JP2007290052A - Surface machining method - Google Patents

Surface machining method Download PDF

Info

Publication number
JP2007290052A
JP2007290052A JP2006117893A JP2006117893A JP2007290052A JP 2007290052 A JP2007290052 A JP 2007290052A JP 2006117893 A JP2006117893 A JP 2006117893A JP 2006117893 A JP2006117893 A JP 2006117893A JP 2007290052 A JP2007290052 A JP 2007290052A
Authority
JP
Japan
Prior art keywords
workpiece
hardness
heat treatment
cutting
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006117893A
Other languages
Japanese (ja)
Inventor
Ryutaro Tanaka
隆太郎 田中
Takashi Ueda
隆司 上田
Akira Hosokawa
晃 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2006117893A priority Critical patent/JP2007290052A/en
Publication of JP2007290052A publication Critical patent/JP2007290052A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface machining method which forms a recessed part having desired size and cross-sectional form in a surface of a workpiece of metal material or the like in a short period of time. <P>SOLUTION: The method comprises: a first process to carry out heat treatment to the surface of the workpiece by radiation of a laser beam for making hardness of the surface of the workpiece nonuniform; and a second process of carrying out grinding work to the surface of the workpiece after its hardness is made nonuniform. By controlling laser beam radiation conditions, the hardness of the workpiece is finely varied. By carrying out grinding work to the surface after the heat treatment (for hardening) by radiation of the laser beam, hardness difference in the surface of the workpiece causes a step (level difference). A recessed part having desired size and cross-sectional form is thus formed in a short period of time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は表面加工方法に関し、詳しくは、金属材料等からなる被加工物の表面に所望の断面形状からなる凹部を簡単に形成できる表面加工方法に関する。   The present invention relates to a surface processing method, and more particularly to a surface processing method that can easily form a recess having a desired cross-sectional shape on the surface of a workpiece made of a metal material or the like.

従来から、鉄鋼材料の表面、自動車のシリンダ内面、工作機械の摺動面等に、油溜まりと呼ばれる微小な凹部(溝)を生成するために、切削、研削加工後の表面にホーニング加工を施すことが行われている。   Conventionally, honing is applied to the surface after cutting and grinding in order to generate minute recesses (grooves) called oil reservoirs on the surface of steel materials, the inner surface of cylinders of automobiles, and the sliding surface of machine tools. Things have been done.

また、特許文献1には、シリンダブロックの内周面等にレーザー加工で微小な凹部を形成した後、レーザー加工後の盛り上がり部が形成された表面に研削加工(仕上げ加工)を施す表面加工方法が提案され、また、同特許文献1には、かかる加工方法の更なる改良として、レーザー加工後に、レーザー加工を行った部分とレーザー加工を行っていない部分との硬度差を吸収するためのレーザー焼入れを行ってから、研削加工(仕上げ加工)を施す方法も提案されている。   Further, Patent Document 1 discloses a surface processing method in which a minute recess is formed by laser processing on the inner peripheral surface or the like of a cylinder block, and then grinding (finishing) is performed on the surface on which the raised portion after laser processing is formed. In addition, as a further improvement of such a processing method, Patent Document 1 discloses a laser for absorbing a hardness difference between a laser-processed portion and a laser-processed portion after laser processing. There has also been proposed a method of performing grinding (finishing) after quenching.

しかし、ホーニング加工は微小な凹部(段差)を高能率に形成できる方法ではあるが、加工面の仕上がりには、砥石(大きさ、密度等)、砥石圧、スピンドル速度(ホーニング速度)、研削方向角等の種々の要因が複雑に作用するため、所望の大きさ及び断面形状を有する凹部を形成することは容易ではない。   However, honing is a method that can form minute recesses (steps) with high efficiency. However, the finish of the machined surface includes the grinding wheel (size, density, etc.), grinding wheel pressure, spindle speed (honing speed), and grinding direction. Since various factors such as corners act in a complicated manner, it is not easy to form a recess having a desired size and cross-sectional shape.

一方、レーザー加工は、照射するレーザー光のパワー、ビーム径等の調整により、凹部の幅(大きさ)や深さ等を比較的簡単に制御できるが、凹部は被加工物(被照射材料)がレーザー光の照射によって蒸発することで形成されるので、凹部形成のための加工時間が長くなるという問題がある。   On the other hand, in laser processing, the width (size), depth, etc. of the recess can be controlled relatively easily by adjusting the power of the irradiated laser beam, beam diameter, etc., but the recess is the workpiece (irradiated material) Is formed by evaporating by irradiation with laser light, and there is a problem that the processing time for forming the recesses becomes long.

また、レーザー光の照射によって被照射材料が蒸発して形成された凹部の周縁にはバリ(盛り上がり部)が形成されるので、特許文献1のように、レーザー加工を行った後、バリ(盛り上がり部)を除去するための研削加工(仕上げ加工)を行うことが必要になり、加工時間がさらに長くなってしまう。また、研削加工(仕上げ加工)でバリ(盛り上がり部)を除去すると、その研削加工(仕上げ加工)の工程中、被加工物におけるレーザー光の非照射部はレーザー光の照射部に比べて軟質であることから、優先的に削られて、被加工物表面のレーザ光の非照射部が不所望な凹面状になることがある。従って、被加工物表面における凹部の周辺(レーザー光の未照射部)の平坦性を維持するには、特許文献1のように、レーザー加工後の被加工物におけるレーザー光の未照射部にレーザー光を照射して焼入れをし、その後、研削加工(仕上げ加工)を行うことが必要になり、加工時間がさらに長くなってしまう。
特開2004−90067号公報
In addition, since burrs (swelled parts) are formed at the periphery of the recesses formed by evaporation of the irradiated material by laser light irradiation, after laser processing as in Patent Document 1, burrs (swells) are formed. It is necessary to perform a grinding process (finishing process) for removing the part), and the processing time is further increased. Also, if burrs (protruding parts) are removed by grinding (finishing), the non-irradiated part of the laser beam on the workpiece is softer than the irradiated part of the workpiece during the grinding (finishing) process. For this reason, it may be preferentially shaved and the unirradiated portion of the laser beam on the surface of the workpiece may become an undesired concave surface. Therefore, in order to maintain the flatness of the periphery of the recess (laser beam non-irradiated portion) on the workpiece surface, as in Patent Document 1, the laser beam is irradiated on the laser beam non-irradiated portion of the workpiece after laser processing. It is necessary to perform quenching by irradiating light and then perform grinding (finishing), which further increases the processing time.
JP 2004-90067 A

