JP2007291970A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2007291970A
JP2007291970A JP2006121630A JP2006121630A JP2007291970A JP 2007291970 A JP2007291970 A JP 2007291970A JP 2006121630 A JP2006121630 A JP 2006121630A JP 2006121630 A JP2006121630 A JP 2006121630A JP 2007291970 A JP2007291970 A JP 2007291970A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
regeneration
predetermined
operating state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006121630A
Other languages
Japanese (ja)
Other versions
JP4702162B2 (en
Inventor
Koichiro Fukuda
光一朗 福田
Mikio Inoue
三樹男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006121630A priority Critical patent/JP4702162B2/en
Publication of JP2007291970A publication Critical patent/JP2007291970A/en
Application granted granted Critical
Publication of JP4702162B2 publication Critical patent/JP4702162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine enabling a reduction in the amount of a reducer consumed for regeneration by suppressing the wasteful addition of the reducer into an exhaust emission control catalyst. <P>SOLUTION: This exhaust emission control device of an internal combustion engine comprises a storage/reduction NOx catalyst 8 installed in the exhaust passage 4 of the internal combustion engine 1 and a fuel adding valve 10 for adding a fuel serving as a reducer from the upstream side of the NOx catalyst 8. When an ECU 20 determines that predetermined requirements for regeneration execution which includes that the operating conditions of the internal combustion engine 1 are within a predetermined operating area suitable for the regeneration of the NOx catalyst 8 are established, it performs the regeneration of the NOx catalyst 8. When the predetermined requirements for regeneration execution are established, the ECU 20 predicts the operating conditions of the internal combustion engine 1 after a predetermined time is passed after the time when these requirements are established, and according to these predicted operating conditions, controls the operation of the fuel adding valve 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排気通路に再生式の排気浄化触媒を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine having a regenerative exhaust purification catalyst in an exhaust passage.

内燃機関の排気浄化手段として利用される吸蔵還元型NOx触媒は、排気中に含まれる硫黄酸化物の堆積によって触媒機能が低下する。このため、吸蔵還元型NOx触媒を使用する場合には、触媒に堆積した硫黄酸化物を分解、除去して触媒機能を回復させるために、S再生と呼ばれる再生処理を定期的に行なう必要がある。S再生は、触媒温度を通常の運転状態における温度域よりも高温の目標温度(例えば600℃以上)まで昇温させ、かつ触媒付近の空燃比を理論空燃比又は理論空燃比よりもリッチ領域に保持することによって実施される。触媒付近の空燃比の制御は排気中に燃料を還元剤として添加することにより、触媒の昇温は還元剤として添加した燃料を触媒にて燃焼させたり、内燃機関の空燃比を理論空燃比よりもリッチにしてシリンダ内に噴射した燃料の一部を触媒にて燃焼させることによってそれぞれ行われる。この際、S再生を実行する前の内燃機関の運転状態などによっては、S再生時に触媒温度が過度に上昇するおそれがある。そこで、内燃機関の回転数、内燃機関の負荷、アクセル開度、及び内燃機関が搭載されている車両の速度の内で1つ又は2つ以上を検出し、この検出した内燃機関の回転数、内燃機関の負荷、アクセル開度、及び内燃機関が搭載されている車両の速度の内で1つ又は2つ以上が基準低下度合をより大きい低下度合を示した場合に燃料添加を制限する触媒制御装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2が存在する。   The NOx storage reduction catalyst used as an exhaust gas purification means for an internal combustion engine has a reduced catalyst function due to the accumulation of sulfur oxides contained in the exhaust gas. For this reason, when using an NOx storage reduction catalyst, it is necessary to periodically perform a regeneration process called S regeneration in order to decompose and remove sulfur oxides deposited on the catalyst to restore the catalyst function. . In the S regeneration, the catalyst temperature is raised to a target temperature (for example, 600 ° C. or higher) higher than the temperature range in the normal operation state, and the air-fuel ratio in the vicinity of the catalyst is made richer than the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio. It is implemented by holding. The control of the air-fuel ratio in the vicinity of the catalyst is achieved by adding fuel as a reducing agent in the exhaust, and the temperature rise of the catalyst is caused by burning the fuel added as the reducing agent in the catalyst, or the air-fuel ratio of the internal combustion engine is made higher than the stoichiometric air-fuel ratio. Also, the fuel is injected into the cylinder in a rich state and burned by the catalyst. At this time, depending on the operating state of the internal combustion engine before executing the S regeneration, the catalyst temperature may excessively increase during the S regeneration. Therefore, one or more of the rotational speed of the internal combustion engine, the load of the internal combustion engine, the accelerator opening, and the speed of the vehicle in which the internal combustion engine is mounted is detected, and the detected rotational speed of the internal combustion engine, Catalyst control for limiting fuel addition when one or more of the load of the internal combustion engine, the accelerator opening, and the speed of the vehicle in which the internal combustion engine is mounted show a lower reduction level than the reference reduction degree An apparatus is known (see Patent Document 1). In addition, there is Patent Document 2 as a prior art document related to the present invention.

特開2005−90276号公報JP 2005-90276 A 特開2004−251172号公報JP 2004-251172 A

吸蔵還元型NOx触媒のS再生を行う場合、内燃機関のシリンダに供給する燃料量を変化させるので、S再生の実行に適した内燃機関の運転状態は限られる。そのため、例えば内燃機関の運転状態が変わり易い運転過渡期などにおいてはS再生に適した運転状態になってS再生を開始したとしても短時間しかS再生が行われないおそれがある。この場合、内燃機関の運転状態が安定してから再度S再生が実行されるなどS再生の回数が増加するので、S再生で消費する燃料量を増加させるおそれがある。特許文献1の触媒制御装置では、内燃機関の回転数、負荷など複数の判定パラメータに基づいて燃料添加を制御しているが、この制御ではS再生の実行時間が不足し、1回のS再生で触媒を適切に再生できないおそれがある。そのため、触媒に無駄な燃料添加を行っているおそれがある。   When the S regeneration of the NOx storage reduction catalyst is performed, the amount of fuel supplied to the cylinder of the internal combustion engine is changed, so that the operating state of the internal combustion engine suitable for performing the S regeneration is limited. For this reason, for example, in an operation transition period in which the operating state of the internal combustion engine is likely to change, there is a possibility that the S regeneration is performed only for a short time even if the S regeneration is started with the operating state suitable for the S regeneration. In this case, since the number of times of S regeneration increases, for example, S regeneration is executed again after the operating state of the internal combustion engine becomes stable, there is a risk that the amount of fuel consumed in S regeneration will increase. In the catalyst control device of Patent Document 1, the fuel addition is controlled based on a plurality of determination parameters such as the rotational speed and load of the internal combustion engine. However, in this control, the execution time of S regeneration is insufficient, and one S regeneration is performed. The catalyst may not be properly regenerated. Therefore, there is a possibility that useless fuel is added to the catalyst.

そこで、本発明は、排気浄化触媒への無駄な還元剤添加を抑制し、再生処理にて消費する還元剤の量を低減することが可能な内燃機関の排気浄化装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can suppress useless addition of a reducing agent to an exhaust purification catalyst and reduce the amount of reducing agent consumed in regeneration processing. To do.

本発明の内燃機関の排気浄化装置は、内燃機関の排気通路に設けられた再生式の排気浄化触媒と、前記排気浄化触媒の上流から還元剤を添加する還元剤添加手段と、前記内燃機関の運転状態を取得する運転状態取得手段と、前記運転状態取得手段により取得された運転状態が前記排気浄化触媒の再生処理に適した所定の運転領域内の運転状態であることを含む所定の再生実行条件が成立したと判断した場合に前記還元剤添加手段から還元剤を添加させて前記排気浄化触媒の再生処理を実行する触媒再生実行手段と、を備えた内燃機関の排気浄化装置において、前記触媒再生実行手段は、前記所定の再生実行条件が成立した場合、前記所定の再生実行条件が成立した時点から所定時間が経過した後の前記内燃機関の運転状態を予測する運転状態予測手段と、前記運転状態予測手段により予測された運転状態に基づいて前記還元剤添加手段の動作を制御する動作制御手段と、を備えていることにより、上述した課題を解決する(請求項1)。   An exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a regenerative exhaust purification catalyst provided in an exhaust passage of the internal combustion engine, a reducing agent addition means for adding a reducing agent from an upstream side of the exhaust purification catalyst, An operation state acquisition means for acquiring an operation state, and a predetermined regeneration execution including that the operation state acquired by the operation state acquisition means is an operation state within a predetermined operation region suitable for the regeneration process of the exhaust purification catalyst. In the exhaust gas purification apparatus for an internal combustion engine, comprising: a catalyst regeneration executing means for adding a reducing agent from the reducing agent adding means and executing a regeneration process of the exhaust purification catalyst when it is determined that a condition is satisfied. When the predetermined regeneration execution condition is satisfied, the regeneration execution means predicts the operation state of the internal combustion engine after a predetermined time has elapsed from the time when the predetermined regeneration execution condition is satisfied. The above-described problem is solved by comprising measuring means and operation control means for controlling the operation of the reducing agent adding means based on the operating state predicted by the operating state predicting means. ).

