JP2007291000A - Fullerene derivative having magnetism - Google Patents

Fullerene derivative having magnetism Download PDF

Info

Publication number
JP2007291000A
JP2007291000A JP2006119762A JP2006119762A JP2007291000A JP 2007291000 A JP2007291000 A JP 2007291000A JP 2006119762 A JP2006119762 A JP 2006119762A JP 2006119762 A JP2006119762 A JP 2006119762A JP 2007291000 A JP2007291000 A JP 2007291000A
Authority
JP
Japan
Prior art keywords
fullerene
formula
fullerene derivative
structure represented
chemical structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006119762A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ito
敏幸 伊藤
Hiroyuki Furuya
浩行 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Tottori University NUC
Original Assignee
Kaneka Corp
Tottori University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Tottori University NUC filed Critical Kaneka Corp
Priority to JP2006119762A priority Critical patent/JP2007291000A/en
Publication of JP2007291000A publication Critical patent/JP2007291000A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fullerene derivative having strong magnetism applicable to a material for an electric device, a functional molecular material, various kinds of solvents for reaction, and the like. <P>SOLUTION: The fullerene derivative having the chemical structure represented by formula (2) has an ion bond site on the skeleton of the fullerene molecule, and the strong magnetism superior to that of fullerene (C<SB>60</SB>) being a parent body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気デバイス用材料、機能性分子材料、各種反応用溶媒などに好ましく適用できる有機塩に関し、更に詳しくは磁性を有するフラーレン誘導体に関する。   The present invention relates to an organic salt that can be preferably applied to materials for electrical devices, functional molecular materials, various reaction solvents, and the like, and more particularly to a fullerene derivative having magnetism.

1985年、クロトー及びスモーリー(Kroto & Smalley)らは、黒鉛の棒にレーザーを集中照射する所謂「レーザーアブレーション法」によってはじめてC60,C70の存在を実証した。しかし、その生成量は質量分析装置でしか測定できない程度の極微量であったため、C60,C70の構造や物性等については何ら知見を得ることができなかった。1990年、クレッチマー(Kratschmer)らは、黒鉛の棒を用いたコンタクトアーク法によりはじめてグラム・オーダーのC60,C70の生成・回収に成功し、サッカーボール形状、ラグビーボール形状といわれるC60,C70の構造を実証した(例えば、J.Phys.Chem.1990,94,8634−8636に記載されている)。ここでは黒鉛ベース電極に対して、先細状黒鉛棒をスプリングの弾撥力で押し付けつつ大電流を流す方法を採用している。C60については、様々な有機誘導体や有機金属誘導体を合成することが可能であり、そのため電気デバイス用材料や機能性分子材料などの用途が考えられている。しかし反応性に乏しいことから現在のところ、C6018,C6036の水素化物の合成、アミンのC60表面への求核付加反応によるC60誘導体の合成、白金錯体C60Pt(PPh32の合成など少数の例しか報告されていない(特許文献1参照。)。
特開平5−221623号公報。
In 1985, Kroto & Smalley et al. Demonstrated the existence of C 60 and C 70 for the first time by the so-called “laser ablation method” in which a graphite rod was irradiated with a laser in a concentrated manner. However, since the amount produced was extremely small that could only be measured with a mass spectrometer, no knowledge was obtained about the structure and physical properties of C 60 and C 70 . 1990, Kretschmer (Kratschmer) et al., For the first time succeeded in generating and recovery of C 60, C 70 of gram-order by contact arc method using a rod of graphite, C 60, which is said to soccer ball-shaped, a rugby ball shape, It demonstrated the structure of C 70 (for example, as described in J.Phys.Chem.1990,94,8634-8636). Here, a method is adopted in which a large current is applied to the graphite base electrode while pressing the tapered graphite rod with the elastic force of the spring. For C 60, it is possible to synthesize various organic derivatives and organometallic derivatives, and applications are considered, such that for electrical devices for materials and functional molecular materials. However, due to the lack of reactivity, at present, the synthesis of hydrides of C 60 H 18 and C 60 H 36 , the synthesis of C 60 derivatives by nucleophilic addition reaction to the C 60 surface of amines, the platinum complex C 60 Pt ( Only a few examples such as synthesis of PPh 3 ) 2 have been reported (see Patent Document 1).
JP-A-5-221623.

本発明は、電気デバイス用材料及び機能性分子材料に適用できるような強い磁性を有するフラーレン誘導体を提供することを目的とする。   An object of this invention is to provide the fullerene derivative which has strong magnetism applicable to the material for electrical devices, and a functional molecular material.

本発明者らは、鋭意検討の結果、フラーレン分子骨格上にイオン結合箇所を有するフラーレン誘導体によって上記の目的を達成した。
すなわち、本発明は、下記一般式(1)で表される化学構造を有するフラーレン誘導体、である。
As a result of intensive studies, the present inventors have achieved the above object by using a fullerene derivative having an ionic bond site on the fullerene molecular skeleton.
That is, the present invention is a fullerene derivative having a chemical structure represented by the following general formula (1).

Figure 2007291000
(式(1)中、フラーレン基の炭素数は60であり、xは1〜10の整数、yは1〜20の整数、zは1〜20の整数、bは1〜20の整数、cは1〜20の整数を示す。
A、RB、RCは1価の基で、水素、脂肪族炭化水素基、芳香族炭化水素基、カルボン酸基、エステル基、エーテル基、アシル基およびアミノ基からなる群から選ばれる1種類以上の化学構造を含み、枝分かれや置換基を有しても良い。
-は、対イオン(アニオン成分)であり、I-、Br-、AlCl4 -、BF4 -、PF6 -、ビス(トリフルオロメチルスルホニル)イミドアニオン、CHF2−CF2−CH2OSO3 -原子団、CHF2−(CF23−CH2OSO3 -原子団、CF3−(CF22−CH2OSO3 -原子団およびCF3−(CF26−CH2OSO3 -原子団からなる群から選ばれる1種類以上の原子団を含むことができる。)
Figure 2007291000
(In Formula (1), carbon number of a fullerene group is 60, x is an integer of 1-10, y is an integer of 1-20, z is an integer of 1-20, b is an integer of 1-20, c Represents an integer of 1-20.
R A , R B and R C are monovalent groups selected from the group consisting of hydrogen, aliphatic hydrocarbon groups, aromatic hydrocarbon groups, carboxylic acid groups, ester groups, ether groups, acyl groups and amino groups. It may contain one or more types of chemical structures and may have branches or substituents.
L is a counter ion (anion component), and I , Br , AlCl 4 , BF 4 , PF 6 , bis (trifluoromethylsulfonyl) imide anion, CHF 2 —CF 2 —CH 2 OSO. 3 - atomic, CHF 2 - (CF 2) 3 -CH 2 OSO 3 - atomic, CF 3 - (CF 2) 2 -CH 2 OSO 3 - atomic and CF 3 - (CF 2) 6 -CH 2 OSO 3 - may comprise one or more atomic groups selected from the group consisting of atomic. )

また、本発明は、下記式(2)で表される化学構造を有するフラーレン誘導体であることが好ましい。式(2)の化学構造式を有するフラーレン誘導体は、強磁性を示すため、特に好ましい。   Moreover, it is preferable that this invention is a fullerene derivative which has a chemical structure represented by following formula (2). Fullerene derivatives having the chemical structural formula of formula (2) are particularly preferable because they exhibit ferromagnetism.

Figure 2007291000
(式(2)中、フラーレン基の炭素数は60である。)
Figure 2007291000
(In Formula (2), the carbon number of the fullerene group is 60.)

また、本発明は、下記式(3)で表される化学構造を有するフラーレン誘導体であることが好ましい。   Moreover, it is preferable that this invention is a fullerene derivative which has a chemical structure represented by following formula (3).

Figure 2007291000
(式(3)中、フラーレン基の炭素数は60であり、NTf2 -はビス(トリフルオロメチルスルホニル)イミド)アニオン(TFSI)である。)
Figure 2007291000
(In formula (3), the carbon number of the fullerene group is 60, and NTf 2 is a bis (trifluoromethylsulfonyl) imide) anion (TFSI). )

また、本発明は、下記式(4)で表される化学構造を有するフラーレン誘導体であることが好ましい。   Moreover, it is preferable that this invention is a fullerene derivative which has a chemical structure represented by following formula (4).

Figure 2007291000
(式(4)中、フラーレン基の炭素数は60であり、NTf2 -はビス(トリフルオロメチルスルホニル)イミド)アニオン(TFSI)である。)
Figure 2007291000
(In the formula (4), the fullerene group has 60 carbon atoms, and NTf 2 is a bis (trifluoromethylsulfonyl) imide) anion (TFSI). )

また、本発明は、下記式(5)で表される化学構造を有するフラーレン誘導体であることが好ましい。   Moreover, it is preferable that this invention is a fullerene derivative which has a chemical structure represented by following formula (5).

Figure 2007291000
(式(5)中、フラーレン基の炭素数は60であり、NTf2 -はビス(トリフルオロメチルスルホニル)イミド)アニオン(TFSI)である。)
Figure 2007291000
(In the formula (5), the number of carbon atoms of a fullerene group is 60, NTf 2 - bis (trifluoromethyl) imide) is an anion (TFSI). )

また、本発明は、下記式(6)で表される化学構造を有するフラーレン誘導体であることが好ましい。   Moreover, it is preferable that this invention is a fullerene derivative which has a chemical structure represented by following formula (6).

Figure 2007291000
(式(6)中、フラーレン基の炭素数は60である。)
Figure 2007291000
(In formula (6), the carbon number of the fullerene group is 60.)

これら本発明のフラーレン誘導体のなかでも、前記式(2)で表される化学構造を有するフラーレン誘導体が、強磁性を有することから好ましい。   Among these fullerene derivatives of the present invention, the fullerene derivative having the chemical structure represented by the formula (2) is preferable because it has ferromagnetism.

フラーレン(C60、以下、単にC60とも記す。)を電気デバイス用材料や機能性分子材料として利用するには、C60に官能基を結合させることが必要である。しかしC60誘導体やC60基の合成法については、未だ良く分かっていない。またフラーレンはベンゼン、クロロベンゼンにはわずかに溶けるるが、ほとんどの有機溶媒には溶解しない。これに対し、フラーレンにイオン結合箇所を有する官能基を結合させた本発明に係るフラーレン誘導体は、様々な有機溶媒に溶解し、かつ磁性を有することから、電気デバイス用材料、機能性分子材料、各種反応用溶媒などとして応用可能な有機塩である。 In order to use fullerene (C 60 , hereinafter simply referred to as C 60 ) as a material for an electric device or a functional molecular material, it is necessary to bond a functional group to C 60 . However, methods for synthesizing C 60 derivatives and C 60 groups are still not well understood. Fullerene is slightly soluble in benzene and chlorobenzene, but not in most organic solvents. On the other hand, the fullerene derivative according to the present invention in which a functional group having an ionic bond site is bonded to fullerene is dissolved in various organic solvents and has magnetism, so that the material for an electric device, the functional molecular material, It is an organic salt that can be applied as a solvent for various reactions.

<フラーレン>
60とC70の炭素クラスタ分子が安定に存在する可能性が1985年にクロトー及びスモーリー(Kroto & Smalley)により始めて示された。その後の詳細な研究によりこの炭素クラスタの構造が明らかにされた。この分子は球状に炭素原子が60個もしくは70個結合した分子である。これらの分子はこの構造と良く似たドーム建築を造ったバックミンスタ・フラー(Buckminster Fuller)に因んでフラーレン(Fullerene)と命名された。現在までに明らかにされているフラーレンはC60,とC70の他にC76,C78,C82,C84,C90,C94等が知られている。これらのフラーレンは電気的に絶縁体であるが、アルカリ金属をドープすると10桁以上も抵抗率が低くなり、電気デバイス用材料として非常に有望視されている。
<Fullerene>
The possibility of the stable existence of C 60 and C 70 carbon cluster molecules was first shown in 1985 by Kroto & Smalley. Subsequent detailed studies revealed the structure of this carbon cluster. This molecule is a molecule in which 60 or 70 carbon atoms are bonded in a spherical shape. These molecules have been named Fullerene after Buckminster Fuller, who created a dome architecture similar to this structure. In addition to C 60 and C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 and the like are known as fullerenes that have been clarified so far. These fullerenes are electrically insulating materials, but when doped with an alkali metal, the resistivity is reduced by 10 digits or more, which is very promising as a material for electric devices.

<本発明に係るフラーレン誘導体の製造方法>
本発明に係るフラーレン誘導体は、フラーレン(C60)から、グリシン誘導体と適切な鎖長のアルキルアルデヒドを用いて第3級アミン側鎖を導入することにより、例えば後述の実施例記載のフラーレン誘導体前駆体2a、4a、5aを製造する。前記フラーレン(C60)としては、例えばフロンティアカーボン株式会社から販売されている。
<Method for producing fullerene derivative according to the present invention>
The fullerene derivative according to the present invention is obtained by introducing a tertiary amine side chain from fullerene (C 60 ) using a glycine derivative and an alkyl aldehyde having an appropriate chain length, for example, as a fullerene derivative precursor described in Examples below. The bodies 2a, 4a, 5a are manufactured. The fullerene (C 60 ) is sold by, for example, Frontier Carbon Co., Ltd.

本発明に係る一般式(1)で表される化学構造を有するフラーレン誘導体、例えば式(2)で表される化学構造を有するフラーレン誘導体は、前記フラーレン誘導体前駆体に含まれる第3級アミン部位を適切なハロゲン化アルキルで4級化することにより製造することができる。本発明に係るフラーレン誘導体のうちでも、特に前記式(2)で表される化学構造を有するフラーレン誘導体は、強磁性を有することから、電気デバイス用材料、機能性分子材料、各種反応用溶媒などとして極めて有望である。また、前記式(3)、(4)、(5)で表される化学構造を有するフラーレン誘導体は、前記式(2)の如くハロゲン化アルキルで4級化したフラーレン誘導体から、目的のアニオンを有する塩、例えばリチウムビス(トリフルオロメチルスルホニル)イミドを用いてアニオン交換することにより製造することができる。   The fullerene derivative having the chemical structure represented by the general formula (1) according to the present invention, for example, the fullerene derivative having the chemical structure represented by the formula (2) is a tertiary amine moiety contained in the fullerene derivative precursor. Can be prepared by quaternization with a suitable alkyl halide. Among the fullerene derivatives according to the present invention, the fullerene derivative having the chemical structure represented by the formula (2) has ferromagnetism, and therefore, electrical device materials, functional molecular materials, various reaction solvents, etc. As very promising. In addition, the fullerene derivative having the chemical structure represented by the above formulas (3), (4), and (5) is obtained from the fullerene derivative quaternized with an alkyl halide as in the above formula (2) from the target anion. It can manufacture by carrying out anion exchange using the salt which has, for example, lithium bis (trifluoromethylsulfonyl) imide.

なお、一般的に強磁性を有するとは、各原子が磁化率を有し、かつその向きが同方向にそろうことをいう。強磁性体は磁石にくっつくことを意味する。同様に、本発明において強磁性とは、磁化の方向が同一になり強い磁性を発現することを意味する。   In general, having ferromagnetism means that each atom has a magnetic susceptibility and the directions thereof are aligned in the same direction. Ferromagnetic means stick to magnet. Similarly, in the present invention, “ferromagnetism” means that the magnetization directions are the same and strong magnetism is exhibited.

<1:フラーレン誘導体前駆体の合成>
フラーレン(C60,フロンティアカーボン株式会社製,1.00g,1.39mmol)と、下記式(7)で示されるグリシン誘導体(492 mg,2.78mmol)と、プロピオンアルデヒド(404mg,6.95mmol)とを乾燥トルエン(230ml)に加えてアルゴン雰囲気下加熱還流4h(4時間)したのち、減圧濃縮し、トルエンを除去し、次いでシリカゲルフラッシュカラムクロマトグラフィー(二硫化炭素−酢酸エチル=10:1〜1:1)を行い、フラーレン誘導体2a(372mg,0.42mmol,30%)、4a(189mg,0.16mmol,12%)および5a(200mg,0.16mmol,12%)ならびに未反応フラーレン(421mg,42%)を単離精製した。
<1: Synthesis of fullerene derivative precursor>
Fullerene (C 60 , manufactured by Frontier Carbon Co., Ltd., 1.00 g, 1.39 mmol), glycine derivative (492 mg, 2.78 mmol) represented by the following formula (7), and propionaldehyde (404 mg, 6.95 mmol) Was added to dry toluene (230 ml) and heated under reflux in an argon atmosphere for 4 h (4 hours), concentrated under reduced pressure to remove toluene, and then silica gel flash column chromatography (carbon disulfide-ethyl acetate = 10: 1 to 1). 1: 1), and fullerene derivative 2a (372 mg, 0.42 mmol, 30%), 4a (189 mg, 0.16 mmol, 12%) and 5a (200 mg, 0.16 mmol, 12%) and unreacted fullerene (421 mg) , 42%) was isolated and purified.

Figure 2007291000
Figure 2007291000

得られたフラーレン誘導体2a、4aおよび5aについて、物性測定としてイオン化質量分析(TOFMS)を行った。以下にスペクトルデータを示す。
フラーレン誘導体2a:TOFMS(m/z)892.52,856.48,825.61,720.29,700.44。
フラーレン誘導体4a:TOFMS(m/z)1066.71,923.19,907.42,892.31,864.25。
フラーレン誘導体5a:TOFMS(m/z)1241.87,1067.65,894.39,825.48,579.42。
The obtained fullerene derivatives 2a, 4a and 5a were subjected to ionization mass spectrometry (TOFMS) as a physical property measurement. The spectrum data is shown below.
Fullerene derivative 2a: TOFMS (m / z) 892.52, 856.48, 825.61, 720.29, 700.44.
Fullerene derivative 4a: TOFMS (m / z) 1066.71, 923.19, 907.42, 892.31, 864.25.
Fullerene derivative 5a: TOFMS (m / z) 1241.87, 1067.65, 894.39, 825.48, 579.42.

<実施例1:フラーレン誘導体の合成(その1)>
フラーレン誘導体2a(600mg,0.671mmol)をヨウ化メチル(8.0ml)に加えて24時間加熱還流し,減圧濃縮して過剰のヨウ化メチルを除去し、ついでトルエン洗浄(5回)、ヘキサン洗浄(1回)ののち、減圧濃縮したところ、黒色粉末として下記式(2)で表される化学構造を有する化合物(363mg,0.350mmol)が収率52%で得られた。
<Example 1: Synthesis of fullerene derivative (1)>
Fullerene derivative 2a (600 mg, 0.671 mmol) was added to methyl iodide (8.0 ml), heated under reflux for 24 hours, concentrated under reduced pressure to remove excess methyl iodide, then washed with toluene (5 times), hexane After washing (once) and concentration under reduced pressure, a compound (363 mg, 0.350 mmol) having a chemical structure represented by the following formula (2) as a black powder was obtained in a yield of 52%.

Figure 2007291000
Figure 2007291000

なお、図1に、式(2)で表される化学構造を有する化合物のTOFMSチャートを示し、図2に、式(2)で表される化学構造を有する化合物のIRチャートを示す。   1 shows a TOFMS chart of a compound having a chemical structure represented by formula (2), and FIG. 2 shows an IR chart of a compound having a chemical structure represented by formula (2).

<実施例2:フラーレン誘導体の合成(その2:塩交換反応)>
乾燥アセトン(10ml)にフラーレン誘導体(前記の式(2)で表される化学構造を有する化合物)(363mg,0.350mmol)とリチウムビス(トリフルオロメチルスルホニル)イミド(100mg,0.350mmol)を加えて、室温で2日間攪拌した。減圧濃縮してアセトンを除去した後、ヘキサン洗浄(2回)、ついで脱イオン水洗浄(3回)し,フラーレン誘導体(下記式(3)で表される化学構造を有する化合物)(363mg,0.305mmol)を収率87%で得た。
<Example 2: Synthesis of fullerene derivative (part 2: salt exchange reaction)>
Fullerene derivative (compound having the chemical structure represented by the above formula (2)) (363 mg, 0.350 mmol) and lithium bis (trifluoromethylsulfonyl) imide (100 mg, 0.350 mmol) in dry acetone (10 ml). In addition, the mixture was stirred at room temperature for 2 days. After removing the acetone by concentration under reduced pressure, washing with hexane (twice), followed by washing with deionized water (three times), a fullerene derivative (compound having a chemical structure represented by the following formula (3)) (363 mg, 0 .305 mmol) was obtained in a yield of 87%.

Figure 2007291000
Figure 2007291000

<実施例3、4>
前記実施例1と同様の手法でフラーレン誘導体4aから下記式(6)で表される化学構造を有するフラーレン誘導体を得た(実施例3)。更にこの式(6)のフラーレン誘導体から実施例2と同様の塩交換反応により、下記式(4)で表される化学構造を有する化合物化合物を得た(実施例4)。
<Examples 3 and 4>
In the same manner as in Example 1, a fullerene derivative having a chemical structure represented by the following formula (6) was obtained from the fullerene derivative 4a (Example 3). Further, a compound compound having a chemical structure represented by the following formula (4) was obtained from the fullerene derivative of the formula (6) by the same salt exchange reaction as that in Example 2 (Example 4).

Figure 2007291000
Figure 2007291000

Figure 2007291000
Figure 2007291000

<実施例5>
フラーレン誘導体5aから、実施例1及び実施例2と同様の手法により、フラーレン誘導体を合成し、更に塩交換反応により下記式(5)で表される化学構造を有するフラーレン誘導体を得た。
<Example 5>
A fullerene derivative was synthesized from the fullerene derivative 5a in the same manner as in Example 1 and Example 2, and a fullerene derivative having a chemical structure represented by the following formula (5) was obtained by a salt exchange reaction.

Figure 2007291000
Figure 2007291000

なお、図3に、式(3)の化合物のTOFMSチャートを示し、図4に、式(3)の化合物のF19−NMRチャート(489MHz,CDCl3)を示す。 3 shows a TOFMS chart of the compound of the formula (3), and FIG. 4 shows an F 19 -NMR chart (489 MHz, CDCl 3 ) of the compound of the formula (3).

<4:磁化率評価>
上記、式(2)の化合物の室温での磁気率は3.8BM(ボーア磁子)であった。
また、磁化率測定は次のように行った。使用装置はQuantum Design社製MPMS−5S SQUID magnetometerである。10mg程度の試料を石英製のセルに入れ、低温(10K)で測定した。温度を一定に保ちながら磁場を0→50000[Oe]→0[Oe]→−50000[Oe]→0[Oe]と変化させて、磁化曲線を測定し、得られた生データは使用した試料のモル数あたりに換算して示した。
このようにして得られたフラーレン誘導体の磁化率の温度変化を図5に示す。図5のHは磁場、Tは温度、Mは磁化を意味し、横軸は磁場(H)を測定した温度(T)(今回は10K)で測定)で割った値であり、縦軸は磁化(M)を試料のモル数(mol)で割った値である。
なお、磁化率測定は、錯体分子の磁化率測定の専門家である神奈川大学理学部化学科の森教授に実施して頂いた。
<4: Magnetic susceptibility evaluation>
The above compound of formula (2) had a magnetic modulus of 3.8 BM (Bohr magneton) at room temperature.
The magnetic susceptibility was measured as follows. The apparatus used is an MPMS-5S SQUID magnetometer manufactured by Quantum Design. A sample of about 10 mg was put in a quartz cell and measured at a low temperature (10K). While maintaining the temperature constant, the magnetic field was changed from 0 → 50000 [Oe] → 0 [Oe] → −50000 [Oe] → 0 [Oe], and the magnetization curve was measured. It was converted per mole number.
FIG. 5 shows the temperature change of the magnetic susceptibility of the fullerene derivative thus obtained. In FIG. 5, H represents a magnetic field, T represents temperature, M represents magnetization, and the horizontal axis represents a value obtained by dividing the magnetic field (H) by the measured temperature (T) (this time measured by 10K), and the vertical axis represents This is a value obtained by dividing the magnetization (M) by the number of moles (mol) of the sample.
The magnetic susceptibility measurement was performed by Professor Mori of the Department of Chemistry, Faculty of Science, Kanagawa University, who is an expert in measuring the magnetic susceptibility of complex molecules.

<磁化率測定結果>
フラーレン誘導体(式(2)の化合物)は温度変化実験結果から強磁性を示すことが明らかになった。式(2)の化合物は、フラーレン誘導体のなかで強磁性を示す誘導体の最初の発見例である。
<Magnetic susceptibility measurement results>
The fullerene derivative (compound of formula (2)) was found to exhibit ferromagnetism from the results of temperature change experiments. The compound of formula (2) is the first discovery example of a derivative exhibiting ferromagnetism among the fullerene derivatives.

<比較例1>
前記と同様にして、フラーレン(C60,フロンティアカーボン株式会社製)の磁化率を測定し、図5に示した。図5よりフラーレンは常磁性であることが分かる。
<Comparative Example 1>
In the same manner as described above, the magnetic susceptibility of fullerene (C 60 , Frontier Carbon Co., Ltd.) was measured and shown in FIG. FIG. 5 shows that fullerene is paramagnetic.

<磁化率測定結果の考察>
強磁性が発現する理由は現時点では不明であるが、フラーレン誘導体(式(2)の化合物)では、1分子当たり3個程度のスピンが存在すると考えられる。
<Consideration of magnetic susceptibility measurement results>
The reason why ferromagnetism develops is unknown at present, but it is considered that about 3 spins per molecule are present in the fullerene derivative (compound of formula (2)).

フラーレンそのものが常磁性を持つことが知られていたが、フラーレンを誘導体化した際に生じる磁性変化を調べた報告例はなく、これまで強磁性を示すフラーレン誘導体の報告例は皆無である。本発明の式(2)の化合物は、全く金属を含まない有機物のみからなる強磁性体である。すなわち、本発明のフラーレン誘導体は、全く金属を含まない有機物のみからなる磁性体である。特に、式(2)の化合物は強磁性体であり、電気デバイス用材料、機能性分子材料に適用でき、また各種反応用溶媒などに好ましく適用できる有機塩である。   It has been known that fullerene itself has paramagnetism, but there has been no report on investigation of magnetic changes caused by derivatization of fullerene, and no report has been made on fullerene derivatives exhibiting ferromagnetism. The compound of the formula (2) of the present invention is a ferromagnetic material composed only of an organic substance containing no metal. That is, the fullerene derivative of the present invention is a magnetic material composed only of an organic substance that does not contain any metal. In particular, the compound of the formula (2) is a ferromagnetic substance, and is an organic salt that can be applied to electric device materials and functional molecular materials, and can be preferably applied to various reaction solvents.

式(2)のフラーレン誘導体のTOFMSチャート。The TOFMS chart of the fullerene derivative of Formula (2). 式(2)のフラーレン誘導体のIRチャート。IR chart of the fullerene derivative of formula (2). 式(3)のフラーレン誘導体のTOFMSチャート。The TOFMS chart of the fullerene derivative of Formula (3). 式(3)のフラーレン誘導体のF19−NMRチャート(489MHz,CDCl3)。F 19 -NMR chart of the fullerene derivative of the formula (3) (489MHz, CDCl 3 ). フラーレン誘導体の磁化率の温度変化を示すグラフ。The graph which shows the temperature change of the magnetic susceptibility of a fullerene derivative.

