦n≦(N−1))と表わし、y座標における中心座標値の時系列データ(average_y(t),tn−(N−1)≦t≦t)を(average_y(n),0≦n≦(N−1))と表わしている。

Figure 2007292651
In addition, the frequency spectrum Fx (m) in the x coordinate and the frequency spectrum Fy (m) in the y coordinate are obtained by the following mathematical formula. Here, i represents an imaginary unit, π represents a pi, m represents a discrete frequency sample number, and k represents a time series sample number. For simplification of the notation, time series data of the center coordinate value in the x coordinate ( average_x (t), t n− (N−1) ≦ t ≦ t n ) is expressed as (average_x (n), 0 ≦ n ≦ (N−1)), and time series data of the center coordinate value in the y coordinate ( average_y (t), t n- the (n-1) ≦ t ≦ t n) (average_y (n), represents a 0 ≦ n ≦ (n-1 )).
Figure 2007292651

第1実施例による周波数ベクトルの解析と同様に(図4及び図5を参照)、x座標における周波数スペクトルの解析とy座標における周波数スペクトルの解析とを行い、x座標若しくはy座標の何れか一方または両方の周波数スペクトルの解析において、規則性判定基準値T以上の離散帯スペクトル幅値Bが存在した場合は、所定温度以上である検知素子の中心座標値の移動に規則性がないと判定し、人体などの移動生物が存在する(有人)と判定する。
また何れの周波数スペクトル解析においても、規則性判定基準値T以上の離散帯スペクトル幅値Bが存在しなかった場合は、所定温度以上である検知素子の中心座標値の移動に規則性があると判定し、検知領域に所定温度以上の温度範囲が発生してもそれは人体などの移動生物によるものではないと判定し、移動生物が存在しない(無人)と判定する。
Similar to the analysis of the frequency vector according to the first embodiment (see FIGS. 4 and 5), the analysis of the frequency spectrum at the x coordinate and the analysis of the frequency spectrum at the y coordinate are performed, and either the x coordinate or the y coordinate is performed. Alternatively, in the analysis of both frequency spectra, if there is a discrete band spectral width value B equal to or greater than the regularity determination reference value T, it is determined that there is no regularity in the movement of the center coordinate value of the sensing element that is equal to or higher than the predetermined temperature. It is determined that a moving organism such as a human body exists (manned).
In any frequency spectrum analysis, when there is no discrete band spectral width value B equal to or greater than the regularity determination reference value T, the movement of the center coordinate value of the sensing element that is equal to or higher than the predetermined temperature is regular. It is determined that even if a temperature range equal to or higher than a predetermined temperature occurs in the detection region, it is determined that it is not caused by a moving organism such as a human body, and it is determined that no moving organism exists (unmanned).

移動生物検知装置の構成を示すブロック図である。It is a block diagram which shows the structure of a moving organism detection apparatus. 本発明の第1実施例による移動生物検知装置における赤外線検知素子(サーモパイル素子)の構成を示す図である。It is a figure which shows the structure of the infrared rays detection element (thermopile element) in the moving organism detection apparatus by 1st Example of this invention. 第1実施例による所定温度以上の検知素子の中心座標値の取得工程を示すフローチャートである。It is a flowchart which shows the acquisition process of the center coordinate value of the detection element more than predetermined temperature by 1st Example. 周波数スペクトル解析を説明する図である。It is a figure explaining a frequency spectrum analysis. 周波数スペクトルの解析方法を示すフローチャートである。It is a flowchart which shows the analysis method of a frequency spectrum. 移動生物に起因しない環境下での周波数スペクトル解析を説明する図である。It is a figure explaining the frequency spectrum analysis in the environment which does not originate in a moving organism. 本発明の第2実施例による移動生物検知装置における赤外線検知素子(サーモパイル素子)の構成を示す図である。It is a figure which shows the structure of the infrared rays detection element (thermopile element) in the moving organism detection apparatus by 2nd Example of this invention. 本発明の第2実施例による所定温度以上の検知素子の中心座標値の取得工程を示すフローチャートである。It is a flowchart which shows the acquisition process of the center coordinate value of the detection element more than predetermined temperature by 2nd Example of this invention.