本発明の内燃機関の排気浄化装置によれば、所定の再生実行条件が成立した時点から所定時間経過後の内燃機関の運転状態を予測し、その予測した運転状態に基づいて還元剤添加手段の動作を制御するので、例えば所定時間経過後の内燃機関の運転状態が所定の運転領域外の場合に燃料の添加を禁止することができる。そのため、排気浄化触媒への無駄な還元剤添加を抑制し、再生処理に使用する還元剤の消費量を低減することができる。   According to the exhaust gas purification apparatus for an internal combustion engine of the present invention, the operating state of the internal combustion engine after a predetermined time has elapsed from the time when the predetermined regeneration execution condition is satisfied, and the reducing agent adding means is based on the predicted operating state. Since the operation is controlled, for example, the addition of fuel can be prohibited when the operation state of the internal combustion engine after the elapse of a predetermined time is outside a predetermined operation region. Therefore, useless addition of a reducing agent to the exhaust purification catalyst can be suppressed, and the consumption of the reducing agent used for the regeneration process can be reduced.

本発明の一形態において、前記運転状態予測手段は、前記所定の再生実行条件が成立した場合、前記所定の再生実行条件が成立した時点までの前記内燃機関の運転状態の履歴に基づいて前記所定の再生実行条件が成立した時点から前記所定時間が経過した後の前記内燃機関の運転状態を予測し、前記動作制御手段は、前記運転状態予測手段により予測された運転状態が前記所定の運転領域外の運転状態の場合、前記還元剤添加手段からの還元剤の添加が制限されるように前記還元剤添加手段の動作を制御してもよい(請求項2)。所定の再生実行条件が成立した時点から所定時間経過後の運転状態が所定の運転領域外の運転状態であると予想された場合、所定時間の間に内燃機関の運転状態が所定の運転領域内の運転状態から所定の運転領域外の運転状態に変化すると予想できる。内燃機関の運転状態がこのように変化する場合、所定の再生実行条件の成立時に還元剤の添加を開始しても排気浄化触媒が適切に再生される前に内燃機関の運転状態が所定の運転領域外に外れ、排気浄化触媒の再生処理が中断されるおそれがある。この場合、再度排気浄化触媒の再生処理を行う必要があり、余分な還元剤を使用するおそれがある。この形態では、所定の再生実行条件が成立した時点から所定時間が経過した後の運転状態が所定の運転領域外の場合、燃料添加を制限するので、無駄な還元剤の消費を抑制できる。   In one embodiment of the present invention, when the predetermined regeneration execution condition is satisfied, the operating state prediction means is configured to perform the predetermined operation based on a history of the operation state of the internal combustion engine up to a point in time when the predetermined regeneration execution condition is satisfied. Predicting the operation state of the internal combustion engine after the predetermined time has elapsed from the time when the regeneration execution condition is satisfied, and the operation control means is configured such that the operation state predicted by the operation state prediction means is the predetermined operation region. In the case of an external operating state, the operation of the reducing agent adding means may be controlled so that the addition of the reducing agent from the reducing agent adding means is restricted (Claim 2). When it is predicted that the operating state after a predetermined time has elapsed from when the predetermined regeneration execution condition is satisfied, the operating state of the internal combustion engine is within the predetermined operating region during the predetermined time. It can be expected that the operating state changes from the operating state to an operating state outside the predetermined operating range. When the operating state of the internal combustion engine changes in this way, even if the addition of the reducing agent is started when the predetermined regeneration execution condition is satisfied, the operating state of the internal combustion engine is changed to the predetermined operation before the exhaust purification catalyst is properly regenerated. There is a possibility that the regeneration process of the exhaust purification catalyst may be interrupted because it falls outside the region. In this case, it is necessary to regenerate the exhaust purification catalyst again, and there is a risk of using an extra reducing agent. In this embodiment, when the operation state after a predetermined time elapses from when the predetermined regeneration execution condition is satisfied is outside the predetermined operation region, fuel addition is restricted, so that wasteful use of reducing agent can be suppressed.

本発明の一形態において、前記運転状態予測手段は、前記所定の運転領域内に互いに重ならないように設定される複数の判定領域と前記内燃機関の運転状態が各判定領域内の運転状態から前記所定の運転領域内の運転状態に維持されると予想される時間である継続時間とを対応づけたマップを記憶する記憶手段を備え、前記動作制御手段は、前記所定の再生実行条件が成立した場合、前記マップを参照して前記所定の再生実行条件が成立した時点における前記内燃機関の運転状態が前記複数の判定領域のうちのいずれの判定領域の運転状態か判定するとともに、その判定結果に基づいて前記継続時間を取得し、前記継続時間が前記所定時間未満の場合に前記還元剤添加手段からの還元剤の添加が制限されるように前記還元剤添加手段の動作を制御してもよい(請求項3)。この形態では、所定の再生実行条件が成立した時点の内燃機関の運転状態に基づいて継続時間を取得するので、継続時間を簡単に取得することができる。また、この継続時間が所定時間未満の場合、言い換えると所定時間の間に内燃機関の運転状態が所定の運転領域外に外れると予想される場合は、還元剤の添加を制限するので、排気浄化触媒への無駄な還元剤添加を抑制できる。   In one embodiment of the present invention, the operation state prediction means includes a plurality of determination regions set so as not to overlap each other within the predetermined operation region and the operation state of the internal combustion engine from the operation state in each determination region. Storage means for storing a map that associates durations that are expected to be maintained in an operation state within a predetermined operation region is provided, and the operation control means satisfies the predetermined regeneration execution condition In this case, referring to the map, it is determined whether the operation state of the internal combustion engine at the time when the predetermined regeneration execution condition is satisfied is the operation state of the determination region of the plurality of determination regions, and the determination result is The duration of the reducing agent adding means is obtained so that the addition of the reducing agent from the reducing agent adding means is limited when the duration is less than the predetermined time. It is your good (claim 3). In this embodiment, since the duration is acquired based on the operating state of the internal combustion engine at the time when the predetermined regeneration execution condition is established, the duration can be easily acquired. Further, if this duration is less than the predetermined time, in other words, if the operating state of the internal combustion engine is expected to be out of the predetermined operating range during the predetermined time, the addition of the reducing agent is limited, so It is possible to suppress useless addition of a reducing agent to the catalyst.

この形態において、前記運転状態予測手段は、前記内燃機関の運転状態が各判定領域の運転状態から前記所定の運転領域内に実際に維持された時間を取得する時間取得手段と、前記時間取得手段により取得された時間に基づいて前記複数の判定領域と前記継続時間との対応関係を修正する学習手段と、を備えていてもよい(請求項4)。この場合、複数の判定領域と継続時間との対応関係を個々の内燃機関の運転履歴を反映した対応関係に更新することができる。これにより、所定の再生実行条件が成立した時点における内燃機関の運転状態に基づいて精度良く継続時間を取得できる。そのため、無駄な還元剤添加をさらに抑制できる。   In this embodiment, the operating state predicting unit acquires time when the operating state of the internal combustion engine is actually maintained in the predetermined operating region from the operating state of each determination region, and the time acquiring unit Learning means for correcting a correspondence relationship between the plurality of determination areas and the duration time based on the time acquired by (5). In this case, the correspondence relationship between the plurality of determination regions and the duration time can be updated to a correspondence relationship reflecting the operation history of each internal combustion engine. As a result, the duration time can be obtained with high accuracy based on the operating state of the internal combustion engine when the predetermined regeneration execution condition is satisfied. Therefore, useless addition of a reducing agent can be further suppressed.

