JP2007289966A - Welding quality discriminating method and welding equipment - Google Patents

Welding quality discriminating method and welding equipment Download PDF

Info

Publication number
JP2007289966A
JP2007289966A JP2006117036A JP2006117036A JP2007289966A JP 2007289966 A JP2007289966 A JP 2007289966A JP 2006117036 A JP2006117036 A JP 2006117036A JP 2006117036 A JP2006117036 A JP 2006117036A JP 2007289966 A JP2007289966 A JP 2007289966A
Authority
JP
Japan
Prior art keywords
welding
data
physical quantity
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006117036A
Other languages
Japanese (ja)
Inventor
Norikatsu Takao
則克 鷹尾
Shinji Koyama
伸二 小山
Masanobu Fujita
政宜 藤田
Hiroyuki Totsuka
博之 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006117036A priority Critical patent/JP2007289966A/en
Publication of JP2007289966A publication Critical patent/JP2007289966A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding quality discriminating method and welding equipment that can properly perform discrimination of normal/defective condition of a welding product. <P>SOLUTION: In discriminating welding quality in a welding process for a 9th product, normal/defective condition discriminating data E stored in a memory for discrimination data is corrected to be reduced in comparison with the initial value, on the basis of n=8 median value in the average electric current data h1-h8 of a first to an eighth product, and the reduced new normal/defective condition discriminating data EH (transfer threshold value) is used for the discrimination of the welding quality. When the normal/defective condition discriminating data (threshold value) is constant, wrong discrimination for the welding quality that could occur in accordance with the wear of a welding tip as a production quantity increases can be avoided; thus, discrimination accuracy can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被溶接部材に対する溶接処理により得られる製品の溶接品質を、溶接電流、溶接電圧、ワイヤ供給速度等のような溶接に係る(溶接条件が定められる)物理量(以下、適宜、溶接物理量という。)のうち少なくとも一の物理量(例えば溶接電流)で定められた閾値を利用して、判定する溶接品質の判定方法及び溶接装置に関する。   The present invention relates to the welding quality of a product obtained by a welding process for a member to be welded, such as a welding current, a welding voltage, a wire supply speed, etc. (where welding conditions are determined) (hereinafter referred to as a welding physical quantity as appropriate). The welding quality determination method and the welding apparatus using a threshold value determined by at least one physical quantity (for example, welding current).

従来の溶接装置の一例として、図3に示すアーク溶接機1がある(特許文献1参照)。図3に示すアーク溶接機1は、ワイヤ送給モータ2によりワイヤ3が供給される溶接トーチ4と被溶接部材5との間にアーク放電を形成させて、被溶接部材5に対して溶接処理を施すようにしている。溶接トーチ4は、着脱可能に溶接チップ6を備えている。
溶接トーチ4及び被溶接部材5はケーブル7を介して溶接電源8に接続されている。溶接電源8は、ロボット制御盤9からの電流指令値Bの入力を受けて、ケーブル7を介して溶接トーチ4及び被溶接部材5に溶接電流を供給する。溶接電源8は、ケーブル7、溶接トーチ4及び被溶接部材5を含んで構成される溶接回路12を流れる電流を計測して電流計測値Dとしてロボット制御盤9に入力する電流センサ13を有している。
As an example of a conventional welding apparatus, there is an arc welding machine 1 shown in FIG. 3 (see Patent Document 1). The arc welding machine 1 shown in FIG. 3 forms an arc discharge between the welding torch 4 to which the wire 3 is supplied by the wire feed motor 2 and the member 5 to be welded, and welds the member 5 to be welded. To give. The welding torch 4 includes a welding tip 6 that is detachable.
The welding torch 4 and the member 5 to be welded are connected to a welding power source 8 via a cable 7. The welding power source 8 receives an input of the current command value B from the robot control panel 9 and supplies a welding current to the welding torch 4 and the member to be welded 5 through the cable 7. The welding power source 8 has a current sensor 13 that measures a current flowing through a welding circuit 12 including the cable 7, the welding torch 4, and the member to be welded 5 and inputs the current measurement value D to the robot control panel 9. ing.

ロボット制御盤9は、主演算回路15と、電流・電圧などの溶接条件及び前記電流指令値Bを設定する設定部16と、電流指令値Bに対応して定められた良否判定データを格納する判定データ用メモリ17と、溶接電源8からの電流計測値Dを収集してこれを出力するデータ収集回路18と、を有している。
主演算回路15は、溶接電源8を介して溶接回路12への電流供給制御を行い、かつ溶接電源8を介してワイヤ送給モータ2を制御し、ワイヤ送給速度を調整する。主演算回路15は、さらに、良否判定データE(図4参照)及び溶接電源8からの電流計測値Dを比較し、この比較結果に基づいて、溶接ビードの正常、異常について、ひいては被溶接部材5に対する溶接処理により得られた製品の溶接品質を判定する。
The robot control panel 9 stores a main arithmetic circuit 15, a setting unit 16 for setting the welding conditions such as current and voltage, and the current command value B, and pass / fail judgment data determined corresponding to the current command value B. A determination data memory 17 and a data collection circuit 18 that collects a current measurement value D from the welding power source 8 and outputs the current measurement value D are provided.
The main arithmetic circuit 15 controls the current supply to the welding circuit 12 via the welding power source 8 and controls the wire feeding motor 2 via the welding power source 8 to adjust the wire feeding speed. The main arithmetic circuit 15 further compares the pass / fail judgment data E (see FIG. 4) and the current measurement value D from the welding power source 8, and based on the comparison result, the weld bead is determined whether it is normal or abnormal, and thus the member to be welded. The welding quality of the product obtained by the welding process for 5 is determined.