符号の説明Explanation of symbols

1 集光レンズ。
2 光学フィルタ
3 赤外線検知素子
4 増幅部
5 温度検知部
6 制御部
7 出力部
10 移動生物検知装置
1 Condensing lens.
DESCRIPTION OF SYMBOLS 2 Optical filter 3 Infrared detector 4 Amplification part 5 Temperature detection part 6 Control part 7 Output part 10 Mobile organism detection apparatus

Claims (3)

複数の区画に区切られた検知領域から各区画毎の赤外線を受光してその各受光量に応じた出力レベルの検知信号を出力するように構成された赤外線検知素子と、この赤外線検知素子から出力される各検知信号に基づいて各区画毎の測定温度値を取得する温度検知部と、前記温度検知部からの各区画毎の測定温度値に基づいて検知領域の移動生物を検知する制御部と、前記制御部の制御によって生物検知警報を発報する出力部とから構成される移動生物検知装置において、
温度検知部から出力される各区画毎の測定温度値に基づいて、所定温度以上の温度が検出された区画を検出して検知領域における所定温度以上の全区画に対応する中心座標値を求めるとともに、この中心座標値を時系列データとして記憶装置に記憶し、その時系列データから、ある一定時間範囲の時系列データを取得してその周波数スペクトルを求め、
さらに前記周波数スペクトルを解析して前記時系列データの推移に規則性があるか否かを検出し、規則性がなければ移動生物が存在すると判定することを特徴とする移動生物検知装置。
An infrared detection element configured to receive infrared rays for each section from a detection area divided into a plurality of sections and output a detection signal of an output level corresponding to each received light amount, and output from the infrared detection element A temperature detection unit that acquires a measured temperature value for each section based on each detected signal, and a control unit that detects a moving organism in the detection region based on the measured temperature value for each section from the temperature detection unit, In the moving organism detection device configured with an output unit that issues an organism detection alarm under the control of the control unit,
Based on the measured temperature value for each section output from the temperature detection unit, the section where the temperature equal to or higher than the predetermined temperature is detected, and the center coordinate values corresponding to all the sections higher than the predetermined temperature in the detection area are obtained. The central coordinate value is stored in the storage device as time series data, and from the time series data, time series data in a certain time range is obtained to obtain the frequency spectrum,
Furthermore, a moving organism detection apparatus characterized by analyzing whether or not the transition of the time series data has regularity by analyzing the frequency spectrum, and determining that there is a moving organism if there is no regularity.
複数の区画に区切られた検知領域の各区画毎の測定温度値に基づいて検知領域の移動生物を検知する方法において、
検知領域の各区画毎に測定温度値を取得して所定温度以上が検出されるか否かを判定し、所定温度以上の温度が検出された全ての区画に対応する中心座標値を求める工程と、
前記工程によって算出される中心座標値を時系列データとして記憶し、この時系列データから、ある一定時間範囲の時系列データを取得してその時系列データの推移に規則性があるか否かを検出し、規則性が無い場合は移動生物が存在すると判定する工程とによって、
検知領域における移動生物の存否を判定することを特徴とする移動生物検知方法。
In a method of detecting a moving organism in a detection area based on a measured temperature value for each section of a detection area divided into a plurality of sections,
Obtaining a measured temperature value for each section of the detection region, determining whether or not a predetermined temperature or higher is detected, and obtaining center coordinate values corresponding to all sections in which a temperature equal to or higher than the predetermined temperature is detected; ,
The central coordinate value calculated by the above process is stored as time-series data, and from this time-series data, time-series data in a certain time range is acquired, and it is detected whether or not the transition of the time-series data is regular. If there is no regularity, the step of determining that a moving organism exists is
A moving organism detection method characterized by determining whether or not a moving organism exists in a detection region.
時系列データの推移に規則性があるか否かを検出する工程において、規則性があるか否かを検出する時系列データから、ある一定時間範囲の時系列データを取得してその周波数スペクトルを算出した後、この算出された周波数スペクトルにあらかじめ決めた帯域より広い帯域が存在する場合に、時系列データの推移に規則性がないと判定することを特徴とする請求項2に記載の移動生物検知方法。   In the process of detecting whether or not the transition of the time series data has regularity, time series data in a certain time range is acquired from the time series data to detect whether or not there is regularity, and the frequency spectrum is obtained. 3. The mobile organism according to claim 2, wherein after the calculation, it is determined that there is no regularity in transition of the time-series data when a band wider than a predetermined band exists in the calculated frequency spectrum. Detection method.
JP2006122064A 2006-04-26 2006-04-26 Moving organism detection device and moving organism detection method Expired - Fee Related JP4173900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122064A JP4173900B2 (en) 2006-04-26 2006-04-26 Moving organism detection device and moving organism detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122064A JP4173900B2 (en) 2006-04-26 2006-04-26 Moving organism detection device and moving organism detection method