本発明の一形態において、前記排気浄化触媒は吸蔵還元型NOx触媒であり、前記還元剤添加手段からは還元剤として前記内燃機関の燃料が添加されてもよい(請求項5)。吸蔵還元型NOx触媒は、S再生の実行に適した運転状態が限られる。そのため、本発明を適用することにより、無駄な燃料添加を抑制できる。   In one form of the present invention, the exhaust purification catalyst is an NOx storage reduction catalyst, and the fuel for the internal combustion engine may be added as a reducing agent from the reducing agent adding means. The NOx storage reduction catalyst has a limited operating state suitable for performing S regeneration. Therefore, useless fuel addition can be suppressed by applying the present invention.

なお、本発明において吸蔵還元型のNOx触媒は、NOxを触媒にて保持できるものであればよく、吸収又は吸着いずれの態様でNOxが保持されるかは吸蔵の用語によって制限されない。   In the present invention, the NOx storage reduction catalyst may be any catalyst as long as it can hold NOx in the catalyst, and whether it is absorbed or adsorbed is not limited by the term of storage.

以上に説明したように、本発明によれば、所定の再生実行条件が成立した時点から所定時間が経過した後の内燃機関の運転状態を予測し、この予測した内燃機関の運転状態に応じて還元剤添加を制御するので、排気浄化触媒への無駄な還元剤添加を抑制できる。そのため、排気浄化触媒の再生処理に使用する還元剤の消費量を低減できる。   As described above, according to the present invention, the operating state of the internal combustion engine after a predetermined time has elapsed from the time when the predetermined regeneration execution condition is satisfied is predicted, and according to the predicted operating state of the internal combustion engine. Since the addition of the reducing agent is controlled, useless addition of the reducing agent to the exhaust purification catalyst can be suppressed. Therefore, the consumption of the reducing agent used for the regeneration treatment of the exhaust purification catalyst can be reduced.

(第1の形態)
図1は、本発明の第1の形態に係る排気浄化装置が組み込まれた内燃機関を示している。図1の内燃機関(以下、エンジンと呼ぶこともある。)1はディーゼルエンジンであり、車両に走行用動力源として搭載されるもので、複数(図1では4つ)のシリンダ2と、各シリンダ2に接続される吸気通路3及び排気通路4とを備えている。吸気通路3には、吸気濾過用のエアフィルタ5、ターボチャージャ6のコンプレッサ6a、及び吸気量調節用の吸気絞り弁7が設けられ、排気通路4には、ターボチャージャ6のタービン6bが設けられている。排気通路4のタービン6bよりも下流側には排気浄化触媒としての吸蔵還元型NOx触媒(以下、NOx触媒と略称することもある。)8を含んだ排気浄化ユニット9と、そのNOx触媒8の上流に還元剤としての燃料を添加する還元剤添加手段としての燃料添加弁10とが設けられている。排気通路4と吸気通路3とはEGR通路11で接続されており、EGR通路11にはEGRクーラ12及びEGR弁13が設けられている。
(First form)
FIG. 1 shows an internal combustion engine in which an exhaust emission control device according to a first embodiment of the present invention is incorporated. An internal combustion engine (hereinafter also referred to as an engine) 1 in FIG. 1 is a diesel engine, which is mounted on a vehicle as a driving power source, and includes a plurality of (four in FIG. 1) cylinders 2, An intake passage 3 and an exhaust passage 4 connected to the cylinder 2 are provided. The intake passage 3 is provided with an air filter 5 for filtering the intake air, a compressor 6a of the turbocharger 6 and an intake throttle valve 7 for adjusting the intake air amount, and a turbine 6b of the turbocharger 6 is provided in the exhaust passage 4. ing. An exhaust purification unit 9 including an NOx storage reduction catalyst (hereinafter also abbreviated as NOx catalyst) 8 as an exhaust purification catalyst on the downstream side of the turbine 6 b in the exhaust passage 4, and the NOx catalyst 8 A fuel addition valve 10 serving as a reducing agent adding means for adding fuel as a reducing agent is provided upstream. The exhaust passage 4 and the intake passage 3 are connected by an EGR passage 11, and an EGR cooler 12 and an EGR valve 13 are provided in the EGR passage 11.

燃料添加弁10は、NOx触媒8の上流に燃料を添加してNOx触媒8に吸収されたNOxの放出やNOx触媒8のS再生のために必要な還元雰囲気を生成するために設けられている。燃料添加弁10の動作はエンジンコントロールユニット(ECU)20にて制御されている。ECU20は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータとして構成され、シリンダ2に燃料を噴射するためのインジェクタ30、インジェクタ30に供給される高圧の燃料を蓄えるコモンレール31の圧力調整弁といった各種の装置を操作してエンジン1の運転状態を制御する周知のコンピュータユニットである。ECU20は、例えばエンジン1の運転状態に基づいてインジェクタ30から噴射すべき燃料量を算出し、この算出した燃料量が噴射されるようにインジェクタ30の動作を制御する。以下、この制御を通常制御と呼ぶこともある。また、ECU20は、例えばNOx触媒8のS再生を行う場合、NOx触媒8をS再生時の目標温度に昇温すべくエンジン1に吸入される空気量とインジェクタ30から噴射される燃料との質量比として与えられる空燃比が理論空燃比よりもリッチになるようにインジェクタ30の動作を制御する。以下、このように空燃比を理論空燃比よりもリッチに制御することを空燃比リッチ制御と呼ぶ。ECU20には、このような制御において参照されるべき各種の物理量又は状態量の検出手段として、エンジン1のクランク角に対応した信号を出力するクランク角センサ21などの各種のセンサが接続されている。   The fuel addition valve 10 is provided in order to add a fuel upstream of the NOx catalyst 8 and generate a reducing atmosphere necessary for releasing NOx absorbed by the NOx catalyst 8 and S regeneration of the NOx catalyst 8. . The operation of the fuel addition valve 10 is controlled by an engine control unit (ECU) 20. The ECU 20 is configured as a computer including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation, and an injector 30 for injecting fuel into the cylinder 2 and a common rail for storing high-pressure fuel supplied to the injector 30 This is a well-known computer unit that operates various devices such as a pressure regulating valve 31 to control the operating state of the engine 1. For example, the ECU 20 calculates the amount of fuel to be injected from the injector 30 based on the operating state of the engine 1, and controls the operation of the injector 30 so that the calculated amount of fuel is injected. Hereinafter, this control may be referred to as normal control. For example, when performing the S regeneration of the NOx catalyst 8, the ECU 20 masses the amount of air sucked into the engine 1 and the fuel injected from the injector 30 in order to raise the NOx catalyst 8 to the target temperature during the S regeneration. The operation of the injector 30 is controlled so that the air-fuel ratio given as the ratio becomes richer than the stoichiometric air-fuel ratio. Hereinafter, controlling the air-fuel ratio to be richer than the stoichiometric air-fuel ratio in this way is referred to as air-fuel ratio rich control. Various sensors such as a crank angle sensor 21 that outputs a signal corresponding to the crank angle of the engine 1 are connected to the ECU 20 as means for detecting various physical quantities or state quantities to be referred to in such control. .

図2は、ECU20がNOx触媒8のS再生を行うために実行するS再生制御ルーチンを示している。図2の制御ルーチンは、エンジン1の運転中に所定の周期で繰り返し実行される。なお、図2の制御ルーチンを実行することにより、ECU20は本発明の触媒再生実行手段として機能する。   FIG. 2 shows an S regeneration control routine that the ECU 20 executes to perform S regeneration of the NOx catalyst 8. The control routine of FIG. 2 is repeatedly executed at a predetermined cycle while the engine 1 is operating. Note that by executing the control routine of FIG. 2, the ECU 20 functions as the catalyst regeneration execution means of the present invention.

図2の制御ルーチンにおいてECU20は、まずステップS11で現在のエンジン1の回転数N及び現在インジェクタ30から噴射された燃料噴射量Qを取得する。なお、本発明ではこれら回転数N及び燃料噴射量Qにてエンジン1の運転状態を特定するので、これらのことをエンジン1の運転状態と呼ぶこともある。続くステップS12においてECU20は、エンジン1の運転状態の履歴を更新する。ECU20のRAMには、現在までのエンジン1の回転数及び燃料噴射量が予め設定した所定の時間間隔(例えば0.1秒間隔)毎に、複数(例えば20個)記憶されている。この処理では、前回エンジン1の運転履歴を更新してから所定の時間間隔が経過した場合に、これらECU20に記憶されているエンジン1の運転状態のうち最も古いものをクリアするととともに、ステップS11で取得した現在のエンジン1の回転数N及び燃料噴射量Qを最も新しい運転状態としてECU20に記憶させる。このようにしてエンジン1の運転履歴を更新する。なお、所定の時間間隔及びECU20に記憶させる運転履歴の個数は、ECU20の性能などに応じて適宜変更してよい。   In the control routine of FIG. 2, the ECU 20 first obtains the current rotational speed N of the engine 1 and the fuel injection amount Q injected from the current injector 30 in step S11. In the present invention, since the operating state of the engine 1 is specified by the rotational speed N and the fuel injection amount Q, these may be referred to as the operating state of the engine 1. In subsequent step S12, the ECU 20 updates the history of the operating state of the engine 1. In the RAM of the ECU 20, a plurality (for example, 20) of the number of revolutions of the engine 1 and the fuel injection amount up to the present are stored at predetermined time intervals (for example, 0.1 second intervals). In this process, when a predetermined time interval has elapsed since the operation history of the engine 1 was updated last time, the oldest operation state of the engine 1 stored in the ECU 20 is cleared, and in step S11. The acquired current engine speed N and fuel injection amount Q are stored in the ECU 20 as the newest operating state. In this way, the operation history of the engine 1 is updated. Note that the predetermined time interval and the number of operation histories stored in the ECU 20 may be appropriately changed according to the performance of the ECU 20 and the like.

次のステップS13においてECU20は、NOx触媒8のS再生が要求されているか否か判断する。NOx触媒8のS再生は、NOx触媒8のS被毒量が予め設定した所定量以上の場合に要求される。なお、NOx触媒8のS被毒量は周知の推定方法によって推定すればよい。例えば、インジェクタ30から噴射した燃料量などに基づいて推定されるNOx触媒8に流入した硫黄(S)量、及びS再生時に燃料添加弁10から添加された燃料量に基づいて推定されるNOx触媒8から放出したS量を加減算してS被毒量を推定する。   In the next step S13, the ECU 20 determines whether or not S regeneration of the NOx catalyst 8 is requested. S regeneration of the NOx catalyst 8 is required when the S poison amount of the NOx catalyst 8 is equal to or greater than a predetermined amount set in advance. The S poison amount of the NOx catalyst 8 may be estimated by a known estimation method. For example, the NOx catalyst estimated based on the amount of sulfur (S) flowing into the NOx catalyst 8 estimated based on the amount of fuel injected from the injector 30 and the amount of fuel added from the fuel addition valve 10 during S regeneration. The amount of S poisoning is estimated by adding and subtracting the amount of S released from 8.

NOx触媒8のS再生が要求されていると判断した場合はステップS14に進み、ECU20は現在のエンジン1の運転状態が空燃比リッチ制御の実行に適した所定の運転領域(以下、S再生運転領域と呼ぶ。)内の運転状態か否か判断する。空燃比リッチ制御の実行に適した運転状態は限られている。例えば、アイドル運転時、インジェクタ30からの燃料噴射を停止する燃料カット運転時、急加速時、急減速時などに空燃比リッチ制御を行うとエンジン1の出力などが不安定になるおそれがあるため、これらの運転状態では通常制御が行われる。図3は、エンジン1の回転数及び燃料噴射量とS再生運転領域との関係の一例を示している。なお、図3において回転数N1、N2及び燃料噴射量Q1、Q2にて特定される領域AがS再生運転領域である。図3の関係は、例えば予め実験などにより求めてECU20にマップとして記憶させておく。ECU20は、このマップと現在のエンジン1の運転状態とに基づいてエンジン1の運転状態がS再生運転領域内の運転状態か否か判断する。   If it is determined that S regeneration of the NOx catalyst 8 is requested, the process proceeds to step S14, where the ECU 20 determines a predetermined operation region in which the current operation state of the engine 1 is suitable for execution of air-fuel ratio rich control (hereinafter referred to as S regeneration operation). It is determined whether or not it is in an operating state within a range. The operating state suitable for executing the air-fuel ratio rich control is limited. For example, if air-fuel ratio rich control is performed during idle operation, fuel cut operation in which fuel injection from the injector 30 is stopped, sudden acceleration, sudden deceleration, etc., the output of the engine 1 may become unstable. In these operating states, normal control is performed. FIG. 3 shows an example of the relationship between the rotational speed and fuel injection amount of the engine 1 and the S regeneration operation region. In FIG. 3, the region A specified by the rotational speeds N1 and N2 and the fuel injection amounts Q1 and Q2 is the S regeneration operation region. The relationship shown in FIG. 3 is obtained by, for example, experiments in advance and stored in the ECU 20 as a map. The ECU 20 determines whether or not the operation state of the engine 1 is an operation state within the S regeneration operation region based on this map and the current operation state of the engine 1.

現在のエンジン1の運転状態がS再生運転領域内の運転状態と判断した場合はステップS15に進み、ECU20は現在から所定時間後、例えばt秒後のエンジン1の運転状態、すなわち現在からt秒後のエンジン回転数N[t]、及び現在からt秒後の燃料噴射量Q[t]を予測する。なお、このt秒には、NOx触媒8に対してS再生を行った場合にこのS再生処理がNOx触媒8に対して有効に作用する時間、言い換えるとS再生を効率良く実施するために最低限必要な時間(以下、最低リッチ添加時間と呼ぶこともある。)が設定される。このような最低リッチ添加時間には、例えば2秒が設定される。図4を参照して現在からt秒後のエンジン1の回転数N[t]を予測する方法について説明する。図4は、エンジン1の回転数の時間変化の一例を示しており、図4の線Lがt秒前から現在までのエンジン1の回転数の変化を示している。また、図4の回転数N1と回転数N2とに挟まれた範囲BがS再生運転領域を示している。図4の線Lに示したようにエンジン1の回転数が変化した場合、エンジン1の回転数は、t秒前から現在までに現在の回転数Nからt秒前の回転数N[−t]を引いた値である回転数差ΔN変化している。そのため、現在からt秒後には、エンジン1の回転数が現在の回転数Nに回転数差ΔNを加えた回転数N[t]になると予測できる。すなわち、現在までのt秒間の間にエンジン1の回転数が図4の矢印A1に示したように変化したので、現在からt秒後は図4の矢印A2に示したように変化すると予測できる。このようにしてt秒後のエンジン1の回転数N[t]を予測する。t秒後の燃料噴射量Q[t]も同様にt秒前から現在までの燃料噴射量の時間変化に基づいて予測する。図3にエンジン1の運転状態の変化の一例を示す。なお、図3の点P[−t]がt秒前のエンジン1の運転状態を、点Pが現在の運転状態を、点P[t]がt秒後のエンジン1の運転状態をそれぞれ示している。   If it is determined that the current operating state of the engine 1 is the operating state within the S regeneration operation region, the process proceeds to step S15, where the ECU 20 is the operating state of the engine 1 after a predetermined time from the present, for example, t seconds, i. A subsequent engine speed N [t] and a fuel injection amount Q [t] after t seconds from the present time are predicted. In this t seconds, when S regeneration is performed on the NOx catalyst 8, the time during which this S regeneration process effectively acts on the NOx catalyst 8, in other words, at least in order to efficiently perform S regeneration. A necessary time (hereinafter also referred to as a minimum rich addition time) is set. For example, 2 seconds is set as the minimum rich addition time. A method of predicting the engine speed N [t] after t seconds from the present will be described with reference to FIG. FIG. 4 shows an example of the temporal change in the rotational speed of the engine 1, and the line L in FIG. 4 shows the change in the rotational speed of the engine 1 from t seconds before to the present. Further, a range B sandwiched between the rotational speed N1 and the rotational speed N2 in FIG. 4 indicates the S regeneration operation region. When the rotational speed of the engine 1 changes as indicated by the line L in FIG. 4, the rotational speed of the engine 1 is determined from the current rotational speed N to the rotational speed N [−t] from t seconds ago to the present. ], Which is a value obtained by subtracting []. Therefore, after t seconds from the present time, it can be predicted that the rotational speed of the engine 1 becomes the rotational speed N [t] obtained by adding the rotational speed difference ΔN to the current rotational speed N. That is, since the rotational speed of the engine 1 has changed as indicated by the arrow A1 in FIG. 4 during t seconds up to the present, it can be predicted that the change will occur as indicated by the arrow A2 in FIG. 4 after t seconds from the present. . In this way, the engine speed N [t] after t seconds is predicted. Similarly, the fuel injection amount Q [t] after t seconds is predicted based on the time change of the fuel injection amount from t seconds before to the present time. FIG. 3 shows an example of changes in the operating state of the engine 1. 3, the point P [−t] indicates the operating state of the engine 1 before t seconds, the point P indicates the current operating state, and the point P [t] indicates the operating state of the engine 1 after t seconds. ing.

続くステップS16においてECU20は、予測したt秒後のエンジン1の運転状態が図3のS再生運転領域内の運転状態か否か判断する。言い換えると、現在からt秒後のエンジン回転数N[t]と現在からt秒後の燃料噴射量Q[t]とによって図3上に特定される位置がS再生領域内か否か判断する。予測したエンジン1の運転状態がS再生運転領域内の運転状態と判断した場合はステップS17に進み、ECU20は空燃比リッチ制御を行うとともに、NOx触媒8付近の空燃比が理論空燃比よりもリッチに保持されるように燃料添加弁10から燃料を添加してNOx触媒8のS再生を実行する。なお、既にS再生が実行中の場合は、そのS再生を継続して実行する。その後、今回の制御ルーチンを終了する。   In subsequent step S16, the ECU 20 determines whether or not the predicted operating state of the engine 1 after t seconds is an operating state within the S regeneration operation region of FIG. In other words, it is determined whether or not the position specified in FIG. 3 is within the S regeneration region by the engine speed N [t] after t seconds from the present and the fuel injection amount Q [t] after t seconds from the present. . When it is determined that the predicted operating state of the engine 1 is within the S regeneration operation region, the process proceeds to step S17, where the ECU 20 performs air-fuel ratio rich control, and the air-fuel ratio in the vicinity of the NOx catalyst 8 is richer than the stoichiometric air-fuel ratio. Thus, the fuel is added from the fuel addition valve 10 so that the NO regeneration of the NOx catalyst 8 is performed. If S reproduction is already being executed, the S reproduction is continued. Thereafter, the current control routine is terminated.

一方、予測したエンジン1の運転状態が図3のS再生運転領域外の運転状態と判断した場合はステップS18に進み、ECU20は通常制御を行うととともに、燃料添加弁10からの燃料の添加を制限してS再生を中止する。その後、今回の制御ルーチンを終了する。なお、この処理では、燃料添加弁10から燃料が添加されないように、すなわち添加燃料量が0になるように燃料添加を制限してもよい。また、S再生の途中でエンジン1の運転状態がS再生運転領域外の運転状態に変化した場合はNOx触媒8の温度がS再生時の目標温度に維持可能な程度の量の燃料が添加されるように燃料添加を制限してもよい。   On the other hand, when it is determined that the predicted operating state of the engine 1 is an operating state outside the S regeneration operation region of FIG. 3, the process proceeds to step S18, where the ECU 20 performs normal control and adds fuel from the fuel addition valve 10. Limit and stop S playback. Thereafter, the current control routine is terminated. In this process, fuel addition may be limited so that fuel is not added from the fuel addition valve 10, that is, the amount of added fuel becomes zero. Further, when the operation state of the engine 1 changes to an operation state outside the S regeneration operation region during the S regeneration, an amount of fuel is added so that the temperature of the NOx catalyst 8 can be maintained at the target temperature during the S regeneration. The fuel addition may be limited as described above.

ステップS13で否定判断した場合、又はステップS14で否定判断した場合はステップS19に進み、ECU20はインジェクタ30の通常制御を行うとともに、燃料添加弁10からの燃料添加が停止されるように燃料添加弁10の動作を制御する。その後、今回の制御ルーチンを終了する。   If a negative determination is made in step S13 or a negative determination is made in step S14, the process proceeds to step S19, where the ECU 20 performs normal control of the injector 30, and the fuel addition valve so that fuel addition from the fuel addition valve 10 is stopped. 10 operations are controlled. Thereafter, the current control routine is terminated.

図2の制御ルーチンでは、t秒後のエンジン1の運転状態を予測し、この予測した運転状態がS再生運転領域内の運転状態の場合にS再生を実施し、S再生運転領域外の運転状態の場合はS再生を中止するので、無駄な燃料添加を抑制できる。そのため、S再生に消費される燃料量を低減できる。   In the control routine of FIG. 2, the operation state of the engine 1 after t seconds is predicted, and when the predicted operation state is an operation state in the S regeneration operation region, the S regeneration is performed, and the operation outside the S regeneration operation region is performed. Since the S regeneration is stopped in the state, useless fuel addition can be suppressed. Therefore, the amount of fuel consumed for S regeneration can be reduced.

なお、ECU20は、図2のステップS11の処理を実行することにより本発明の運転状態取得手段として機能し、図2のステップS15の処理を実行することにより本発明の運転状態予測手段として機能する。また、図2のステップS17及びS18の処理を実行することにより本発明の動作制御手段として機能する。   The ECU 20 functions as an operating state acquisition unit of the present invention by executing the process of step S11 of FIG. 2, and functions as an operating state predicting unit of the present invention by executing the process of step S15 of FIG. . Moreover, it functions as the operation control means of the present invention by executing the processing of steps S17 and S18 of FIG.

(第2の形態)
次に図5及び図6を参照して本発明の排気浄化装置の第2の形態を説明する。この形態は、S再生制御の内容のみ相違し、他の構成は第1の形態と同一である。従って、エンジン1については図1が参照される。図5は、第2の形態に係るS再生制御ルーチンを示したフローチャートであり、図6は図5の制御ルーチンで使用するマップの一例を示している。
(Second form)
Next, a second embodiment of the exhaust emission control device of the present invention will be described with reference to FIGS. This form is different only in the content of the S regeneration control, and the other configuration is the same as the first form. Accordingly, FIG. 1 is referred to for the engine 1. FIG. 5 is a flowchart showing an S regeneration control routine according to the second embodiment, and FIG. 6 shows an example of a map used in the control routine of FIG.

まず、図6を参照して本形態におけるエンジン1の運転状態の予測方法について説明する。図6は、第1の形態の図3と同様にエンジン1の回転数及び燃料噴射量とS再生運転領域との関係の一例を示している。図6に一例を示したようにS再生運転領域Aには互いに重ならないように複数の判定領域Mが設定され、各判定領域Mには平均継続時間Tがそれぞれ設定されている。なお、図6に示したように各判定領域Mにはそれぞれ判定領域番号M[1]、M[2]、…、M[n]を付して互いに区別する。図6の各判定領域M内の数字は、それぞれ各判定領域Mに設定された平均継続時間Tを示している。平均継続時間Tは、エンジン1の運転状態が各判定領域Mの運転状態になった時点を開始時刻とし、その後エンジン1の運転状態がS再生運転領域A内の運転状態に維持されると予想される時間の平均値である。例えば、エンジン1の運転状態が図6の判定領域M[7]の運転状態になった場合、すなわちエンジン1の運転状態が図6の点P11になった場合、その後エンジン1の運転状態は1.8秒間、S再生運転領域A内の運転状態に維持されると予想される。そのため、この場合、1.8秒後までエンジン1の運転状態がS再生運転領域内の運転状態であると予測される。従って、この場合、最低リッチ添加時間である2秒後のエンジン1の運転状態は、S再生運転領域外の運転状態と予測できる。なお、図6に一例を示した関係は、例えば予め実験などにより求めてECU20に記憶させておく。   First, a method for predicting the operating state of the engine 1 in this embodiment will be described with reference to FIG. FIG. 6 shows an example of the relationship between the rotational speed and fuel injection amount of the engine 1 and the S regeneration operation region as in FIG. 3 of the first embodiment. As shown in FIG. 6, a plurality of determination regions M are set in the S regeneration operation region A so as not to overlap each other, and an average duration T is set in each determination region M. As shown in FIG. 6, each determination area M is identified with a determination area number M [1], M [2],..., M [n]. The numbers in each determination area M in FIG. 6 indicate the average duration T set in each determination area M. The average duration T is assumed to be the start time when the operating state of the engine 1 becomes the operating state of each determination region M, and thereafter the operating state of the engine 1 is expected to be maintained in the operating state within the S regeneration operation region A. Is the average time spent. For example, when the operating state of the engine 1 becomes the operating state of the determination region M [7] in FIG. 6, that is, when the operating state of the engine 1 becomes the point P11 in FIG. It is expected that the operation state in the S regeneration operation area A is maintained for 8 seconds. Therefore, in this case, the operation state of the engine 1 is predicted to be the operation state in the S regeneration operation region until 1.8 seconds later. Therefore, in this case, the operating state of the engine 1 after 2 seconds, which is the minimum rich addition time, can be predicted as an operating state outside the S regeneration operation region. The relationship shown in FIG. 6 as an example is obtained in advance through experiments or the like and stored in the ECU 20 in advance.

このようにエンジン1の運転状態を予測し、この予測したエンジン1の運転状態に基づいてS再生の制御を行うべくECU20は図5の制御ルーチンをエンジン1の運転中に所定の周期で繰り返し実行する。なお、図5において図2と同一の処理には同一の参照符号を付して説明を省略する。   Thus, the ECU 20 predicts the operating state of the engine 1 and repeatedly executes the control routine of FIG. 5 at a predetermined cycle during the operation of the engine 1 in order to control the S regeneration based on the predicted operating state of the engine 1. To do. In FIG. 5, the same processes as those in FIG.

図5の制御ルーチンにおいてECU20は、まずステップS11で現在のエンジン1の運転状態である回転数N及び燃料噴射量Qを取得する。続くステップS13においてECU20は、NOx触媒8のS再生が要求されているか否か判断する。S再生が要求されていると判断した場合はステップS14に進み、ECU20は現在のエンジン1の運転状態がS再生運転領域内の運転状態か否か判断する。現在のエンジン1の運転状態がS再生運転領域内の運転状態であると判断した場合はステップS21に進み、ECU20は前回図5の制御ルーチンを実行したときに取得してECU20のRAMに記憶させた前回回転数Nold及び前回燃料噴射量Qoldを使用して前回この制御ルーチンを実行したときのエンジン1の運転状態(以下、前回運転状態と呼ぶこともある。)がS再生運転領域内の運転状態であったか否か判断する。なお、前回回転数Nold及び前回燃料噴射量Qoldの取得については後述のステップS31で説明する。前回運転状態がS再生運転領域内の運転状態であったと判断した場合はステップS22をスキップしてステップS23に進む。一方、前回運転状態がS再生運転領域外の運転状態であったと判断した場合はステップS22に進み、ECU20は現在のエンジン1の運転状態がS再生運転領域A内に設定した複数の判定領域Mのいずれの判定領域M内の運転状態か判断するとともに、その判定領域Mの判定領域番号である開始判定領域番号Msを取得する。判定領域Mの判断及び判定領域番号の取得は図6のマップを参照して行う。取得した開始判定領域番号Msは、ECU20のRAMに記憶され、次回この制御ルーチンが実行されたときに使用される。その後ステップS23に進む。   In the control routine of FIG. 5, the ECU 20 first obtains the rotational speed N and the fuel injection amount Q, which are the current operating state of the engine 1, in step S11. In subsequent step S13, the ECU 20 determines whether or not S regeneration of the NOx catalyst 8 is requested. If it is determined that the S regeneration is requested, the process proceeds to step S14, and the ECU 20 determines whether or not the current operation state of the engine 1 is an operation state within the S regeneration operation region. If it is determined that the current operating state of the engine 1 is an operating state within the S regeneration operation region, the process proceeds to step S21, where the ECU 20 is acquired when the control routine of FIG. The operation state of the engine 1 (hereinafter also referred to as the previous operation state) when this control routine was executed last time using the previous rotation speed Nold and the previous fuel injection amount Qold is the operation in the S regeneration operation region. It is determined whether or not it was in a state. The acquisition of the previous rotation speed Nold and the previous fuel injection amount Qold will be described in step S31 described later. When it is determined that the previous operation state is the operation state in the S regeneration operation region, step S22 is skipped and the process proceeds to step S23. On the other hand, if it is determined that the previous operation state is an operation state outside the S regeneration operation region, the process proceeds to step S22, where the ECU 20 determines a plurality of determination regions M in which the current operation state of the engine 1 is set in the S regeneration operation region A. The start determination area number Ms that is the determination area number of the determination area M is acquired. Determination of the determination area M and acquisition of the determination area number are performed with reference to the map of FIG. The acquired start determination area number Ms is stored in the RAM of the ECU 20 and used when the control routine is executed next time. Thereafter, the process proceeds to step S23.

ステップS23においてECU20は、実際にエンジン1の運転状態がS再生運転領域内の運転状態に維持された時間を計測していることを示す計時フラグがオンか否か判断する。計時フラグがオンと判断した場合はステップS24及びS25をスキップしてステップS26に進む。一方、計時フラグがオフと判断した場合はステップS24に進み、ECU20は計時フラグをオンに切り替える。次のステップS25においてECU20は、実際にエンジン1の運転状態がS再生運転領域内の運転状態に維持された時間を計時するためのタイマの値を初期値0にセットし、その初期値からタイマカウントを開始する。   In step S23, the ECU 20 determines whether or not the timekeeping flag indicating that the time during which the operation state of the engine 1 is actually maintained in the operation state within the S regeneration operation region is being measured is on. If it is determined that the timekeeping flag is on, steps S24 and S25 are skipped and the process proceeds to step S26. On the other hand, if it is determined that the timekeeping flag is off, the process proceeds to step S24, where the ECU 20 switches the timekeeping flag on. In the next step S25, the ECU 20 sets the timer value for measuring the time during which the operation state of the engine 1 is actually maintained in the operation state within the S regeneration operation region to the initial value 0, and from the initial value to the timer Start counting.

次のステップS26においてECU20は、現在のエンジン1の運転状態に基づいて平均継続時間Tを取得する。この平均継続時間Tの取得は図6のマップを参照して行う。続くステップS27においてECU20は、取得した平均継続時間Tが最低リッチ添加時間以上か否か判断する。最低リッチ添加時間としては、第1の形態と同様に例えば2秒が設定される。平均継続時間Tが最低リッチ添加時間以上と判断した場合はステップS17に進み、ECU20はNOx触媒8のS再生を実行する。その後、今回の制御ルーチンを終了する。一方、平均継続時間Tが最低リッチ添加時間未満と判断した場合はステップS18に進み、ECU20はS再生を中止する。その後、今回の制御ルーチンを終了する。   In the next step S26, the ECU 20 acquires the average duration T based on the current operating state of the engine 1. This average duration T is acquired with reference to the map of FIG. In subsequent step S27, the ECU 20 determines whether or not the acquired average duration T is equal to or longer than the minimum rich addition time. As the lowest rich addition time, for example, 2 seconds is set as in the first embodiment. When it is determined that the average duration T is equal to or longer than the minimum rich addition time, the process proceeds to step S17, where the ECU 20 executes S regeneration of the NOx catalyst 8. Thereafter, the current control routine is terminated. On the other hand, when it is determined that the average duration T is less than the minimum rich addition time, the process proceeds to step S18, and the ECU 20 stops the S regeneration. Thereafter, the current control routine is terminated.

ステップS13で否定判定した場合、又はステップS14で否定判定した場合はステップS28に進み、ECU20は計時フラグがオンか否か判断する。計時フラグがオフと判断した場合はステップS29及びS30をスキップしてステップS31に進む。一方、計時フラグがオンと判断した場合はステップS29に進み、ECU20はECU20に記憶されている開始判定領域番号Msとタイマの現在値とに基づいて開始判定領域番号Msに設定されている平均継続時間Tを修正する。具体的には、例えば開始判定領域番号Msに設定されていた平均継続時間Tが2.0秒であり、タイマの値が2.5秒であった場合、平均継続時間Tは2.0秒と2.5秒との間の時間、例えば2.2秒に修正される。なお、平均継続時間を修正する際の修正幅は、その平均継続時間の修正回数に応じて変化させてよく、例えば修正回数が多いほど修正幅を小さくする。続くステップS30においてECU20は、計時フラグをオフに切り替える。   If a negative determination is made in step S13 or a negative determination is made in step S14, the process proceeds to step S28, and the ECU 20 determines whether or not the timekeeping flag is on. If it is determined that the timekeeping flag is off, steps S29 and S30 are skipped and the process proceeds to step S31. On the other hand, if it is determined that the timekeeping flag is on, the process proceeds to step S29 where the ECU 20 continues the average continuation set in the start determination area number Ms based on the start determination area number Ms stored in the ECU 20 and the current value of the timer. Correct time T. Specifically, for example, when the average duration T set in the start determination area number Ms is 2.0 seconds and the timer value is 2.5 seconds, the average duration T is 2.0 seconds. And a time between 2.5 seconds, for example 2.2 seconds. Note that the correction range when correcting the average duration may be changed according to the number of corrections of the average duration. For example, the correction range is reduced as the number of corrections increases. In the subsequent step S30, the ECU 20 switches the timing flag off.