上記の事情に鑑み、本発明が解決しようとする課題は、金属材料等の被加工物の表面に所望の大きさ及び断面形状を有する凹部を短時間に形成することができる表面加工方法を提供することである。
また、他の課題は、不要なバリ(盛り上がり部)を生じることなく、所望の大きさ及び断面形状を有する凹部を形成できる、表面加工方法を提供することである。
また、他の課題は、所望の大きさ及び断面形状を有する凹部を含む、高硬度の凹凸面を簡単に形成できる、表面加工方法を提供することである。
In view of the above circumstances, the problem to be solved by the present invention is to provide a surface processing method capable of forming in a short time a recess having a desired size and cross-sectional shape on the surface of a workpiece such as a metal material. It is to be.
Another object is to provide a surface processing method capable of forming a recess having a desired size and cross-sectional shape without causing unnecessary burrs (swelled portions).
Another object is to provide a surface processing method capable of easily forming an uneven surface with high hardness including a recess having a desired size and cross-sectional shape.

本発明者は、上記課題を解決するために鋭意研究した結果、被加工物の表面にレーザー光照射による熱処理を施して被加工物の表面硬度を不均一化させた後、かかる被加工物の表面に刃物による切削加工(旋削加工)を施すと、該表面内の硬度差(硬度の変化状態)に対応する段差が形成されることを知見し、該知見に基いてさらに研究を重ねた結果、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventor has made the surface of the workpiece non-uniform in surface hardness by subjecting the surface of the workpiece to heat treatment by laser light irradiation, and then The result of further research based on the knowledge that a step corresponding to the hardness difference (change in hardness) in the surface is formed when the surface is cut (turned) with a blade. The present invention has been completed.

すなわち、本発明は、
(1)被加工物の表面にレーザー光照射による熱処理を施して、被加工物表面の硬度を不均一化させる第1工程と、前記硬度が不均一化した被加工物表面に切削加工を施す第2工程とを有する、表面加工方法、
(2)第1工程において、被加工物の表面に、一旦形成された熱処理領域に新たな熱処理領域の一部が重なるようにレーザー光を照射する、上記(1)記載の表面加工方法、
(3)第1工程において、被加工物の表面に、レーザー光照射による熱処理領域とレーザー光が非照射の未熱処理領域とが交互に形成されるようにレーザー光を照射する、上記(1)記載の表面加工方法、
(4)被加工物が円柱状部材であり、第1工程が、その軸芯を回転軸として回転する円柱状部材の表面にレーザー光を円柱状部材の軸芯方向に移動させながら照射する工程である、上記(1)〜(3)のいずれか一つに記載の表面加工方法、及び
(5)被加工物が鉄系の金属材料よりなる部材である、上記(1)〜(4)のいずれか一つに記載の表面加工方法、に関する。
That is, the present invention
(1) A first step in which the surface of the workpiece is subjected to heat treatment by laser light irradiation to make the hardness of the workpiece surface non-uniform, and the surface of the workpiece having the non-uniform hardness is cut. A surface processing method comprising: a second step;
(2) In the first step, the surface processing method according to (1) above, wherein the surface of the workpiece is irradiated with laser light so that a part of the new heat treatment region overlaps the heat treatment region once formed,
(3) In the first step, the surface of the workpiece is irradiated with laser light such that heat treatment regions by laser light irradiation and unheated regions not irradiated with laser light are alternately formed, (1) The surface processing method as described,
(4) The workpiece is a columnar member, and the first step is a step of irradiating the surface of the columnar member rotating about its axis as the rotation axis while moving the laser beam in the axial direction of the columnar member. The surface processing method according to any one of the above (1) to (3), and (5) the above (1) to (4), wherein the workpiece is a member made of an iron-based metal material. The surface processing method as described in any one of these.

本発明の表面加工方法によれば、レーザー光の照射条件(ビーム径、パワー、走査速度、送り速度等)を制御することによって被加工物の表面の硬度を微細に変化させることができ、そして、そのようにして形成された被加工物表面に切削加工を施すことで被加工物表面の硬度差が段差(高低差)となって現れるため、所望の大きさ及び断面形状を有する凹部を短時間で形成することができる。   According to the surface processing method of the present invention, the surface hardness of the workpiece can be finely changed by controlling the irradiation conditions (beam diameter, power, scanning speed, feeding speed, etc.) of the laser beam, and Since the hardness difference on the workpiece surface appears as a step (level difference) by cutting the workpiece surface thus formed, the recess having the desired size and cross-sectional shape is shortened. Can be formed in time.

また、被加工物表面に、一旦形成されたレーザー光照射による熱処理領域の一部に新たなレーザー光照射による熱処理領域の一部が重なるように、レーザー光を照射することで、被加工物表面の複数の凹部を形成すべき所定の被加工領域全体の硬度を高めつつ、当該領域内に硬度差を生じさせることができる。従って、かかる被加工領域を含む被加工物表面に切削加工を施すことで、所望の大きさ及び断面形状を有する凹部を含む、表面が硬化面からなる凹凸面を簡単に形成することができる。   In addition, the surface of the work piece is irradiated by irradiating the surface of the work piece with laser light so that a part of the heat treatment area formed by laser light irradiation once overlaps a part of the heat treatment area formed by new laser light irradiation. While increasing the hardness of the entire predetermined area to be formed with the plurality of recesses, a hardness difference can be generated in the area. Therefore, by performing cutting on the surface of the workpiece including the region to be processed, it is possible to easily form an uneven surface whose surface is a hardened surface including a recess having a desired size and cross-sectional shape.

また、第1工程において、被加工物の表面に、レーザー光照射による熱処理領域とレーザー光が非照射の未熱処理領域とが交互に形成されるように、レーザー光を移動させることで、被加工物表面には硬化領域が断続的に形成される。従って、かかる被加工物表面を切削(旋削)することで、硬化領域は残り、非硬化領域はそのまま削られてその平坦性を持続し、不要なバリ(盛り上がり部)等を生じることなく、凹部を形成することができる。   Further, in the first step, the laser beam is moved so that the heat treatment regions by laser light irradiation and the non-heat treatment regions not irradiated with laser light are alternately formed on the surface of the workpiece, thereby processing the workpiece. Cured regions are intermittently formed on the object surface. Therefore, by cutting (turning) the surface of the workpiece, the hardened area remains, the non-hardened area is cut as it is, and the flatness is maintained, and the concave portion is formed without generating unnecessary burrs (raised parts). Can be formed.

本発明の表面加工方法によって、被加工物表面の硬度差が切削加工によってそのまま段差(高低差)として発現するのは、刃物(工具)で削る際の刃物に作用する切削力のうちの背分力が、被加工物表面の硬度に応じて変化し(すなわち、表面が柔らかい程、背分力が小さく、表面が硬い程、背分力が大きくなり)、その結果、削り深さが変動するためと考えられる。これに対し、砥石(硬質の砥粒をボンドで固めて円盤状にしたもの)を回転させつつ被加工物の表面に接触することで加工を行う研削加工(仕上げ加工、研磨加工)では、被加工物表面の硬度差が忠実に高低差として反映せず、凹部の大きさや断面形状を制御することはできない。これは、研削時に回転する砥石に背分力は作用するものの、砥石と被加工物との接触面積が大きいため、被加工物表面の硬度変化が削り深さに忠実に反映せず、被加工物表面の硬度差が段差(高低差)として現れにくいものと考えられる。   According to the surface processing method of the present invention, the hardness difference on the surface of the workpiece is directly expressed as a step (height difference) by the cutting process. This is the back of the cutting force acting on the cutting tool when cutting with the cutting tool (tool). The force changes according to the hardness of the workpiece surface (that is, the softer the surface, the smaller the back force, and the harder the surface, the greater the back force), resulting in varying cutting depth. This is probably because of this. On the other hand, in grinding processing (finishing processing, polishing processing) in which processing is performed by contacting a surface of a workpiece while rotating a grindstone (hard discs formed by bonding hard abrasive grains into a disk shape) The hardness difference on the surface of the workpiece is not faithfully reflected as the height difference, and the size and cross-sectional shape of the recess cannot be controlled. This is because back contact force acts on the grindstone rotating during grinding, but the contact area between the grindstone and the work piece is large, so the hardness change of the work piece surface does not accurately reflect the cutting depth, and the work piece is processed. It is considered that the hardness difference on the surface of the object is less likely to appear as a step (level difference).

なお、一般に、異なる材質が混在した材料(すなわち、機械的特性が異なる材料)を切削加工(旋削加工)すると、削られる材料の切削中での弾性変形量の違いによる段差の発生や最適な仕上げ状態を得るための切削条件(最適な工具、切削速度など)がそれぞれの材質で異なることから、異なる材質が混在した材料の切削(旋削)は「共削り」と呼ばれて従来から敬遠されてきた。従って、従来、本発明のようにレーザー光照射により敢えて硬度を不均一化させた表面に切削加工を行うという発想はなかった。   In general, when materials with different materials mixed (that is, materials with different mechanical properties) are cut (turned), the occurrence of steps due to the difference in elastic deformation during cutting of the material to be cut and the optimal finish Cutting conditions (optimal tool, cutting speed, etc.) to obtain the state differ for each material, so cutting (turning) of materials with different materials has been called “co-cutting” and has traditionally been avoided. It was. Therefore, conventionally, there has been no idea of performing cutting on a surface whose hardness has been made non-uniform by laser light irradiation as in the present invention.

以下、本発明の実施形態を図面を参照しつつ説明する。
本発明において、「被加工物」とは、レーザー光照射による熱処理によって焼入れされる(すなわち、硬化し得る)材料であればよく、特に限定はされないが、レーザー光照射による焼入れの程度(硬化の進行度)を制御しやすい等の点から、例えば、鉄鋼材料(炭素鋼,合金鋼)、鋳鉄等の鉄系の金属材料が挙げられる。
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, the “workpiece” may be any material that is quenched (that is, can be cured) by heat treatment by laser light irradiation, and is not particularly limited. From the viewpoint of easy control of the degree of progress, for example, iron-based metal materials such as steel materials (carbon steel, alloy steel) and cast iron can be mentioned.

本発明の表面加工方法は、先ず、被加工物の表面にレーザー光照射による熱処理を施して、被加工物の表面硬度を不均一化させる。   In the surface processing method of the present invention, first, the surface of the workpiece is subjected to a heat treatment by laser light irradiation to make the surface hardness of the workpiece uneven.

レーザー光照射の仕方は、被加工物の形状等に応じて適宜決定すればよい。すなわち、レーザー光を固定し、被加工物を移動させるか、被加工物を固定し、レーザー光を移動させるか、或いは、レーザー光及び被加工物を共に移動させるかのいずれでもよい。作業効率の点からは、レーザー光及び被加工物を共に移動させて、レーザー光照射による(熱処理領域)を移動させるのがよい。   The method of laser light irradiation may be appropriately determined according to the shape of the workpiece. That is, the laser beam may be fixed and the workpiece may be moved, the workpiece may be fixed and the laser beam may be moved, or the laser beam and the workpiece may be moved together. From the viewpoint of work efficiency, it is preferable to move both the laser beam and the workpiece and move the laser beam irradiation (heat treatment region).

図1は、炭素鋼S45Cからなる円柱状部材1をその軸心を回転軸にして回転させながら、該円柱状部材1の表面(外周側面)に炭酸ガスレーザーによるレーザー光(ビーム)2を円柱状部材1の軸心方向(図中の矢印aの方向)に一定の速度でフィードさせながら照射して、円柱状部材1の表面硬度を不均一化させている様子の一例を模式的に示した図である。図中の符号3は遮蔽板である。   FIG. 1 shows that a cylindrical member 1 made of carbon steel S45C is rotated about its axis as a rotation axis, and a laser beam (beam) 2 by a carbon dioxide laser is applied to the surface (outer peripheral surface) of the cylindrical member 1 in a circle. An example of a state in which the surface hardness of the columnar member 1 is made non-uniform by irradiating while feeding at a constant speed in the axial direction of the columnar member 1 (direction of arrow a in the figure) is shown. It is a figure. Reference numeral 3 in the figure denotes a shielding plate.