良否判定データEは、図4に示すように、電流指令値Bを略中心として定められる上側、下側基準電流値t1U,t1L間の領域に相当する正常範囲20と、上側基準電流値t1Uより大きい電流領域に定められたU1警告範囲21及びU2異常範囲22と、下側基準電流値t1Lより小さい電流領域に定められたL1警告範囲23及びL2異常範囲24と、からなっている。正常範囲20の上側基準電流値t1U、下側基準電流値t1Lは、それぞれ「電流指令値B+15」〔A〕程度、「電流指令値B−15」〔A〕程度とされ、U1警告範囲21・U2異常範囲22の境界値t2Uは「電流指令値B+25」〔A〕程度とされ、L1警告範囲23・L2異常範囲24の境界値t2Lは「電流指令値B−25」〔A〕程度とされている。   As shown in FIG. 4, the pass / fail judgment data E is obtained from a normal range 20 corresponding to a region between the upper and lower reference current values t1U and t1L determined with the current command value B approximately as a center, and an upper reference current value t1U. The U1 warning range 21 and the U2 abnormal range 22 defined in the large current region, and the L1 warning range 23 and the L2 abnormal range 24 defined in the current region smaller than the lower reference current value t1L. The upper reference current value t1U and the lower reference current value t1L of the normal range 20 are about “current command value B + 15” [A] and “current command value B-15” [A], respectively. The boundary value t2U of the U2 abnormal range 22 is set to about “current command value B + 25” [A], and the boundary value t2L of the L1 warning range 23 / L2 abnormal range 24 is set to about “current command value B-25” [A]. ing.

前記被溶接部材5に対する溶接処理に際し、溶接回路12には、図4に示すような特性の電流が流れる。すなわち、溶接処理開始時、溶接処理終了直前にはそれぞれ急激に立上がり、立下りし、その間の部分では、前記立上がり、立下り部分に比して変化が少ない特性を示す電流が流れる。
主演算回路15による前記判定では、溶接電源8からの電流計測値Dのうち立上がり、立下り部分を除いた部分を用いるようにし、本実施の形態では、前記溶接処理を開始して1秒経過した時点から所定時間が経過するまでの期間(以下、判定期間という。)Tにおける電流計測値Dを判定に用いるようにしている。
In the welding process for the member 5 to be welded, a current having characteristics as shown in FIG. That is, at the start of the welding process, immediately before the end of the welding process, the current suddenly rises and falls, and a current having characteristics that change less than the rise and fall parts flows between the two.
In the determination by the main arithmetic circuit 15, a portion excluding the rising and falling portions of the current measurement value D from the welding power source 8 is used, and in this embodiment, one second has elapsed since the welding process was started. The measured current value D in a period (hereinafter referred to as a determination period) T until a predetermined time elapses from the point in time is used for the determination.

そして、主演算回路15は、図4に示すように、電流計測値Dが、判定期間Tにおいて、正常範囲20にはいっている場合、溶接ビードは正常である、ひいては製品は正常であると判定する。
また、主演算回路15は、図4に示すように、電流計測値DがU1警告範囲21を超えてU2異常範囲22の値を示し、電流計測値DがU2異常範囲22内の値を示す状態が継続して規定時間Ta(例えば2秒)を超えた場合に、溶接ビードは異常である、ひいては製品は異常であると判定する。また、同様に、電流計測値DがL1警告範囲23を超えてL2異常範囲24の値を示し、電流計測値DがL2異常範囲24内の値を示す状態が継続して規定時間(例えば2秒)を超えた場合に、溶接ビードは異常である、ひいては製品は異常であると判定する。
特開平7−9186号公報
Then, as shown in FIG. 4, when the current measurement value D is within the normal range 20 in the determination period T, the main arithmetic circuit 15 determines that the weld bead is normal and the product is normal. To do.
Further, as shown in FIG. 4, the main arithmetic circuit 15 indicates that the measured current value D exceeds the U1 warning range 21 and indicates the U2 abnormal range 22, and the current measured value D indicates the value within the U2 abnormal range 22. When the state continues and exceeds a predetermined time Ta (for example, 2 seconds), it is determined that the weld bead is abnormal and the product is abnormal. Similarly, the state where the current measurement value D exceeds the L1 warning range 23 and indicates the value of the L2 abnormality range 24, and the current measurement value D indicates the value within the L2 abnormality range 24 continues for a specified time (for example, 2 2 seconds), it is determined that the weld bead is abnormal and the product is abnormal.
Japanese Patent Laid-Open No. 7-9186