Publications (2)

Publication Number Publication Date
JP2007292651A true JP2007292651A (en) 2007-11-08
JP4173900B2 JP4173900B2 (en) 2008-10-29

Family

ID=38763396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122064A Expired - Fee Related JP4173900B2 (en) 2006-04-26 2006-04-26 Moving organism detection device and moving organism detection method

Country Status (1)

Country Link
JP (1) JP4173900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115461796A (en) * 2020-03-06 2022-12-09 佰络科技公司 Monitoring position, trajectory and behavior of a human using thermal data
CN115885883A (en) * 2022-12-06 2023-04-04 西南大学 Intelligent heat preservation lamp control system and method for livestock breeding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115461796A (en) * 2020-03-06 2022-12-09 佰络科技公司 Monitoring position, trajectory and behavior of a human using thermal data
US11959805B2 (en) 2020-03-06 2024-04-16 Butlr Technologies, Inc. Thermal data analysis for determining location, trajectory and behavior
CN115885883A (en) * 2022-12-06 2023-04-04 西南大学 Intelligent heat preservation lamp control system and method for livestock breeding
CN115885883B (en) * 2022-12-06 2024-04-05 西南大学 Intelligent heat preservation lamp control system and method for livestock breeding

Also Published As

Publication number Publication date
JP4173900B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
US7746236B2 (en) Fire detection system and method
US8305575B1 (en) Adaptive spectral sensor and methods using same
AU2012273419B2 (en) Non-contact media detection system using reflection/absorption spectroscopy
EP3339842B1 (en) Raman spectrum-based object inspection apparatus and method
US20100090845A1 (en) Infrared gas detection and spectral analysis method
EP2820629B1 (en) Passive infrared sensor system for position detection
EP3485810B1 (en) Bio-information estimation apparatus and bio-information estimation method
US20170227673A1 (en) Material detection systems
US9504409B2 (en) Device and method for detecting respiratory movements
CN109827907B (en) Optical signal processing method and device
EP2269037A1 (en) Method and apparatus for gas detection based on spectral spatial misregistration
JP4173900B2 (en) Moving organism detection device and moving organism detection method
US7593112B2 (en) Systems and methods for comparative interferogram spectrometry
GB2582476A (en) System and method to conduct real-time chemical analysis of deposits
US6710345B2 (en) Detection of thermally induced turbulence in fluids
US10679038B2 (en) Method and apparatus for determining temporal behaviour of an object in image data
CN110827499B (en) Moving object detection method and electronic equipment
KR20180042700A (en) Apparatus and method for monitoring stability of spectrum
EP3162283B1 (en) Blood measuring apparatus using spectroscope
Kaneko et al. Classification of drug tablets using hyperspectral imaging and wavelength selection with a GAWLS method modified for classification
US6914246B2 (en) Method and apparatus for spatially resolving flame temperatures using ultraviolet light emission
CN114830127A (en) System and method for fusing data from single pixel thermopiles and passive infrared sensors for counting occupants in an open office
JP2007271552A (en) Abnormal temperature sensor
KR20120038730A (en) Infrared intrusion detector and method thereof
JP5773709B2 (en) Monitoring system, monitoring apparatus and monitoring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees