JP2007290888A - Method for producing hydrogen - Google Patents

Method for producing hydrogen Download PDF

Info

Publication number
JP2007290888A
JP2007290888A JP2006118664A JP2006118664A JP2007290888A JP 2007290888 A JP2007290888 A JP 2007290888A JP 2006118664 A JP2006118664 A JP 2006118664A JP 2006118664 A JP2006118664 A JP 2006118664A JP 2007290888 A JP2007290888 A JP 2007290888A
Authority
JP
Japan
Prior art keywords
hydrogen
water
reaction
metal material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006118664A
Other languages
Japanese (ja)
Inventor
Hiroshi Kayano
博志 柏野
Toshihiro Nakai
敏浩 中井
Takeshi Miki
健 三木
Shoji Nishihara
昭二 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006118664A priority Critical patent/JP2007290888A/en
Publication of JP2007290888A publication Critical patent/JP2007290888A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply and efficiently producing and supplying hydrogen even at 0°C or lower temperature to facilitate use of a portable fuel cell under low temperature environment. <P>SOLUTION: This method for producing hydrogen comprises causing hydrogen producing reaction to take place by feeding antifreeze water having pH in the range of 4-10 and a freezing point of -5°C or lower to a hydrogen-generating material containing a metallic material of at least one kind selected from the group consisting of aluminum, magnesium and their alloys comprising particles of ≤100 μm particle diameter by ≥80 mass% and an exothermic material other than the metallic material generating heat by reaction with water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属材料と水との反応により水素を発生させる水素の製造方法に関するものである。   The present invention relates to a method for producing hydrogen in which hydrogen is generated by a reaction between a metal material and water.

近年、パソコン、携帯電話などのコードレス機器の普及に伴い、その電源である二次電池はますます小型化、高容量化が要望されている。現在、エネルギー密度が高く、小型軽量化が図れる二次電池としてリチウムイオン二次電池が実用化されており、ポータブル電源として需要が増大している。しかし、使用されるコードレス機器の種類によっては、このリチウム二次電池では未だ十分な連続使用時間を保証する程度までには至っていない。   In recent years, with the widespread use of cordless devices such as personal computers and mobile phones, secondary batteries as power sources are increasingly required to be smaller and have higher capacities. Currently, lithium ion secondary batteries have been put into practical use as secondary batteries that have high energy density and can be reduced in size and weight, and demand for portable power sources is increasing. However, depending on the type of cordless device used, this lithium secondary battery has not yet reached a level that guarantees sufficient continuous use time.

このような状況の中で、上記要望に応え得る電池の一例として、固体高分子型燃料電池が検討されている。電解質に固体高分子電解質、正極活物質に空気中の酸素、負極活物質に燃料(水素、メタノールなど)を用いる固体高分子型燃料電池は、リチウムイオン二次電池よりも高エネルギー密度化が期待できる電池系として注目されている。燃料電池は、燃料および酸素の供給さえ行なえば、連続的に使用することが可能である。   Under such circumstances, a polymer electrolyte fuel cell has been studied as an example of a battery that can meet the above demand. Solid polymer fuel cells that use a solid polymer electrolyte as the electrolyte, oxygen in the air as the positive electrode active material, and fuel (hydrogen, methanol, etc.) as the negative electrode active material are expected to have higher energy density than lithium ion secondary batteries It is attracting attention as a battery system. The fuel cell can be used continuously as long as fuel and oxygen are supplied.

燃料電池に用いる燃料に関しては、いくつかの候補が挙げられているが、それぞれ種々の問題点を有しており、最終的な決定が未だなされていない。燃料としてメタノールを用い、直接電極で反応させる直接メタノール型燃料電池は、小型化が容易であり将来のポータブル電源として期待されているが、メタノールのクロスオーバーによる電圧の低下の問題を抱えており、期待されるエネルギー密度が得られていない。   There are several candidates for the fuel used in the fuel cell, but each has various problems, and a final decision has not yet been made. A direct methanol fuel cell that uses methanol as the fuel and reacts directly with the electrode is easy to miniaturize and is expected as a portable power source in the future, but has a problem of voltage drop due to methanol crossover, The expected energy density is not obtained.

一方、燃料として水素を用いる場合には、例えば、高圧タンク或いは水素吸蔵合金タンクに蓄えた水素を供給する方法が一部で実用化されているが、体積および重量が大きくなり、エネルギー密度が低下するためポータブル電源として適さない。また、燃料として炭化水素系燃料を用い、それを改質して水素を取り出す方法もある。しかし、改質装置が必要となり、改質装置への熱の供給および断熱などの問題が生じるため、やはりポータブル電源としては適さないものである。   On the other hand, when hydrogen is used as a fuel, for example, a method of supplying hydrogen stored in a high-pressure tank or a hydrogen storage alloy tank has been put into practical use, but the volume and weight are increased, and the energy density is reduced. Therefore, it is not suitable as a portable power source. There is also a method in which a hydrocarbon-based fuel is used as the fuel and hydrogen is extracted by reforming it. However, since a reformer is required and problems such as heat supply and heat insulation to the reformer occur, it is still unsuitable as a portable power source.

このような状況下において、100℃以下の低温で化学反応により水素を発生させて燃料として用いる方法が提案されている。これらの方法は、例えば、アルミニウム、マグネシウム、ケイ素、亜鉛など水と反応して水素を発生する金属を水素源とするものである(特許文献1〜5参照)。
米国特許第6506360号公報 特許第2566248号公報 特開2004−231466号公報 特開2001−31401号公報 特表2004−505879号公報
Under such circumstances, a method has been proposed in which hydrogen is generated by a chemical reaction at a low temperature of 100 ° C. or lower and used as a fuel. In these methods, for example, a metal that generates hydrogen by reacting with water, such as aluminum, magnesium, silicon, and zinc, is used as a hydrogen source (see Patent Documents 1 to 5).
US Pat. No. 6,506,360 Japanese Patent No. 2566248 JP 2004-231466 A JP 2001-31401 A JP-T-2004-505879

アルミニウムとアルカリまたは酸とを反応させる上記特許文献1〜3記載の方法によれば、化学的に簡便に水素が発生するが、アルミニウムに見合う当量のアルカリまたは酸を添加する必要があり、万一漏洩した場合の人体への危険度が非常に高い。また、反応生成物である酸化物または水酸化物が上記金属の表面に皮膜を形成して、内部の金属と水とが接触できなくなり、酸化反応が上記金属の表面のみで停止するという問題が生じやすいため、特許文献3の技術では、アルミニウムの割合を85重量%以下として水素発生材料を構成している。   According to the method described in Patent Documents 1 to 3 in which aluminum is reacted with an alkali or an acid, hydrogen is easily generated chemically, but it is necessary to add an equivalent amount of alkali or acid suitable for aluminum. The risk to the human body in case of leakage is very high. In addition, there is a problem that the oxide or hydroxide as a reaction product forms a film on the surface of the metal, the inner metal cannot contact with water, and the oxidation reaction stops only on the surface of the metal. Since it is likely to occur, in the technique of Patent Document 3, the hydrogen generating material is configured with the aluminum ratio being 85 wt% or less.

一方、機械的に表面皮膜を取り除くことにより上記問題を回避しようとする特許文献4の技術では、表面皮膜を取り除くための機械的設備が必要になるなど装置が大型化するという問題を生じる。また、特許文献5では、上記水酸化物の皮膜を形成しにくくするための触媒としてアルミナを添加して、比較的低温で水素を発生させている。しかし、水温が10℃以上の場合に反応が進行するものであり、より低温下、例えば氷点下の環境において水素を製造するのに適するものではなかった。   On the other hand, in the technique of Patent Document 4 which attempts to avoid the above problem by mechanically removing the surface film, there arises a problem that the apparatus becomes large, for example, mechanical equipment for removing the surface film is required. In Patent Document 5, alumina is added as a catalyst for making it difficult to form the hydroxide film, and hydrogen is generated at a relatively low temperature. However, the reaction proceeds when the water temperature is 10 ° C. or higher, and is not suitable for producing hydrogen in a lower temperature environment such as below freezing point.

本発明は、上記事情に鑑みてなされたものであり、その目的は、低温環境下において簡便に水素を発生することのできる水素の製造方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the manufacturing method of hydrogen which can generate | occur | produce hydrogen easily in a low temperature environment.

上記目的を達成し得た本発明の水素の製造方法は、アルミニウム、マグネシウムおよびそれらの合金よりなる群から選択される少なくとも1種の金属材料と、水と反応して発熱する発熱材料であって前記金属材料以外の材料とを含有する水素発生材料を、水と反応させることにより水素を発生させる水素の製造方法であって、前記金属材料として、100μm以下の粒径の粒子を80質量%以上の割合で含有する材料を用い、前記水として、pHが4〜10の範囲にありかつ凝固点が−5℃以下である不凍水を用いることを特徴とする。   The method for producing hydrogen of the present invention capable of achieving the above object is at least one metal material selected from the group consisting of aluminum, magnesium, and alloys thereof, and a heat generating material that generates heat by reacting with water. A method for producing hydrogen in which a hydrogen generating material containing a material other than the metal material is reacted with water to generate hydrogen, wherein the metal material has a particle diameter of 100 μm or less of 80% by mass or more. The material is contained in the ratio, and the water is non-freezing water having a pH in the range of 4 to 10 and a freezing point of −5 ° C. or lower.

本発明の水素の製造方法により、0℃以下でも簡便に効率的に水素を製造し供給することが可能となるため、低温環境下での燃料電池の使用、特に、携帯型の燃料電池の使用が可能となる。   Since the hydrogen production method of the present invention enables simple and efficient production and supply of hydrogen even at 0 ° C. or lower, the use of fuel cells in a low temperature environment, particularly the use of portable fuel cells. Is possible.

以下、本発明を詳細に説明する。本発明の水素の製造方法では、アルミニウム、マグネシウムおよびそれらの合金よりなる群から選択される少なくとも1種の金属材料と、水と反応して発熱する発熱材料であって前記金属材料以外の材料とを含有する水素発生材料を、水と反応させる際に、pHが4〜10の範囲にありかつ凝固点が−5℃以下である不凍水を用いる。   Hereinafter, the present invention will be described in detail. In the method for producing hydrogen of the present invention, at least one metal material selected from the group consisting of aluminum, magnesium, and alloys thereof, and a heat generating material that generates heat by reacting with water, and a material other than the metal material, When the hydrogen generating material containing is reacted with water, antifreeze water having a pH in the range of 4 to 10 and a freezing point of −5 ° C. or lower is used.