ところで、上記溶接品質の判定方法では、被溶接部材5に対する溶接処理に伴い溶接チップ6が摩耗し、溶接電流が製品の生産と共に低下する。一方、良否判定データE(判定閾値)は一定とされている。このため、良否判定を適正に行えなくなり、正常に溶接が行われているにもかかわらず、異常(不良品)と判定することが起こり得た。換言すれば、電流計測値Dの平均値(平均電流)の変化幅G(図5参照)が、境界値t2U、t2L間の範囲を上回っているため、良否判定データE(判定閾値)が固定されていると、正確に判定を行えなくなる。   By the way, in the said welding quality determination method, the welding tip 6 is worn with the welding process for the member 5 to be welded, and the welding current decreases with the production of the product. On the other hand, the pass / fail judgment data E (determination threshold) is fixed. For this reason, the quality determination cannot be performed properly, and it may have been determined that it is abnormal (defective product) even though welding is performed normally. In other words, since the variation width G (see FIG. 5) of the average value (average current) of the current measurement value D exceeds the range between the boundary values t2U and t2L, the pass / fail judgment data E (determination threshold) is fixed. If this is done, it will not be possible to make an accurate determination.

本願発明者は、上記従来技術を適用した実ラインにおいて計測を行い、図5に示す計測結果を得た。図5に示す計測結果を得るための生産処理では、約700台の製品(被溶接部材5)を対象にし、約700台の製品(被溶接部材5)の生産までの間に、溶接チップ6を5回(図5で下方に向く矢印部分)、交換している。図5は、生産台数を横軸とし、縦軸に、図4の判定期間Tにおける電流計測値Dの平均値(平均電流)をとっている。
図5に示されるように、平均電流は、生産に伴い逓減し、溶接チップ6の交換前の平均電流は、交換直後に比べ極めて小さくなるという計測結果が得られた。そして、このように平均電流が極めて小さくなる部分(図5に楕円25で囲む誤判定領域)では、正常に溶接が行われているにもかかわらず、異常(不良品)と判定されることが多かった。実際、本計測〔約700台の製品(被溶接部材5)〕において、約30%について、正常であるにもかかわらず、異常であると誤判定してしまう結果が得られた。
The inventor of the present application performed measurement on an actual line to which the above-described conventional technology was applied, and obtained a measurement result shown in FIG. In the production process for obtaining the measurement result shown in FIG. 5, about 700 products (members to be welded 5) are targeted, and welding tips 6 are produced until about 700 products (members to be welded 5) are produced. Are exchanged five times (the arrow portion pointing downward in FIG. 5). In FIG. 5, the production number is taken on the horizontal axis, and the average value (average current) of the current measurement values D in the determination period T in FIG. 4 is taken on the vertical axis.
As shown in FIG. 5, the measurement result was obtained that the average current gradually decreased with production, and the average current before the replacement of the welding tip 6 was extremely small compared to immediately after the replacement. In such a portion where the average current is extremely small (an erroneous determination region surrounded by an ellipse 25 in FIG. 5), it may be determined as abnormal (defective product) even though welding is normally performed. There were many. In fact, in this measurement (about 700 products (members 5 to be welded)), about 30% was erroneously determined to be abnormal although it was normal.

本発明は、上記事情に鑑みてなされたものであり、溶接製品の良否判定を適切に行うことができる溶接品質の判定方法及び溶接装置を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the determination method and welding apparatus of the welding quality which can perform the quality determination of a welding product appropriately.

請求項1記載の発明は、被溶接部材に対する溶接処理により得られる製品の溶接品質を、前記溶接処理に係る複数の物理量のうち少なくとも一つの物理量で定められる閾値に基づいて判定する溶接品質の判定方法であって、前記閾値と対比される物理量データを収集する物理量データ収集工程と、該物理量データ収集工程で収集される物理量データについて前記製品の溶接処理毎に平均化して物理量平均データを算出する平均データ算出工程と、該平均データ算出工程で収集された物理量平均データのうち直近の物理量平均データに基づいて前記閾値を補正する閾値補正工程とを備えたことを特徴とすることを特徴とする。
請求項2記載の発明は、請求項1記載の溶接品質の判定方法において、前記溶接処理には溶接電源が供給する溶接電流が係り、前記閾値は、前記溶接電流で定められていることを特徴とする。
The invention according to claim 1 determines the welding quality of a product obtained by a welding process on a member to be welded based on a threshold value determined by at least one physical quantity among a plurality of physical quantities related to the welding process. A physical quantity data collecting step for collecting physical quantity data to be compared with the threshold value, and calculating the physical quantity average data by averaging the physical quantity data collected in the physical quantity data collecting step for each welding process of the product. An average data calculation step, and a threshold correction step for correcting the threshold based on the latest physical quantity average data among the physical quantity average data collected in the average data calculation step, .
According to a second aspect of the present invention, in the welding quality judgment method according to the first aspect, a welding current supplied from a welding power source is involved in the welding process, and the threshold value is determined by the welding current. And

