JP2007291497A - Steel material for high temperature carburizing - Google Patents

Steel material for high temperature carburizing Download PDF

Info

Publication number
JP2007291497A
JP2007291497A JP2007025159A JP2007025159A JP2007291497A JP 2007291497 A JP2007291497 A JP 2007291497A JP 2007025159 A JP2007025159 A JP 2007025159A JP 2007025159 A JP2007025159 A JP 2007025159A JP 2007291497 A JP2007291497 A JP 2007291497A
Authority
JP
Japan
Prior art keywords
carburizing
steel
temperature
less
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025159A
Other languages
Japanese (ja)
Other versions
JP4775276B2 (en
Inventor
Takanari Hamada
貴成 浜田
Toru Takayama
透 高山
Nobuhiro Murai
暢宏 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007025159A priority Critical patent/JP4775276B2/en
Publication of JP2007291497A publication Critical patent/JP2007291497A/en
Application granted granted Critical
Publication of JP4775276B2 publication Critical patent/JP4775276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material for high temperature carburizing in which the generation of grain coarsening can be suppressed even when carburizing is performed at a high temperature of >1,000°C with normalizing treatment before the carburizing treatment obviated. <P>SOLUTION: The steel material for high temperature carburizing contains, by mass, 0.10 to 0.30% C, 0.030 to 0.060% Nb, 0.0010 to 0.0030% Ti, 0.005 to 0.015% V, ≤0.060% Al and 0.0185 to 0.0300% N, wherein for carbonitrides and nitrides before carburizing treatment, the total amount of compound carbonitrides [NbTi(CN)], [NbV(CN)] and [NbTi(CN)] to be precipitated satisfies ≥0.010%, also, the amount of AlN to be precipitated satisfies ≤0.010%, and further, the number of the compound carbonitrides with a diameter of >20 to 80 nm is ≥300 pieces/1,000 μm<SP>2</SP>in total. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高温浸炭用鋼材に関する。詳しくは、機械構造部品の素材として用いられ、浸炭処理前の焼準処理を省略しても、前記部品を1000℃を超えるような高温で浸炭した場合に異常粒を生じることがなく、粗粒化の発生を抑止することが可能な高温浸炭用鋼材に関する。   The present invention relates to a steel material for high-temperature carburizing. Specifically, it is used as a material for machine structural parts, and even if the normalizing process before the carburizing process is omitted, when the parts are carburized at a high temperature exceeding 1000 ° C., no abnormal particles are produced, The present invention relates to a steel material for high-temperature carburization that can suppress the occurrence of crystallization.

以下、本明細書においては、倍率を100倍として光学顕微鏡観察した場合に、視野内で最大頻度をもつ粒度番号の結晶粒から3番以上大きい結晶粒が20%以上の面積を占める状態を「混粒」として、その粒度番号で3番以上大きい各々の結晶粒を「異常粒」といい、また、「異常粒」の存在しない部分を「整粒部」という。   Hereinafter, in the present specification, when observed with an optical microscope at a magnification of 100 times, a state in which crystal grains having the largest frequency in the visual field occupy an area of 20% or more from the crystal grains having the largest frequency in the visual field occupy an area of 20% or more. As “mixed grains”, each crystal grain having a grain size number 3 or larger is referred to as “abnormal grain”, and a portion where no “abnormal grain” is present is referred to as “sized particle part”.

また、本明細書においては、浸炭或いは浸炭を模擬した加熱保持実験で混粒が発生することを単に「粗粒化が生じる」或いは「粗粒化する」といい、粗粒化が生じる最も低い温度を「粗粒化温度」という。   In this specification, carburization or the occurrence of mixed grains in a heating and holding experiment simulating carburization is simply referred to as “coarse graining” or “coarse graining”, and the lowest level of coarse graining occurs. The temperature is referred to as “roughening temperature”.

従来、肌焼鋼は930℃前後の浸炭ガス雰囲気中で浸炭処理されてきた。上記930℃前後の浸炭温度においてAlNは比較的安定であるので、従来の肌焼鋼には適量のAlとNが含有されており、このAlとNを浸炭処理の前にAlNとして析出させオーステナイトのピン止め粒子として用いることによって、粗粒化の発生を抑制することが行われてきた。   Conventionally, case hardening steel has been carburized in a carburizing gas atmosphere at around 930 ° C. Since AlN is relatively stable at the carburizing temperature of about 930 ° C., conventional case-hardened steel contains appropriate amounts of Al and N, and this Al and N are precipitated as AlN before the carburizing treatment, and austenite. By using it as a pinning particle, it has been attempted to suppress the occurrence of coarsening.

一方、処理時間の短縮のために、最近では、1000℃を超えるような高温で浸炭処理することが検討されている。これは、例えば1050℃で浸炭すれば、930℃で浸炭する場合に比べて処理時間を1/3〜1/4に短縮することができるからである。   On the other hand, in order to shorten the treatment time, recently, carburizing treatment at a high temperature exceeding 1000 ° C. has been studied. This is because, for example, if carburizing at 1050 ° C., the processing time can be shortened to 1/3 to 1/4 compared with the case of carburizing at 930 ° C.

しかしながら、このような高温で浸炭処理する場合には、AlNの一部がマトリックス(素地)に固溶してピン止め効果が低下するため、粗粒化が起こることを避け難い。そして、粗粒化が生じれば、当該部位の焼入れ性が上昇するため、部品の熱処理ひずみが大きくなり、更に、機械的性質の劣化にもつながってしまう。   However, when carburizing at such a high temperature, a part of AlN is dissolved in the matrix (substrate) and the pinning effect is reduced, so that it is difficult to avoid coarsening. If coarsening occurs, the hardenability of the part increases, so that the heat treatment strain of the part increases, and further, the mechanical properties deteriorate.

このため、1000℃を超えるような高温で浸炭した場合にも粗粒化の発生を抑止することが可能な高温浸炭用鋼に対する要望が極めて大きくなっている。   For this reason, even when carburizing at a high temperature exceeding 1000 ° C., there is a great demand for high-temperature carburizing steel that can suppress the occurrence of coarsening.

また、高温で浸炭処理される場合、熱間鍛造後オフラインで焼準処理が施されAlN等のピン止め粒子を均一多量分散させることで、粗粒化防止対策が施されている。しかしながら、近年、コスト低減の観点から、浸炭時間の短縮とともに浸炭処理前の焼準処理をも省略したいとする要望が大きくなっている。   Further, when carburizing at high temperature, a normalization process is performed off-line after hot forging, and countermeasures for preventing coarsening are taken by uniformly dispersing a large amount of pinning particles such as AlN. However, in recent years, from the viewpoint of cost reduction, there is an increasing demand for shortening the carburizing time and omitting the normalizing process before the carburizing process.

そこで、前記した要望に応えるべく、特許文献1〜3に、微細なAlNやNb(CN)のピン止め作用を利用した種々の高温浸炭用鋼が提案されている。   Therefore, in order to meet the above-described demands, Patent Documents 1 to 3 propose various high-temperature carburizing steels using the pinning action of fine AlN and Nb (CN).

具体的には、特許文献1に、質量%で、Nb:0.001〜0.10%、Al:0.01〜0.15%及びN:0.01〜0.03%を含むとともに、必要に応じて、V、Ti、Ta、Zr、Te及び希土類元素よりなる群から選択される1種以上並びに/又はPb、Bi及びSeよりなる群から選択される1種以上を含有し、Nの含有量が特定の式を満足し、且つ特定の式で表される熱間加工後の固溶Al量が0.01〜0.10%である「高温浸炭用鋼」が開示されている。   Specifically, Patent Document 1 includes, in mass%, Nb: 0.001 to 0.10%, Al: 0.01 to 0.15%, and N: 0.01 to 0.03%, Optionally containing one or more selected from the group consisting of V, Ti, Ta, Zr, Te and rare earth elements and / or one or more selected from the group consisting of Pb, Bi and Se, N Has disclosed a “high temperature carburizing steel” that satisfies a specific formula and has a solid solution Al content of 0.01 to 0.10% after hot working represented by the specific formula .

特許文献2に、質量%で、C:0.1〜0.4%、Si:0.02〜1.3%、Mn:0.3〜1.8%、S:0.001〜0.15%、Al:0.015〜0.045%、Nb:0.005〜0.05%、N:0.01〜0.02%を含有し、更に、特定量のCr、Mo、Ni及びVの1種又は2種以上を含有し、P、Ti及びOの含有量を特定量以下に制限するとともに、熱間鍛造後のNbC、NbN及びNb(CN)の析出量を0.005%以上、AlNの析出量を0.01%以下に制限し、加えて、熱間鍛造後の組織中のベイナイト分率、パーライト分率及びフェライト結晶粒度番号をも特定の範囲に規定した「熱間鍛造後の焼準処理が不要な結晶粒粗大化防止特性に優れた高温浸炭部品用素形材」が開示されている。   In Patent Document 2, in mass%, C: 0.1 to 0.4%, Si: 0.02 to 1.3%, Mn: 0.3 to 1.8%, S: 0.001 to 0. 15%, Al: 0.015 to 0.045%, Nb: 0.005 to 0.05%, N: 0.01 to 0.02%, and a specific amount of Cr, Mo, Ni and Containing one or more of V, limiting the content of P, Ti and O to a specific amount or less, and the amount of precipitation of NbC, NbN and Nb (CN) after hot forging 0.005% As described above, the precipitation amount of AlN is limited to 0.01% or less, and in addition, the bainite fraction, the pearlite fraction, and the ferrite grain size number in the structure after hot forging are also specified in a specific range. A "high-temperature carburized component shaped material excellent in crystal grain coarsening prevention characteristics that does not require a normalizing treatment after forging" has been disclosed.

特許文献3に、質量%で、C:0.1〜0.40%、Si:0.02〜1.3%、Mn:0.3〜1.8%、S:0.001〜0.15%、Al:0.015〜0.04%、Nb:0.005〜0.04%、N:0.006〜0.020%を含有し、更に、特定量のCr、Mo、Ni及びVの1種又は2種以上を含有し、P、Ti及びOの含有量を特定量以下に制限するとともに、熱間圧延後のNb(CN)の析出量を0.005%以上、AlNの析出量を0.005%以下に制限するか、或いは、上記内容に加えて、更に、熱間圧延後の鋼のマトリックス中の直径0.1μm以下のNb(CN)の個数、熱間圧延後のベイナイトの組織分率及び熱間圧延後のフェライト結晶粒度番号のうちの少なくともいずれかを特定の範囲に規定した「浸炭時の粗大粒防止特性に優れた肌焼鋼とその製造方法ならびに浸炭部品用素形材」が開示されている。   In Patent Document 3, in mass%, C: 0.1-0.40%, Si: 0.02-1.3%, Mn: 0.3-1.8%, S: 0.001-0. 15%, Al: 0.015 to 0.04%, Nb: 0.005 to 0.04%, N: 0.006 to 0.020%, and a specific amount of Cr, Mo, Ni and 1 type or 2 types or more of V are contained, and the content of P, Ti and O is limited to a specific amount or less, and the precipitation amount of Nb (CN) after hot rolling is 0.005% or more, of AlN The amount of precipitation is limited to 0.005% or less, or in addition to the above content, the number of Nb (CN) having a diameter of 0.1 μm or less in the steel matrix after hot rolling, after hot rolling Of bainite and the ferrite grain size number after hot rolling in a specific range. Preventing coarse grains properties superior hardening steel and its manufacturing method, and carburized component formed and fabricated material when "is disclosed.

特開2001−20038号公報Japanese Patent Laid-Open No. 2001-20038 特開2001−303174号公報JP 2001-303174 A WO99/05333号公報WO99 / 05333

前述の特許文献1で開示された技術は、温間鍛造や冷間鍛造後の浸炭焼入れ処理時における粗粒化の発生を極力抑制することを目的に、特定量のNb、Al及びNを含有させ、更に、熱間加工後にAlをAlNとして析出させず、固溶Alの状態で適正量含有させ、その後の球状化焼鈍等の熱処理時に微細なAlN、NbC、NbNやNb(CN)を析出させるものである。つまり、適正量のNb、Al及びNを複合して含有させて、微細なAlN、NbC、NbN及びNb(CN)を浸炭の前の熱処理によって予め析出させ、前記析出物のピン止め作用を利用するものである。しかしながら、必ずしも高温浸炭時の粗粒化発生の抑制に対して十分な効果が得られるというものではなかった。   The technique disclosed in Patent Document 1 described above contains specific amounts of Nb, Al, and N for the purpose of suppressing the occurrence of coarsening as much as possible during carburizing and quenching after warm forging and cold forging. Furthermore, after hot working, Al is not precipitated as AlN, but is contained in an appropriate amount in the form of solid solution Al, and fine AlN, NbC, NbN, and Nb (CN) are precipitated during heat treatment such as spheroidizing annealing. It is something to be made. In other words, a proper amount of Nb, Al and N is mixed and fine AlN, NbC, NbN and Nb (CN) are preliminarily precipitated by heat treatment before carburizing, and the pinning action of the precipitate is used. To do. However, a sufficient effect for suppressing the occurrence of coarsening during high-temperature carburization is not always obtained.

特許文献2で開示された技術は、熱間鍛造後の焼準処理を省略した部品の高温浸炭時の粗粒化発生防止を目的に、Nb、Al、N、Ti及びOの含有量を規定し、熱間鍛造後に、Nb(CN)を一定量以上微細析出させる一方でAlがAlNとして析出することを極力制限し、浸炭の加熱途上で新たにAlN、Nb(CN)を微細に析出させ、ピン止め粒子として微細なAlN及びNb(CN)を用いるものである。しかしながら、前記特許文献1の場合と同様、必ずしも高温浸炭時の粗粒化発生の抑制に対して十分な効果が得られるというものではなかった。   The technology disclosed in Patent Document 2 defines the contents of Nb, Al, N, Ti and O for the purpose of preventing the occurrence of coarsening during high-temperature carburizing of parts that omit the normalizing process after hot forging. Then, after hot forging, Nb (CN) is finely precipitated more than a certain amount while Al is precipitated as AlN as much as possible, and AlN and Nb (CN) are newly finely precipitated during carburizing heating. Fine AlN and Nb (CN) are used as the pinning particles. However, as in the case of Patent Document 1, a sufficient effect is not necessarily obtained for suppressing the occurrence of coarsening during high-temperature carburization.

特許文献3で開示された技術は、高温浸炭時の粗粒化発生の防止を目的に、Nb、Al、N、Ti及びOの含有量を規定し、熱間圧延後或いは熱間鍛造後に、Nb(CN)を一定量以上微細析出させる一方でAlがAlNとして析出することを極力制限し、その後の焼鈍過程、焼準過程、或いは浸炭の昇温過程で新たにAlNを微細に析出させ、ピン止め粒子として微細なAlN及びNb(CN)を用いるものである。しかしながら、前記特許文献1や特許文献2の場合と同様、必ずしも高温浸炭時の粗粒化発生の抑制に対して十分な効果が得られるというものではなかった。   The technique disclosed in Patent Document 3 specifies the contents of Nb, Al, N, Ti and O for the purpose of preventing the occurrence of coarsening during high-temperature carburization, and after hot rolling or hot forging, Nb (CN) is finely precipitated more than a certain amount while Al is precipitated as AlN as much as possible, and AlN is newly finely precipitated in the subsequent annealing process, normalizing process, or carburizing temperature rising process, Fine AlN and Nb (CN) are used as pinning particles. However, as in the case of Patent Document 1 and Patent Document 2, a sufficient effect is not necessarily obtained for suppressing the occurrence of coarsening during high-temperature carburization.

そこで、本発明の目的は、機械構造部品の素材であって、浸炭処理前の焼準処理を省略しても、前記部品を1000℃を超える高い温度で浸炭した場合の粗粒化の発生を確実に抑止することができる高温浸炭用鋼材を提供することである。   Therefore, an object of the present invention is a material for machine structural parts, and even if the normalizing process before carburizing treatment is omitted, the occurrence of coarsening when the parts are carburized at a high temperature exceeding 1000 ° C. It is to provide a steel material for high-temperature carburizing that can be reliably suppressed.

本発明者らは、前記した課題を解決するために、種々の検討を行い、その結果、下記(a)〜(i)の知見を得た。   In order to solve the above-described problems, the present inventors made various studies, and as a result, obtained the following findings (a) to (i).

(a)高温で加熱保持することによって生じる粗粒化は、鋼中に分散するAlNやNb(CN)等の析出粒子による結晶粒界のピン止め力よりも結晶粒成長の駆動力が大きくなった場合に生じる。そして、析出粒子によるピン止め力はその析出粒子の数に依存し、析出粒子数が多いほど大きくなる。一方、結晶粒成長の駆動力は結晶粒径に依存し、結晶粒径が小さいほど大きくなる。   (A) The coarsening caused by heating and holding at a high temperature has a driving force for crystal grain growth larger than the pinning force at the grain boundary due to precipitated particles such as AlN and Nb (CN) dispersed in the steel. This happens when The pinning force due to the precipitated particles depends on the number of the precipitated particles, and increases as the number of the precipitated particles increases. On the other hand, the driving force for crystal grain growth depends on the crystal grain size, and increases as the crystal grain size decreases.

(b)高温で長時間加熱保持する高温浸炭を施す場合、特許文献1のように、鋼中に予めAlNやNb(CN)等の析出粒子を分散させておくと、浸炭の初期段階ではAlNやNb(CN)のピン止め力により結晶粒は微細に維持されるものの、保持時間が長くなると、上記析出物の固溶や凝集が進行してピン止め力が低下し、その結果、結晶粒成長の駆動力がピン止め力に対して相対的に大きくなり粗粒化が進行する。つまり、AlNやNb(CN)だけでは、粗粒化を防止することができない。   (B) When performing high-temperature carburization that is heated and held at a high temperature for a long time, as in Patent Document 1, if precipitating particles such as AlN and Nb (CN) are dispersed in the steel in advance, AlN is used at the initial stage of carburization. Although the crystal grains are finely maintained by the pinning force of Nb (CN) or the Nb (CN), when the holding time becomes long, the solid solution and aggregation of the precipitates progress and the pinning force decreases. As a result, the crystal grains The driving force for growth becomes relatively large with respect to the pinning force, and coarsening proceeds. In other words, coarsening cannot be prevented only by AlN or Nb (CN).

(c)特許文献2や特許文献3のように、浸炭の加熱途上で析出物が微細に析出すると、浸炭初期の結晶粒が細かくなって、結晶粒成長の駆動力が大きくなる。このため、高温浸炭時の粗粒化発生の抑制に対して十分な効果が得られるというものではない。   (C) As in Patent Document 2 and Patent Document 3, when precipitates are finely precipitated during the carburizing heating, crystal grains in the initial stage of carburizing become fine, and the driving force for crystal grain growth increases. For this reason, sufficient effect is not acquired with respect to suppression of the coarsening generation | occurrence | production at the time of high-temperature carburizing.

(d)高温浸炭時における粗粒化を防止するためには、浸炭時の結晶粒成長の駆動力に勝るピン止め力を確保するために、AlNやNb(CN)よりもマトリックス中に固溶し難い析出物を析出させておくことが必要である。   (D) In order to prevent coarsening during high-temperature carburizing, in order to secure a pinning force that exceeds the driving force for crystal grain growth during carburizing, it is more solid solution in the matrix than AlN or Nb (CN). It is necessary to deposit precipitates that are difficult to do.

(e)上記のAlNやNb(CN)よりもマトリックス中に固溶し難い析出物としては、Ti及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を用いるのがよく、こうしたTiやVとNbの複合炭窒化物は、極微量のTiやVを特定量のNb、C及びNとともに複合して含有させることによって生成させることができる。   (E) Precipitates that are harder to dissolve in the matrix than the above-mentioned AlN and Nb (CN) are one or more of Ti and V and a composite carbonitride of Nb [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)] should be used, and such a composite carbonitride of Ti, V and Nb is composed of a very small amount of Ti and V together with a specific amount of Nb, C and N. It can be made to contain.

(f)高温浸炭時における粗粒化を防止するためには、上記(e)で述べたNbとTiやVの複合炭窒化物を浸炭処理する前の段階で特定量以上析出させることが重要である。   (F) In order to prevent coarsening during high-temperature carburizing, it is important to deposit a specific amount or more in the stage before carburizing the Nb, Ti and V composite carbonitride described in (e) above. It is.

(g)AlNは比較的粗大に成長する傾向がある。このため、上記(f)で述べたようにTiやVとNbの複合炭窒化物を浸炭処理する前の段階で特定量以上析出させても、粗大なAlNを核として上記のTiやVとNbの複合炭窒化物が凝集・粗大化してしまうと、粗粒化の防止が達成できない。したがって、高温浸炭時における粗粒化を防止するためには、浸炭処理する前の段階でのAlNの析出量を制限する必要がある。   (G) AlN tends to grow relatively coarsely. For this reason, as described in the above (f), even when a specific amount or more of Ti or V and Nb composite carbonitride is precipitated in the stage before carburizing treatment, the above Ti or V is used with coarse AlN as a nucleus. If the Nb composite carbonitride is agglomerated and coarsened, prevention of coarsening cannot be achieved. Therefore, in order to prevent coarsening during high-temperature carburizing, it is necessary to limit the amount of AlN deposited at the stage before carburizing.

(h)上記したTiやVとNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕は、その直径に着目すると、[1]20nm以下、[2]20nmを超えて80nm以下及び[3]80nmを超える、の3区分に大別できる。そして、高温浸炭時における粗粒化防止に寄与するのは、上記3区分のうちで、[2]の直径が20nmを超えて80nm以下のものである。すなわち、[3]の直径が80nmを超えるものは、粗大化しているためにピン止め作用が小さい。また、上記NbとTiやVの複合炭窒化物は、AlNやNb(CN)よりもマトリックス中に固溶し難いとはいうものの、[1]の直径が20nm以下のものは、浸炭処理時にマトリックス中にほぼ固溶し、その後に[3]の直径が80nmを超えるものを成長・粗大化する傾向がある。よって、いずれも、高温浸炭時における粗粒化防止にあまり寄与しない。   (H) [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are the composite carbonitrides of Ti, V, and Nb described above, [1] 20 nm or less [2] Over 20 nm and below 80 nm and [3] Over 80 nm. And among the above three categories, the diameter of [2] exceeds 20 nm and 80 nm or less contributes to prevention of coarsening during high-temperature carburizing. That is, when the diameter of [3] exceeds 80 nm, the pinning action is small because it is coarsened. The composite carbonitride of Nb and Ti or V is less soluble in the matrix than AlN or Nb (CN), but the [1] diameter is 20 nm or less during the carburizing process. There is a tendency to grow and coarsen those in which the diameter of [3] exceeds 80 nm after being substantially dissolved in the matrix. Therefore, neither contributes much to preventing coarsening during high temperature carburization.

(i)上記(h)で述べた直径が20nmを超えて80nm以下のTiやVとNbの複合炭窒化物が析出している場合であっても、その数が少ない場合には、粗粒化防止の効果が得られない。したがって、高温浸炭時における粗粒化を防止するためには、浸炭処理する前の段階で、上記(f)のTiやVとNbの複合炭窒化物を特定量以上析出させることに加えて、直径が20nmを超えて80nm以下のTiやVとNbの複合炭窒化物を数多く析出させる必要がある。   (I) Even when Ti or V and Nb composite carbonitride having a diameter of more than 20 nm and not more than 80 nm as described in (h) is precipitated, The effect of preventing crystallization cannot be obtained. Therefore, in order to prevent coarsening during high-temperature carburizing, in addition to precipitating more than a specific amount of the composite carbonitride of Ti and V and Nb in (f) above before carburizing treatment, It is necessary to deposit a large number of composite carbonitrides of Ti, V and Nb having a diameter exceeding 20 nm and not more than 80 nm.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)及び(2)に示す高温浸炭用鋼材にある。   This invention is completed based on said knowledge, The summary exists in the steel material for high temperature carburizing shown to following (1) and (2).