上記金属材料は、通常は、表面に安定な酸化皮膜が存在するため、水と接触した場合でも、直ちに水素発生反応が始まるわけではなく、表面から内部に徐々に水が浸入し、内部の金属状態で存在するアルミニウムあるいはマグネシウムと水とが接した時に、下記式(1)〜(3)のいずれかで示される反応が始まるものと思われる。
2Al+6HO→Al・3HO+3H (1)
2Al+4HO→Al・HO+3H (2)
2Al+3HO→Al+3H (3)
Since the above metal materials usually have a stable oxide film on the surface, even when they come into contact with water, the hydrogen generation reaction does not start immediately, but water gradually infiltrates from the surface to the inside, and the internal metal When aluminum or magnesium present in the state is in contact with water, the reaction represented by any of the following formulas (1) to (3) is considered to start.
2Al + 6H 2 O → Al 2 O 3 .3H 2 O + 3H 2 (1)
2Al + 4H 2 O → Al 2 O 3 .H 2 O + 3H 2 (2)
2Al + 3H 2 O → Al 2 O 3 + 3H 2 (3)

すなわち、水素発生材料に水を供給した場合でも、水素発生開始までの間(通常、数分〜数十分)は、反応が生じないため、水素発生材料および供給された水は、周囲の温度に応じてその温度が変化することになる。例えば、反応系が氷点下に置かれている場合は、通常の水(例えば、水道水など)を供給しても、反応開始までに凍結してしまい、金属材料の内部に水が浸入しなくなるため、水素発生反応を開始できないという問題を生じる。 That is, even when water is supplied to the hydrogen generating material, the reaction does not occur until the hydrogen generation starts (usually several minutes to several tens of minutes), so the hydrogen generating material and the supplied water are at the ambient temperature. Depending on the temperature, the temperature will change. For example, when the reaction system is below freezing point, even if normal water (for example, tap water) is supplied, it freezes by the start of the reaction and water does not enter the metal material. This causes a problem that the hydrogen generation reaction cannot be started.

一方、一旦水素発生反応が始まれば、上記金属材料と水との反応は発熱反応であるので、水を含めた反応系の温度が上昇し、水素発生反応を継続させることが可能となる。従って、低温下で水素を発生させるためには、水素発生反応の開始まで反応水を凍結させないようにする必要がある。本発明においては、反応に用いる溶液(少なくとも水を含有する溶液)の凝固温度を−5℃以下とすることにより、低温下での水素発生反応が可能となる。   On the other hand, once the hydrogen generation reaction starts, the reaction between the metal material and water is an exothermic reaction, so the temperature of the reaction system including water rises and the hydrogen generation reaction can be continued. Therefore, in order to generate hydrogen at a low temperature, it is necessary not to freeze the reaction water until the start of the hydrogen generation reaction. In the present invention, by setting the solidification temperature of a solution used for the reaction (a solution containing at least water) to −5 ° C. or lower, a hydrogen generation reaction at a low temperature is possible.

上記不凍水としては、例えば、水とエチレングリコールやエタノールなどの有機溶媒との混合溶媒、あるいは、ポリオキシエチレンなどの水溶性高分子や塩化ナトリウムなどの無機塩を溶解させた水溶液などを用いることができるが、溶質の種類は特に限定されるものではない。すなわち、水の凝固温度を低下させるには、溶質を溶解した水溶液において、溶質濃度に応じて凝固点が低下する凝固点降下を利用するのがよいが、溶質の種類は特に限定されない。また、不凍水中での溶質の濃度についても、凝固点が−5℃以下となる範囲であれば特に限定されるものではないが、凝固点をより低くするために5wt%以上とするのが一般的であり、一方、水の比率を一定以上として反応効率を高めるためには、溶質の濃度は50wt%以下とすることが望ましい。また、不凍水のpHが中性に近い4〜10の範囲であれば、万一漏洩した場合の人体への危険度が低いので好ましい。   As the antifreeze water, for example, a mixed solvent of water and an organic solvent such as ethylene glycol or ethanol, or an aqueous solution in which a water-soluble polymer such as polyoxyethylene or an inorganic salt such as sodium chloride is dissolved is used. However, the type of solute is not particularly limited. That is, in order to lower the freezing temperature of water, it is preferable to use freezing point depression in which the freezing point is lowered according to the concentration of the solute in the aqueous solution in which the solute is dissolved, but the kind of the solute is not particularly limited. Further, the concentration of the solute in the antifreeze water is not particularly limited as long as the freezing point is in the range of −5 ° C. or lower, but it is generally 5 wt% or more in order to lower the freezing point. On the other hand, in order to increase the reaction efficiency by setting the ratio of water to a certain value or more, the concentration of the solute is desirably 50 wt% or less. Moreover, it is preferable if the pH of the antifreeze water is in the range of 4 to 10 which is close to neutral, since the risk to the human body in the event of leakage is low.

本発明においては、金属材料として、アルミニウム、マグネシウムおよびそれらの合金よりなる群から選択される少なくとも1種が用いられるが、その製造方法や形状は、特に限定されず、機械的粉化法やアトマイズ法などにより作製された、鱗片状、略球状、紡錘状、液滴状またはじゃがいも状など様々な形状の材料を用いることができる。   In the present invention, as the metal material, at least one selected from the group consisting of aluminum, magnesium, and alloys thereof is used, but the production method and shape thereof are not particularly limited, and mechanical powdering and atomization are used. A material having various shapes such as a scale shape, a substantially spherical shape, a spindle shape, a droplet shape, or a potato shape produced by a method or the like can be used.

また、低温でも前記不凍水中の水との反応を効率よく生じさせ、短時間で水素発生反応を開始させるためには、上記金属材料の粒径は小さいほうがよく、100μm以下の粒径の粒子を80質量%以上の割合で含有していることが望まれる。平均粒径としては、70μm以下であることが好ましく、特に、平均粒径を30μm以下とした場合には、反応効率をより一層向上させることが可能となる。   Further, in order to efficiently generate a reaction with the water in the antifreeze water even at a low temperature and to start a hydrogen generation reaction in a short time, the metal material should have a small particle size, and particles having a particle size of 100 μm or less. Is preferably contained in a proportion of 80% by mass or more. The average particle size is preferably 70 μm or less, and particularly when the average particle size is 30 μm or less, the reaction efficiency can be further improved.

一方、金属材料の粒径が小さいほど、水素発生速度が増加するが、0.1μmより粒径が小さくなると、空気中での安定性が低下して取り扱いが困難になり、更に、嵩密度が小さくなって水素発生材料の充填密度が低下することから、金属材料の粒径は0.1μm以上とすることが好ましい。   On the other hand, as the particle size of the metal material is smaller, the hydrogen generation rate is increased. However, if the particle size is smaller than 0.1 μm, the stability in the air is lowered and the handling becomes difficult. The particle size of the metal material is preferably 0.1 μm or more because the filling density of the hydrogen generating material is reduced as the particle size is reduced.

上記金属材料の粒径は、例えば、レーザ回折・散乱法により測定することができる。具体的には、水などの液相に分散させた測定対象物質にレーザ光を照射することによって検出される散乱強度分布を利用した粒子径分布の測定方法であり、その測定装置としては、例えば、日機装株式会社製「マイクロトラックHRA」などを用いることができる。より簡便には、篩による粒子の分級で目的とする粒度を有する金属材料を得ることができ、例えば、目開きが50μmの篩で金属材料を分級することにより、粒径が50μm以下の粉末を得ることができる。なお、本発明における平均粒径は、体積基準の積算分率における50%径の値を意味している。   The particle size of the metal material can be measured by, for example, a laser diffraction / scattering method. Specifically, it is a particle size distribution measurement method using a scattering intensity distribution detected by irradiating a measurement target substance dispersed in a liquid phase such as water with a laser beam. “Microtrack HRA” manufactured by Nikkiso Co., Ltd. can be used. More simply, a metal material having a target particle size can be obtained by classifying particles with a sieve. For example, by classifying a metal material with a sieve having an opening of 50 μm, a powder having a particle size of 50 μm or less can be obtained. Obtainable. In addition, the average particle diameter in this invention means the value of 50% diameter in the volume-based integrated fraction.

金属材料としてアルミニウム合金あるいはマグネシウム合金を用いる場合、その組成などは特に限定はされないが、水素発生に関係するアルミニウムあるいはマグネシウムの含有量が多い方が望ましく、これらの含有量が80質量%以上であるのがよく、85質量%以上であるのがより好ましい。   When an aluminum alloy or a magnesium alloy is used as the metal material, the composition thereof is not particularly limited, but it is desirable that the content of aluminum or magnesium related to hydrogen generation is large, and the content is 80% by mass or more. It is good and it is more preferable that it is 85 mass% or more.

アルミニウム合金における添加元素(合金元素)としては、例えば、ケイ素、鉄、銅、マンガン、マグネシウム、亜鉛、ニッケル、チタン、鉛、スズ、およびクロムなどが挙げ
られ、これらの合金元素を2種以上含有しても構わない。また、マグネシウム合金における添加元素(合金元素)としては、例えば、アルミニウム、亜鉛、ジルコニウム、ケイ素、鉄、銅、マンガン、ニッケルまたは希土類元素などを挙げることができ、これらの合金元素を2種以上含有しても構わない。
Examples of additive elements (alloy elements) in aluminum alloys include silicon, iron, copper, manganese, magnesium, zinc, nickel, titanium, lead, tin, and chromium, and contain two or more of these alloy elements. It doesn't matter. In addition, examples of the additive element (alloy element) in the magnesium alloy include aluminum, zinc, zirconium, silicon, iron, copper, manganese, nickel, and rare earth elements, and contains two or more of these alloy elements. It doesn't matter.

なお、本発明においては、金属材料と水とを接触させてから水素発生開始までの時間を短縮するために、水と反応して発熱する発熱材料であって上記金属材料以外の材料を、上記金属材料と共存させて水素発生材料を構成する。上記発熱材料としては、水との反応により水酸化物を形成する物質や、水和することにより発熱する化合物、例えば、アルカリ金属の酸化物(酸化リチウムなど)、アルカリ土類金属の酸化物(酸化カルシウム、酸化マグネシウムなど)、アルカリ土類金属の塩化物(塩化カルシウム、塩化マグネシウムなど)、アルカリ土類金属の硫酸化合物(硫酸カルシウムなど)など、水との反応が容易であり、水と接触した場合に直ちに発熱する物質を用いればよい。このような材料が存在することにより、水素発生材料に不凍水が供給されたときに、金属材料および水の温度が一時的に上昇し、前述した金属材料粒子内部への水の浸透が促進され、水素発生開始までの時間を短縮することができ、より低温下での水素発生に対応することができる。   In the present invention, in order to shorten the time from the contact between the metal material and water to the start of hydrogen generation, a heat generating material that generates heat by reacting with water and a material other than the metal material is used as described above. A hydrogen generating material is formed by coexisting with a metal material. Examples of the exothermic materials include substances that form hydroxides by reaction with water, compounds that generate heat by hydration, such as alkali metal oxides (such as lithium oxide), alkaline earth metal oxides ( Calcium oxide, magnesium oxide, etc.), alkaline earth metal chlorides (calcium chloride, magnesium chloride, etc.), alkaline earth metal sulfate compounds (calcium sulfate, etc.), etc., easily react with water and come into contact with water In such a case, a substance that immediately generates heat may be used. Due to the presence of such materials, when antifreeze water is supplied to the hydrogen generating material, the temperature of the metal material and water temporarily rises, and the penetration of water into the metal material particles described above is promoted. Thus, the time until the start of hydrogen generation can be shortened, and hydrogen generation at a lower temperature can be handled.

上記発熱材料の割合は、上記昇温効果を十分に発揮させるため、金属材料との総量中1質量%以上とするのが望ましく、3質量%以上とすることがより望ましい。一方、必要以上に発熱した場合、水素発生反応を制御できなくなるおそれが生じるので、発熱材料の種類にもよるが、20質量%以下にすることが望ましく、15質量%未満にすることがより望ましく、10質量%以下にすることが特に望ましい。   The ratio of the heat generating material is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total amount with the metal material, in order to sufficiently exhibit the temperature rising effect. On the other hand, if the heat is generated more than necessary, the hydrogen generation reaction may not be controlled, so depending on the type of heat generating material, it is preferably 20% by mass or less, more preferably less than 15% by mass. It is particularly desirable that the content be 10% by mass or less.

また、本発明に用いる水素発生材料には、さらに、親水性酸化物(アルミナ、シリカ、マグネシア、ジルコニア、ゼオライト、酸化亜鉛など)、炭素、吸水性高分子(カルボキシメチルセルロースなどのセルロース類、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸など)などの反応促進剤を添加してもよい。上記反応促進剤により、金属材料と水との接触が良好になる、金属材料が水と反応することにより生成した反応生成物と未反応の金属材料とが凝結するのを防ぐ、水素発生材料内部まで水が浸透しやすくなるなどの効果があると考えられる。   The hydrogen generating material used in the present invention further includes hydrophilic oxides (alumina, silica, magnesia, zirconia, zeolite, zinc oxide, etc.), carbon, water-absorbing polymers (celluloses such as carboxymethyl cellulose, polyvinylpyrrolidone, etc. , Polyvinyl alcohol, polyacrylic acid, and the like) may be added. The above-mentioned reaction accelerator improves the contact between the metal material and water, prevents the reaction product produced by the reaction of the metal material with water and the unreacted metal material from condensing. It is thought that there is an effect such that water easily penetrates.

本発明の水素の製造方法においては、前記水素発生材料を配置した反応容器内に、pHが4〜10の範囲にありかつ凝固点が−5℃以下である不凍水を供給し、不凍水に含まれる水と水素発生材料に含まれる金属材料とを反応させることにより水素を取り出すことができる。このとき、不凍水の供給量を制御することにより、発生する水素量を制御することができる。   In the hydrogen production method of the present invention, antifreeze water having a pH in the range of 4 to 10 and a freezing point of −5 ° C. or lower is supplied into the reaction vessel in which the hydrogen generating material is disposed. Hydrogen can be taken out by reacting the water contained in the metal with the metal material contained in the hydrogen generating material. At this time, the amount of generated hydrogen can be controlled by controlling the supply amount of the antifreeze water.

上記反応容器は、水素発生材料を収容可能であれば、その材質や形状は特に限定されないが、前記不凍水および水素を透過しにくく、かつ100℃程度に加熱しても容器が破損しない材質が好ましい。例えば、ポリエチレン、ポリプロピレンなどの樹脂、耐熱ガラスおよびアルミニウム、鉄などの金属などを好適に用いることができる。また、不凍水の供給手段も特に限定されず、反応容器の外部から前記不凍水を供給する場合には、例えば、反応容器に不凍水の供給口を設けて、ポンプなどを接続して容器内に不凍水を供給できるようにすればよい。   The material and shape of the reaction vessel are not particularly limited as long as the reaction vessel can accommodate a hydrogen generating material, but the material does not easily penetrate the antifreeze water and hydrogen and does not break even when heated to about 100 ° C. Is preferred. For example, resins such as polyethylene and polypropylene, heat resistant glass and metals such as aluminum and iron can be preferably used. Also, the means for supplying antifreeze water is not particularly limited. When supplying the antifreeze water from the outside of the reaction vessel, for example, a supply port for antifreeze water is provided in the reaction vessel and a pump or the like is connected. The antifreeze water can be supplied into the container.

ここで、水素発生材料を内部に収容した反応容器は、電子機器本体や燃料電池本体に着脱可能なカートリッジとすることもできる。この場合、携帯に便利なように、反応容器内部に不凍水を貯蔵する貯蔵部を設けておいてもよく、この貯蔵部から水素発生材料に不凍水を供給できるような構成とすることにより、上記不凍水の供給口やポンプなどを省き、少なくとも水素の排出口を反応容器に設けておくだけでよいため、簡便に水素を製造することが可能になる。このため、容器の外部から不凍水を供給する場合に比べて、装置の簡略化や小型化が容易となり、携帯用燃料源としてより好ましい構成とすることができる。   Here, the reaction container in which the hydrogen generating material is accommodated may be a cartridge that can be attached to and detached from the electronic device main body and the fuel cell main body. In this case, a storage unit for storing the antifreeze water may be provided inside the reaction vessel so that it is convenient for carrying, and the antifreeze water can be supplied from the storage unit to the hydrogen generating material. Accordingly, it is only necessary to omit the supply port of the non-freezing water and the pump and to provide at least a hydrogen discharge port in the reaction vessel, so that hydrogen can be easily produced. For this reason, compared with the case where antifreeze water is supplied from the outside of the container, the apparatus can be easily simplified and miniaturized, and the configuration can be more preferable as a portable fuel source.

なお、反応容器内に設ける上記不凍水の貯蔵部は、例えば、ポリエチレンフィルムなどの樹脂フィルムなどで構成された袋に不凍水を封入することにより構成することができ、袋に穴を開けるなどの簡便な手段により、貯蔵部内の不凍水を水素発生材料に接触させてやれば、水素の発生が可能となり、水素製造装置として機能させることができる。   In addition, the storage part of the antifreeze water provided in the reaction vessel can be configured by enclosing the antifreeze water in a bag made of a resin film such as a polyethylene film, and opens a hole in the bag. If the antifreeze water in the storage unit is brought into contact with the hydrogen generating material by a simple means such as, hydrogen can be generated and function as a hydrogen production apparatus.

本発明の水素の製造方法を用いて発生させた水素は、炭化水素系燃料を改質して水素を製造する場合に問題とされるCOおよびCOを含まず、また、反応に水が関与することから水素ガス中に適度な水分を含むため、特に、100℃以下で作動する固体高分子型燃料電池の燃料として好適に用いることができる。 Hydrogen generated using the method for producing hydrogen of the present invention does not contain CO and CO 2 which are problematic when reforming hydrocarbon fuels to produce hydrogen, and water is involved in the reaction. Therefore, since hydrogen gas contains moderate moisture, it can be suitably used as a fuel for a polymer electrolyte fuel cell that operates at 100 ° C. or lower.

以下、実施例に基づいて本発明を詳細に述べる。ただし、本発明は下記実施例のみに制限されるものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited only to the following examples.

(実施例1)
ガスアトマイズ法により作製された平均粒径:3μmのアルミニウム粉末(粒径が100μm以下の粒子の割合:100質量%)と酸化カルシウム粉末とを乳鉢で混合し、これらを表1に示す割合で含有する水素発生材料を作製した。この水素発生材料1gをサンプル瓶に入れ、不凍水として25質量%エタノール水溶液(pH:7、凝固点:−15℃)を4g加えて48時間放置し、その間に発生する水素を捕集した。試験は−5℃で行い、捕集した水素の体積を測定して水素発生量とした。結果を表1に示す。
Example 1
The average particle diameter produced by the gas atomization method: 3 μm aluminum powder (ratio of particles having a particle diameter of 100 μm or less: 100 mass%) and calcium oxide powder are mixed in a mortar, and these are contained in the ratio shown in Table 1. A hydrogen generating material was prepared. 1 g of this hydrogen generating material was put in a sample bottle, 4 g of 25 mass% ethanol aqueous solution (pH: 7, freezing point: −15 ° C.) was added as antifreeze water and left for 48 hours, and hydrogen generated during that time was collected. The test was performed at −5 ° C., and the volume of collected hydrogen was measured to determine the amount of hydrogen generated. The results are shown in Table 1.

(実施例2)
平均粒径:3μmのアルミニウム粉末に代えて、平均粒径:30μmのアルミニウム粉
末(粒径が100μm以下の粒子の割合:100質量%)を金属材料として用いた以外は、実施例1と同様にして水素発生材料を作製し、水素発生量を求めた。
(Example 2)
Average particle size: In the same manner as in Example 1 except that aluminum powder having an average particle size of 30 μm (ratio of particles having a particle size of 100 μm or less: 100% by mass) was used as the metal material instead of the aluminum powder having an average particle size of 3 μm. Thus, a hydrogen generating material was prepared and the amount of hydrogen generated was determined.

(実施例3)
酸化カルシウム粉末に代えて、塩化カルシウム粉末を発熱材料として用いた以外は、実施例2と同様にして水素発生材料を作製し、水素発生量を求めた。
(Example 3)
A hydrogen generating material was prepared in the same manner as in Example 2 except that calcium chloride powder was used as the heat generating material instead of the calcium oxide powder, and the amount of hydrogen generated was determined.

(比較例1)
25質量%エタノール水溶液の不凍水に代えて、イオン交換水(凝固点:0℃)を用いた以外は、実施例1と同様にして試験を行なったが、水素発生開始前にイオン交換水が凍結したため、水素発生反応が生じなかった。
(Comparative Example 1)
The test was performed in the same manner as in Example 1 except that ion-exchanged water (freezing point: 0 ° C.) was used instead of the 25 mass% ethanol aqueous solution, but the ion-exchanged water was not Due to freezing, no hydrogen evolution reaction occurred.

(比較例2)
平均粒径:3μmのアルミニウム粉末に代えて、平均粒径:150μmのアルミニウム粉末(粒径が100μm以下の粒子の割合:26質量%)を用いた以外は、実施例1と同様にして水素発生材料を作製し、水素発生量を求めた。
(Comparative Example 2)
Hydrogen generation in the same manner as in Example 1 except that aluminum powder having an average particle diameter of 150 μm (ratio of particles having a particle diameter of 100 μm or less: 26 mass%) was used instead of the aluminum powder having an average particle diameter of 3 μm. The material was prepared and the amount of hydrogen generation was determined.

上記実施例1〜3および比較例1〜2の測定結果を表1に示す。   The measurement results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 2007290888
Figure 2007290888

(実施例4)
平均粒径:3μmのアルミニウム粉末に代えて、篩により選別した粒径45μm以下の
マグネシウム粉末(粒径が100μm以下の粒子の割合:100質量%)を用いた以外は、実施例1と同様にして水素発生材料を作製し、水素発生量を求めた。
Example 4
Average particle diameter: In the same manner as in Example 1, except that magnesium powder having a particle diameter of 45 μm or less (the ratio of particles having a particle diameter of 100 μm or less: 100 mass%) selected by a sieve was used instead of the aluminum powder of 3 μm. Thus, a hydrogen generating material was prepared and the amount of hydrogen generated was determined.

(比較例3)
平均粒径:3μmのアルミニウム粉末に代えて、平均粒径:150μmのマグネシウム粉末(粒径が100μm以下の粒子の割合:22質量%)を用いた以外は、実施例1と同様にして水素発生材料を作製し、水素発生量を求めた。
(Comparative Example 3)
Hydrogen generation in the same manner as in Example 1 except that magnesium powder having an average particle size of 150 μm (ratio of particles having a particle size of 100 μm or less: 22% by mass) was used instead of the aluminum powder having an average particle size of 3 μm. The material was prepared and the amount of hydrogen generation was determined.

上記実施例4および比較例3の測定結果を表2に示す。   The measurement results of Example 4 and Comparative Example 3 are shown in Table 2.

Figure 2007290888
Figure 2007290888

表1および表2より明らかなように、100μm以下の粒子を80質量%以上の割合で含む金属材料により水素発生材料を構成し、水素発生材料に供給する水を、pHが4〜10の範囲にありかつ凝固点が−5℃以下である不凍水とした実施例1〜4では、−5℃の低温下でも反応が進行し、十分な量の水素を発生させることができた。特に、金属材料の割合が85質量%以上である場合に、反応効率が高くなり好適な結果が得られた。   As is clear from Tables 1 and 2, the hydrogen generating material is composed of a metal material containing particles of 100 μm or less in a proportion of 80% by mass or more, and the water supplied to the hydrogen generating material has a pH in the range of 4 to 10 In Examples 1 to 4 in which the antifreezing water had a freezing point of -5 ° C or lower, the reaction proceeded even at a low temperature of -5 ° C, and a sufficient amount of hydrogen could be generated. In particular, when the ratio of the metal material is 85% by mass or more, the reaction efficiency is increased, and favorable results are obtained.

一方、通常の水を供給した比較例1では、水が凝固して水素を発生させることができず、金属材料を構成する粒子のうち、100μm以下の粒子の割合が80質量%に満たない比較例2および3では、反応が十分に進行せず、上記実施例と比べて水素発生量が大幅に低減した。   On the other hand, in Comparative Example 1 in which normal water was supplied, water could not be solidified to generate hydrogen, and among the particles constituting the metal material, the proportion of particles of 100 μm or less was less than 80% by mass. In Examples 2 and 3, the reaction did not proceed sufficiently, and the hydrogen generation amount was significantly reduced as compared with the above Examples.

(実施例5)
図1に示す収容容器2と蓋3とからなる反応容器1に、実施例1と同様の水素発生材料6(ただし、金属材料の割合:95質量%)を収容し、チューブポンプ8を用いて、供給口4から0.07ml/minの割合で、実施例1で用いた不凍水7を容器内に連続的に供給することにより、水素発生材料6と水とを反応させて水素を発生させ、これを水素の排出口5を通じて取り出した。取り出された水素を、酸素を還元する正極と、水素を酸化する負極と、前記正極と負極との間に配置された固体電解質とからなる固体高分子型燃料電池に供給し、燃料電池による発電量を測定した。試験は−5℃で行なった。その結果、徐々に出力が増加し、170mW/cmの安定出力が得られ、燃料電池を駆動する燃料源として充分に機能することが確認された。
(Example 5)
A hydrogen generating material 6 (however, the ratio of metal material: 95% by mass) similar to that in Example 1 is accommodated in a reaction container 1 including a container 2 and a lid 3 shown in FIG. By continuously supplying the antifreeze water 7 used in Example 1 into the container from the supply port 4 at a rate of 0.07 ml / min, the hydrogen generating material 6 and water are reacted to generate hydrogen. This was taken out through the hydrogen outlet 5. The extracted hydrogen is supplied to a polymer electrolyte fuel cell comprising a positive electrode that reduces oxygen, a negative electrode that oxidizes hydrogen, and a solid electrolyte disposed between the positive electrode and the negative electrode. The amount was measured. The test was conducted at -5 ° C. As a result, the output gradually increased, a stable output of 170 mW / cm 2 was obtained, and it was confirmed that it sufficiently functions as a fuel source for driving the fuel cell.

本発明の実施例5の実験に用いた水素製造装置を示す模式図である。It is a schematic diagram which shows the hydrogen production apparatus used for experiment of Example 5 of this invention.

符号の説明Explanation of symbols

1 反応容器
2 収容容器
3 蓋
4 水の供給口
5 水素の排出口
6 水素発生材料
7 不凍水
8 ポンプ
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Storage container 3 Lid 4 Water supply port 5 Hydrogen discharge port 6 Hydrogen generating material 7 Antifreeze water 8 Pump

Claims (5)

アルミニウム、マグネシウムおよびそれらの合金よりなる群から選択される少なくとも1種の金属材料と、水と反応して発熱する発熱材料であって前記金属材料以外の材料とを含有する水素発生材料を、水と反応させることにより水素を発生させる水素の製造方法であって、
前記金属材料は、100μm以下の粒径の粒子を80質量%以上の割合で含有し、
前記水として、pHが4〜10の範囲にありかつ凝固点が−5℃以下である不凍水を用いることを特徴とする水素の製造方法。
A hydrogen generating material containing at least one metal material selected from the group consisting of aluminum, magnesium, and alloys thereof, and a heat generating material that generates heat by reacting with water and is a material other than the metal material, A method for producing hydrogen by generating hydrogen by reacting with
The metal material contains particles having a particle size of 100 μm or less in a proportion of 80% by mass or more,
As the water, non-freezing water having a pH in the range of 4 to 10 and a freezing point of −5 ° C. or lower is used.
上記金属材料と上記発熱材料との総量中、金属材料の割合が、85質量%より多く、99質量%以下である請求項1に記載の水素の製造方法。   2. The method for producing hydrogen according to claim 1, wherein a ratio of the metal material in the total amount of the metal material and the heat generating material is more than 85 mass% and not more than 99 mass%. 上記発熱材料が、酸化カルシウム、酸化マグネシウム、塩化カルシウム、塩化マグネシウムおよび硫酸カルシウムよりなる群から選択される少なくとも1種の化合物である請求項1または2に記載の水素の製造方法。   The method for producing hydrogen according to claim 1 or 2, wherein the heat generating material is at least one compound selected from the group consisting of calcium oxide, magnesium oxide, calcium chloride, magnesium chloride, and calcium sulfate. 上記発熱材料が、酸化カルシウムである請求項1〜3のいずれかに記載の水素の製造方法。   The method for producing hydrogen according to claim 1, wherein the heat generating material is calcium oxide. 上記金属材料の平均粒径が、30μm以下である請求項1〜4のいずれかに記載の水素の製造方法。
The method for producing hydrogen according to claim 1, wherein an average particle diameter of the metal material is 30 μm or less.
JP2006118664A 2006-04-24 2006-04-24 Method for producing hydrogen Withdrawn JP2007290888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118664A JP2007290888A (en) 2006-04-24 2006-04-24 Method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118664A JP2007290888A (en) 2006-04-24 2006-04-24 Method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2007290888A true JP2007290888A (en) 2007-11-08

Family

ID=38761898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118664A Withdrawn JP2007290888A (en) 2006-04-24 2006-04-24 Method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2007290888A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001379T5 (en) 2007-05-23 2010-04-08 Nsk Ltd. A state variable measuring device for a rolling bearing assembly and method of making the same
JP2013107822A (en) * 2013-01-30 2013-06-06 Ulvac Japan Ltd Method for generating gaseous hydrogen and material for generating gaseous hydrogen
JP2016509570A (en) * 2013-02-01 2016-03-31 レフレクティア,エセ.アー. Method for producing hydrogen by reaction with aluminum
TWI644858B (en) * 2017-11-14 2018-12-21 大華學校財團法人大華科技大學 Device and method of high temperature steam vaporization of hydrogen storage particles with generated hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001379T5 (en) 2007-05-23 2010-04-08 Nsk Ltd. A state variable measuring device for a rolling bearing assembly and method of making the same
JP2013107822A (en) * 2013-01-30 2013-06-06 Ulvac Japan Ltd Method for generating gaseous hydrogen and material for generating gaseous hydrogen
JP2016509570A (en) * 2013-02-01 2016-03-31 レフレクティア,エセ.アー. Method for producing hydrogen by reaction with aluminum
TWI644858B (en) * 2017-11-14 2018-12-21 大華學校財團法人大華科技大學 Device and method of high temperature steam vaporization of hydrogen storage particles with generated hydrogen

Similar Documents

Publication Publication Date Title
JP4104016B2 (en) Hydrogen generating material, hydrogen production cartridge, hydrogen production apparatus, hydrogen production method and fuel cell system
KR100837291B1 (en) Hydrogen generating material, hydrogen generator and fuel cell
JP4947718B2 (en) Hydrogen generating material and hydrogen generating apparatus
KR100934740B1 (en) Hydrogen Generating Material and Manufacturing Method of Hydrogen Generating Material
JPWO2009031578A1 (en) Hydrogen generating material composition, hydrogen generating material molded body, and method for producing hydrogen
WO2006103959A1 (en) Hydrogen generating material, method for producing same, and method for producing hydrogen
KR20090060996A (en) Power generating apparatus
JP2011121826A (en) Manufacturing method for hydrogen and manufacturing device of hydrogen and fuel cell system
JP2006298670A (en) Method and apparatus for generating hydrogen and method and system for generating electrochemical energy
JP2007290888A (en) Method for producing hydrogen
JP2006273609A (en) Hydrogen generator and fuel cell using the same
JP2007326742A (en) Manufacturing method of hydrogen
JP2007326731A (en) Manufacturing method of hydrogen
JP4574487B2 (en) Hydrogen production method, hydrogen production apparatus and power supply
JP2008273758A (en) Hydrogen generating material composition and hydrogen generating apparatus
WO2009107779A1 (en) Hydrogen generator
JP2007254256A (en) Hydrogen generating material, method for producing the same, method and apparatus for producing hydrogen, and fuel cell
JP2010001188A (en) Hydrogen production apparatus and fuel cell
JP2007119323A (en) Hydrogen production apparatus
JP2010265137A (en) Method and apparatus for producing hydrogen
JP2009203103A (en) Hydrogen generating device
JP2013043793A (en) Hydrogen producing apparatus and method of producing hydrogen
JP2012046379A (en) Hydrogen generating material composition and hydrogen generator
JP2012017219A (en) Apparatus for producing hydrogen
JP2010235391A (en) Method of producing hydrogen and apparatus of producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110721