請求項3記載の発明は、被溶接部材に対する溶接処理を行い、かつ前記溶接処理により得られる製品の溶接品質を、前記溶接処理に係る複数の物理量のうち少なくとも一つの物理量で定められる閾値に基づいて判定する溶接装置であって、前記閾値と対比される物理量データを収集する物理量データ収集手段と、該物理量データ収集手段が収集した物理量データについて前記製品の溶接処理毎に平均化して物理量平均データを算出する平均データ算出手段と、該平均データ算出手段が収集した物理量平均データのうち直近の物理量平均データに基づいて前記閾値を補正する閾値補正手段とを備えたことを特徴とする。
請求項4記載の発明は、請求項3記載の溶接装置において、前記溶接処理には溶接電源が供給する溶接電流が係り、前記閾値は、前記溶接電流で定められていることを特徴とする。
According to a third aspect of the present invention, the welding quality of a product obtained by performing a welding process on a member to be welded and the welding process is based on a threshold value determined by at least one physical quantity among a plurality of physical quantities related to the welding process. A physical quantity data collecting means for collecting physical quantity data to be compared with the threshold value, and the physical quantity data collected by the physical quantity data collecting means for each welding process of the product to average the physical quantity average data. Average data calculation means for calculating the threshold value, and threshold correction means for correcting the threshold value based on the latest physical quantity average data among the physical quantity average data collected by the average data calculation means.
According to a fourth aspect of the present invention, in the welding apparatus according to the third aspect, the welding process involves a welding current supplied from a welding power source, and the threshold is determined by the welding current.

請求項1ないし4記載の発明によれば、物理量平均データのうち直近の物理量平均データに基づいて閾値を補正するので、溶接処理状況を反映した溶接品質の判定が可能となり、その分、判定精度の向上を図ることができる。   According to the first to fourth aspects of the present invention, since the threshold value is corrected based on the latest physical quantity average data among the physical quantity average data, it is possible to determine the welding quality reflecting the welding process status, and accordingly, the determination accuracy. Can be improved.

以下、本発明の一実施の形態に係る溶接品質の判定方法及び溶接装置を図1及び図2に基づいて説明する。なお、図3及び図4に示す部材及び部分と同等の部材及び部分には、同一の符号を付し、その説明は適宜、省略する。
本一実施の形態に係るアーク溶接機1Aは、図3に示すアーク溶接機1に比して、以下の(1)〜(3)が主に異なっている。
なお、判定データ用メモリ17には、図4に示すのと同様の内容の良否判定データEが図2に示すように、予め初期値として格納され、8台までの製品については、この良否判定データEの初期値が用いられる。
(1)ロボット制御盤9が、判定期間Tにおける電流の平均値に相当する電流平均データを算出する平均データ算出回路30(平均データ算出手段)を設けたこと。
(2)ロボット制御盤9は、主演算回路15及び平均データ算出回路30に接続される平均データ用メモリ31を含み、平均データ用メモリ31には電流平均データが格納され、主演算回路15が平均データ用メモリ31から電流平均データを読出しし得るようになっていること。
(3)主演算回路15が、判定データ用メモリ17に格納されている良否判定データEを、後述するように平均データ算出手段の算出結果を利用して書換えて、書換えにより得られる新たな良否判定データEHを溶接品質の判定に用いること。
Hereinafter, a welding quality determination method and welding apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. Members and parts equivalent to those shown in FIGS. 3 and 4 are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
The arc welding machine 1A according to this embodiment is mainly different from the arc welding machine 1 shown in FIG. 3 in the following (1) to (3).
In the determination data memory 17, quality determination data E having the same contents as shown in FIG. 4 is stored in advance as initial values as shown in FIG. 2, and this quality determination data is obtained for up to eight products. The initial value of data E is used.
(1) The robot control panel 9 is provided with an average data calculation circuit 30 (average data calculation means) for calculating current average data corresponding to the average value of current in the determination period T.
(2) The robot control panel 9 includes an average data memory 31 connected to the main arithmetic circuit 15 and the average data calculation circuit 30. The average data memory 31 stores current average data, and the main arithmetic circuit 15 Current average data can be read from the average data memory 31.
(3) The main arithmetic circuit 15 rewrites the pass / fail judgment data E stored in the judgment data memory 17 by using the calculation result of the average data calculation means as will be described later, and a new pass / fail obtained by rewriting. Use judgment data EH to judge welding quality.

図1において、ロボット制御盤9に供えられる平均データ算出回路30は、データ収集回路18(物理量データ収集手段)が収集した(物理量データ収集工程)電流計測値D(物理量データ)について製品の溶接処理毎に平均化して、図2の黒丸(●)に示す電流平均データを算出する。ここで、説明の便宜上、図2に示す電流平均データについて、左から順に第1、第2、 … 、第20電流平均データh1,h2, … ,h20という。また、第1、第2、 … 、第20電流平均データh1,h2, … ,h20は製品に対応して得られるものであり、これに対応して、製品(被溶接部材5も含む。)について、便宜上、第1、第2、 … 、第20製品という。   In FIG. 1, the average data calculation circuit 30 provided to the robot control panel 9 is a product welding process for the current measurement value D (physical quantity data) collected by the data collection circuit 18 (physical quantity data collection means) (physical quantity data collection step). The current average data shown in the black circles (●) in FIG. Here, for convenience of explanation, the current average data shown in FIG. 2 is referred to as first, second,..., Twentieth current average data h1, h2,. In addition, the first, second,..., Twentieth current average data h1, h2,..., H20 are obtained corresponding to the product, and correspondingly, the product (including the member 5 to be welded) is also obtained. Are referred to as the first, second,..., Twentieth product for convenience.

主演算回路15(閾値補正手段)は、一の製品に対する溶接品質の判定を行う際に用いる良否判定データE(初期値)について、該一の製品の直前に溶接処理された8台の製品の電流平均データhのうち、大きさが中央に当る電流平均データ(便宜上、n=8メジアン値という。)に基づいて補正する(書換える)。そして、主演算回路15は、書換えにより得られる新たな良否判定データEHを用いて溶接品質の判定を行う。
例えば、第9製品に対する溶接品質の判定を行う際には、第1〜8製品の電流平均データh1〜h8におけるn=8メジアン値(この場合、電流平均データh1,h5,h8のうちいずれかの値)に基づいて、判定データ用メモリ17に格納された良否判定データEを補正する(書換える)。以下、第10製品、第11製品、 … についても同様に、判定データ用メモリ17に格納された良否判定データEについて補正処理が行われる。
本実施の形態では、n=8メジアン値が請求項1の直近の物理量平均データを構成している。また、本実施の形態では、良否判定データE、新たな良否判定データEHが閾値を構成する。
The main arithmetic circuit 15 (threshold correction means) uses the quality determination data E (initial value) used when determining the welding quality for one product to determine whether the eight products welded immediately before the one product are processed. Of the current average data h, correction is performed (rewritten) based on current average data having a size at the center (for convenience, n = 8 median value). And the main arithmetic circuit 15 determines welding quality using the new quality determination data EH obtained by rewriting.
For example, when determining the welding quality for the ninth product, n = 8 median value in the current average data h1 to h8 of the first to eighth products (in this case, any one of the current average data h1, h5, and h8). The quality determination data E stored in the determination data memory 17 is corrected (rewritten) based on Similarly, the correction processing is performed on the pass / fail judgment data E stored in the judgment data memory 17 for the tenth product, the eleventh product,.
In the present embodiment, n = 8 median value constitutes the latest physical quantity average data of claim 1. In the present embodiment, the pass / fail judgment data E and the new pass / fail judgment data EH constitute a threshold value.

一般に、生産台数の増加に伴い、溶接チップ6を交換しなければ、溶接チップ6の磨耗に伴い、溶接電流は小さくなることから、第9製品のように生産が進んだ段階では、第1〜8製品の電流平均データh1〜h8に基づいて補正して得られる新たな良否判定データEHは、初期値に比して、小さくなる。例えば、図2に示すように、良否判定データEの初期値を正常範囲20の上側基準電流値t1Uとした場合、補正により得られる新たな上側基準電流値a1Uは、生産台数の増加(図2右方向になる)に伴い、小さくなる。また、良否判定データEの初期値を正常範囲20の下側基準電流値t1Lとした場合、補正により得られた新たな下側基準電流値a1Lは、生産台数の増加(図2右方向になる)に伴い、小さくなる。すなわち、補正された新たな正常範囲20aは、生産台数の増加(図2右方向になる)に伴い、図2に示すように小さくなる傾向(右下がり傾向)を示す。同様にして、U1警告範囲21・U2異常範囲22の境界値t2U及びL1警告範囲23・L2異常範囲24の境界値t2Lを含め、補正された新たな良否判定データEHの全体が、上述の場合と同様に右下がり傾向を示す。   Generally, if the welding tips 6 are not replaced as the number of production increases, the welding current decreases as the welding tips 6 are worn. New pass / fail judgment data EH obtained by correction based on the current average data h1 to h8 of the eight products is smaller than the initial value. For example, as shown in FIG. 2, when the initial value of the pass / fail judgment data E is the upper reference current value t1U in the normal range 20, the new upper reference current value a1U obtained by the correction is an increase in the number of production (FIG. 2). It becomes smaller as it goes to the right). Further, when the initial value of the pass / fail judgment data E is set to the lower reference current value t1L of the normal range 20, the new lower reference current value a1L obtained by the correction increases the number of production (the right direction in FIG. 2). ). That is, the corrected new normal range 20a tends to become smaller (downward trend) as shown in FIG. 2 as the number of production increases (in the right direction in FIG. 2). Similarly, the entire corrected new pass / fail judgment data EH including the boundary value t2U of the U1 warning range 21 / U2 abnormal range 22 and the boundary value t2L of the L1 warning range 23 / L2 abnormal range 24 is as described above. It shows the downward trend as well.

図4に示す良否判定データE〔閾値〕は、生産台数の増加にかかわらず、一定の値であるのに対して、本実施の形態は、生産台数の増加に伴い、補正により得られる新たな良否判定データEHは図2右下がりの特性を示す。このため、本実施の形態の補正により得られる新たな良否判定データEHは、図4に示す良否判定データE〔閾値〕に対して下方向に移動するものとして捉えることもでき、本実施の形態の補正により得られる新たな良否判定データEHを移動閾値として表現することもできる。補正された新たな良否判定データEHを、適宜、移動閾値ともいう。   The pass / fail judgment data E [threshold value] shown in FIG. 4 is a constant value regardless of an increase in the number of production, whereas this embodiment is a new value obtained by correction as the number of production increases. The pass / fail judgment data EH shows the characteristic of the lower right in FIG. Therefore, the new pass / fail judgment data EH obtained by the correction of the present embodiment can be regarded as moving downward with respect to the pass / fail judgment data E [threshold] shown in FIG. New pass / fail judgment data EH obtained by the correction can be expressed as a movement threshold value. The corrected new quality determination data EH is also referred to as a movement threshold as appropriate.

上述したように構成された溶接装置の作用について説明する。
本実施の形態では、前記被溶接部材5に対する溶接処理における溶接品質の判定に際し、第1〜8製品(被溶接部材5)については、判定データ用メモリ17に格納された良否判定データEの初期値が用いられ、第9製品以降の製品を対象にして良否判定データEの補正が行われる。第9製品に対する溶接処理における溶接品質の判定に先だって、平均データ算出回路30は、第1〜8製品の各電流平均データh1〜h8を、データ収集回路18からのデータに基づいて算出する(平均データ算出工程)。
The operation of the welding apparatus configured as described above will be described.
In the present embodiment, when determining the welding quality in the welding process for the member to be welded 5, for the first to eighth products (member to be welded 5), the initial pass / fail judgment data E stored in the judgment data memory 17 is used. The value is used, and the pass / fail judgment data E is corrected for products after the ninth product. Prior to the determination of the welding quality in the welding process for the ninth product, the average data calculation circuit 30 calculates the current average data h1 to h8 of the first to eighth products based on the data from the data collection circuit 18 (average Data calculation step).

続いて、第9製品に対する溶接処理における溶接品質の判定に際し、第1〜8製品の電流平均データh1〜h8におけるn=8メジアン値に基づいて、判定データ用メモリ17に格納された良否判定データEが初期値に比べて小さくなるように補正される(閾値補正工程)。そして、小さくされた新たな良否判定データEH(移動閾値)が溶接品質の判定に用いられる。   Subsequently, when determining the welding quality in the welding process for the ninth product, the pass / fail determination data stored in the determination data memory 17 based on the n = 8 median value in the current average data h1 to h8 of the first to eighth products. E is corrected so as to be smaller than the initial value (threshold correction step). And the new quality determination data EH (movement threshold value) made small are used for determination of welding quality.

生産台数の増加に伴う溶接チップ6の摩耗により、一般に溶接電流が小さくなり、閾値が一定である従来技術では、溶接ビードが正常であるにもかかわらず、異常製品であると判定することが起こり易かった。これに対し、本実施の形態では、第1〜8製品の電流平均データh1〜h8におけるn=8メジアン値に基づいて、良否判定データEを補正することにより、補正により得られる良否判定データEH(閾値)が生産台数の増加に伴う溶接チップ6の摩耗状況を反映した値になる。
このため、溶接ビードが正常であるにもかかわらず、異常製品であると判定してしまうような従来技術の問題点の発生を確実に回避し、判定精度を向上できる。
In the prior art in which the welding current generally decreases due to wear of the welding tips 6 accompanying an increase in the number of production and the threshold value is constant, it may be determined that the product is abnormal even though the weld bead is normal. It was easy. On the other hand, in the present embodiment, the quality determination data EH obtained by the correction by correcting the quality determination data E based on the n = 8 median value in the current average data h1 to h8 of the first to eighth products. The (threshold value) is a value reflecting the wear state of the welding tips 6 as the number of production increases.
For this reason, although the welding bead is normal, it is possible to reliably avoid the occurrence of the problems of the prior art that determine that the product is an abnormal product, and improve the determination accuracy.

また、第10製品に対する溶接処理における溶接品質の判定に際し、前記第9製品の例と同様にして、第2〜9製品の電流平均データh2〜h9におけるn=8メジアン値に基づいて、判定データ用メモリ17に格納された良否判定データEが初期値に比べて小さくなるように補正される(閾値補正工程)。そして、小さくされた新たな良否判定データEH(移動閾値)が溶接品質の判定に用いられる。
以下、第11製品、第12製品、 … についても同様に、判定データ用メモリ17に格納された良否判定データEについて補正処理が行われ、第9製品、第10製品の場合と同様に、前記従来技術の問題点の発生を確実に回避し、判定精度を向上できる。
Further, in the determination of the welding quality in the welding process for the tenth product, the determination data is based on the n = 8 median value in the current average data h2 to h9 of the second to ninth products, as in the example of the ninth product. The pass / fail judgment data E stored in the memory 17 is corrected so as to be smaller than the initial value (threshold correction step). And the new quality determination data EH (movement threshold value) made small are used for determination of welding quality.
Hereinafter, similarly, the quality determination data E stored in the determination data memory 17 is corrected for the eleventh product, the twelfth product,..., Similarly to the ninth product and the tenth product, It is possible to reliably avoid the problems of the prior art and improve the determination accuracy.

上記実施の形態では、n=8メジアン値が請求項1の直近の物理量平均データを構成しているが、n=8メジアン値に代えて、n=3メジアン値、n=10メジアン値など他のメジアン値を用いてもよい。また、n=8メジアン値に代えて、直前の複数の物理量平均データの平均値を用いても良いし、直前の一の物理量平均データを用いてもよい。   In the above embodiment, n = 8 median value constitutes the most recent physical quantity average data of claim 1, but instead of n = 8 median value, n = 3 median value, n = 10 median value, etc. The median value may be used. Further, instead of n = 8 median value, an average value of a plurality of physical quantity average data immediately before may be used, or one physical quantity average data immediately before may be used.

上記実施の形態では、物理量データが、溶接電流(溶接)である場合を例にしたが、これに限られるものではなく、物理量データとして、電圧や電力を用いてもよい。また、物理量データとして、ワイヤ送給負荷抵抗値、ワイヤ送給速度、又はワイヤ送給量の過剰などに伴って生じる短絡の回数を用いてもよい。   In the above embodiment, the case where the physical quantity data is the welding current (welding) is taken as an example, but the present invention is not limited to this, and voltage or electric power may be used as the physical quantity data. Further, as the physical quantity data, a wire feed load resistance value, a wire feed speed, or the number of short-circuits caused by an excess of the wire feed amount may be used.

本発明の一実施の形態に係るアーク溶接機を模式的に示す図である。It is a figure showing typically an arc welding machine concerning one embodiment of the present invention. 図1のアーク溶接機による良否判定データの補正について説明するための図である。It is a figure for demonstrating correction | amendment of the quality determination data by the arc welder of FIG. 従来のアーク溶接機の一例を模式的に示す図である。It is a figure which shows typically an example of the conventional arc welding machine. 図3の良否判定データ用メモリに格納される良否判定データを示す図である。It is a figure which shows the quality determination data stored in the quality determination data memory of FIG. 図3のアーク溶接機の問題点を示すための図である。It is a figure for showing the problem of the arc welding machine of FIG.

符号の説明Explanation of symbols

1A…アーク溶接機(溶接装置)、15…主演算回路(閾値補正手段)、17…判定データ用メモリ、18…データ収集回路(物理量データ収集手段)、30…平均データ算出回路(平均データ算出手段)。

DESCRIPTION OF SYMBOLS 1A ... Arc welding machine (welding apparatus), 15 ... Main arithmetic circuit (threshold correction means), 17 ... Memory for judgment data, 18 ... Data collection circuit (physical quantity data collection means), 30 ... Average data calculation circuit (average data calculation) means).

Claims (4)

被溶接部材に対する溶接処理により得られる製品の溶接品質を、前記溶接処理に係る複数の物理量のうち少なくとも一つの物理量で定められる閾値に基づいて判定する溶接品質の判定方法であって、
前記閾値と対比される物理量データを収集する物理量データ収集工程と、
該物理量データ収集工程で収集される物理量データについて前記製品の溶接処理毎に平均化して物理量平均データを算出する平均データ算出工程と、
該平均データ算出工程で収集された物理量平均データのうち直近の物理量平均データに基づいて前記閾値を補正する閾値補正工程とを備えたことを特徴とする溶接品質の判定方法。
A welding quality determination method for determining a welding quality of a product obtained by a welding process on a member to be welded based on a threshold value determined by at least one physical quantity among a plurality of physical quantities related to the welding process,
A physical quantity data collecting step for collecting physical quantity data to be compared with the threshold;
An average data calculation step of calculating the physical quantity average data by averaging the physical quantity data collected in the physical quantity data collection step for each welding process of the product;
A welding quality determination method, comprising: a threshold correction step of correcting the threshold based on the latest physical quantity average data among the physical quantity average data collected in the average data calculation step.
前記溶接処理には溶接電源が供給する溶接電流が係り、前記閾値は、前記溶接電流で定められていることを特徴とする請求項1記載の溶接品質の判定方法。   The welding quality determination method according to claim 1, wherein the welding process involves a welding current supplied from a welding power source, and the threshold value is determined by the welding current. 被溶接部材に対する溶接処理を行い、かつ前記溶接処理により得られる製品の溶接品質を、前記溶接処理に係る複数の物理量のうち少なくとも一つの物理量で定められる閾値に基づいて判定する溶接装置であって、
前記閾値と対比される物理量データを収集する物理量データ収集手段と、
該物理量データ収集手段が収集した物理量データについて前記製品の溶接処理毎に平均化して物理量平均データを算出する平均データ算出手段と、
該平均データ算出手段が収集した物理量平均データのうち直近の物理量平均データに基づいて前記閾値を補正する閾値補正手段とを備えたことを特徴とする溶接装置。
A welding apparatus that performs a welding process on a member to be welded and determines a welding quality of a product obtained by the welding process based on a threshold value determined by at least one physical quantity among a plurality of physical quantities related to the welding process. ,
Physical quantity data collecting means for collecting physical quantity data to be compared with the threshold;
Average data calculation means for calculating physical quantity average data by averaging the physical quantity data collected by the physical quantity data collection means for each welding process of the product;
A welding apparatus comprising: threshold correction means for correcting the threshold based on the latest physical quantity average data among the physical quantity average data collected by the average data calculation means.
前記溶接処理には溶接電源が供給する溶接電流が係り、前記閾値は、前記溶接電流で定められていることを特徴とする請求項3記載の溶接装置。

The welding apparatus according to claim 3, wherein a welding current supplied by a welding power source is involved in the welding process, and the threshold value is determined by the welding current.

JP2006117036A 2006-04-20 2006-04-20 Welding quality discriminating method and welding equipment Pending JP2007289966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117036A JP2007289966A (en) 2006-04-20 2006-04-20 Welding quality discriminating method and welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117036A JP2007289966A (en) 2006-04-20 2006-04-20 Welding quality discriminating method and welding equipment

Publications (1)

Publication Number Publication Date
JP2007289966A true JP2007289966A (en) 2007-11-08

Family

ID=38761093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117036A Pending JP2007289966A (en) 2006-04-20 2006-04-20 Welding quality discriminating method and welding equipment

Country Status (1)

Country Link
JP (1) JP2007289966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203310A (en) * 2019-06-19 2020-12-24 株式会社ダイヘン Control device, program, and robot control system
JP2020203309A (en) * 2019-06-19 2020-12-24 株式会社ダイヘン Control device, program, and robot control system
CN114025904A (en) * 2019-06-28 2022-02-08 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203310A (en) * 2019-06-19 2020-12-24 株式会社ダイヘン Control device, program, and robot control system
JP2020203309A (en) * 2019-06-19 2020-12-24 株式会社ダイヘン Control device, program, and robot control system
JP7296792B2 (en) 2019-06-19 2023-06-23 株式会社ダイヘン Controllers, programs, and robot control systems
JP7296791B2 (en) 2019-06-19 2023-06-23 株式会社ダイヘン Controllers, programs, and robot control systems
CN114025904A (en) * 2019-06-28 2022-02-08 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method
CN114025904B (en) * 2019-06-28 2023-09-12 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method

Similar Documents

Publication Publication Date Title
JP7308610B2 (en) System and method for welding torch weaving
CN102189313B (en) Tip-base metal distance control method for arc welding system, and arc welding system
JP6126174B2 (en) Machine learning device, arc welding control device, arc welding robot system and welding system
JP2008093670A (en) Robot control device for controlling tandem arc welding system, and arc copy control method using the same
CN109834366B (en) Arc starting adjusting device, welding system and arc starting adjusting method
MX2011010619A (en) Method and control device for monitoring the quality of spot welds of a resistance welding gun comprising the outputting of a warning message.
US20080237199A1 (en) Spot welding electrode tip wear verification method
CN104321159A (en) Welding systems and method of welding with determination of proper attachment and polarity of a welding electrode
WO2006006518B1 (en) Arc welding robot
US11267066B2 (en) Weld signature analysis for weld quality determination
JP7181144B2 (en) Trained model generation method, computer program, welding power supply, and learned model
JP2007289966A (en) Welding quality discriminating method and welding equipment
CN105290595B (en) Method of monitoring weld tool cleaning and weld control mechanism
JP2017185529A (en) Consumption article monitoring device
ES2969093T3 (en) Welding control device, welding control procedure and welding control program
JP6672551B2 (en) Display device and display method for arc welding
CN113492247A (en) Welding condition adjusting device
JP4534770B2 (en) Welding monitoring device and welding monitoring method
JPH11123546A (en) Method for judging stability of welding at starting arc and device for judging stability
JP3769787B2 (en) Automatic welding machine control device
US11897060B2 (en) Systems and methods for welding torch weaving
CN106470789A (en) Electric arc welds Quality estimation system
EP3088120B1 (en) Method for replacing electrodes and control device for an electric clamp
JP7296791B2 (en) Controllers, programs, and robot control systems
JP6861072B2 (en) Welding quality judgment device, welding system, welding quality judgment method and welding quality judgment program