(1)質量%で、C:0.10〜0.30%、Nb:0.030〜0.060%、Ti:0.0010〜0.0030%、V:0.005〜0.015%、Al:0.060%以下及びN:0.0185〜0.0300%を含有し、浸炭処理前の鋼材中における炭窒化物及び窒化物について、Ti及びVのうちの1種以上とNbの複合炭窒化物の析出量の合計が質量%で0.010%以上、且つAlNの析出量が質量%で0.010%以下を満たすとともに、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で、300個/1000μm2以上であることを特徴とする高温浸炭用鋼材。
但し、Ti及びVのうちの1種以上とNbの複合炭窒化物とは、〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を指す。
(1) By mass%, C: 0.10 to 0.30%, Nb: 0.030 to 0.060%, Ti: 0.0010 to 0.0030%, V: 0.005 to 0.015% , Al: 0.060% or less and N: 0.0185-0.0300%, carbonitride and nitride in the steel before carburizing treatment, one or more of Ti and V and Nb The total amount of precipitation of the composite carbonitride satisfies 0.010% or more in terms of mass%, and the amount of precipitation of AlN satisfies 0.010% or less in terms of mass%, and among Ti and V exceeding 20 nm in diameter and 80 nm or less A steel material for high-temperature carburizing, characterized in that the total number of composite carbonitrides of one or more of Nb and Nb is 300 pieces / 1000 μm 2 or more.
However, one or more of Ti and V and Nb composite carbonitride refers to [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)].

(2)質量%で、C:0.10〜0.30%、Si:0.01〜2.00%、Mn:0.10〜2.00%、P:0.025%以下、S:0.10%以下、Cr:0.5〜2.5%、Nb:0.030〜0.060%、Ti:0.0010〜0.0030%、V:0.005〜0.015%、Al:0.060%以下及びN:0.0185〜0.0300%を含むとともに、Ni:0.1〜3.0%及びMo:0.02〜1.5%のうちの1種又は2種を含有し、残部はFe及び不純物からなり、浸炭処理前の鋼材中における炭窒化物及び窒化物について、Ti及びVのうちの1種以上とNbの複合炭窒化物の析出量の合計が質量%で0.010%以上、且つAlNの析出量が質量%で0.010%以下を満たすとともに、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で、300個/1000μm2以上であることを特徴とする高温浸炭用鋼材。
但し、Ti及びVのうちの1種以上とNbの複合炭窒化物とは、〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を指す。
(2) By mass%, C: 0.10 to 0.30%, Si: 0.01 to 2.00%, Mn: 0.10 to 2.00%, P: 0.025% or less, S: 0.10% or less, Cr: 0.5-2.5%, Nb: 0.030-0.060%, Ti: 0.0010-0.0030%, V: 0.005-0.015%, Al: 0.060% or less and N: 0.0185-0.0300%, Ni: 0.1-3.0% and Mo: 0.02-1.5%, one or two Containing seeds, the balance consisting of Fe and impurities, and for the carbonitrides and nitrides in the steel before carburizing treatment, the total precipitation amount of one or more of Ti and V and the composite carbonitride of Nb In addition to satisfying 0.010% or more by mass%, and the precipitation amount of AlN satisfying 0.010% or less by mass%, the diameter exceeds 20 nm. The number of composite carbonitride of one or more and Nb of Te 80nm or less of Ti and V is a total of 300/1000 .mu.m 2 or more at a high temperature carburizing steel material, characterized in that.
However, one or more of Ti and V and Nb composite carbonitride refers to [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)].

なお、析出物の直径とは、長径と短径の平均値、すなわち「(長径+短径)/2」を指す。   The diameter of the precipitate refers to the average value of the major axis and the minor axis, that is, “(major axis + minor axis) / 2”.

以下、上記(1)及び(2)の高温浸炭用鋼材に係る発明を、それぞれ、「本発明(1)」及び「本発明(2)」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions related to the steel materials for high-temperature carburization of the above (1) and (2) are referred to as “present invention (1)” and “present invention (2)”, respectively. Also, it may be collectively referred to as “the present invention”.

機械構造部品の素材に本発明の高温浸炭用鋼材を用いれば、浸炭前の焼準処理を省略していても、1000℃を超える高い温度で浸炭する場合の粗粒化の発生を確実に抑止できるので、浸炭時間の短縮による製造コストの合理化が行える。   If the steel material for high-temperature carburizing of the present invention is used as a material for machine structural parts, the occurrence of coarsening is reliably suppressed when carburizing at a high temperature exceeding 1000 ° C even if the normalizing treatment before carburizing is omitted. As a result, the manufacturing cost can be rationalized by shortening the carburizing time.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.

(A)化学組成
C:0.10〜0.30%
Cは、Nとともに、TiやVとNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を形成して、高温浸炭時における粗粒化を抑制する作用を有する。Cには、浸炭焼入れ後の母材(生地)の強度を上昇させる作用もある。こうした効果を得るには、0.10%以上のC含有量が必要である。しかしながら、Cを過剰に含有すると被削性の低下をきたし、特に、Cの含有量が0.30%を超えると、被削性の劣化が著しくなる。したがって、Cの含有量を0.10〜0.30%とした。望ましいC含有量の範囲は0.15〜0.25%である。
(A) Chemical composition C: 0.10 to 0.30%
C forms, together with N, [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are composite carbonitrides of Ti, V and Nb, and is coarsened during high-temperature carburizing. Has the effect of suppressing C also has the effect of increasing the strength of the base material (dough) after carburizing and quenching. In order to obtain such an effect, a C content of 0.10% or more is necessary. However, if C is contained excessively, the machinability is lowered. In particular, when the C content exceeds 0.30%, the machinability is significantly deteriorated. Therefore, the content of C is set to 0.10 to 0.30%. A desirable range for the C content is 0.15 to 0.25%.

Nb:0.030〜0.060%
Nbは、C及びN、更には、TiやVとともに〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を形成して、高温浸炭時における粗粒化を抑制する作用を有する。しかしながら、Nbの含有量が0.030%未満の場合には、複合炭窒化物の量と個数が少なくなり、特に、1000℃を超える高温での浸炭では、ピン止め力が低下して粗粒化抑制効果が得られない。一方、0.060%を超えて含有させても、粗粒化抑制効果は飽和するし、被削性が劣化するので、コストが嵩んで経済性を損なうばかりである。したがって、Nbの含有量を0.030〜0.060%とした。なお、Nbの含有量は0.035〜0.050%とすることが好ましい。
Nb: 0.030 to 0.060%
Nb forms [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)] together with C and N, and also Ti and V, and suppresses coarsening during high-temperature carburizing. Have However, when the content of Nb is less than 0.030%, the amount and number of composite carbonitrides are reduced. In particular, in carburizing at a high temperature exceeding 1000 ° C., the pinning force is reduced and the coarse particles It is not possible to obtain the effect of suppressing the crystallization. On the other hand, even if the content exceeds 0.060%, the effect of suppressing the coarsening is saturated and the machinability is deteriorated, so that the cost is increased and the economic efficiency is only impaired. Therefore, the Nb content is set to 0.030 to 0.060%. Note that the Nb content is preferably 0.035 to 0.050%.

Ti:0.0010〜0.0030%
Tiは、高温でも非常に安定な析出物である〔NbTi(CN)〕や〔NbTiV(CN)〕を形成し、高温浸炭時における粗粒化を抑制する作用を有する。しかしながら、Tiの含有量が0.0010%未満の場合にはその効果が乏しい。一方、Tiの含有量が0.0030%を超えると粗大なTi窒化物を生成し、これを核としてTiやVとNbの複合炭窒化物である〔NbTi(CN)〕及び〔NbTiV(CN)〕が粗大に析出するため、十分な粗粒化抑制効果を確保することができない。したがって、Tiの含有量を0.0010〜0.0030%とした。
Ti: 0.0010 to 0.0030%
Ti forms [NbTi (CN)] and [NbTiV (CN)], which are very stable precipitates even at high temperatures, and has the effect of suppressing coarsening during high-temperature carburization. However, the effect is poor when the Ti content is less than 0.0010%. On the other hand, when the Ti content exceeds 0.0030%, coarse Ti nitride is produced, and this is used as a nucleus to produce composite carbonitrides of Ti, V and Nb [NbTi (CN)] and [NbTiV (CN )] Is coarsely precipitated, so that a sufficient coarsening suppression effect cannot be ensured. Therefore, the Ti content is set to 0.0010 to 0.0030%.

V:0.005〜0.015%
Vは、高温でも非常に安定な析出物である〔NbV(CN)〕や〔NbTiV(CN)〕を形成し、高温浸炭時における粗粒化を抑制する作用を有する。しかしながら、Vの含有量が0.005%未満の場合にはその効果が乏しく、十分な粗粒化抑制効果を確保することができない。一方、Vの含有量が0.015%を超えると、粗大なV窒化物を生成し、これを核としてTiやVとNbの複合炭窒化物である〔NbV(CN)〕及び〔NbTiV(CN)〕が粗大に析出するため、十分な粗粒化抑制効果を確保することができない。したがって、Vの含有量を0.005〜0.015%とした。
V: 0.005 to 0.015%
V forms precipitates [NbV (CN)] and [NbTiV (CN)] that are very stable even at high temperatures, and has the effect of suppressing coarsening during high-temperature carburization. However, when the V content is less than 0.005%, the effect is poor, and a sufficient coarsening suppression effect cannot be ensured. On the other hand, when the content of V exceeds 0.015%, coarse V nitride is produced, and this is used as a nucleus, and is a composite carbonitride of Ti, V and Nb [NbV (CN)] and [NbTiV ( CN)] precipitates coarsely, so that a sufficient coarsening suppression effect cannot be ensured. Therefore, the content of V is set to 0.005 to 0.015%.

Al:0.060%以下
Alは、鋼の脱酸作用を有する。しかしながら、その含有量が0.060%を超えると、粗大なAlNが生成し、この粗大なAlNを核としてTiやVとNbの複合炭窒化物が凝集・粗大化するため、粗粒化防止効果が低下する。したがって、Alの含有量を0.060%以下とした。粗大なAlNの生成防止という点からは、Alの含有量は0.050%以下とすることが好ましい。なお、鋼の脱酸作用を確実に得るためには、Alの含有量を0.010%以上とすることが好ましい。
Al: 0.060% or less Al has a deoxidizing action of steel. However, when the content exceeds 0.060%, coarse AlN is generated, and the composite carbonitride of Ti, V, and Nb aggregates and coarsens with this coarse AlN as the nucleus, preventing coarsening. The effect is reduced. Therefore, the Al content is set to 0.060% or less. From the viewpoint of preventing the formation of coarse AlN, the Al content is preferably 0.050% or less. In order to surely obtain the deoxidizing action of steel, the Al content is preferably 0.010% or more.

N:0.0185〜0.0300%
Nは、Cとともに、TiやVとNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を形成して、高温浸炭時における粗粒化を抑制する作用を有する。しかしながら、その含有量が0.0185%未満では、1000℃を超える高温での浸炭の場合には、前記TiやVとNbの複合炭窒化物の析出量が不十分となって粗粒化抑制効果が得られない。一方、Nの含有量が0.0300%を超えると粗大なAlNが生成し、この粗大なAlNを核としてTiやVとNbの複合炭窒化物が凝集・粗大化するため、却って粗粒化抑制効果が低下する。したがって、Nの含有量を0.0185〜0.0300%とした。なお、Nの含有量は0.0185〜0.0250%とすることが好ましい。
N: 0.0185-0.0300%
N forms, together with C, [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are composite carbonitrides of Ti, V and Nb, and is coarsened during high-temperature carburizing. Has the effect of suppressing However, if the content is less than 0.0185%, in the case of carburizing at a high temperature exceeding 1000 ° C., the precipitation amount of the composite carbonitrides of Ti, V, and Nb becomes insufficient, thereby suppressing coarsening. The effect is not obtained. On the other hand, when the N content exceeds 0.0300%, coarse AlN is generated, and the composite carbonitride of Ti, V, and Nb aggregates and coarsens with this coarse AlN as the core, so that coarsening The suppression effect is reduced. Therefore, the N content is set to 0.0185 to 0.0300%. The N content is preferably 0.0185 to 0.0250%.