Claims (7)

下記一般式(1)で表される化学構造を有するフラーレン誘導体。
Figure 2007291000
(式(1)中、フラーレン基の炭素数は60であり、xは1〜10の整数、yは1〜20の整数、zは1〜20の整数、bは1〜20の整数、cは1〜20の整数を示す。
A、RB、RCは1価の基で、水素、脂肪族炭化水素基、芳香族炭化水素基、カルボン酸基、エステル基、エーテル基、アシル基およびアミノ基からなる群から選ばれる1種類以上の化学構造を含み、枝分かれや置換基を有しても良い。
-は、対イオン(アニオン成分)であり、I-、Br-、AlCl4 -、BF4 -、PF6 -、ビス(トリフルオロメチルスルホニル)イミドアニオン、CHF2−CF2−CH2OSO3 -原子団、CHF2−(CF23−CH2OSO3 -原子団、CF3−(CF22−CH2OSO3 -原子団およびCF3−(CF26−CH2OSO3 -原子団からなる群から選ばれる1種類以上の原子団を含むことができる。)
A fullerene derivative having a chemical structure represented by the following general formula (1).
Figure 2007291000
(In Formula (1), carbon number of a fullerene group is 60, x is an integer of 1-10, y is an integer of 1-20, z is an integer of 1-20, b is an integer of 1-20, c Represents an integer of 1-20.
R A , R B and R C are monovalent groups selected from the group consisting of hydrogen, aliphatic hydrocarbon groups, aromatic hydrocarbon groups, carboxylic acid groups, ester groups, ether groups, acyl groups and amino groups. It may contain one or more types of chemical structures and may have branches or substituents.
L is a counter ion (anion component), and I , Br , AlCl 4 , BF 4 , PF 6 , bis (trifluoromethylsulfonyl) imide anion, CHF 2 —CF 2 —CH 2 OSO. 3 - atomic, CHF 2 - (CF 2) 3 -CH 2 OSO 3 - atomic, CF 3 - (CF 2) 2 -CH 2 OSO 3 - atomic and CF 3 - (CF 2) 6 -CH 2 OSO 3 - may comprise one or more atomic groups selected from the group consisting of atomic. )
下記式(2)で表される化学構造を有するフラーレン誘導体。
Figure 2007291000
(式(2)中、フラーレン基の炭素数は60である。)
The fullerene derivative which has a chemical structure represented by following formula (2).
Figure 2007291000
(In Formula (2), the carbon number of the fullerene group is 60.)
下記式(3)で表される化学構造を有するフラーレン誘導体。
Figure 2007291000
(式(3)中、フラーレン基の炭素数は60であり、NTf2 -はビス(トリフルオロメチルスルホニル)イミド)アニオン(TFSI)である。)
The fullerene derivative which has a chemical structure represented by following formula (3).
Figure 2007291000
(In formula (3), the carbon number of the fullerene group is 60, and NTf 2 is a bis (trifluoromethylsulfonyl) imide) anion (TFSI). )
下記式(4)で表される化学構造を有するフラーレン誘導体。
Figure 2007291000
(式(4)中、フラーレン基の炭素数は60であり、NTf2 -はビス(トリフルオロメチルスルホニル)イミド)アニオン(TFSI)である。)
The fullerene derivative which has a chemical structure represented by following formula (4).
Figure 2007291000
(In the formula (4), the fullerene group has 60 carbon atoms, and NTf 2 is a bis (trifluoromethylsulfonyl) imide) anion (TFSI). )
下記式(5)で表される化学構造を有するフラーレン誘導体。
Figure 2007291000
(式(5)中、フラーレン基の炭素数は60でであり、NTf2 -はビス(トリフルオロメチルスルホニル)イミド)アニオン(TFSI)である。)
The fullerene derivative which has a chemical structure represented by following formula (5).
Figure 2007291000
(In the formula (5), the number of carbon atoms of fullerene groups are at 60, NTf 2 - bis (trifluoromethyl) imide) is an anion (TFSI). )
下記式(6)で表される化学構造を有するフラーレン誘導体。
Figure 2007291000
(式(6)中、フラーレン基の炭素数は60である。)
The fullerene derivative which has a chemical structure represented by following formula (6).
Figure 2007291000
(In formula (6), the carbon number of the fullerene group is 60.)
強磁性を有することを特徴とする請求項2に記載のフラーレン誘導体。

The fullerene derivative according to claim 2, which has ferromagnetism.

JP2006119762A 2006-04-24 2006-04-24 Fullerene derivative having magnetism Pending JP2007291000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119762A JP2007291000A (en) 2006-04-24 2006-04-24 Fullerene derivative having magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119762A JP2007291000A (en) 2006-04-24 2006-04-24 Fullerene derivative having magnetism

Publications (1)

Publication Number Publication Date
JP2007291000A true JP2007291000A (en) 2007-11-08

Family

ID=38761993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119762A Pending JP2007291000A (en) 2006-04-24 2006-04-24 Fullerene derivative having magnetism

Country Status (1)

Country Link
JP (1) JP2007291000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010764A1 (en) * 2008-07-25 2010-01-28 Kawashima Yasushi Room-temperature superconductor, perfect conductor, proton conductor, ferromagnet and electromagnetic coil, and methods for producing these materials
WO2010041575A1 (en) * 2008-10-06 2010-04-15 住友化学株式会社 Fullerene derivative, composition, and organic photoelectric conversion element
JP2011093848A (en) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd Fullerene derivative

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010764A1 (en) * 2008-07-25 2010-01-28 Kawashima Yasushi Room-temperature superconductor, perfect conductor, proton conductor, ferromagnet and electromagnetic coil, and methods for producing these materials
JPWO2010010764A1 (en) * 2008-07-25 2012-01-05 川島 康 Room temperature superconductor, perfect conductor, proton conductor, ferromagnetic material, electromagnetic coil, and manufacturing method thereof
WO2010041575A1 (en) * 2008-10-06 2010-04-15 住友化学株式会社 Fullerene derivative, composition, and organic photoelectric conversion element
JP2010209307A (en) * 2008-10-06 2010-09-24 Sumitomo Chemical Co Ltd Fullerene derivative
JP2011093848A (en) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd Fullerene derivative
EP2495246A1 (en) * 2009-10-30 2012-09-05 Sumitomo Chemical Company, Limited Fullerene derivative
EP2495246A4 (en) * 2009-10-30 2013-06-26 Sumitomo Chemical Co Fullerene derivative

Similar Documents

Publication Publication Date Title
Iezzi et al. Lutetium-based trimetallic nitride endohedral metallofullerenes: new contrast agents
Stevenson et al. A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4 (μ3-O) 2@ I h-C80
Scott et al. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis
Johnson et al. Soft‐and reactive landing of ions onto surfaces: Concepts and applications
Mayeri et al. NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the zintl salt, NaSi
Wang et al. Planar quinary cluster inside a fullerene cage: synthesis and structural characterizations of Sc3NC@ C80-I h
Cardona et al. The first fulleropyrrolidine derivative of Sc3N@ C80: Pronounced chemical shift differences of the geminal protons on the pyrrolidine ring
Mercado et al. The shape of the Sc2 (μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc2 (μ2-S)@ C s (6)-C82 and Sc2 (μ2-S)@ C 3 v (8)-C82
JP4519071B2 (en) Structure selective separation and surface fixation of carbon nanotubes
Cai et al. Competition between hydrogen bonds and coordination bonds steered by the surface molecular coverage
Qin et al. Concise route to functionalized carbon nanotubes
Beavers et al. Very large, soluble endohedral fullerenes in the series La2C90 to La2C138: isolation and crystallographic characterization of La2@ D 5 (450)-C100
Hu et al. POM–organic–POSS cocluster: creating a dumbbell-shaped hybrid molecule for programming hierarchical supramolecular nanostructures
JP5439823B2 (en) Carbon nanotube dispersion and solubilizer
JP2016510295A (en) Edge halogenation of graphene materials
Guan et al. Capturing the missing carbon cage isomer of C84 via mutual stabilization of a triangular monometallic cyanide cluster
JP4005571B2 (en) Amphiphilic hexaperihexabenzocoronene derivatives
Ammon et al. On‐surface synthesis of porous carbon nanoribbons on silver: reaction kinetics and the influence of the surface structure
JP2007291000A (en) Fullerene derivative having magnetism
Lu et al. Addition of benzyne to Gd@ C82
Eisenhut et al. On-surface annulation reaction cascade for the selective synthesis of diindenopyrene
JP2007137809A (en) Fullerene derivative, method for producing fullerene derivative, nano-mesoscopic material and method for producing nano-mesoscopic material
JP4942220B2 (en) Fullerene derivative and method for producing the same
Geng et al. Fullerene-based one-dimensional crystalline nanopolymer formed through topochemical transformation of the parent nanowire
JP2007296593A (en) Fullerene nanowire, method for manufacturing the same and element using the same