図1に示すように、本発明においては、被加工物が円柱状部材(円筒状部材も含む)である場合、円柱状部材1をその軸芯を回転軸として回転させ、レーザー光2を当該円柱状部材1の軸芯方向(図中の矢印aの方向)に移動させながら照射するのが効率的である。   As shown in FIG. 1, in the present invention, when the workpiece is a columnar member (including a cylindrical member), the columnar member 1 is rotated about its axis as a rotation axis, and the laser beam 2 is It is efficient to irradiate while moving in the axial direction of the cylindrical member 1 (direction of arrow a in the figure).

図2は、図1の方法により、レーザーパワー:900W、レーザー光(レーザービーム)のスポット径:直径2mm、ビームスキャン速度(円柱状部材の回転速度):12.5mm/sec、ビーム送り速度(円柱状部材の軸心方向の移動速度):1.6mm/rev、の照射条件で、炭素鋼S45Cからなる円柱状部材(直径φ:約60mm)の表面にレーザー光を螺旋状に照射して熱処理した後の、円柱状部材1の表層部分の断面の光学顕微鏡写真(図2(a))及びその要部拡大写真(図2(b))、並びに、円柱状部材1の表層での表面からの深さ位置と硬度(ビッカース硬度)との関係図(図2(c))を示している。なお、図2(c)における縦軸は硬度(ビッカース硬度)、横軸は写真上の横方向(円柱状部材の軸心と平行な方向)の距離と同じ長さを示し、図2(b)中の圧痕が測定位置であり、図2(c)中のプロットがその位置のビッカース硬度である。   FIG. 2 shows a laser power of 900 W, a spot diameter of a laser beam (laser beam): a diameter of 2 mm, a beam scanning speed (rotational speed of a cylindrical member) of 12.5 mm / sec, a beam feed speed (by the method of FIG. Laser beam is irradiated spirally on the surface of the cylindrical member (diameter φ: about 60 mm) made of carbon steel S45C under the irradiation condition of 1.6 mm / rev. Optical micrograph (FIG. 2 (a)) of the cross-section of the surface layer portion of the cylindrical member 1 after heat treatment (FIG. 2 (b)), and the surface of the cylindrical member 1 on the surface layer FIG. 2 (c) shows the relationship between the depth position and hardness (Vickers hardness). In FIG. 2C, the vertical axis indicates the hardness (Vickers hardness), and the horizontal axis indicates the same length as the distance in the horizontal direction (direction parallel to the axis of the cylindrical member) on the photograph. ) Is the measurement position, and the plot in FIG. 2 (c) is the Vickers hardness at that position.

図2(a)中の11a、11b、11cは、円柱状部1の1回転毎のレーザー光(レーザービーム)照射によって形成された熱処理領域を示し、点線で囲む部分12は、円柱状部材1の前の回転時に形成された熱処理領域11bに円柱状部材1の後の回転時に形成された熱処理領域11cの一部が重なった部分である。図2(b)中の点(ドット)は硬度の測定個所を示し、図2(c)は該測定個所と硬度(ビッカース硬度)の関係をグラフ化したものである。   In FIG. 2 (a), 11a, 11b, and 11c indicate heat treatment regions formed by laser light (laser beam) irradiation for each rotation of the cylindrical portion 1, and a portion 12 surrounded by a dotted line indicates the cylindrical member 1 This is a portion where a part of the heat treatment region 11c formed during the subsequent rotation of the cylindrical member 1 overlaps the heat treatment region 11b formed during the rotation before the rotation. The dots (dots) in FIG. 2 (b) indicate the measurement points of hardness, and FIG. 2 (c) is a graph showing the relationship between the measurement points and the hardness (Vickers hardness).

図2(a)〜図2(c)から、円柱状部材1の前の回転時に形成された熱処理領域11bに円柱状部材1の後の回転時に形成された熱処理領域11cの一部が重なった部分12では、レーザー光照射による熱処理(焼入れ)時間が最も長く、硬化が最も進んでおり、円柱状部材1の表層には、硬化の進行度の差による硬度差が生じていることが分かる。   From FIG. 2A to FIG. 2C, a part of the heat treatment region 11 c formed during the subsequent rotation of the columnar member 1 overlapped with the heat treatment region 11 b formed during the previous rotation of the columnar member 1. In the portion 12, the heat treatment (quenching) time by laser light irradiation is the longest and the curing is most advanced, and it can be seen that the surface layer of the columnar member 1 has a hardness difference due to the difference in the degree of curing.

本発明において、被加工物表面へのレーザー光の照射に使用するレーザー発振器としては種々のものを使用することができる。上述の炭酸ガスレーザーの他、アルゴンレーザー、エキシマレーザー、YAGレーザ,ヘリウムネオンレーザ,ルビーレーザ等が挙げられる。これらの中でも、加工に必要な大きな熱エネルギーが得られやすい(高出力を得やすい)点から、炭酸ガスレーザー、YAGレーザが好ましい。なお、レーザー光の照射条件(ビーム径、パワー、ビーム走査速度等)は、被加工物の種類、形成すべき溝の態様等に応じて、適宜、選択すればよい。   In the present invention, various laser oscillators can be used as the laser oscillator used for irradiating the workpiece surface with laser light. In addition to the carbon dioxide laser described above, an argon laser, an excimer laser, a YAG laser, a helium neon laser, a ruby laser, and the like can be given. Among these, a carbon dioxide laser and a YAG laser are preferable from the viewpoint that large heat energy necessary for processing can be easily obtained (high output is easily obtained). Note that irradiation conditions (beam diameter, power, beam scanning speed, etc.) of the laser light may be appropriately selected according to the type of workpiece, the form of the groove to be formed, and the like.

なお、例えば、上述の炭素鋼S45Cを炭酸ガスレーザーによるレーザー光を照射して熱処理(焼入れ)を行う場合、表面の状態の違いによるレーザの吸収率を考慮する必要があるが、加工後の品位の点から、レーザパワー密度と処理時間を図5中の“表面焼入れ”と付した四角形の区画の範囲内で適当な値に設定して、レーザー光を照射するのが好ましい。
本発明では、上記のようにして、レーザー光照射による熱処理を施して硬度を不均一化した被加工物の表面(すなわち、硬度差を生じさせた被加工物の表面)に、切削(旋削)加工を施す。かかる切削(旋削)加工は、被加工物表面を一定の切り込み量で削る処理である。すなわち、レーザー光照射(焼入れ)を行う前の未硬化の被加工物表面に一定の切り込み量が得られる切削条件を定めておき、かかる切削条件にて切削を行う。かかる切削加工を行うと、刃物(工具)に作用する切削力のうちの背分力が、被加工物表面の硬度に応じて、被加工物表面が柔らかい程小さく(被加工物表面が硬い程大きく)なり、その結果、削り深さが変動して、被加工物表面の硬度差に対応する段差(高低差)が発現する。
For example, when the above carbon steel S45C is subjected to heat treatment (quenching) by irradiating a laser beam with a carbon dioxide laser, it is necessary to consider the laser absorptivity due to the difference in the surface condition. From this point, it is preferable to irradiate the laser beam by setting the laser power density and the processing time to appropriate values within the range of the square section labeled “surface quenching” in FIG.
In the present invention, as described above, cutting (turning) is performed on the surface of the workpiece that has been subjected to heat treatment by laser light irradiation to make the hardness nonuniform (that is, the surface of the workpiece that has caused a hardness difference). Apply processing. Such a cutting (turning) process is a process of cutting the surface of a workpiece with a constant cutting amount. That is, a cutting condition for obtaining a constant cutting amount on the surface of an uncured workpiece before laser beam irradiation (quenching) is determined, and cutting is performed under the cutting condition. When such cutting is performed, the back component of the cutting force acting on the cutting tool (tool) is smaller as the workpiece surface is softer according to the hardness of the workpiece surface (as the workpiece surface is harder). As a result, the cutting depth fluctuates, and a level difference (level difference) corresponding to the hardness difference on the workpiece surface appears.

図3は、図2で示した、レーザー光照射による熱処理(焼入れ)によって、硬度を不均一化させた炭素鋼S45Cからなる円柱状部材の表面に、NC旋盤を用いて、下記の切削条件Aにて、切削加工を施した後の円柱状部材1の断面のスケッチ図(図3(a))を、図2(a)の光学顕微鏡写真に対応する断面模式図である図3(b)とともに示したものである。   FIG. 3 shows the following cutting conditions A using an NC lathe on the surface of a cylindrical member made of carbon steel S45C whose hardness is made non-uniform by heat treatment (quenching) by laser light irradiation shown in FIG. Fig. 3 (b) is a schematic cross-sectional view corresponding to the optical micrograph of Fig. 2 (a), showing a sketch of the cross-section of the cylindrical member 1 after cutting (Fig. 3 (a)). It is shown together.

(切削条件A)
Tool:P30、円柱状部材の回転速度(v):60m/min、切り込み量(d):0.5mm、送り量(f):0.1mm/rev、切削剤:不使用
(Cutting condition A)
Tool: P30, rotational speed (v) of cylindrical member: 60 m / min, cutting amount (d): 0.5 mm, feeding amount (f): 0.1 mm / rev, cutting agent: not used

図3(a)は円柱状部材1の切削加工後の表面(凹凸面)の実際の形状を示し、凹凸面における頂部A及び凹部10の最底部Bのそれぞれのビッカース硬度(Hv)を併記している。   FIG. 3 (a) shows the actual shape of the surface (uneven surface) of the cylindrical member 1 after machining, and the Vickers hardness (Hv) of each of the top A and the bottom B of the recess 10 on the uneven surface is also shown. ing.

また、図3(b)中の11a’、11b’、11c’はレーザー光照射によって円柱状部材1の表層に形成された熱処理領域を示し、12a、12bは隣接する熱処理領域の重なり部を示し、点線は切り込み量(0.5mm)の切り込み予定線を示している。   In FIG. 3B, 11a ′, 11b ′, and 11c ′ indicate heat treatment regions formed on the surface layer of the cylindrical member 1 by laser light irradiation, and 12a and 12b indicate overlapping portions of adjacent heat treatment regions. The dotted line indicates a planned cutting line with a cutting amount (0.5 mm).

図3(a)と図3(b)の対比から、レーザー光照射による熱処理(焼入れ)により、表面硬度を不均一化した炭素鋼S45Cからなる円柱状部材の表面にNC旋盤を用いて、軸心方向に所定の切り込み量にて切削加工を行うと、円柱状部材の表面における熱処理領域が重なった部分12a、12b(当該部分はレーザー光照射による熱処理時間が最も長く、最大硬度に硬化した部分である。)での削れ量が最小になって、該部分が頂部Aとなり、該部分から離れるにつれて硬度が低下して、削れ量が多くなり、最小硬度部にて削れ量が最大になって、該部分が凹部10の最底部Bとなり、その結果、凹部10が連続する凹凸面が形成されていることがわかる。   From the comparison between Fig. 3 (a) and Fig. 3 (b), using an NC lathe on the surface of a cylindrical member made of carbon steel S45C whose surface hardness is non-uniform by heat treatment (quenching) by laser light irradiation, When cutting is performed with a predetermined cut amount in the center direction, portions 12a and 12b where the heat treatment regions overlap on the surface of the cylindrical member (the portions are the portions where the heat treatment time by laser light irradiation is the longest and hardened to the maximum hardness) )), The portion becomes the top portion A, the hardness decreases with increasing distance from the portion, the amount of scraping increases, and the amount of scraping becomes maximum at the minimum hardness portion. It can be seen that this portion becomes the bottom B of the recess 10, and as a result, an uneven surface in which the recess 10 is continuous is formed.

このように、本発明では、レーザー光の照射(焼入れ)により、被加工物の表面(被加工領域)の硬度を不均一化させ、次いで、切削加工(旋削加工)を行うことで、被加工物表面の硬度差に見合った段差が形成され、被加工物に所望の断面形状を有する凹部を形成できることが分かる。また、凹部の深さには被加工物の表面の硬度差が反映するため、比較的深い深さの凹部を簡単に形成することができる。ちなみに、上記図1〜図3により説明した実施形態では、開口幅約3mm、深さ約20μmの凹部を形成することができた。   As described above, in the present invention, the surface of the workpiece (working region) is made non-uniform by irradiation with laser light (quenching), and then the cutting (turning) is performed. It can be seen that a step corresponding to the hardness difference on the surface of the object is formed, and a recess having a desired cross-sectional shape can be formed on the workpiece. Moreover, since the hardness difference of the surface of a workpiece reflects in the depth of a recessed part, the recessed part of comparatively deep depth can be formed easily. Incidentally, in the embodiment described with reference to FIGS. 1 to 3, a recess having an opening width of about 3 mm and a depth of about 20 μm could be formed.

なお、上記図1〜図3で説明した実施形態のように、被加工物表面へのレーザー光の照射を、一旦形成された熱処理領域に新たな熱処理領域の一部が重なるように行うことで、こうして得られた硬化面に切削加工を施すと、表面が硬化面からなる凹凸面(すなわち、内面が硬化面からなる凹部が連続した加工後面)を簡単に形成することができる。このような表面が硬化面からなる凹凸面(内面が硬化面からなる凹部が連続した加工後面)は、当該面の全域が硬化(焼入れ)されているため、例えば、凹部による油だまりを有しながら、全面が硬化(焼入れ)されていることによって、優れた耐摩耗性を示す摺動面となり得る。従って、本発明の表面加工方法を使用すれば、高耐久性の摺動部材を簡単に作製することができる。   As in the embodiment described in FIGS. 1 to 3, the surface of the workpiece is irradiated with laser light so that a part of the new heat treatment region overlaps the heat treatment region once formed. When the hardened surface thus obtained is cut, an uneven surface whose surface is a hardened surface (that is, a post-processed surface in which concave portions whose inner surface is a hardened surface is continuous) can be easily formed. Such an uneven surface having a hardened surface (processed surface including a concave portion having an inner surface made of a hardened surface) is hardened (quenched) over the entire surface, and therefore has, for example, an oil pool due to the concave portion. However, when the entire surface is cured (quenched), it can be a sliding surface exhibiting excellent wear resistance. Therefore, if the surface processing method of the present invention is used, a highly durable sliding member can be easily produced.

図4(a)は、図1の方法で、レーザーパワー:900W、レーザー光(レーザービーム)のスポット径:直径2mm、ビームスキャン速度(円柱状部材の回転速度):12.5mm/sec、ビーム送り速度(円柱状部材の軸心方向の移動速度):1.6mm/rev、の照射条件で、炭素鋼S45Cからなる円柱状部材(直径φ:60mm)の表面にレーザー光を螺旋状に照射して熱処理した後の、円柱状部材1の一部断面の模式図であり、図4(b)は、当該熱処理後に、さらにNC旋盤を用いて、前記の研削条件Aにて、円柱状部材の表面に切削加工を施した後の、円柱状部材1の一部断面の模式図である。   FIG. 4 (a) shows the laser power of 900 W, the spot diameter of laser light (laser beam): 2 mm in diameter, the beam scanning speed (rotational speed of the cylindrical member): 12.5 mm / sec, the beam in the method of FIG. Laser beam is spirally irradiated on the surface of a cylindrical member (diameter: 60 mm) made of carbon steel S45C under an irradiation condition of feed rate (moving speed in the axial direction of the cylindrical member): 1.6 mm / rev. FIG. 4B is a schematic diagram of a partial cross section of the cylindrical member 1 after the heat treatment, and FIG. 4B is a diagram of the cylindrical member under the grinding condition A using an NC lathe after the heat treatment. It is a schematic diagram of the partial cross section of the cylindrical member 1 after giving a cutting process to the surface of this.

すなわち、当該実施形態では、炭素鋼S45Cからなる円柱状部材1の1回転後に形成されるレーザー光による熱処理領域11a、11b、11cが互いに重なることがないように、円柱状部材1の軸心方向へのレーザー光のビーム送り速度を前述の実施形態のそれよりも速めてレーザー光を照射することで、レーザー光照射による熱処理領域11a、11b、11cを断続的に形成して、円柱状部材1の表面の硬度を不均一化させ、その後、切り込み量(0.5mm)で円柱状部材1の表面を切削加工して、凹部20を形成している。   That is, in this embodiment, the axial direction of the cylindrical member 1 is such that the heat treatment regions 11a, 11b, 11c by the laser beam formed after one rotation of the cylindrical member 1 made of carbon steel S45C do not overlap each other. By irradiating the laser beam with a beam feeding speed of the laser beam to that higher than that of the above-described embodiment, the heat treatment regions 11a, 11b, 11c by laser beam irradiation are intermittently formed, and the cylindrical member 1 The surface of the cylindrical member 1 is cut with a cutting depth (0.5 mm) to form the recess 20.

図4(a)、(b)から、切削加工によって、レーザー光照射による熱処理領域11a、11b、11cの中心の焼入れ(硬化)が最も進行した最大硬度部で削れ量が最小になり、該中心から離れるにつれて硬度が低下して削れ量が多くなり、隣接する2つの熱処理領域(11aと11b、11bと11c)の間の未熱処理領域は焼入れ(硬化)されていないことから、最大の削れ量で削られて、その結果、その断面形状が熱処理領域11a、11b、11cの形状を反映した形状の凹部20が形成されていることが分かる。なお、凹部20は開口幅は約3mm、深さが約20μmであった。   4 (a) and 4 (b), the amount of scraping is minimized at the maximum hardness portion where the quenching (hardening) of the center of the heat treatment regions 11a, 11b, and 11c by laser light irradiation has progressed most by cutting, and the center Since the hardness decreases and the amount of chipping increases as the distance from the center increases, the unheated region between the two adjacent heat-treated regions (11a and 11b, 11b and 11c) is not quenched (hardened), so the maximum amount of scraping As a result, it can be seen that the concave portion 20 whose cross-sectional shape reflects the shape of the heat treatment regions 11a, 11b, and 11c is formed. The recess 20 had an opening width of about 3 mm and a depth of about 20 μm.

このように、本発明では、レーザー光照射による熱処理領域とレーザー光が非照射の未熱処理領域とが交互に形成されるようにレーザー光を照射して、硬度を不均一化させた被加工物表面に切削加工を施す態様で表面加工を行えば、熱処理領域(硬化領域)の断面形状を反映した形状の凹部が形成され、しかも、隣接する2つの熱処理領域(硬化領域)の間の未熱処理領域(未硬化領域)はそのまま削られてその平坦性を持続するため、不要なバリ(盛り上がり部)等を生じることなく、凹部を形成することができる。また、かかる態様であれば、レーザー光照射による熱処理領域の硬度がそのまま凹部の深さに反映するため、より大きな深さの凹部を形成することも可能である。   As described above, in the present invention, the workpiece is irradiated with the laser beam so that the heat treatment region by the laser beam irradiation and the unheated region not irradiated with the laser beam are alternately formed, and the hardness is made non-uniform. If surface processing is performed in such a manner that the surface is subjected to cutting, a concave portion having a shape reflecting the cross-sectional shape of the heat treatment region (cured region) is formed, and unheated between two adjacent heat treatment regions (cured region) Since the region (uncured region) is cut as it is to maintain its flatness, a concave portion can be formed without causing unnecessary burrs (raised portions) or the like. Further, according to this aspect, the hardness of the heat treatment region by laser light irradiation is directly reflected in the depth of the recess, so that it is possible to form a recess having a larger depth.

本発明の表面加工方法での、切削加工の条件(切削速度、切り込み量、送り量等)は、被加工物の材質や形状、被加工物のレーザ光照射による熱処理領域(硬化領域)の硬度等に応じて適宜決定される。なお、上記の実施形態では、切削液を使用せず、乾式で切削加工を行ったが、切削液を使用してもよい。切削液は切削加工の分野で従来から使用されている公知の切削液を使用でき、油性、水溶性のいずれも使用できる。切削液を使用する場合、高能率切削では高速加工によって切削温度が高くなるので、切削温度を抑える観点から冷却能力の高い水溶性が好ましい。   In the surface processing method of the present invention, the cutting conditions (cutting speed, cutting depth, feed amount, etc.) are the material and shape of the workpiece, and the hardness of the heat treatment zone (hardening zone) by laser irradiation of the workpiece. It is determined appropriately according to the above. In the above embodiment, the cutting fluid is used in the dry process without using the cutting fluid, but the cutting fluid may be used. As the cutting fluid, a known cutting fluid conventionally used in the field of cutting can be used, and either oily or water-soluble can be used. When a cutting fluid is used, the cutting temperature is increased by high-speed machining in high-efficiency cutting, so that water solubility with a high cooling capacity is preferable from the viewpoint of suppressing the cutting temperature.

なお、切削加工のみによる凹部(溝)形成によって、本発明方法で形成する凹部(溝)と同等の凹部(溝)を形成する場合、工具が移動中に削り取らない部分へ工具が干渉するのを避けるために、工具移動距離が長くなり、加工時間が大幅に増大してしまう。また、ミクロン単位で凹部の断面形状を制御するには、加工機に極めて高い加工精度が要求され、簡単に実施できない。これに対し、本発明の表面加工方法は、加工時間を短くでき、また、切削加工それ自体には極めて高い加工精度は要求されず、汎用の加工機で対応できるため、実施が容易である。   In addition, when forming a recess (groove) equivalent to the recess (groove) formed by the method of the present invention by forming the recess (groove) only by cutting, the tool interferes with a portion that is not scraped during the movement of the tool. In order to avoid this, the tool moving distance becomes long, and the machining time is greatly increased. In addition, in order to control the cross-sectional shape of the recess in units of microns, the processing machine is required to have extremely high processing accuracy and cannot be easily implemented. On the other hand, the surface processing method of the present invention can shorten the processing time, and the cutting processing itself is not required to have extremely high processing accuracy, and can be handled by a general-purpose processing machine, and therefore is easy to implement.

本発明の表面加工方法は、種々の部材の機能面の形成に使用できるが、各種摺動部材における摺動面の加工や各種部材の耐摩耗面の加工に特に好適である。   The surface processing method of the present invention can be used for forming functional surfaces of various members, but is particularly suitable for processing of sliding surfaces of various sliding members and processing of wear-resistant surfaces of various members.

本発明の被加工物(円柱状部材)の表面にレーザー光を照射して被加工物表面の硬度を不均一化させている様子の一例を模式的に示した図である。It is the figure which showed typically an example of a mode that the surface of the workpiece (cylindrical member) of this invention was irradiated with a laser beam, and the hardness of the workpiece surface was made non-uniform | heterogenous. 本発明の説明図であり、図2(a)は表面にレーザー光照射による熱処理が施された円柱状部材の表層部分の断面の光学顕微鏡写真、図2(b)は図(a)の要部拡大図(写真)、図2(c)は前記表層部分の表面からの深さ位置と硬度(ビッカース硬度)の関係を示した図である。FIG. 2 (a) is an explanatory view of the present invention, FIG. 2 (a) is an optical micrograph of a cross section of a surface layer portion of a cylindrical member whose surface has been heat-treated by laser light irradiation, and FIG. 2 (b) is a diagram of FIG. FIG. 2 (c) is a diagram showing the relationship between the depth position from the surface of the surface layer portion and the hardness (Vickers hardness). 本発明の説明図であり、図3(a)は表面にレーザー光照射による熱処理を施し、さらに切削加工を施した後の円柱状部材の要部断面のスケッチ図、図3(b)は図2(a)の光学顕微鏡写真に対応する断面の模式図である。FIG. 3 (a) is an explanatory view of the present invention, FIG. 3 (a) is a sketch drawing of a cross section of a main part of a cylindrical member after the surface is subjected to heat treatment by laser light irradiation and further subjected to cutting, and FIG. 3 (b) is a diagram. It is a schematic diagram of the cross section corresponding to the optical micrograph of 2 (a). 本発明の説明図であり、図4(a)は表面にレーザー光照射による熱処理が施された円柱状部材の表層部分の断面の模式図、図4(b)はレーザー光照射による熱処理後に切削加工を施した後の円柱状部材の表層部分の断面の模式図である。4A and 4B are explanatory views of the present invention, in which FIG. 4A is a schematic diagram of a cross-section of a surface layer portion of a cylindrical member whose surface is heat-treated by laser light irradiation, and FIG. 4B is a cut after heat treatment by laser light irradiation. It is a schematic diagram of the cross section of the surface layer part of the cylindrical member after giving a process. 本発明の説明図であり、炭酸ガスレーザーによるレーザー光を照射して熱処理(焼入れ)を行う場合の、レーザパワー密度と処理時間の各好適範囲を示す図である。It is explanatory drawing of this invention, and is a figure which shows each suitable range of a laser power density and processing time when irradiating the laser beam by a carbon dioxide laser, and performing heat processing (quenching).

符号の説明Explanation of symbols

1 被加工物(円柱状部材)
2 レーザー光
3 遮蔽板
1 Workpiece (cylindrical member)
2 Laser light 3 Shield plate

Claims (5)

被加工物の表面にレーザー光照射による熱処理を施して、被加工物表面の硬度を不均一化させる第1工程と、前記硬度が不均一化した被加工物表面に切削加工を施す第2工程とを有する、表面加工方法。   A first step in which the surface of the workpiece is subjected to heat treatment by laser light irradiation to make the hardness of the workpiece surface non-uniform, and a second step in which the workpiece surface having the non-uniform hardness is cut. And a surface processing method. 第1工程において、被加工物の表面に、一旦形成された熱処理領域に新たな熱処理領域の一部が重なるようにレーザー光を照射する、請求項1記載の表面加工方法。   The surface processing method of Claim 1 which irradiates a laser beam so that a part of new heat processing area | region may overlap with the heat processing area | region once formed in the surface of the workpiece in the 1st process. 第1工程において、被加工物の表面に、レーザー光照射による熱処理領域とレーザー光が非照射の未熱処理領域とが交互に形成されるようにレーザー光を照射する、請求項1記載の表面加工方法。   The surface processing according to claim 1, wherein in the first step, the surface of the workpiece is irradiated with laser light so that heat treatment regions by laser light irradiation and unheated regions not irradiated with laser light are alternately formed. Method. 被加工物が円柱状部材であり、第1工程が、その軸芯を回転軸として回転する円柱状部材の表面にレーザー光を円柱状部材の軸芯方向に移動させながら照射する工程である、請求項1〜3のいずれか一項記載の表面加工方法。   The workpiece is a columnar member, and the first step is a step of irradiating the surface of the columnar member rotating about its axis as a rotation axis while moving the laser beam in the direction of the axis of the columnar member. The surface processing method as described in any one of Claims 1-3. 被加工物が鉄系の金属材料よりなる部材である、請求項1〜4のいずれか一項記載の表面加工方法。
The surface processing method according to claim 1, wherein the workpiece is a member made of an iron-based metal material.
JP2006117893A 2006-04-21 2006-04-21 Surface machining method Pending JP2007290052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117893A JP2007290052A (en) 2006-04-21 2006-04-21 Surface machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117893A JP2007290052A (en) 2006-04-21 2006-04-21 Surface machining method

Publications (1)

Publication Number Publication Date
JP2007290052A true JP2007290052A (en) 2007-11-08

Family

ID=38761175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117893A Pending JP2007290052A (en) 2006-04-21 2006-04-21 Surface machining method

Country Status (1)

Country Link
JP (1) JP2007290052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014313A (en) * 2012-11-30 2013-04-03 河南省中原内配股份有限公司 Method for strengthening cylinder sleeve
JP2014223634A (en) * 2013-05-15 2014-12-04 日産自動車株式会社 Welding method of plate material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427821A (en) * 1987-07-17 1989-01-30 Brother Ind Ltd Groove machining method
JP2006194220A (en) * 2005-01-17 2006-07-27 Taiho Kogyo Co Ltd Manufacturing method of sliding member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427821A (en) * 1987-07-17 1989-01-30 Brother Ind Ltd Groove machining method
JP2006194220A (en) * 2005-01-17 2006-07-27 Taiho Kogyo Co Ltd Manufacturing method of sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014313A (en) * 2012-11-30 2013-04-03 河南省中原内配股份有限公司 Method for strengthening cylinder sleeve
JP2014223634A (en) * 2013-05-15 2014-12-04 日産自動車株式会社 Welding method of plate material

Similar Documents

Publication Publication Date Title
Walter et al. Laser-structured grinding tools–Generation of prototype patterns and performance evaluation
Gisario et al. Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing
JP4058448B2 (en) Laser peening treatment method and laser absorbing powder layer sheet
JP4839469B2 (en) Laser honing method
JP6435801B2 (en) End mill
JP5201424B2 (en) Carbon film coated cutting tool and method for manufacturing the same
JP2007290052A (en) Surface machining method
Lim et al. Evaluation of surface characteristics with pre-treatment polishing process in pulsed laser polishing AISI 4140 mold steel
US11458572B2 (en) Laser smoothing
Mabuchi et al. High precision turning of hardened steel by use of PcBN insert sharpened with short pulse laser
WO2021049257A1 (en) Skiving device and skiving method
JP2023533945A (en) Laser deburring and chamfering method and system
JP6549851B2 (en) Texturing method for sliding member
JPH04344887A (en) Laser beam machining method
JP6453945B2 (en) Machining part manufacturing method, cutting device and cutting method
CN108284273B (en) Composite processing method and computer readable medium
JP2008023620A (en) Dress gear, its manufacturing method and manufacturing device
JP2004090067A (en) Machining method for sliding surface, and cylinder block
Kienzler et al. Burr minimization and removal by micro milling strategies or micro peening processes
JP6848737B2 (en) Manufacturing method of tooth mold roll and processing method of steel plate
Konda et al. Improvement of sintered tungsten-carbide surface integrity using femtosecond pulse lasers
RU2764449C1 (en) Method for mechanical processing of a steel workpiece with chip crushing
Boban et al. Ultra-precision surface finishing and feature generation on metal additive manufactured components with controlled tool path design
RU2230650C1 (en) Method for intermittent electric-contact diamond-abrasive working
JP2010253597A (en) Face milling method and material to be face-milled

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207