次のステップS31においてECU20は、現在のエンジン1の回転数Nを前回回転数Noldに、現在のエンジン1の燃料噴射量Qを前回燃料噴射量Qoldにそれぞれ代入する。なお、前回回転数Nold及び前回燃料噴射量Qoldは、制御ルーチンが終了した後もECU20のRAMに記憶され、次に図5の制御ルーチンが実行された際に使用される。続くステップS19においてECU20は、インジェクタ30の通常制御を行うとともに、燃料添加弁10からの燃料添加を停止する。その後、今回の制御ルーチンを終了する。   In the next step S31, the ECU 20 substitutes the current engine speed 1 for the previous engine speed Nold and the current fuel injection quantity Q for the engine 1 for the previous fuel injection quantity Qold. Note that the previous rotation speed Nold and the previous fuel injection amount Qold are stored in the RAM of the ECU 20 even after the control routine is completed, and are used when the control routine of FIG. 5 is executed next. In the subsequent step S19, the ECU 20 performs normal control of the injector 30 and stops fuel addition from the fuel addition valve 10. Thereafter, the current control routine is terminated.

図5の制御ルーチンでは、エンジン1がS再生運転領域内の運転状態に維持されると予想される平均継続時間Tを予測し、その予測した平均継続時間Tが最低リッチ添加時間以上の場合にS再生を実行し、平均継続時間Tが最低リッチ添加時間未満の場合はS再生を中止するので、無駄な燃料添加を抑制できる。そのため、S再生に消費される燃料量を低減できる。   In the control routine of FIG. 5, the average duration T that is expected to be maintained in the operating state in the S regeneration operation region is predicted, and the predicted average duration T is equal to or greater than the minimum rich addition time. When the S regeneration is executed and the average duration T is less than the minimum rich addition time, the S regeneration is stopped, so that unnecessary fuel addition can be suppressed. Therefore, the amount of fuel consumed for S regeneration can be reduced.

また、図5のステップS23〜S25、及びステップS28〜S30の処理を実行し、各判定領域Mに設定されている平均継続時間Tを修正するので、各判定領域Mと平均継続時間Tとの対応関係を個々のエンジン1の運転履歴を反映した対応関係に修正することができる。そのため、運転者の癖などを各判定領域Mと平均継続時間Tとの対応関係に反映させ、平気継続時間Tの予測精度をさらに向上させることができる。従って、無駄な燃料添加をさらに抑制し、S再生に消費される燃料量をさらに低減できる。   Further, the processing of steps S23 to S25 and steps S28 to S30 in FIG. 5 is executed to correct the average duration T set for each determination region M, so that each determination region M and average duration T are The correspondence relationship can be corrected to the correspondence relationship reflecting the operation history of each engine 1. Therefore, the driver's habit or the like is reflected in the correspondence relationship between each determination region M and the average duration time T, and the prediction accuracy of the normal duration time T can be further improved. Therefore, useless fuel addition can be further suppressed, and the amount of fuel consumed for S regeneration can be further reduced.

図6においては、S再生運転領域中に略同一の大きさの複数の判定領域を設定したが、各判定領域の大きさは同一でなくてもよい。また、判定領域の形状も図6に示した格子状に限定されない。複数の判定領域は、S再生運転領域に互いに重ならないように設定されていれば、個々のエンジン1の運転履歴を反映し易い大きさ、及び形状に適宜変更してよい。   In FIG. 6, a plurality of determination regions having substantially the same size are set in the S regeneration operation region, but the size of each determination region may not be the same. Further, the shape of the determination region is not limited to the lattice shape shown in FIG. As long as the plurality of determination areas are set so as not to overlap the S regeneration operation area, the determination areas may be appropriately changed in size and shape to easily reflect the operation history of each engine 1.

ECU20は、図6に示した関係をマップとして記憶することにより、本発明の記憶手段として機能し、図5のステップS23〜S25及びステップS28〜S30の処理を実行し、各判定領域Mと平均継続時間Tとの対応関係を修正することにより、本発明の学習手段として機能する。また、図5のステップS23〜S25及びS28、S29の処理を実行することにより、本発明の時間取得手段として機能する。   The ECU 20 functions as a storage unit of the present invention by storing the relationship shown in FIG. 6 as a map, and executes the processes of steps S23 to S25 and steps S28 to S30 of FIG. By correcting the correspondence with the duration T, it functions as the learning means of the present invention. Moreover, it functions as the time acquisition means of the present invention by executing the processing of steps S23 to S25 and S28 and S29 in FIG.

本発明は上述した各形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明はディーゼルエンジンに限らず、ガソリンその他の燃料を利用する各種の内燃機関に適用してよい。   This invention is not limited to each form mentioned above, It can implement with a various form. For example, the present invention is not limited to a diesel engine, and may be applied to various internal combustion engines that use gasoline or other fuels.

排気浄化ユニットに設けられる排気浄化手段は、担体に吸蔵還元型NOx触媒を担持させたものに限定されない。例えばパティキュレートを捕集するためのフィルタ基材に吸蔵還元型NOx触媒物質を担持させたものを設けてもよい。また、本発明が適用される排気浄化触媒は、吸蔵還元型NOx触媒に限定されない。本発明は、再生式であり、かつその再生に適したエンジンの運転状態が限られる種々の排気浄化触媒に適用できる。このような排気浄化触媒に本発明を適用することにより、無駄な再生処理を抑制することができる。   The exhaust gas purification means provided in the exhaust gas purification unit is not limited to the one in which the NOx storage reduction catalyst is supported on the carrier. For example, a filter substrate for collecting particulates may be provided with a storage reduction type NOx catalyst material supported thereon. Further, the exhaust purification catalyst to which the present invention is applied is not limited to the NOx storage reduction catalyst. The present invention is applicable to various exhaust purification catalysts that are regenerative and that have limited engine operating conditions suitable for the regeneration. By applying the present invention to such an exhaust purification catalyst, wasteful regeneration processing can be suppressed.

本発明の排気浄化装置が組み込まれた内燃機関を示す図。The figure which shows the internal combustion engine in which the exhaust gas purification apparatus of this invention was integrated. 本発明の第1の形態に係るS再生制御ルーチンを示すフローチャート。The flowchart which shows the S reproduction | regeneration control routine which concerns on the 1st form of this invention. エンジンの回転数及び燃料噴射量とS再生運転領域との関係の一例を示す図。The figure which shows an example of the relationship between an engine speed and fuel injection quantity, and S reproduction | regeneration driving | operation area | region. エンジンの回転数の時間変化の一例を示す図。The figure which shows an example of the time change of the rotation speed of an engine. 本発明の第2の形態に係るS再生制御ルーチンを示すフローチャート。The flowchart which shows S reproduction | regeneration control routine which concerns on the 2nd form of this invention. エンジンの回転数及び燃料噴射量と各判定領域との関係の一例、及び各判定領域と平均継続時間との関係の一例を示す図。The figure which shows an example of the relationship between an engine speed and the amount of fuel injection, and each determination area | region, and an example of the relationship between each determination area | region and average duration.

符号の説明Explanation of symbols

1 内燃機関
4 排気通路
8 吸蔵還元型NOx触媒(排気浄化触媒)
10 燃料添加弁(還元剤添加手段)
20 エンジンコントロールユニット(運転状態取得手段、触媒再生実行手段、運転状態予測手段、動作制御手段、記憶手段、時間取得手段、学習手段)
1 Internal combustion engine 4 Exhaust passage 8 NOx storage reduction catalyst (exhaust purification catalyst)
10 Fuel addition valve (reducing agent addition means)
20 Engine control unit (operating state acquisition means, catalyst regeneration execution means, operating state prediction means, operation control means, storage means, time acquisition means, learning means)

Claims (5)

内燃機関の排気通路に設けられた再生式の排気浄化触媒と、前記排気浄化触媒の上流から還元剤を添加する還元剤添加手段と、前記内燃機関の運転状態を取得する運転状態取得手段と、前記運転状態取得手段により取得された運転状態が前記排気浄化触媒の再生処理に適した所定の運転領域内の運転状態であることを含む所定の再生実行条件が成立したと判断した場合に前記還元剤添加手段から還元剤を添加させて前記排気浄化触媒の再生処理を実行する触媒再生実行手段と、を備えた内燃機関の排気浄化装置において、
前記触媒再生実行手段は、前記所定の再生実行条件が成立した場合、前記所定の再生実行条件が成立した時点から所定時間が経過した後の前記内燃機関の運転状態を予測する運転状態予測手段と、前記運転状態予測手段により予測された運転状態に基づいて前記還元剤添加手段の動作を制御する動作制御手段と、を備えていることを特徴とする内燃機関の排気浄化装置。
A regenerative exhaust purification catalyst provided in an exhaust passage of the internal combustion engine, a reducing agent addition means for adding a reducing agent from an upstream side of the exhaust purification catalyst, an operating state acquisition means for acquiring an operating state of the internal combustion engine, When it is determined that a predetermined regeneration execution condition is satisfied, including that the operating state acquired by the operating state acquisition means is an operating state within a predetermined operating region suitable for the regeneration processing of the exhaust purification catalyst, the reduction In an exhaust gas purification apparatus for an internal combustion engine, comprising: a catalyst regeneration executing means for adding a reducing agent from an agent adding means to execute a regeneration process of the exhaust purification catalyst,
The catalyst regeneration execution means, when the predetermined regeneration execution condition is satisfied, an operation state prediction means for predicting an operation state of the internal combustion engine after a predetermined time has elapsed since the predetermined regeneration execution condition is satisfied. And an operation control means for controlling the operation of the reducing agent adding means based on the operating condition predicted by the operating condition predicting means.
前記運転状態予測手段は、前記所定の再生実行条件が成立した場合、前記所定の再生実行条件が成立した時点までの前記内燃機関の運転状態の履歴に基づいて前記所定の再生実行条件が成立した時点から前記所定時間が経過した後の前記内燃機関の運転状態を予測し、
前記動作制御手段は、前記運転状態予測手段により予測された運転状態が前記所定の運転領域外の運転状態の場合、前記還元剤添加手段からの還元剤の添加が制限されるように前記還元剤添加手段の動作を制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
When the predetermined regeneration execution condition is satisfied, the operating state predicting means satisfies the predetermined regeneration execution condition based on a history of the operation state of the internal combustion engine up to a point in time when the predetermined regeneration execution condition is satisfied. Predicting the operating state of the internal combustion engine after the predetermined time has elapsed since the time point,
When the operation state predicted by the operation state prediction unit is an operation state outside the predetermined operation region, the operation control unit is configured to limit the addition of the reducing agent from the reducing agent addition unit. 2. An exhaust emission control device for an internal combustion engine according to claim 1, wherein the operation of the adding means is controlled.
前記運転状態予測手段は、前記所定の運転領域内に互いに重ならないように設定される複数の判定領域と前記内燃機関の運転状態が各判定領域内の運転状態から前記所定の運転領域内の運転状態に維持されると予想される時間である継続時間とを対応づけたマップを記憶する記憶手段を備え、
前記動作制御手段は、前記所定の再生実行条件が成立した場合、前記マップを参照して前記所定の再生実行条件が成立した時点における前記内燃機関の運転状態が前記複数の判定領域のうちのいずれの判定領域の運転状態か判定するとともに、その判定結果に基づいて前記継続時間を取得し、前記継続時間が前記所定時間未満の場合に前記還元剤添加手段からの還元剤の添加が制限されるように前記還元剤添加手段の動作を制御することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
The operating state predicting means is configured to determine whether the operation state of the plurality of determination regions and the internal combustion engine set so as not to overlap each other in the predetermined operation region and the operation state in each determination region are within the predetermined operation region. Storage means for storing a map that associates a duration time that is expected to be maintained in a state;
When the predetermined regeneration execution condition is satisfied, the operation control means refers to the map to determine whether the operation state of the internal combustion engine at the time when the predetermined regeneration execution condition is satisfied is any of the plurality of determination regions. And the duration is acquired based on the determination result, and the addition of the reducing agent from the reducing agent addition means is limited when the duration is less than the predetermined time. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the operation of the reducing agent adding means is controlled as described above.
前記運転状態予測手段は、前記内燃機関の運転状態が各判定領域の運転状態から前記所定の運転領域内に実際に維持された時間を取得する時間取得手段と、前記時間取得手段により取得された時間に基づいて前記複数の判定領域と前記継続時間との対応関係を修正する学習手段と、を備えていることを特徴とする請求項3に記載の内燃機関の排気浄化装置。   The operating state predicting means is acquired by time acquiring means for acquiring the time during which the operating state of the internal combustion engine is actually maintained in the predetermined operating region from the operating state of each determination region, and acquired by the time acquiring unit. The exhaust emission control device for an internal combustion engine according to claim 3, further comprising learning means for correcting a correspondence relationship between the plurality of determination regions and the duration based on time. 前記排気浄化触媒は吸蔵還元型NOx触媒であり、前記還元剤添加手段からは還元剤として前記内燃機関の燃料が添加されることを特徴とする請求項1〜4のいずれか一項に記載の内燃機関の排気浄化装置。   5. The fuel according to claim 1, wherein the exhaust purification catalyst is an NOx storage reduction catalyst, and the fuel for the internal combustion engine is added as a reducing agent from the reducing agent adding means. An exhaust purification device for an internal combustion engine.
JP2006121630A 2006-04-26 2006-04-26 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4702162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121630A JP4702162B2 (en) 2006-04-26 2006-04-26 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121630A JP4702162B2 (en) 2006-04-26 2006-04-26 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007291970A true JP2007291970A (en) 2007-11-08
JP4702162B2 JP4702162B2 (en) 2011-06-15

Family

ID=38762822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121630A Expired - Fee Related JP4702162B2 (en) 2006-04-26 2006-04-26 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4702162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10711673B2 (en) 2016-03-07 2020-07-14 Isuzu Motors Limited Exhaust purification system and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979026A (en) * 1995-09-11 1997-03-25 Nissan Motor Co Ltd Exhaust emission control device
JP2004339993A (en) * 2003-05-14 2004-12-02 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2005048690A (en) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd Combustion control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979026A (en) * 1995-09-11 1997-03-25 Nissan Motor Co Ltd Exhaust emission control device
JP2004339993A (en) * 2003-05-14 2004-12-02 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP2005048690A (en) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd Combustion control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10711673B2 (en) 2016-03-07 2020-07-14 Isuzu Motors Limited Exhaust purification system and control method

Also Published As

Publication number Publication date
JP4702162B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP5061861B2 (en) Control device for internal combustion engine
JP4442588B2 (en) Fuel addition control method and exhaust purification device applied to exhaust purification device of internal combustion engine
JP2009203934A (en) Control device of internal combustion engine
JP2010019178A (en) Engine control device
JP6436132B2 (en) Exhaust gas purification system for internal combustion engine
JP2009068481A (en) Exhaust emission control system of internal combustion engine
US10443525B2 (en) Exhaust emission control system of engine
CN109424448B (en) Control system for internal combustion engine
JP5229400B2 (en) Control device for internal combustion engine
WO2013035163A1 (en) Warm-up system for exhaust system of internal combustion engine
JP4244824B2 (en) Fuel injection control device for internal combustion engine
EP2151555B1 (en) Catalyst deterioration determination device and method
JP2008151025A (en) Control device of internal combustion engine
JP4702162B2 (en) Exhaust gas purification device for internal combustion engine
JP2014066154A (en) Control device of internal combustion engine
JP4978187B2 (en) Control system and control method for internal combustion engine
EP2410141A1 (en) Exhaust gas purifying system
JP6270247B1 (en) Engine exhaust purification system
CN110821699B (en) Control device and control method for internal combustion engine
JP2001280179A (en) Exhaust emission control device of engine
JP7204426B2 (en) Fuel injection control device for internal combustion engine
JP2003041968A (en) Control system for internal combustion engine
JP2010242674A (en) Catalyst deterioration determination device
JP2018119519A (en) Exhaust emission control device for engine
JP2006183636A (en) Air-fuel ratio control device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110221

LAPS Cancellation because of no payment of annual fees