上記の理由から、本発明(1)に係る高温浸炭用鋼材の化学組成は、C、Nb、Ti、V、Al及びNを上述した範囲で含むこととした。   For the above reason, the chemical composition of the steel for high temperature carburization according to the present invention (1) includes C, Nb, Ti, V, Al, and N in the above-described range.

なお、本発明に係る高温浸炭用鋼材は、C、Nb、Ti、V、Al及びNを上述した範囲で含んでおりさえすればよいが、上記範囲のC、Nb、Ti、V、Al及びNの他に、下記の範囲のSi、Mn、P、S及びCrとともに、Ni及びMoのうちの1種又は2種を含み、残部はFe及び不純物からなる化学組成の鋼材であることが好ましい。   The steel material for high-temperature carburizing according to the present invention only needs to contain C, Nb, Ti, V, Al, and N in the above-described range, but C, Nb, Ti, V, Al, and In addition to N, together with Si, Mn, P, S and Cr in the following ranges, one or two of Ni and Mo are included, and the balance is preferably a steel material having a chemical composition composed of Fe and impurities. .

Si:0.01〜2.00%
Siは、鋼の脱酸に有効な元素であるとともに、強度及び焼入れ性を付与するのに有効な元素である。こうした効果を得るためには、Siを0.01%以上含有させることが好ましい。しかしながら、Siの含有量が2.00%を超えると、硬さの上昇を招いて被削性が劣化することがある。したがって、Siの含有量は0.01〜2.00%とすることが好ましい。
Si: 0.01 to 2.00%
Si is an element effective for deoxidizing steel, and is an element effective for imparting strength and hardenability. In order to acquire such an effect, it is preferable to contain Si 0.01% or more. However, if the Si content exceeds 2.00%, the machinability may deteriorate due to an increase in hardness. Therefore, the Si content is preferably 0.01 to 2.00%.

なお、Siは、浸炭焼入れ後の転動疲労寿命を向上させる作用を有するものの、浸炭時の内部酸化を助長する元素であり、このため内部酸化された部位が疲労き裂の起点となることがある。したがって、浸炭ままの熱処理肌で使用する場合には、Siの含有量は低めの0.01〜0.50%とすることが一層好ましい。一方、浸炭後に機械加工によって表層を除去する場合において、その強度を高くしたい場合には、Siの含有量は高めの0.50〜2.00%とすることが一層好ましい。   Si, which has the effect of improving the rolling fatigue life after carburizing and quenching, is an element that promotes internal oxidation during carburizing. For this reason, the site that is internally oxidized may become the starting point of fatigue cracks. is there. Therefore, when using it in the heat-treated skin as carburized, it is more preferable that the Si content is 0.01 to 0.50%. On the other hand, when the surface layer is removed by machining after carburizing, when it is desired to increase the strength, the Si content is more preferably set to 0.50 to 2.00%.

なお、Siを含有していても、TiやVとNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕による粗粒化抑制効果には影響がない。   In addition, even if it contains Si, the effect of suppressing coarsening by [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are composite carbonitrides of Ti, V and Nb There is no effect.

Mn:0.10〜2.00%
Mnは、鋼の焼入れ性を向上させる元素であり、浸炭焼入れ後の部品の硬さを高める作用を有する。この作用を発揮させるためには、少なくとも0.10%のMnを含有させることが好ましい。しかしながら、過剰に含有させると浸炭前の硬さが上昇して被削性の低下をきたし、特に、Mnの含有量が2.00%を超えると、浸炭前の硬さ上昇が大きくなって被削性の低下が著しくなることがあるので、Mn含有量の上限は2.00%とすることが好ましい。なお、Mn含有量の一層望ましい範囲は0.30〜1.20%である。
Mn: 0.10 to 2.00%
Mn is an element that improves the hardenability of steel and has the effect of increasing the hardness of the parts after carburizing and quenching. In order to exert this effect, it is preferable to contain at least 0.10% of Mn. However, if it is excessively contained, the hardness before carburizing is increased and machinability is lowered. In particular, when the Mn content exceeds 2.00%, the increase in hardness before carburizing is increased. Since the machinability may be significantly lowered, the upper limit of the Mn content is preferably 2.00%. A more desirable range of the Mn content is 0.30 to 1.20%.

P:0.025%以下
Pは、鋼を脆化させ、特に、その含有量が0.025%を超えると、浸炭硬化層が脆化して疲労強度等の低下を招くことがあるので、P含有量は0.025%以下とすることが好ましい。なお、Pの含有量は0.015%以下とすることが一層好ましい。
P: 0.025% or less P causes the steel to become brittle, and in particular, if its content exceeds 0.025%, the carburized hardened layer may become brittle, leading to a decrease in fatigue strength and the like. The content is preferably 0.025% or less. The P content is more preferably 0.015% or less.

S:0.10%以下
Sは、その含有量が0.10%を超えると、浸炭硬化層が脆化して疲労強度等の低下をきたすことがあるので、S含有量は0.10%以下とすることが好ましい。なお、Sには被削性を高める作用があり、この効果はSを0.02%以上含有させることで発揮されるので、前記上限規定の下で、0.02%以上のSを含有させてもよい。
S: 0.10% or less S, if its content exceeds 0.10%, the carburized hardened layer may become brittle and decrease fatigue strength, etc., so the S content is 0.10% or less. It is preferable that Note that S has an effect of improving machinability, and this effect is exhibited by containing 0.02% or more of S. Therefore, 0.02% or more of S is contained under the upper limit. May be.

Cr:0.5〜2.5%
Crは、Mnと同様に鋼の焼入れ性を向上させる元素であり、浸炭焼入れ後の部品の硬さを高める作用を有する。この作用を発揮させるためには、少なくとも0.5%のCrを含有させることが好ましい。しかしながら、2.5%を超えて含有させると、被削性が低下することがあるので、Cr含有量の上限は2.5%とすることが好ましい。なお、Cr含有量の一層望ましい範囲は0.7〜2.0%である。
Cr: 0.5 to 2.5%
Cr, like Mn, is an element that improves the hardenability of steel and has the effect of increasing the hardness of parts after carburizing and quenching. In order to exert this effect, it is preferable to contain at least 0.5% Cr. However, if the content exceeds 2.5%, the machinability may deteriorate, so the upper limit of the Cr content is preferably 2.5%. In addition, the more desirable range of Cr content is 0.7 to 2.0%.

Ni:0.1〜3.0%及びMo:0.02〜1.5%のうちの1種又は2種
Ni及びMoは、いずれも焼入れ性を向上させるのに有効な元素である。このため、部品の大きさ、形状や浸炭後の焼入れ方法に応じて、0.1%以上のNi及び0.02%以上のMoのうちの1種又は2種を含有させることが好ましい。しかしながら、これらの元素を過剰に含有させるとコストが大幅に上昇してしまうので、上記元素を含有させる場合には、その上限をNiについては3.0%、また、Moについては1.5%とすることが好ましい。
One or two of Ni: 0.1 to 3.0% and Mo: 0.02 to 1.5% Ni and Mo are both effective elements for improving the hardenability. For this reason, it is preferable to contain 1 type or 2 types in 0.1% or more of Ni and 0.02% or more of Mo according to the magnitude | size of a component, a shape, and the hardening method after carburizing. However, if these elements are contained excessively, the cost will increase significantly. Therefore, when the above elements are contained, the upper limit is 3.0% for Ni and 1.5% for Mo. It is preferable that

上記の理由から、本発明(2)に係る高温浸炭用鋼材の化学組成は、上述した範囲のC、Si、Mn、P、S、Cr、Nb、Ti、V、Al及びNを含むとともに、Ni及びMoの1種又は2種を含有し、残部はFe及び不純物からなることとした。   For the above reason, the chemical composition of the steel for high temperature carburizing according to the present invention (2) includes C, Si, Mn, P, S, Cr, Nb, Ti, V, Al, and N in the above-described ranges, One or two of Ni and Mo were contained, and the balance was made of Fe and impurities.

(B)浸炭処理前の鋼材中における炭窒化物及び窒化物
(B−1)Ti及びVのうちの1種以上とNbの複合炭窒化物及びAlN
高温浸炭時における粗粒化を防止するためには、浸炭時の結晶粒成長の駆動力に勝るピン止め力を確保するために、析出物を微細分散させておくことが必要である。
(B) Carbonitride and nitride in steel before carburizing treatment (B-1) One or more of Ti and V and Nb composite carbonitride and AlN
In order to prevent coarsening during high-temperature carburizing, it is necessary to finely disperse precipitates in order to ensure a pinning force that exceeds the driving force for crystal grain growth during carburizing.

しかしながら、従来、浸炭時の結晶粒成長を抑制するために用いられているAlNやNb(CN)では、1000℃を超えるような高温での保持時間が長くなると、固溶や凝集が進行するためピン止め力が低下し、その結果、結晶粒成長の駆動力がピン止め力に対して相対的に大きくなって粗粒化が進んでしまう。   However, with AlN and Nb (CN), which have been conventionally used to suppress crystal grain growth during carburizing, solid solution and aggregation progress when the holding time at a high temperature exceeding 1000 ° C. is increased. As a result, the pinning force decreases, and as a result, the driving force for crystal grain growth becomes relatively large with respect to the pinning force, and the coarsening proceeds.

したがって、AlNやNb(CN)よりもマトリックス中に固溶し難いTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を浸炭処理する前の段階で鋼材中に、特に、質量%で、その析出量の合計が0.010%以上となるように、析出させておく必要がある。   Therefore, it is a composite carbonitride of Nb and one or more of Ti and V and NbTi (CN)], [NbV (CN)], and [NbV (CN)] that are less soluble in the matrix than AlN and Nb (CN). NbTiV (CN)] needs to be precipitated in the steel material at a stage before carburizing treatment so that the total precipitation amount is 0.010% or more, particularly in mass%.

なお、浸炭処理前にAlNが析出しているとAlNは高温浸炭時に比較的粗大に成長する傾向があり、AlNが多量に、特に、質量%で、0.010%を超えて析出していると、その粗大なAlNを核として、前記のNbとTiやVの複合炭窒化物が凝集・粗大化しやすい。そして、前記のNbとTiやVの複合炭窒化物が粗大化した場合には、後述するように、高温浸炭時における粗粒化防止にあまり寄与しない。したがって、浸炭処理前の鋼材中におけるAlNの析出量は、質量%で、0.010%以下とする必要がある。   In addition, if AlN is precipitated before carburizing treatment, AlN tends to grow relatively coarsely during high-temperature carburizing, and a large amount of AlN is deposited, particularly, exceeding 0.010% by mass%. Then, with the coarse AlN as a nucleus, the Nb, Ti and V composite carbonitrides tend to aggregate and coarsen. And when the said composite carbonitride of Nb, Ti, and V coarsens, it does not contribute so much to the coarsening prevention at the time of high temperature carburization so that it may mention later. Therefore, the precipitation amount of AlN in the steel material before the carburizing treatment needs to be 0.010% or less in mass%.

上記の理由から、本発明においては、浸炭処理前の鋼材中における炭窒化物及び窒化物について、Ti及びVのうちの1種以上とNbの複合炭窒化物の析出量の合計が、質量%で、0.010%以上且つAlNの析出量が、質量%で、0.010%以下を満たすこととした。   For the above reasons, in the present invention, the total amount of precipitation of one or more of Ti and V and the composite carbonitride of Nb with respect to carbonitrides and nitrides in the steel material before carburizing treatment is mass%. Therefore, it was decided that 0.010% or more and the precipitation amount of AlN should satisfy 0.010% or less in terms of mass%.

(B−2)Ti及びVのうちの1種以上とNbの複合炭窒化物の寸法と個数
Ti及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕は、たとえ前記(B−1)項で述べたとおりの析出量の合計が質量%で、0.010%以上となるようにした場合であっても、その寸法と個数が特定の範囲から外れている場合には、高温浸炭時における粗粒化防止にあまり寄与しない。
(B-2) Size and number of one or more of Ti and V and Nb composite carbonitride [NbTi (CN)], which is one or more of Ti and V and Nb composite carbonitride. [NbV (CN)] and [NbTiV (CN)] are cases where the total amount of precipitation as described in the above section (B-1) is mass% and is 0.010% or more. However, when the size and number of the particles are out of a specific range, it does not contribute much to prevention of coarsening during high-temperature carburization.

すなわち、上記したNbとTiやVの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕は、AlNやNb(CN)よりもマトリックス中に固溶し難いとはいうものの、その直径に着目して、
[1]20nm以下、
[2]20nmを超えて80nm以下、
[3]80nmを超える、
の3区分に大別した場合、[3]の直径が80nmを超えるものは、粗大化しているためにピン止め作用が小さい。また、[1]の直径が20nm以下のものは、浸炭処理時にマトリックス中にほぼ固溶し、その後に[3]の直径が80nmを超えるものを成長・粗大化する傾向がある。
That is, [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are the composite carbonitrides of Nb, Ti and V, are more solid in the matrix than AlN and Nb (CN). Although it is difficult to melt, paying attention to its diameter,
[1] 20 nm or less,
[2] Over 20 nm and 80 nm or less,
[3] Over 80 nm,
If the diameter of [3] exceeds 80 nm, the pinning action is small because it is coarsened. In addition, those having a diameter of [1] of 20 nm or less tend to dissolve substantially in the matrix at the time of carburizing, and then grow and coarsen those having a diameter of [3] exceeding 80 nm.

よって、上記[1]と[3]のいずれの場合も、高温浸炭時における粗粒化防止にあまり寄与しない。   Therefore, both [1] and [3] do not contribute much to the prevention of coarsening during high-temperature carburization.

このため、NbとTiやVの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕は、1000℃を超えるような高温でもマトリックスに固溶せず、しかもピン止め効果を発揮するように、その直径が20nmを超えて80nm以下のものを析出させておく必要がある。   For this reason, [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are complex carbonitrides of Nb, Ti and V, are dissolved in the matrix even at high temperatures exceeding 1000 ° C. In addition, it is necessary to deposit one having a diameter of more than 20 nm and not more than 80 nm so as to exhibit a pinning effect.

なお、上記の直径が20nmを超えて80nm以下のNbとTiやVの複合炭窒化物が析出している場合であっても、その数が少なく、特に、その個数が合計で、300個/1000μm2を下回る場合には、粗粒化防止の効果が得られない。 In addition, even when Nb and Ti or V composite carbonitrides having a diameter of more than 20 nm and not more than 80 nm are precipitated, the number thereof is small, in particular, the total number is 300 / When it is less than 1000 μm 2 , the effect of preventing coarsening cannot be obtained.

上記の理由から、本発明においては、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で、300個/1000μm2以上であることとした。 For the above reason, in the present invention, the total number of one or more of Ti and V exceeding 20 nm in diameter and 80 nm or less and the composite carbonitride of Nb is 300/1000 μm 2 or more. did.

既に述べたように、析出物の直径とは、長径と短径の平均値、すなわち「(長径+短径)/2」を指す。   As described above, the diameter of the precipitate refers to the average value of the major axis and the minor axis, that is, “(major axis + minor axis) / 2”.

本発明に係る高温浸炭用鋼材は、例えば、次に述べるような方法で製造するのがよい。   The steel material for high temperature carburizing according to the present invention is preferably manufactured by the following method, for example.

先ず、鋼塊や鋳片を、
・加熱温度:1270℃以上、
・加熱時間:30分以上、
の条件で加熱した後、分塊圧延して鋼片に仕上げる。
First, steel ingots and slabs
-Heating temperature: 1270 ° C or higher,
・ Heating time: 30 minutes or more
After heating under the above conditions, it is rolled into pieces and finished into steel pieces.

次いで、上記鋼片を、
・昇温速度:15℃/min以上、
・加熱温度:950℃以上、
・鍛造仕上げ温度:950℃以上、
の条件で部品形状に熱間鍛造し、更に、
・鍛造仕上げ温度から700℃の平均冷却速度:60〜500℃/min、
・700〜550℃の平均冷却速度:20〜60℃/min、
の条件で冷却する。
Next, the steel piece
-Temperature rising rate: 15 ° C / min or more,
-Heating temperature: 950 ° C or higher,
-Forging finishing temperature: 950 ° C or higher,
Hot forging into the part shape under the conditions of
-Average cooling rate from forging finish temperature to 700 ° C: 60-500 ° C / min,
-Average cooling rate of 700-550 ° C: 20-60 ° C / min,
Cool under the conditions of

なお、前記のようにして分塊圧延した後、更に、
・加熱温度:1200℃以上、
・加熱時間:30分以上、
の条件で加熱した後、熱間圧延して棒鋼や線材に仕上げ、次いで、この棒鋼や線材に、先に述べたのと同じようにして、熱間鍛造と冷却を行うという方法で製造するのもよい。
In addition, after carrying out the partial rolling as described above,
-Heating temperature: 1200 ° C or higher,
・ Heating time: 30 minutes or more
After heating under the above conditions, it is hot-rolled and finished into a steel bar or wire, and then this steel bar or wire is manufactured by hot forging and cooling in the same manner as described above. Also good.

例えば、上記のようにして得た高温浸炭用鋼材を部品形状に切削加工した後に、高温浸炭処理を施すことで、所望の浸炭部品を製造することができる。   For example, a desired carburized part can be manufactured by subjecting the steel material for high-temperature carburizing obtained as described above to cutting into a part shape and then performing a high-temperature carburizing treatment.

なお、上記のようにして製造する場合、本発明の高温浸炭用鋼材の炭窒化物や窒化物を得るために最も重要であるのは、分塊圧延条件と、熱間鍛造時の昇温速度及び冷却速度である。   In the case of producing as described above, the most important thing for obtaining the carbonitride and nitride of the steel material for high-temperature carburizing of the present invention is the partial rolling conditions and the heating rate during hot forging. And the cooling rate.

分塊圧延を行うに際して、加熱温度を1270℃以上及び加熱時間を30分以上とするのがよいのは、前記温度や時間を下回ると、鋼塊や鋳片の段階で存在する大型の炭窒化物が、浸炭の直前で受ける熱履歴である熱間鍛造の後にもそのまま残存し、このため、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数の合計が、300個/1000μm2未満と減ってしまい、粗粒化が発生してしまうためである。 When performing the ingot rolling, it is preferable that the heating temperature is 1270 ° C. or higher and the heating time is 30 minutes or more. If the temperature or time is lower, the large carbonitriding that exists at the stage of steel ingot or slab Of the composite carbonitride of Nb and one or more of Ti and V having a diameter of more than 20 nm and not more than 80 nm. This is because the total number decreases to less than 300/1000 μm 2 and coarsening occurs.

本発明の高温浸炭用鋼材は、分塊圧延後や熱間圧延の冷却過程で、Ti及びVのうちの1種以上とNbの複合炭窒化物は微量ながら析出し、熱間鍛造前の状態ではこの微量な複合炭窒化物が鋼材中に存在する。また、熱間鍛造時の昇温速度が遅い場合には、Ti及びVのうちの1種以上とNbの複合炭窒化物が昇温過程で微量ながら析出する。   The steel material for high-temperature carburizing of the present invention is a state before one or more of Ti and V and a composite carbonitride of Nb is precipitated in a small amount after cooling by hot rolling or in the state before hot forging. Then, this minute amount of complex carbonitride is present in the steel material. Moreover, when the temperature rising rate at the time of hot forging is slow, one or more of Ti and V and Nb composite carbonitride precipitate in a slight amount during the temperature rising process.

加熱温度や鍛造仕上げ温度が950℃未満では、熱間鍛造時に不均一組織が生成されるので、本発明の高温浸炭用鋼材は、950℃以上に加熱して熱間鍛造し、鍛造仕上げ温度も950℃以上として製造するのが望ましい。   If the heating temperature or forging finish temperature is less than 950 ° C., a non-uniform structure is generated during hot forging. Therefore, the steel for high-temperature carburizing of the present invention is heated to 950 ° C. or more and hot forged, and the forging finish temperature is also high. It is desirable to manufacture at 950 ° C. or higher.

そして、熱間鍛造時の昇温速度が遅いと、微量ながら熱間鍛造前に存在していた複合炭窒化物や、昇温過程で微量ながら析出した複合炭窒化物は成長し、950℃程度の鍛造温度域で保持してもマトリックスには十分に固溶しきれない。そのため、熱間鍛造後の冷却過程で新たに微細析出する複合炭窒化物の数が少なくなり、結果的に、浸炭処理前の鋼材中において、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数の合計を、300個/1000μm2以上析出させることが困難となって、粗粒化を生じてしまうからである。よって、熱間鍛造時の昇温速度は15℃/min以上とするのがよい。 And if the temperature rising rate at the time of hot forging is slow, the composite carbonitride that existed before hot forging although it is a small amount, and the composite carbonitride that precipitates in a small amount during the temperature rising process grows, and is about 950 ° C. Even if kept in the forging temperature range, it cannot be sufficiently dissolved in the matrix. Therefore, the number of composite carbonitrides that are newly finely precipitated in the cooling process after hot forging decreases, and as a result, in the steel material before carburizing treatment, one of Ti and V having a diameter of more than 20 nm and not more than 80 nm. This is because it becomes difficult to precipitate the total number of the composite carbonitrides of seeds or more and Nb of 300 pieces / 1000 μm 2 or more, resulting in coarsening. Therefore, the temperature increase rate during hot forging is preferably 15 ° C./min or more.

熱間鍛造の仕上げ温度から700℃の平均冷却速度を60〜500℃/minとするのがよいのは、60℃/min未満では、脱炭が進行しやすくなり、続く700〜550℃の冷却過程で表層部において、Ti及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の析出量の合計が、質量%で、0.010%未満と少なくなってしまうためである。一方、500℃/minを超える場合では、過冷されたオーステナイトが、オーステナイトから変態したフェライト及びパーライトとともにその後の冷却過程で存在することとなって、700〜550℃の冷却過程で析出する複合炭窒化物の分散状況が不均一になり、安定して、鋼材中に、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数の合計を、300個/1000μm2以上とすることが困難となり、また、上記複合炭窒化物の析出量の合計が、質量%で、0.010%未満となってしまうためである。 The average cooling rate of 700 ° C. from the finishing temperature of hot forging is preferably 60 to 500 ° C./min. If it is less than 60 ° C./min, decarburization tends to proceed, and subsequent cooling at 700 to 550 ° C. The total amount of precipitation of [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which is a composite carbonitride of Nb and one or more of Ti and V, in the surface layer part in the process This is because the mass% is less than 0.010%. On the other hand, in the case of exceeding 500 ° C./min, the overcooled austenite is present in the subsequent cooling process together with ferrite and pearlite transformed from austenite, and thus the composite coal that precipitates in the cooling process at 700 to 550 ° C. In the steel material, the dispersion state of the nitride becomes uneven, and the total number of composite carbonitrides of one or more of Ti and V exceeding 20 nm in diameter and 80 nm or less and Nb in the steel material is 300. This is because it is difficult to set the number of particles / 1000 μm 2 or more, and the total amount of the composite carbonitride deposited is less than 0.010% by mass.

更に、上記冷却に続く700〜550℃の平均冷却速度を20〜60℃/minとするのがよいのは、20℃/min未満では、浸炭処理前の鋼材中におけるAlNの析出量が、質量%で、0.010%を超えてしまうことがあり、一方、60℃/minを超える場合では、浸炭処理前の鋼材中におけるTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の析出量の合計が、質量%で、0.010%未満となってしまうからである。   Furthermore, the average cooling rate at 700 to 550 ° C. following the above cooling is preferably 20 to 60 ° C./min. If it is less than 20 ° C./min, the precipitation amount of AlN in the steel before carburizing is On the other hand, in the case of exceeding 60 ° C./min, one or more of Ti and V in the steel material before carburizing treatment and Nb composite carbonitride. This is because the total precipitation amount of certain [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)] is less than 0.010% in mass%.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
転炉溶製後に連続鋳造して、表1に示す化学組成を有する鋼イの鋳片を作製した。なお、この鋼イは、化学組成が本発明で規定する条件を満足する鋼である。
Example 1
After the converter was melted, continuous casting was performed to produce steel slabs having the chemical composition shown in Table 1. This steel i is a steel whose chemical composition satisfies the conditions specified in the present invention.

Figure 2007291497
Figure 2007291497

上記鋼イの鋳片を、表2に示す種々の条件で加熱して分塊圧延し、180mm×180mmの鋼片とした。   The above steel slabs were heated under various conditions shown in Table 2 and subjected to ingot rolling to obtain 180 mm × 180 mm steel slabs.

次いで、上記の各鋼片を、加熱温度を1280℃、加熱時間を40分として加熱した後熱間圧延して、直径が35mmの棒鋼を製造した。   Next, each steel slab was heated at a heating temperature of 1280 ° C. and a heating time of 40 minutes and then hot-rolled to produce a steel bar having a diameter of 35 mm.

このようにして得た直径35mmの棒鋼を長さ52.5mmに切断した後1200℃に加熱し、表2に示す種々の条件で、据込みによる熱間鍛造及びその後の冷却を行い、直径が約70mmの浸炭用素材を作製した。   The steel bar having a diameter of 35 mm thus obtained was cut to a length of 52.5 mm and then heated to 1200 ° C., and under various conditions shown in Table 2, hot forging by upsetting and subsequent cooling were performed. An approximately 70 mm carburizing material was prepared.

Figure 2007291497
Figure 2007291497

熱間で据込みして作製した上記の直径が約70mmの各浸炭用素材について、そのR/2部(但し、「R」は浸炭用素材の半径を表す。)から直径10mmで長さ10mmの円筒状の試料を切り出し、電解抽出分離分析法でTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の析出量の合計及びAlNの析出量を求めた。   About each carburizing material having a diameter of about 70 mm prepared by placing it hot, 10 mm in diameter and 10 mm in length from its R / 2 part (where “R” represents the radius of the carburizing material). [NbTi (CN)], [NbV (CN)] and [NbTiV (CN), which are composite carbonitrides of Nb and one or more of Ti and V and Nb by electrolytic extraction separation analysis. )] And the precipitation amount of AlN.

ここで、電解抽出分離分析法は、下記〈1〉〜〈4〉の条件で行った。   Here, the electrolytic extraction separation analysis method was performed under the following conditions <1> to <4>.

〈1〉電解液として、所謂「10%AA−メタノール溶液」である「10%アセチルアセトン−1%塩化テトラメチルアンモニウム−メタノール溶液」を使用し、定電位(−100mV vs SCE(飽和カロメル電極))又は定電流(20mA/cm2)によって、鋼約0.5gを電解する。 <1> “10% Acetylacetone-1% Tetramethylammonium Chloride-Methanol Solution”, which is a so-called “10% AA-methanol solution”, is used as the electrolytic solution, and constant potential (−100 mV vs SCE (saturated calomel electrode)) Alternatively, about 0.5 g of steel is electrolyzed with a constant current (20 mA / cm 2 ).

〈2〉電解後、孔径が0.2μmのニュークリポアフィルターで電解残渣(電解液中で凝集した前記の複合炭窒化物及びAlN)を吸引濾過して回収する。   <2> After electrolysis, the electrolytic residue (the composite carbonitride and AlN aggregated in the electrolytic solution) with a pore size of 0.2 μm is suction filtered and collected.

〈3〉上記〈2〉によって回収した電解残渣を混酸(硫酸1、リン酸1、水1)で分解し、純水で定容してから、ICP(高周波誘導結合プラズマ)発光分光分析法又は原子吸光分析法でNb、Ti、V及びAlの定量分析を行う。   <3> The electrolytic residue recovered by the above <2> is decomposed with a mixed acid (sulfuric acid 1, phosphoric acid 1, water 1) and fixed with pure water, and then subjected to ICP (high frequency inductively coupled plasma) emission spectroscopy or Quantitative analysis of Nb, Ti, V and Al is performed by atomic absorption spectrometry.

〈4〉各元素について、上記〈3〉で求めた電解量を鋼材中の含有量(質量%)に換算し、前記複合炭窒化物の合計の析出量を上記のNb、Ti及びVの換算含有量の合計で、また、AlNの析出量を上記のAlの換算含有量で表す。   <4> For each element, the amount of electrolysis obtained in <3> above is converted into the content (mass%) in the steel material, and the total precipitation amount of the composite carbonitride is converted into the above Nb, Ti, and V conversions. The total content and the precipitation amount of AlN are represented by the above-mentioned converted content of Al.

また、前記熱間で据込みして作製した各浸炭用素材のR/2部について、抽出レプリカ法にて析出物を透過電子顕微鏡(TEM)による観察に供した。   Moreover, about the R / 2 part of each carburizing raw material produced by setting up the said hot, it used for observation with a transmission electron microscope (TEM) by the extraction replica method.

TEMにはエネルギー分散型X線検出器(EDS)を装備したものを用い、EDSによる元素分析から複合炭窒化物中に含有されるNb、Ti及びVの複合形態及び形状を確認した。   A TEM equipped with an energy dispersive X-ray detector (EDS) was used, and the composite form and shape of Nb, Ti and V contained in the composite carbonitride were confirmed from elemental analysis by EDS.

なお、複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の個数は次のようにして求めた。   The number of complex carbonitrides [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)] was determined as follows.

すなわち、直径が80nm以下のものについて、倍率が100000倍の10視野で計数し、1000μm2当りの個数に換算した。この際、直径が20nm以下のものについては計数の対象から除外した。 That is, with respect to those having a diameter of 80 nm or less, they were counted in 10 fields with a magnification of 100,000, and converted into the number per 1000 μm 2 . At this time, those having a diameter of 20 nm or less were excluded from the objects of counting.

更に、前記熱間で据込みして作製した浸炭用素材のR/2部から、直径20mmの円筒状の試験片を切り出し、粗粒化温度を調査する試験(以下、「粗粒化試験」という。)に供した。粗粒化試験は、高温浸炭のヒートパターンを模擬し、Ar雰囲気中で試験片を960〜1100℃で2時間保持することによって行った。なお、加熱保持後は水冷処理した。   Furthermore, from the R / 2 part of the carburizing material produced by setting up in the hot state, a test piece for cutting a cylindrical test piece having a diameter of 20 mm and investigating the graining temperature (hereinafter referred to as “roughening test”). It was used for. The coarsening test was performed by simulating a heat pattern of high-temperature carburization and holding the test piece at 960 to 1100 ° C. for 2 hours in an Ar atmosphere. In addition, the water cooling process was carried out after heat-holding.

このようにして得た各試験片の縦断面を鏡面研磨し、界面活性剤を添加したピクリン酸飽和水溶液で腐食した後、倍率を100倍として光学顕微鏡で観察してオーステナイト結晶粒度を測定し、異常粒が存在する混粒の発生状況、整粒部粒度及び粗粒化温度を調査した。   The vertical section of each test piece thus obtained was mirror-polished and corroded with a saturated aqueous picric acid solution to which a surfactant was added, and then observed with an optical microscope at a magnification of 100 times to measure the austenite grain size, The occurrence of mixed grains in which abnormal grains existed, the sized part size and the coarsening temperature were investigated.

なお、既に述べたように、本明細書における「混粒」、「異常粒」、「整粒部」及び「粗粒化温度」は、倍率を100倍として光学顕微鏡観察した場合における次の定義に基づくものを指す。また、混粒が発生することを「粗粒化が生じる」或いは「粗粒化する」ということも既に述べたとおりである。   As already described, “mixed grain”, “abnormal grain”, “sized part” and “roughening temperature” in the present specification are defined as follows when observed with an optical microscope at a magnification of 100: It is based on. In addition, as described above, the occurrence of mixed grains is that “coarse grains occur” or “coarse grains”.

「混粒」:視野内で最大頻度をもつ粒度番号の結晶粒から3番以上大きい結晶粒が20%以上の面積を占める状態、
「異常粒」:上記の粒度番号で3番以上大きい各々の結晶粒、
「整粒部」:異常粒の存在しない部分、
「粗粒化温度」:混粒が発生する最も低い温度。
“Mixed grain”: a state in which a crystal grain having a size of 3 or more from the grain having the largest frequency in the field of view occupies an area of 20% or more,
“Abnormal Grain”: Each crystal grain having a grain size number larger than 3
“Sized part”: the part where no abnormal grain exists,
“Roughening temperature”: the lowest temperature at which mixed grains occur.

表3に、上記の試験結果をまとめて示す。なお、表3中に斜字体で表記したオーステナイト粒度番号に対応する温度が「粗粒化温度」であり、その温度を超えた加熱温度でのオーステナイト結晶粒度は測定しなかったので「−」で示した。上記斜字体で表記したオーステナイト粒度番号は、異常粒が生じて混粒となった場合の整粒部における粒度番号を示す。   Table 3 summarizes the above test results. In Table 3, the temperature corresponding to the austenite grain number indicated in italics is “coarsening temperature”, and the austenite grain size at the heating temperature exceeding the temperature was not measured. Indicated. The austenite particle size number expressed in italics indicates the particle size number in the sized portion when abnormal particles are formed and become mixed particles.

Figure 2007291497
Figure 2007291497

表3から、本発明で規定する条件を満足する試験番号1、試験番号2及び試験番号4の場合、その粗粒化温度はいずれも1060℃以上と高く、このため、1000℃を超える高い温度で浸炭する場合にも粗粒化の発生が抑止されることが明らかである。   From Table 3, in the case of Test No. 1, Test No. 2 and Test No. 4 that satisfy the conditions specified in the present invention, the coarsening temperature is all as high as 1060 ° C. or higher, and thus a high temperature exceeding 1000 ° C. It is clear that the occurrence of coarse graining is also suppressed when carburizing with.

これに対して、化学組成が本発明で規定する条件を満足する鋼である鋼イを用いた場合であっても、浸炭処理前の鋼材中における炭窒化物及び窒化物、具体的には、Ti及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕、並びにAlNが発明で規定する条件から外れた試験番号3及び試験番号5〜8の場合、粗粒化温度は高々1000℃であって本発明の目標に達していない。   On the other hand, even when using steel A, which is a steel whose chemical composition satisfies the conditions specified in the present invention, carbonitrides and nitrides in steel before carburizing treatment, specifically, [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are complex carbonitrides of Nb and one or more of Ti and V, and AlN deviate from the conditions specified in the invention. In the case of Test No. 3 and Test Nos. 5 to 8, the coarsening temperature is 1000 ° C. at most and does not reach the target of the present invention.

すなわち、試験番号3の場合、浸炭処理前の鋼材中における直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で300個/1000μm2未満であるため、粗粒化温度は980℃という低い温度であった。 That is, in the case of test number 3, the total number of one or more of Ti and V in the steel material before carburizing treatment exceeding 20 nm and 80 nm or less and the composite carbonitride of Nb is less than 300/1000 μm 2. Therefore, the coarsening temperature was as low as 980 ° C.

試験番号5及び試験番号8の場合、浸炭処理前の鋼材中におけるTi及びVのうちの1種以上とNbの複合炭窒化物の析出量の合計が、質量%で、0.010%未満である。このため、試験番号5の粗粒化温度は1000℃、また、試験番号8の粗粒化温度は980℃であった。   In the case of Test No. 5 and Test No. 8, the total precipitation amount of one or more of Ti and V and Nb composite carbonitride in the steel material before carburizing treatment is less than 0.010% by mass%. is there. For this reason, the coarsening temperature of Test No. 5 was 1000 ° C., and the coarsening temperature of Test No. 8 was 980 ° C.

また、試験番号6の場合、浸炭処理前の鋼材中におけるTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の析出量の合計が、質量%で、0.010%未満で、しかも直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で300個/1000μm2未満であるため、粗粒化温度は960℃という極めて低い温度であった。 In the case of test number 6, one or more of Ti and V in the steel material before carburizing treatment and Nb composite carbonitride [NbTi (CN)], [NbV (CN)] and [NbTiV ( CN)] is the total of the number of composite carbonitrides of Nb and one or more of Ti and V of less than 0.010% and more than 20 nm in diameter and 80 nm or less in mass%. because in less than 300/1000 .mu.m 2, grain coarsening temperature was extremely low temperature of 960 ° C..

更に、試験番号7の場合、浸炭処理前の鋼材中におけるAlNの析出量が、質量%で、0.010%を超えるため、粗粒化温度は1000℃であった。   Furthermore, in the case of the test number 7, since the precipitation amount of AlN in the steel material before carburizing treatment is mass% and exceeds 0.010%, the coarsening temperature was 1000 ° C.

(実施例2)
転炉溶製後に連続鋳造して、表4に示す化学組成を有する鋼A1〜A12及び鋼B1〜B8の鋳片を作製した。表4中の鋼A1〜A12は、化学組成が本発明で規定する範囲内にある鋼である。一方、鋼B1〜B8は、化学組成が本発明で規定する条件から外れた比較例の鋼である。
(Example 2)
Continuous casting was performed after converter melting, and steel A1 to A12 and steel B1 to B8 slabs having chemical compositions shown in Table 4 were produced. Steels A1 to A12 in Table 4 are steels whose chemical compositions are within the range defined by the present invention. On the other hand, steel B1-B8 is steel of the comparative example from which the chemical composition remove | deviated from the conditions prescribed | regulated by this invention.

なお、鋼A1は基本鋼である。この鋼A1に対して、鋼A2及び鋼A3ではNb含有量を、鋼A4及び鋼A5ではTi含有量を、鋼A6及びA7鋼ではV含有量を、鋼A8ではAl含有量を、また、鋼A9及び鋼A10ではN含有量を、それぞれ、単独に変化させた。鋼A11は、鋼A1に対し、Moを非添加としNiの単独添加とした。鋼A12では、鋼A1に対し、NiとMoを複合添加した。   Steel A1 is basic steel. With respect to this steel A1, Nb content in steel A2 and steel A3, Ti content in steel A4 and steel A5, V content in steels A6 and A7, Al content in steel A8, and In Steel A9 and Steel A10, the N content was changed independently. In steel A11, Mo was not added to steel A1, and Ni was added alone. In steel A12, Ni and Mo were added in combination to steel A1.

一方、鋼A1に対して、鋼B1はNb含有量を低めに、鋼B2はTi含有量を低めに、鋼B3はTi含有量を高めに、鋼B4はV含有量を低めに、鋼B5はV含有量を高めに、鋼B6はAl含有量を高めに、鋼B7はN含有量を低めに、また、鋼B8はN含有量を高めに変化させた。   On the other hand, with respect to steel A1, steel B1 has a lower Nb content, steel B2 has a lower Ti content, steel B3 has a higher Ti content, steel B4 has a lower V content, steel B5 In order to increase the V content, steel B6 was changed to increase the Al content, steel B7 was changed to lower the N content, and steel B8 was changed to increase the N content.

Figure 2007291497
Figure 2007291497

上記の各鋳片に、1300℃で50分保持の加熱(溶体化処理)を行った後、分塊圧延して180mm×180mmの鋼片を作製した。   Each of the above slabs was heated at 1300 ° C. for 50 minutes (solution treatment) and then rolled into pieces to produce 180 mm × 180 mm steel pieces.

次いで、上記の各鋼片を、加熱温度を1270℃、加熱時間を35分として加熱した後、熱間圧延を行って直径が35mmの棒鋼を製造した。   Next, each steel slab was heated at a heating temperature of 1270 ° C. and a heating time of 35 minutes, and then hot-rolled to produce a steel bar having a diameter of 35 mm.

このようにして得た直径35mmの棒鋼を長さ52.5mmに切断した後、下記の条件で据込みによる熱間鍛造及びその後の冷却を行い、直径が約70mmの浸炭用素材を作製した。   The steel bar having a diameter of 35 mm thus obtained was cut into a length of 52.5 mm, and then hot forging by upsetting and subsequent cooling were performed under the following conditions to produce a carburizing material having a diameter of about 70 mm.

・昇温速度:20℃/min、
・加熱温度:1280℃、
・鍛造仕上げ温度:1020℃、
・鍛造仕上げ温度から700℃の平均冷却速度:65℃/min、
・700〜550℃の平均冷却速度:20℃/min。
-Temperature rising rate: 20 ° C / min,
-Heating temperature: 1280 ° C
-Forging finishing temperature: 1020 ° C
-Average cooling rate from forging finish temperature to 700 ° C: 65 ° C / min,
-Average cooling rate of 700 to 550 ° C: 20 ° C / min.

上記の熱間で据込みして作製した直径が約70mmの各浸炭用素材について、そのR/2部から直径10mmで長さ10mmの円筒状の試料を切り出し、電解抽出分離分析法でTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の析出量の合計及びAlNの析出量を求めた。   About each carburizing material having a diameter of about 70 mm produced by placing the above hot, a cylindrical sample having a diameter of 10 mm and a length of 10 mm is cut out from the R / 2 part, and Ti and the electrolytic extraction separation analysis method are used. The total amount of precipitation of [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are complex carbonitrides of one or more of V and Nb, and the amount of precipitation of AlN were determined.

なお、電解抽出分離分析法は、前記の実施例1の場合と同じ下記の〈1〉〜〈4〉の条件で行った。   The electrolytic extraction separation analysis method was performed under the following conditions <1> to <4> that are the same as those in the case of Example 1.

すなわち、
〈1〉電解液として、所謂「10%AA−メタノール溶液」を使用し、定電位(−100mV vs SCE(飽和カロメル電極))又は定電流(20mA/cm2)によって、鋼約0.5gを電解する。
That is,
<1> A so-called “10% AA-methanol solution” is used as an electrolyte, and about 0.5 g of steel is obtained by constant potential (−100 mV vs SCE (saturated calomel electrode)) or constant current (20 mA / cm 2 ). Electrolyze.

〈2〉電解後、孔径が0.2μmのニュークリポアフィルターで電解残渣(電解液中で凝集した前記の複合炭窒化物及びAlN)を吸引濾過して回収する。   <2> After electrolysis, the electrolytic residue (the composite carbonitride and AlN aggregated in the electrolytic solution) with a pore size of 0.2 μm is suction filtered and collected.

〈3〉上記〈2〉によって回収した電解残渣を混酸(硫酸1、リン酸1、水1)で分解し、純水で定容してから、ICP発光分光分析法又は原子吸光分析法でNb、Ti、V及びAlの定量分析を行う。   <3> The electrolytic residue recovered by the above <2> is decomposed with a mixed acid (sulfuric acid 1, phosphoric acid 1, water 1), and the volume is adjusted with pure water, and then Nb by ICP emission spectrometry or atomic absorption spectrometry. Quantitative analysis of Ti, V and Al is performed.

〈4〉各元素について、上記〈3〉で求めた電解量を鋼材中の含有量(質量%)に換算し、前記複合炭窒化物の合計の析出量を上記のNb、Ti及びVの換算含有量の合計で、また、AlNの析出量を上記のAlの換算含有量で表す。   <4> For each element, the amount of electrolysis obtained in <3> above is converted into the content (mass%) in the steel material, and the total precipitation amount of the composite carbonitride is converted into the above Nb, Ti, and V conversions. The total content and the precipitation amount of AlN are represented by the above-mentioned converted content of Al.

また、前記熱間で据込みして作製した各浸炭用素材のR/2部について、抽出レプリカ法にて析出物をTEMによる観察に供した。   Moreover, about the R / 2 part of each carburizing material produced by setting up in the said hot, the deposit was used for observation by TEM by the extraction replica method.

TEMにはEDSを装備したものを用い、EDSによる元素分析から複合炭窒化物中に含有するNb、Ti及びVの複合形態及び形状を確認した。   A TEM equipped with EDS was used, and the composite form and shape of Nb, Ti and V contained in the composite carbonitride were confirmed from elemental analysis by EDS.

なお、複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の個数は前記の実施例1の場合と同様に、次のようにして求めた。   The number of [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)], which are composite carbonitrides, was determined as follows in the same manner as in Example 1.

すなわち、直径が80nm以下のものについて、倍率が100000倍の10視野で計数し、1000μm2当りの個数に換算した。この際、直径が20nm以下のものについては計数の対象から除外した。 That is, with respect to those having a diameter of 80 nm or less, they were counted in 10 fields with a magnification of 100,000, and converted into the number per 1000 μm 2 . At this time, those having a diameter of 20 nm or less were excluded from the objects of counting.

更に、前記熱間で据込みして作製した浸炭用素材のR/2部から、直径20mmの円筒状の試験片を切り出し、粗粒化試験に供した。この粗粒化試験も、高温浸炭のヒートパターンを模擬し、Ar雰囲気中で試験片を960〜1100℃で2時間保持することによって行った。なお、加熱保持後は水冷処理した。   Furthermore, a cylindrical test piece having a diameter of 20 mm was cut out from the R / 2 part of the carburizing material produced by setting up in the hot state and subjected to a coarsening test. This coarsening test was also performed by simulating a heat pattern of high-temperature carburization and holding the test piece at 960 to 1100 ° C. for 2 hours in an Ar atmosphere. In addition, the water cooling process was carried out after heat-holding.

このようにして得た各試験片の縦断面を鏡面研磨し、界面活性剤を添加したピクリン酸飽和水溶液で腐食した後、倍率を100倍として光学顕微鏡で観察してオーステナイト結晶粒度を測定し、異常粒が存在する混粒の発生状況、整粒部粒度及び粗粒化温度を調査した。   The vertical section of each test piece thus obtained was mirror-polished and corroded with a saturated aqueous picric acid solution to which a surfactant was added, and then observed with an optical microscope at a magnification of 100 times to measure the austenite grain size, The occurrence of mixed grains in which abnormal grains existed, the sized part size and the coarsening temperature were investigated.

表5に、上記の試験結果をまとめて示す。なお、表5中に斜字体で表記したオーステナイト粒度番号に対応する温度が「粗粒化温度」であり、その温度を超えた加熱温度でのオーステナイト結晶粒度は測定しなかったので「−」で示した。上記斜字体で表記したオーステナイト粒度番号は、異常粒が生じて混粒となった場合の整粒部における粒度番号を示す。   Table 5 summarizes the above test results. In Table 5, the temperature corresponding to the austenite grain number indicated in italics is “coarsening temperature”, and the austenite grain size at the heating temperature exceeding that temperature was not measured. Indicated. The austenite particle size number expressed in italics indicates the particle size number in the sized portion when abnormal particles are formed and become mixed particles.

Figure 2007291497
Figure 2007291497

表5から、本発明で規定する条件を満たす試験番号9〜20の場合、その粗粒化温度はいずれも1020℃以上と高く、このため、1000℃を超える高い温度で浸炭する場合にも粗粒化の発生が抑止されることが明らかである。   From Table 5, in the case of test numbers 9 to 20 that satisfy the conditions specified in the present invention, the coarsening temperature is as high as 1020 ° C. or higher, and therefore, even when carburizing at a high temperature exceeding 1000 ° C. It is clear that the occurrence of granulation is suppressed.

これに対して、本発明で規定する条件から外れた比較例の試験番号21〜28の場合、粗粒化温度は高々1000℃であって本発明の目標に達していない。   On the other hand, in the case of test numbers 21 to 28 of comparative examples that deviate from the conditions defined in the present invention, the coarsening temperature is at most 1000 ° C. and does not reach the target of the present invention.

試験番号21、試験番号22、試験番号24及び試験番号27は、それぞれ、鋼B1、鋼B2、鋼B4及び鋼B7におけるNb、Ti、V及びNの含有量が本発明で規定する値よりも低いため、いずれも、浸炭処理前の鋼材中におけるTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の析出量の合計が、質量%で、0.010%を下回り、しかも直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で300個/1000μm2未満であるため、粗粒化温度が低い。 Test No. 21, Test No. 22, Test No. 24 and Test No. 27 are more than the values specified in the present invention for the contents of Nb, Ti, V and N in Steel B1, Steel B2, Steel B4 and Steel B7, respectively. Since both are low, both are one or more of Ti and V in the steel material before carburizing treatment and Nb composite carbonitride [NbTi (CN)], [NbV (CN)] and [NbTiV (CN) The total number of precipitated carbonic nitrides is less than 0.010% in mass% and more than one type of Ti and V exceeding 20 nm in diameter and not more than 80 nm and Nb combined carbonitride. Since the number of particles is less than 1000 μm 2 , the coarsening temperature is low.

試験番号23は、鋼B3におけるTiの含有量が本発明で規定する値よりも高いため、また、試験番号25は、鋼B5におけるVの含有量が本発明で規定する値よりも高いため、それぞれ、粗大なTi窒化物(TiN)及びV窒化物(VN)を生成し、これを核としてTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕が析出する。このため、浸炭処理前の鋼材中における直径20nmを超えて80nm以下の前記複合炭窒化物の個数の合計は300個/1000μm2未満であって、粗粒化温度が低い。 Test number 23 is because the Ti content in steel B3 is higher than the value specified in the present invention, and test number 25 is because the V content in steel B5 is higher than the value specified in the present invention. Respectively, coarse Ti nitride (TiN) and V nitride (VN) are produced, and this is used as a nucleus and is a composite carbonitride of one or more of Ti and V and Nb [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)] are precipitated. For this reason, the total number of the composite carbonitrides having a diameter exceeding 20 nm and not more than 80 nm in the steel material before carburizing is less than 300/1000 μm 2 , and the coarsening temperature is low.

試験番号26は、鋼B6におけるAlの含有量が本発明で規定する値よりも高いため、また、試験番号28は、鋼B8におけるNの含有量が本発明で規定する値よりも高いため、いずれも、浸炭処理前の鋼材中におけるAlNの析出量が0.010%を超え、また、粗大なAlNの生成に伴い、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物である〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕の個数が合計で300個/1000μm2未満であるため、粗粒化温度が低い。 Test number 26 is because the content of Al in steel B6 is higher than the value specified in the present invention, and test number 28 is because the content of N in steel B8 is higher than the value specified in the present invention. In any case, the precipitation amount of AlN in the steel material before carburizing treatment exceeds 0.010%, and with the generation of coarse AlN, one or more of Ti and V having a diameter exceeding 20 nm and not exceeding 80 nm and Since the total number of Nb composite carbonitrides [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)] is less than 300/1000 μm 2 , the coarsening temperature is low.

本発明の高温浸炭用鋼材の粗粒化温度は1000℃を超える高い温度であるので、機械構造部品の素材に本発明の高温浸炭用鋼材を用いれば、1000℃を超える高い温度で浸炭する場合にも粗粒化の発生を確実に抑止でき、浸炭時間の短縮による製造コストの合理化が行える。更に、本発明の高温浸炭用鋼材を用いる場合は、浸炭前の焼準処理を省略できるという効果も生じる。   Since the coarsening temperature of the steel material for high-temperature carburizing of the present invention is a high temperature exceeding 1000 ° C., if the steel material for high-temperature carburizing of the present invention is used as the material for machine structural parts, carburizing at a high temperature exceeding 1000 ° C. In addition, the occurrence of coarsening can be reliably suppressed, and the manufacturing cost can be rationalized by shortening the carburizing time. Furthermore, when using the steel material for high-temperature carburizing of the present invention, there is an effect that the normalizing treatment before carburizing can be omitted.

Claims (2)

質量%で、C:0.10〜0.30%、Nb:0.030〜0.060%、Ti:0.0010〜0.0030%、V:0.005〜0.015%、Al:0.060%以下及びN:0.0185〜0.0300%を含有し、浸炭処理前の鋼材中における炭窒化物及び窒化物について、Ti及びVのうちの1種以上とNbの複合炭窒化物の析出量の合計が質量%で0.010%以上、且つAlNの析出量が質量%で0.010%以下を満たすとともに、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で、300個/1000μm2以上であることを特徴とする高温浸炭用鋼材。
但し、Ti及びVのうちの1種以上とNbの複合炭窒化物とは、〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を指す。
In mass%, C: 0.10 to 0.30%, Nb: 0.030 to 0.060%, Ti: 0.0010 to 0.0030%, V: 0.005 to 0.015%, Al: About 0.060% or less and N: 0.0185 to 0.0300%, and carbonitride and nitride in steel before carburizing treatment, one or more of Ti and V and Nb combined carbonitriding One of Ti and V having a diameter exceeding 20 nm and not more than 80 nm, with the total amount of precipitation satisfying 0.010% or more by mass%, and the amount of precipitation of AlN satisfying 0.010% or less by mass% A steel material for high-temperature carburizing, characterized in that the total number of composite carbonitrides of Nb and Nb is 300/1000 μm 2 or more.
However, one or more of Ti and V and Nb composite carbonitride refers to [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)].
質量%で、C:0.10〜0.30%、Si:0.01〜2.00%、Mn:0.10〜2.00%、P:0.025%以下、S:0.10%以下、Cr:0.5〜2.5%、Nb:0.030〜0.060%、Ti:0.0010〜0.0030%、V:0.005〜0.015%、Al:0.060%以下及びN:0.0185〜0.0300%を含むとともに、Ni:0.1〜3.0%及びMo:0.02〜1.5%のうちの1種又は2種を含有し、残部はFe及び不純物からなり、浸炭処理前の鋼材中における炭窒化物及び窒化物について、Ti及びVのうちの1種以上とNbの複合炭窒化物の析出量の合計が質量%で0.010%以上、且つAlNの析出量が質量%で0.010%以下を満たすとともに、直径20nmを超えて80nm以下のTi及びVのうちの1種以上とNbの複合炭窒化物の個数が合計で、300個/1000μm2以上であることを特徴とする高温浸炭用鋼材。
但し、Ti及びVのうちの1種以上とNbの複合炭窒化物とは、〔NbTi(CN)〕、〔NbV(CN)〕及び〔NbTiV(CN)〕を指す。
In mass%, C: 0.10 to 0.30%, Si: 0.01 to 2.00%, Mn: 0.10 to 2.00%, P: 0.025% or less, S: 0.10 % Or less, Cr: 0.5 to 2.5%, Nb: 0.030 to 0.060%, Ti: 0.0010 to 0.0030%, V: 0.005 to 0.015%, Al: 0 0.060% or less and N: 0.0185 to 0.0300% and Ni: 0.1 to 3.0% and Mo: 0.02 to 1.5% or one or two of them The balance consists of Fe and impurities, and for the carbonitrides and nitrides in the steel before carburization, the total precipitation amount of one or more of Ti and V and the composite carbonitride of Nb is mass%. 0.010% or more, and the precipitation amount of AlN satisfies 0.010% or less in terms of mass%, and the diameter exceeds 8 nm and is 8 by the number of one or more composite carbonitride of Nb of nm or less Ti and V in total, 300 / high temperature carburizing steel, characterized in that at 1000 .mu.m 2 or more.
However, one or more of Ti and V and Nb composite carbonitride refers to [NbTi (CN)], [NbV (CN)] and [NbTiV (CN)].
JP2007025159A 2006-03-30 2007-02-05 High temperature carburizing steel Expired - Fee Related JP4775276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025159A JP4775276B2 (en) 2006-03-30 2007-02-05 High temperature carburizing steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006093597 2006-03-30
JP2006093597 2006-03-30
JP2007025159A JP4775276B2 (en) 2006-03-30 2007-02-05 High temperature carburizing steel

Publications (2)

Publication Number Publication Date
JP2007291497A true JP2007291497A (en) 2007-11-08
JP4775276B2 JP4775276B2 (en) 2011-09-21

Family

ID=38762387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025159A Expired - Fee Related JP4775276B2 (en) 2006-03-30 2007-02-05 High temperature carburizing steel

Country Status (1)

Country Link
JP (1) JP4775276B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371522A (en) * 1991-06-21 1992-12-24 Daido Steel Co Ltd Production of steel products for carburization
JPH10168543A (en) * 1996-12-13 1998-06-23 Sumitomo Metal Ind Ltd Grain coarsening resistance case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof
JP2005256142A (en) * 2004-03-15 2005-09-22 Sanyo Special Steel Co Ltd Method for producing high temperature carburized steel excellent in grain-coarsening resistance and machinability
JP2006291335A (en) * 2005-04-14 2006-10-26 Kobe Steel Ltd Steel for case hardening having excellent high temperature carburizing characteristic and workability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04371522A (en) * 1991-06-21 1992-12-24 Daido Steel Co Ltd Production of steel products for carburization
JPH10168543A (en) * 1996-12-13 1998-06-23 Sumitomo Metal Ind Ltd Grain coarsening resistance case hardening steel, surface hardened parts excellent in strength and toughness, and production thereof
JP2005256142A (en) * 2004-03-15 2005-09-22 Sanyo Special Steel Co Ltd Method for producing high temperature carburized steel excellent in grain-coarsening resistance and machinability
JP2006291335A (en) * 2005-04-14 2006-10-26 Kobe Steel Ltd Steel for case hardening having excellent high temperature carburizing characteristic and workability

Also Published As

Publication number Publication date
JP4775276B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4712882B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
EP1669469B1 (en) Steel parts for machine structure, material therefor, and method for manufacture thereof
JP4699341B2 (en) High strength hot forged non-tempered steel parts with excellent fatigue limit ratio
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5858204B2 (en) Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material
TW201708568A (en) Wire for bolt excellent in acid cleaning property and delayed fracture resistance after quenching and tempering, and bolt
JP4899902B2 (en) High temperature carburizing steel
JP2008127595A (en) High strength hot forged non-heat treated steel having excellent fatigue limit ratio and toughness
JP2020050916A (en) Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor
JP2008127596A (en) High strength cold forged non-heat treated steel having excellent fatigue limit ratio
CN114829636A (en) Martensitic stainless steel for high hardness-high corrosion resistance applications having excellent cold workability and method for producing same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP2015028206A (en) Case hardening steel
CN113366136A (en) High carbon hot-rolled steel sheet and method for producing same
WO2015115336A1 (en) Case hardening steel and carburized component obtained therefrom
JP2005200667A (en) Steel for high temperature carburizing, and manufacturing method therefor
WO2010109702A1 (en) Cold-rolled steel sheet
TWI776112B (en) Matian loose iron series stainless steel with excellent cold workability and high hardness and high corrosion resistance and its production method
JP4775276B2 (en) High temperature carburizing steel
JP4020822B2 (en) Soft nitrided parts with excellent fatigue characteristics and manufacturing method thereof
JP2005163168A (en) Production method for high-temperature carburizing steel capable of omitting normalizing after hot forging
JP2006161142A (en) Case-hardening rolled bar steel having excellent high temperature carburizing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4775276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees