JP2007291435A - Method for measuring refractory profile in converter - Google Patents
Method for measuring refractory profile in converter Download PDFInfo
- Publication number
- JP2007291435A JP2007291435A JP2006119520A JP2006119520A JP2007291435A JP 2007291435 A JP2007291435 A JP 2007291435A JP 2006119520 A JP2006119520 A JP 2006119520A JP 2006119520 A JP2006119520 A JP 2006119520A JP 2007291435 A JP2007291435 A JP 2007291435A
- Authority
- JP
- Japan
- Prior art keywords
- converter
- furnace
- profile
- gas
- refractory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、レーザー等の光波利用の非接触型距離計を用いて転炉用耐火物のプロフィールを高精度に測定する方法に関する。 The present invention relates to a method for measuring a profile of a refractory for a converter with high accuracy using a non-contact distance meter using a light wave such as a laser.
転炉内側に張られている耐火物は、溶鋼によって次第に浸食されるが、必ずしも均一に損傷するのではなく、局部的な損傷をまぬがれず、そのような部分は補修しながら使用するのが一般的である。従ってその補修や耐火物の張替え時期を把握するために、耐火物の劣化状況を診断する必要がある。従来は、接触センサーを耐火物容器の内壁に接触させながら耐火物プロフィールを測定するものがあったが、高温の耐火物には適用できないため、冷却するまで待つ必要があった。 Although the refractories stretched inside the converter are gradually eroded by molten steel, they are not necessarily uniformly damaged, they do not get rid of local damage, and such parts are generally used while being repaired. Is. Therefore, it is necessary to diagnose the deterioration status of the refractory in order to grasp the repair time and the replacement time of the refractory. Conventionally, there is a device that measures a refractory profile while bringing a contact sensor into contact with the inner wall of a refractory container.
一方、非接触型距離計を用いたものとして、特許文献1に示されるような光波距離計を耐火物容器の内側に挿入し、耐火物の近傍から耐火物との間の距離を測定することで耐火物プロフィールを測定するものがあった。
On the other hand, using a non-contact distance meter, a light wave distance meter as shown in
しかしながら、特許文献1のような非接触センサーであっても、転炉内の耐火物の温度がある程度下がってからでないと耐火物のプロフィールの測定はできず、しかも転炉のように高温でしかも出鋼後に転炉内部に粉塵等が残存する場合には、粉塵等がノイズとなって測定誤差が大きくなってしまう課題があった。
従って本発明は、レーザー等の光波利用の非接触型距離計を用いて高温の転炉耐火物のプロフィールを測定する際に、粉塵等の影響を受けずに高精度に測定を行うことができるようにすることを課題とするものである。 Therefore, when measuring the profile of a high-temperature converter refractory using a non-contact distance meter using light waves such as a laser, the present invention can perform measurement with high accuracy without being affected by dust or the like. The problem is to do so.
上記の課題を解決するためになされた本発明の要旨は以下の通りである。
(1) 転炉耐火物のプロフィールを非接触型距離計を用いて測定する際、転炉から溶鋼を出鋼し、排滓した後に炉底羽口から単位時間あたり炉容積の10%以上のガス流速でガスを吹き込んで炉内粉塵濃度を低下させ、ついで、転炉の炉口前方位置に設置した光波利用の非接触型距離計を用いて前記プロフィールを測定することを特徴とする転炉耐火物プロフィール測定方法。
(2) 炉底羽口から吹き込むガスのトータル量を炉内容量の1.2倍以上とすることを特徴とする(1)記載の転炉耐火物プロフィール測定方法。
The gist of the present invention made to solve the above problems is as follows.
(1) When measuring the profile of the converter refractory using a non-contact distance meter, the molten steel is removed from the converter, and after it is discharged, the furnace bottom has a volume of 10% or more of the furnace volume per unit time. A converter characterized in that gas is blown at a gas flow rate to reduce the dust concentration in the furnace, and then the profile is measured using a non-contact distance meter using light waves installed at a position in front of the furnace port of the converter. Refractory profile measurement method.
(2) The converter refractory profile measuring method according to (1), wherein the total amount of gas blown from the furnace bottom tuyere is 1.2 times or more of the furnace internal capacity.
本発明によれば、転炉のように出鋼後に粉塵等が残存しても、高温の耐火物のプロフィールの測定を高精度で行うことが可能となる。 According to the present invention, it is possible to measure the profile of a high-temperature refractory with high accuracy even if dust or the like remains after steel output as in a converter.
以下、光波利用の非接触型の距離計としてレーザー距離計を用いた場合を例に本発明を説明する。
上底吹き転炉では、転炉にスクラップ等の冷鉄源と溶銑を装入後、ランスを用いて酸素を吹き込みながら炉底から攪拌ガスを吹き込み、炭素を燃焼させて所定の成分・温度の溶鋼にして出鋼しており、さらに炉内に残ったスラグも排滓している。従って排滓直後の炉内には粉塵が多数残っており、それによってレーザー距離計から発信したレーザーが散乱したり、炉壁に衝突後の反射したレーザーの強度が低下したりして、測定誤差が大きくなったり、あるいは測定不能になったりしていた。
Hereinafter, the present invention will be described by taking as an example the case of using a laser distance meter as a non-contact distance meter utilizing light waves.
In the top-bottom blown converter, a cold iron source such as scrap and hot metal are charged into the converter, and then agitation gas is blown from the furnace bottom while blowing oxygen using a lance, and carbon is burned to achieve a predetermined component and temperature. Molten steel is discharged and slag remaining in the furnace is also removed. Therefore, a lot of dust remains in the furnace immediately after evacuation, so that the laser emitted from the laser rangefinder is scattered and the intensity of the reflected laser after collision with the furnace wall decreases, resulting in a measurement error. Has become larger or impossible to measure.
従来は粉塵が収まるまでしばらく静置して時間をおけば良かったものの、時間をかければかけるほど転炉の非稼働時間が長くなり稼働率は低下してしまい、さらに転炉の耐火物の温度も低下してしまうために、次の転炉吹錬時の溶銑受銑には転炉耐火物の温度偏差が大きくなり耐火物に悪影響を及ぼす恐れがあった。
そこで、本発明者らは、粉塵の排出方法について鋭意検討した。その結果、吹錬時に炉底から吹き込むガスを活用して炉口から粉塵を排出させてやれば、粉塵による誤差の影響を最小限に抑えて精度良く測定できることを知見した。
In the past, it was better to leave it for a while until the dust settled, but the longer it took, the longer the non-operation time of the converter, the lower the operation rate, and the temperature of the refractory of the converter As a result, the temperature deviation of the converter refractory increases in the hot metal receiving during the next converter blowing, which may adversely affect the refractory.
Therefore, the present inventors diligently studied a method for discharging dust. As a result, we have found that if the gas blown from the bottom of the furnace is used to discharge dust from the furnace port, the measurement can be performed accurately with minimal influence of dust.
図1は、370ton転炉(炉容積320m3)を用いて、炉底からの単位時間あたりのガス吹き込み流量を3水準(25Nm3/min:炉容積の8%、32Nm3/min:炉容積の10%、70Nm3/min:炉容積の22%)変え、さらに吹き込み時間を変えて、それぞれのレーザー距離計による転炉内測定不良発生率(全く測定不可能であった割合)の調査結果を示している。図1より単位時間あたりの吹き込みガス流量が増加するにつれ不良発生率は徐々に減少することが判る。
FIG. 1 shows a 370 ton converter (furnace capacity: 320 m 3 ) and three levels of gas injection flow rate per unit time from the furnace bottom (25 Nm 3 / min: 8% of the furnace volume, 32 Nm 3 / min:
これは、炉底から吹き込まれるガスが炉内粉塵を炉口から排出させることによって、粉塵によるレーザー距離計に及ぼす影響が小さくなるものと考えられる。特に32Nm3/min未満では吹き込み時間を増加させても不良発生率はなかなか減少しなかったが、32Nm3/min以上では明らかに挙動が異なり、ガス吹き込み開始からそれほど時間を要せず、次の精錬の準備時間程度で且つ実機操業の際に大きなトラブル発生せずに支障をきたさない許容の不良発生率である5%以下となることが判明した。 This is considered to be because the gas blown from the bottom of the furnace causes the dust in the furnace to be discharged from the furnace port, thereby reducing the influence of the dust on the laser distance meter. In particular, when the blowing time was increased at less than 32 Nm 3 / min, the defect occurrence rate did not decrease easily, but at 32 Nm 3 / min or more, the behavior was clearly different, and it took less time from the start of gas blowing. It has been found that it is about 5% or less, which is an acceptable defect occurrence rate that does not cause trouble without causing a major trouble during the refining preparation time and operation of the actual machine.
32Nm3/min未満すなわち炉容積の10%未満であっても不良発生率低減効果はあるものの、32Nm3/min以上で不良発生率5%以下に達するまでの経過時間が著しく短縮できる原因としては、炉内のレンガ・スラグなどから発生する熱影響の抑制があるものと考えられる。
一般的に、転炉出鋼後の炉内レンガ温度は、溶鋼の温度やレンガの材質による差異はあるものの、1300〜1600℃の高温である。従って高温となったレンガからは、主として輻射による影響で、レンガ温度に見合った熱流束が発生する。このために炉内で発生する粉塵は、浮遊し前述のような測定上の障害を引き起こしている。ガスを吹き込む際に前述の粉塵の炉外への排出のみでなく、粉塵を浮遊させる元凶である輻射熱の影響を軽減させることが出来れば、不良発生率が5%以下まで迅速に到達することに繋がる。
Even if it is less than 32 Nm 3 / min, that is, less than 10% of the furnace volume, although there is an effect of reducing the defect occurrence rate, there is a reason that the elapsed time until the defect occurrence rate reaches 5% or less at 32 Nm 3 / min or more can be significantly shortened. It is thought that there is a suppression of the heat effect generated from bricks and slag in the furnace.
Generally, the brick temperature in the furnace after the converter steel is a high temperature of 1300 to 1600 ° C. although there are differences depending on the temperature of the molten steel and the material of the brick. Therefore, a heat flux corresponding to the brick temperature is generated from the brick that has become high temperature mainly due to the influence of radiation. For this reason, the dust generated in the furnace floats and causes the above-mentioned measurement obstacles. If the influence of radiant heat, which is the main cause of floating dust, can be reduced in addition to the above-mentioned discharge of dust to the outside of the furnace when gas is blown, the defect occurrence rate will quickly reach 5% or less. Connected.
従って図1に示したように、炉底からのガス流量を32Nm3/min以上にした場合に炉内より発生する熱流束に打ち勝つような冷却能力を有し、炉内粉塵濃度を測定に差し支えのないところまで、安定かつ短時間で低下させることができたものと推察される。なお、レーザーなどの光波は測定表面の凹凸が少なく鏡面状になっている場合は乱反射しやすく測定不良に成りやすいことも推測されるが、適切なガスの吹込みは出鋼直後の液状スラグの付着した炉内壁面を冷却し、これにより付着液状スラグを固化することで、鏡面に近い壁面を改善する効果もあると推測される。 Therefore, as shown in FIG. 1, when the gas flow rate from the furnace bottom is set to 32 Nm 3 / min or more, it has a cooling capability to overcome the heat flux generated from the furnace, and the dust concentration in the furnace can be measured. It is presumed that it was able to be reduced stably and in a short time to the point where there was no. In addition, it is speculated that light waves such as lasers are likely to be irregularly reflected and prone to measurement failure when the measurement surface has a rough surface with little irregularities. It is presumed that there is also an effect of improving the wall surface close to the mirror surface by cooling the adhered inner wall surface of the furnace and solidifying the adhered liquid slag.
また図1より、時間経過に伴って測定不良発生率が低下することから、トータルガス量も測定不良発生率の低下に効果があると推定できる。そこで吹き込みトータルガス量の影響を見極めるため、炉底からの単位時間当たりのガス吹き込み流量Vと時間Tの積で整理した。図2は炉底からのガス流量を32Nm3/minと70Nm3/min(それぞれ炉容積の10%と22%に相当する)の2水準にして、トータルガス量(総吹込みガス量)と測定不良発生率との関係を調査した結果を示す。 Further, from FIG. 1, since the measurement failure occurrence rate decreases with time, it can be estimated that the total gas amount is also effective in reducing the measurement failure occurrence rate. Therefore, in order to determine the influence of the total amount of gas injected, the product was arranged by the product of the gas injection flow rate V per unit time from the furnace bottom and the time T. FIG. 2 shows that the gas flow rate from the furnace bottom is set at two levels of 32 Nm 3 / min and 70 Nm 3 / min (corresponding to 10% and 22% of the furnace volume, respectively), and the total gas amount (total blown gas amount) The result of investigating the relationship with the measurement defect occurrence rate is shown.
図2より、ガス流量Vが変化してもトータルガス量(ガス吹き込み流量Vと時間Tの積)と不良発生率がほぼ同じ傾向で減少することが確認できた。そしてガス吹き込みトータルガス量が転炉炉容積W(今回の370ton転炉の場合は320m3)の1.2倍以上となる領域では、不良発生率が基準の5%以下に安定することが判った。即ち、炉内容積の1.2倍以上のガス吹き込みをおこなって置換すれば、距離計の測定誤差となる粉塵の影響が大幅に抑制できるのである。 From FIG. 2, it was confirmed that even when the gas flow rate V changes, the total gas amount (product of the gas blowing flow rate V and time T) and the defect occurrence rate decrease with substantially the same tendency. And in the region where the total amount of gas blown is 1.2 times or more of the converter furnace volume W (320 m 3 in the case of the present 370 ton converter), it is found that the defect occurrence rate is stable to 5% or less of the standard. It was. In other words, if the gas is blown and replaced by 1.2 times or more of the furnace volume, the influence of dust, which becomes a measurement error of the distance meter, can be greatly suppressed.
ただし炉内容積の1.2倍以上のトータルガス量であれば不良発生率は基準の5%以下になるものの、炉容積の1.5倍以上にトータルガス量を増やしても不良発生率に大きな改善は見られないこと、逆に吹き込みガス量増加に伴い炉内耐火物温度も低下するため、次の吹錬での温度低下が大きくなりすぎて耐火物の受けるダメージが大きくなる可能性があることから、ト−タルガス量としてはを炉内容積の1.5倍以下にすることが望ましい。 However, if the total gas amount is 1.2 times or more of the furnace volume, the failure rate will be 5% or less of the standard. However, even if the total gas amount is increased to 1.5 times or more of the furnace volume, the failure rate will be reduced. There is no significant improvement, and conversely, the refractory temperature in the furnace decreases as the amount of blown gas increases, so there is a possibility that the temperature drop in the next blowing will be too great and damage to the refractory will increase. For this reason, it is desirable that the total gas amount be 1.5 times or less the furnace volume.
なお、前記はレーザー距離計を用いた場合について説明したものの、それに限定する必要はなく、他の非接触式距離計、例えば光波距離計や超音波式距離計も粉塵の影響で誤差が発生することが知られており、同じような条件でガス置換を行えば同様に効果があると考えられる。 In addition, although the case where the laser distance meter was used was described above, it is not necessary to limit to this, and other non-contact type distance meters such as a light wave distance meter and an ultrasonic distance meter also generate errors due to the influence of dust. It is known that if the gas replacement is performed under the same conditions, the same effect is considered.
吹錬後に出鋼・排滓後に炉口前方からレーザー距離計を用いて転炉内耐火物のプロフィールの各水準それぞれ40回測定を行った。その際に、炉底からのガス吹き込み流量Vと排滓後の測定開始タイミングを可変させて測定を行った。
表1にガス吹き込み及び測定タイミングの条件と測定結果を示す。なお吹き込みガスは、酸化反応を起こさないように、窒素ガスを使用した。
Each level of the profile of the refractory in the converter was measured 40 times using a laser distance meter from the front of the furnace port after steel blowing and discharge after blowing. At that time, the measurement was performed by varying the flow rate V of gas blown from the furnace bottom and the measurement start timing after the discharge.
Table 1 shows the gas blowing and measurement timing conditions and the measurement results. As the blowing gas, nitrogen gas was used so as not to cause an oxidation reaction.
370ton転炉(容積320m3)を用いたNo.1〜No.2は炉底からのガス吹き込みが本発明の範囲内の条件である例であり、測定不良の発生回数は多くても1回であり、不良発生率は何れも5%以下と低位であった。特にトータルガス量(ガス流量×時間)が炉容積の1.2倍以上という条件のNo.3〜No.6は、測定不良発生は全くなかった。ただしNO.6はトータルガス量(ガス流量×時間)が炉容積の1.5倍を超えたNO.6については、溶銑温度の降下が他の条件よりも大きくなっていた。さらに180ton転炉(容積150m3)を用いて同様の測定を行ったのがNO.7とNO.8であるが、ともに不良発生率は何れも5%以下と低位であり、かつ370t転炉のときと同様、トータルガス量が炉容積の1.2倍以上という条件のNo.8は、測定不良発生は全くなかった。 No. using a 370 ton converter (volume 320 m 3 ). 1-No. No. 2 is an example in which gas blowing from the furnace bottom is a condition within the scope of the present invention, the number of occurrences of measurement failures was at most once, and the failure occurrence rate was as low as 5% or less. . In particular, No. 1 under the condition that the total gas amount (gas flow rate x time) is 1.2 times or more of the furnace volume. 3-No. In No. 6, no measurement failure occurred. However, NO. No. 6 is a NO. With total gas volume (gas flow rate x time) exceeding 1.5 times the furnace volume. For No. 6, the hot metal temperature drop was larger than other conditions. Furthermore, the same measurement was performed using a 180 ton converter (volume 150 m 3 ). 7 and NO. However, the failure occurrence rate is 5% or less, and, as in the case of the 370t converter, the total gas amount is 1.2 times or more of the furnace volume. In No. 8, no measurement failure occurred.
一方、比較例のNo.9は、370t転炉においてガス流量が32Nm3/min未満、すなわち炉容積の10%以下であるため、測定不良が多発して発生率は5%を超えたしまった。これは180t転炉を用いたNO.10も同様である。またNO.11は370t転炉にてガス流量が25Nm3/min以下であり、ガス吹き込み時間45分としたトータルガス量を増やしたものの、不良発生率はNo.9より低下したものの5%以下とはならず、逆にトータルガス量が多くなったために次の吹錬の溶銑温度降下が大きくなってしまった。 On the other hand, no. No. 9 had a gas flow rate of less than 32 Nm 3 / min in a 370 t converter, that is, 10% or less of the furnace volume, so that many measurement failures occurred and the occurrence rate exceeded 5%. This is a NO. 10 is the same. NO. No. 11 has a gas flow rate of 25 Nm 3 / min or less in a 370 t converter, and the total gas amount was increased to 45 minutes, but the defect occurrence rate was No. 11. Although it was lower than 9, it was not less than 5%, and conversely, the total gas amount increased, so the hot metal temperature drop of the next blowing was increased.
以上のように本願発明のガス吹き込み条件であれば、光波利用の非接触型距離計を用いて測定する際の測定不良発生率を基準の5%以下になることが確認できた。 As described above, under the gas blowing conditions of the present invention, it was confirmed that the measurement failure occurrence rate when measuring using a non-contact distance meter utilizing light waves was 5% or less of the reference.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006119520A JP4660418B2 (en) | 2006-04-24 | 2006-04-24 | Converter refractory profile measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006119520A JP4660418B2 (en) | 2006-04-24 | 2006-04-24 | Converter refractory profile measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007291435A true JP2007291435A (en) | 2007-11-08 |
JP4660418B2 JP4660418B2 (en) | 2011-03-30 |
Family
ID=38762337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006119520A Active JP4660418B2 (en) | 2006-04-24 | 2006-04-24 | Converter refractory profile measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4660418B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108388A (en) * | 2007-10-31 | 2009-05-21 | Nippon Steel Corp | Method for measuring profile of stuck metal on furnace opening hole of converter |
KR101420580B1 (en) | 2011-05-09 | 2014-07-17 | 신닛테츠스미킨 카부시키카이샤 | Steel ladle residual refractory material measurement method and device |
CN110388872A (en) * | 2019-06-12 | 2019-10-29 | 湖南釜晟智能科技有限责任公司 | A kind of numerical computation method identifying large scale steel slag |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0293013A (en) * | 1988-09-30 | 1990-04-03 | Nkk Corp | Method for measuring profile in inner furnace of converter |
JPH04168390A (en) * | 1990-10-31 | 1992-06-16 | Matsushita Electric Ind Co Ltd | Non-contact type range finder |
JPH10153417A (en) * | 1996-11-26 | 1998-06-09 | Ishikawajima Harima Heavy Ind Co Ltd | Shape measuring device and method therefor |
JP2004012414A (en) * | 2002-06-11 | 2004-01-15 | Sumitomo Electric Ind Ltd | Method and apparatus for detecting unevenness of wire-shaped article |
-
2006
- 2006-04-24 JP JP2006119520A patent/JP4660418B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0293013A (en) * | 1988-09-30 | 1990-04-03 | Nkk Corp | Method for measuring profile in inner furnace of converter |
JPH04168390A (en) * | 1990-10-31 | 1992-06-16 | Matsushita Electric Ind Co Ltd | Non-contact type range finder |
JPH10153417A (en) * | 1996-11-26 | 1998-06-09 | Ishikawajima Harima Heavy Ind Co Ltd | Shape measuring device and method therefor |
JP2004012414A (en) * | 2002-06-11 | 2004-01-15 | Sumitomo Electric Ind Ltd | Method and apparatus for detecting unevenness of wire-shaped article |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009108388A (en) * | 2007-10-31 | 2009-05-21 | Nippon Steel Corp | Method for measuring profile of stuck metal on furnace opening hole of converter |
KR101420580B1 (en) | 2011-05-09 | 2014-07-17 | 신닛테츠스미킨 카부시키카이샤 | Steel ladle residual refractory material measurement method and device |
CN110388872A (en) * | 2019-06-12 | 2019-10-29 | 湖南釜晟智能科技有限责任公司 | A kind of numerical computation method identifying large scale steel slag |
CN110388872B (en) * | 2019-06-12 | 2021-04-06 | 湖南釜晟智能科技有限责任公司 | Numerical calculation method for identifying large-size steel slag |
Also Published As
Publication number | Publication date |
---|---|
JP4660418B2 (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9500528B2 (en) | Method for maintaining a temperature of a metal melt | |
TWI804075B (en) | Operation method of converter and blowing control system of converter | |
JP5114666B2 (en) | Refractory layer residual dimension measurement method for molten metal containers | |
JP4660418B2 (en) | Converter refractory profile measurement method | |
JP2011043343A (en) | Slag thickness measuring method and measuring apparatus by microwave | |
JP4731451B2 (en) | Judgment method of refractory repair necessity of hot metal pan | |
JP5090129B2 (en) | Profile measurement method for bare metal adhering to converter furnace port | |
JP5267892B2 (en) | Converter blowing method | |
JP3164976B2 (en) | Method for predicting slopping in a converter and its prevention | |
KR101258767B1 (en) | Monitoring apparatus for refractories abrasion of electric furnace | |
JP2013244515A (en) | Method for preventing leakage of steel from ladle | |
JP2017102040A (en) | Operation method for steelmaking furnace | |
JP7502627B2 (en) | Method for determining the melting of pig iron, method for melting treatment of pig iron, and method for estimating the amount of melted pig iron | |
JP2010017756A (en) | Method for using ladle | |
JPH0633128A (en) | Method for automatically stopping steel-tapping in converter | |
JP4195539B2 (en) | Blast furnace bottom water flow detection method | |
JP5251020B2 (en) | How to prevent ladle leakage | |
RU2243265C2 (en) | Method of detection of burn-out in cooled thermal unit | |
JPH055117A (en) | Method for detecting molten material level in refining vessel for metallurgy | |
JPH09133468A (en) | Method and apparatus for judgement of time for additional instruction of stock material into electric furnace or tapping of molten metal | |
JPH10147805A (en) | Operation of blast furnace | |
WO2020104903A1 (en) | Gas or mist cooled system for slag door | |
JPS62207814A (en) | Deciding method for scrap melting | |
JP2008121069A (en) | Method for cooling steel mantle in rh-apparatus | |
KR20240055776A (en) | Device for estimating the amount of slag in the furnace, method for estimating the amount of slag in the furnace, and method for manufacturing molten steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4660418 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |