JP2007289157A - Cryopreservation method for cell or tissue - Google Patents

Cryopreservation method for cell or tissue Download PDF

Info

Publication number
JP2007289157A
JP2007289157A JP2007075947A JP2007075947A JP2007289157A JP 2007289157 A JP2007289157 A JP 2007289157A JP 2007075947 A JP2007075947 A JP 2007075947A JP 2007075947 A JP2007075947 A JP 2007075947A JP 2007289157 A JP2007289157 A JP 2007289157A
Authority
JP
Japan
Prior art keywords
cells
cryopreservation
tissues
drying
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007075947A
Other languages
Japanese (ja)
Other versions
JP5039972B2 (en
Inventor
Takaharu Tsuruta
隆治 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2007075947A priority Critical patent/JP5039972B2/en
Publication of JP2007289157A publication Critical patent/JP2007289157A/en
Application granted granted Critical
Publication of JP5039972B2 publication Critical patent/JP5039972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique suppressing impairment of cells or tissues without using additives such as a cryoprotective agent, etc., and imparting a high quality cryopreservation. <P>SOLUTION: The cryopreservation method is characterized by comprising a drying process drying the cells or tissues at normal temperature to an extent not impairing the cells or tissues before cryopreservation of the cells or tissues, and then subjecting the dried cells or tissues to the cryopreservation. The preferable method freezes the cells or tissues at the temperature below the maximum ice generation temperature range, and in drying at normal temperature a reduced-pressure microwave heating is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、細胞又は組織の、具体的には食品や生体等の凍結保存法に関する。 The present invention relates to a method for cryopreserving cells or tissues, specifically food or living organisms.

食品や生体等の凍結保存において、細胞の損傷を防ぎ、出来るだけ生きたままの状態で凍結保存を行うことが、良質な食材の長期保存や移植治療の観点から求められている。食品や生体等の凍結保存では、最大氷晶生成帯と呼ばれる温度領域を、如何に速く通過させて冷却するかという点が、品質および機能の保存において最も重要である。この温度帯では、氷結晶が生成、そして成長しやすいため、長時間この温度帯にあると、氷結晶が成長して大きな氷晶となり、細胞や組織が損傷を受けることになる。 In cryopreservation of foods and living organisms, it is required from the viewpoint of long-term preservation of high-quality foods and transplantation treatment to prevent cell damage and perform cryopreservation while remaining as alive as possible. In cryopreservation of food, living bodies, etc., the most important point in preserving quality and function is how quickly a temperature region called a maximum ice crystal formation zone is passed through and cooled. In this temperature zone, ice crystals are easily generated and grow. Therefore, if the temperature crystal is in this temperature zone for a long time, the ice crystals grow and become large ice crystals, and the cells and tissues are damaged.

そのため、この温度帯を短時間で通過できるような急速凍結とするか、又は、この温度帯で凍結させず、より低温において微細な氷晶として凍結させるといった工夫がなされている。前者の場合には、強力な冷凍機を用いたり、伝熱促進を図ることがなされているが、大きなエネルギーを必要とすることや、冷却能に限界があることが問題となっている。一方、後者においては、グリセリン等の凍害防御剤を使用して大きな氷晶の形成を防いだり(特許文献1参照)、最近では、磁場と電場を印加して最大氷晶温度帯を未凍結のままに冷却して通過した後、瞬時に凍結して微細な氷晶とし、損傷を与えないで凍結する方法(特許文献2参照)が提案されている。しかしながら、凍害防御剤の利用は食品には適さない。また、電磁場の影響はまだ未解明であり、その有効性については未だ確証が得られていないという状況にある。
特開平6−292564号公報 特開2001−245645号公報
For this reason, it has been devised that rapid freezing is allowed to pass through this temperature zone in a short time, or that the ice is frozen as fine ice crystals at a lower temperature without being frozen in this temperature zone. In the former case, a powerful refrigerator is used or heat transfer is promoted. However, there are problems in that a large amount of energy is required and the cooling capacity is limited. On the other hand, in the latter, the formation of large ice crystals is prevented by using a frost damage protective agent such as glycerin (see Patent Document 1), and recently, the maximum ice crystal temperature zone is not frozen by applying a magnetic field and an electric field. There has been proposed a method (see Patent Document 2) in which, after passing through cooling as it is, it freezes instantaneously to form fine ice crystals and freezes without damage. However, the use of anti-frost damage agents is not suitable for food. In addition, the influence of the electromagnetic field is still unclear, and there is still no confirmation of its effectiveness.
JP-A-6-292564 JP 2001-245645 A

このような技術的背景から、凍害防御剤や添加物を用いず、遅い冷却速度でも最大氷晶帯を未凍結のまま通過でき、より低温で微細な氷晶となって、細胞や組織に損傷を与えない状態で凍結保存できる方法の開発が望まれている。 Because of this technical background, it is possible to pass through the maximum ice crystal zone unfrozen even at a slow cooling rate without using frost protection agents or additives, resulting in finer ice crystals at lower temperatures and damage to cells and tissues. Development of a method that can be cryopreserved in a state that does not give odor is desired.

本発明の目的は、細胞又は組織の損傷を抑制できる凍結保存技術を提供すること。そしてまた、凍害防御剤等の添加物を使わない、良質な凍結保存を可能とする技術を提供することにある。 An object of the present invention is to provide a cryopreservation technique capable of suppressing cell or tissue damage. Another object of the present invention is to provide a technique that enables high-quality cryopreservation without using additives such as frost damage prevention agents.

本発明者は、凍結保存に際しての細胞の生存率が、細胞内凍結と細胞外凍結によって大きく影響されることを知見し、凍結に関与する水分子数を、事前に、常温乾燥することによって減少させ、氷晶形成による細胞の損傷を防ぐ凍結保存法を見出したものである。 The present inventor has found that the viability of cells during cryopreservation is greatly influenced by intracellular freezing and extracellular freezing, and the number of water molecules involved in freezing is reduced by drying at room temperature in advance. And a cryopreservation method for preventing cell damage due to ice crystal formation.

即ち、本発明の請求項1に記載された発明は、細胞又は組織を凍結保存するに際し、先ず、細胞又は組織を、常温で細胞又は組織に損傷を与えない程度に乾燥し、次いで、凍結し保存することを特徴とする細胞又は組織の凍結保存法である。 That is, in the invention described in claim 1 of the present invention, when cryopreserving a cell or tissue, the cell or tissue is first dried to an extent that does not damage the cell or tissue at room temperature, and then frozen. It is a cryopreservation method for cells or tissues characterized by preservation.

本発明の請求項2に記載された発明は、最大氷晶生成帯以下の温度で凍結させることを特徴とする請求項1記載の細胞又は組織の凍結保存法である。 The invention described in claim 2 of the present invention is the cell or tissue cryopreservation method according to claim 1, wherein the cell or tissue is frozen at a temperature below the maximum ice crystal formation zone.

本発明の請求項3に記載された発明は、常温乾燥としてマイクロ波減圧乾燥を用いることを特徴とする請求項1又は2記載の細胞又は組織の凍結保存法である。 The invention described in claim 3 of the present invention is the method for cryopreserving cells or tissues according to claim 1 or 2, characterized in that microwave vacuum drying is used as room temperature drying.

そして、本発明の請求項4に記載された発明は、冷凍保存に際し、凍害防御剤等の添加物を添加しないことを特徴とする請求項1〜3のいずれか1項記載の細胞又は組織の凍結保存法である。 And the invention described in claim 4 of the present invention does not add an additive such as a frost damage preventive agent in the case of frozen storage, and the cell or tissue according to any one of claims 1 to 3 This is a cryopreservation method.

なお、例えば、特開平10−127263号公報には、食品の風味を残し長期保存可能な乾燥方法として、被乾燥物中の水分が生鮮状態の水分の10〜30%になるまで被乾燥物が凍結しない温度、例えば、10〜40℃で予備乾燥した後、真空凍結乾燥する方法が開示されている。しかし、この発明は、真空凍結乾燥に関するものであり、細胞や組織に損傷を与えない状態で凍結保存することを目的とした本発明とは全く異なるものである。 In addition, for example, in JP-A-10-127263, as a drying method that preserves the flavor of food and can be stored for a long time, the material to be dried is kept until the moisture in the material to be dried becomes 10 to 30% of the moisture in the fresh state. A method of pre-drying at a non-freezing temperature, for example, 10 to 40 ° C., followed by vacuum freeze-drying is disclosed. However, the present invention relates to vacuum freeze-drying and is completely different from the present invention aimed at cryopreservation without damaging cells and tissues.

本発明の凍結保存法によれば、食品の場合には、解凍した際にドリップの少ない良質な長期冷凍保存が可能となる。また、医療分野においては、生体細胞又は生体組織の損傷が少なく、かつ凍害防御剤等の添加を必要としない、長期凍結保存が可能となる。 According to the cryopreservation method of the present invention, in the case of foods, high-quality long-term frozen storage with little drip when thawed is possible. Further, in the medical field, long-term cryopreservation is possible in which there is little damage to living cells or living tissues and no addition of a frost damage protective agent or the like is required.

本発明は、細胞又は組織を凍結保存するに際し、先ず、細胞又は組織を、常温で細胞又は組織に損傷を与えない程度に乾燥し、次いで、凍結し保存するものである。本発明において常温とは、約10〜約30℃の温度範囲を意味し、細胞又は組織に損傷を与えない程度の乾燥とは、細胞又は組織の含水率によって決めることができ、例えば、たまねぎ細胞の場合には、乾量基準の含水率が4g/(g・dry)程度まで乾燥すれば良い。この含水率は、対象物を、例えば、顕微鏡下に観察することによって容易に決定することができる。 In the present invention, when a cell or tissue is cryopreserved, the cell or tissue is first dried to an extent that does not damage the cell or tissue at room temperature, and then frozen and stored. In the present invention, normal temperature means a temperature range of about 10 to about 30 ° C., and the dryness that does not damage cells or tissues can be determined by the moisture content of the cells or tissues, for example, onion cells In this case, the moisture content on the dry basis may be dried to about 4 g / (g · dry). This moisture content can be easily determined by observing the object under a microscope, for example.

食品や生体等の凍結保存では、最大氷晶生成帯と呼ばれる温度領域を、如何に速く通過させて冷却するかという点が、品質および機能の保存において最も重要である。この温度帯では、氷結晶が生成、そして成長しやすいため、長時間この温度帯にあると、氷結晶が成長して大きな氷晶となり、細胞や組織が損傷を受けることになる。最大氷晶生成帯の温度とは、一般に0℃から−5〜−7℃といわれることが多いが、細胞や組織の種類によりその温度帯は異なる。本発明においては、この最大氷晶生成帯以下の温度で凍結させることが好ましい。 In cryopreservation of food, living bodies, etc., the most important point in preserving quality and function is how quickly a temperature region called a maximum ice crystal formation zone is passed through and cooled. In this temperature zone, ice crystals are easily generated and grow. Therefore, if the temperature crystal is in this temperature zone for a long time, the ice crystals grow and become large ice crystals, and the cells and tissues are damaged. The temperature of the maximum ice crystal formation zone is generally said to be 0 ° C. to −5 to −7 ° C., but the temperature zone varies depending on the type of cells and tissues. In the present invention, it is preferable to freeze at a temperature below this maximum ice crystal formation zone.

本発明において、常温で細胞又は組織に損傷を与えない程度に乾燥する方法・手段としては、特に制限はないが、常温乾燥としてマイクロ波減圧乾燥を用いるのが好ましい。マイクロ波減圧乾燥とは、減圧ポンプが接続されたチャンバー内に細胞又は組織等の対象物を入れ、このチャンバー内を減圧状態で、対象物にマイクロ波を照射して行う減圧乾燥方法である。マイクロ波減圧乾燥の中でも、本発明者らが、国際出願のWO2005/100891号で提案した方法・装置が好ましい。この方法は、マイクロ波減圧乾燥方法において、a)チャンバー内の減圧の程度を、対象物の変質温度に対応する飽和蒸気圧以下とし、b)チャンバーの外部からチャンバー内に空気等の気体を供給し、c)マイクロ波をオンオフ処理して、対象物の温度をその変質温度未満に保持した状態で乾燥を行うことを特徴とする方法である。このマイクロ波減圧乾燥を用いると、細胞又は組織を一様に最適な含水率にまで常温で乾燥させることができる。そして、その後、凍結保存を実施するが、できるだけ冷却速度の大きいほうが望ましい。 In the present invention, the method and means for drying to the extent that does not damage cells or tissues at room temperature are not particularly limited, but it is preferable to use microwave vacuum drying as room temperature drying. Microwave vacuum drying is a vacuum drying method in which an object such as a cell or tissue is placed in a chamber connected to a vacuum pump, and the object is irradiated with microwaves in a vacuum state. Among microwave drying under reduced pressure, the method and apparatus proposed by the present inventors in the international application WO2005 / 100891 is preferable. This method is a microwave vacuum drying method, in which a) the degree of decompression in the chamber is set to a saturated vapor pressure or less corresponding to the alteration temperature of the object, and b) a gas such as air is supplied into the chamber from the outside of the chamber. And c) a method of performing drying in a state in which the microwave is turned on and off and the temperature of the object is kept below the alteration temperature. Using this microwave vacuum drying, cells or tissues can be uniformly dried at room temperature to an optimal moisture content. Thereafter, cryopreservation is performed, but it is desirable that the cooling rate be as high as possible.

また、本発明において、特に、食品等を対象にする場合には、冷凍保存に際し、凍害防御剤等の添加物を添加しない方が好ましい。 In the present invention, particularly when foods are targeted, it is preferable not to add an additive such as a frost damage protective agent during frozen storage.

本発明においては、凍結の前に予備乾燥することにより、細胞又は組織の脱水を図り、凍結に関与する水分子数を低減することにより、最大氷晶生成帯を通過できるようにする。より具体的には、一様かつ常温で乾燥させることのできるマイクロ波減圧乾燥法を用い、細胞の生存率の高い、あるいは細胞の良質な条件を維持できる最低の含水率にまで乾燥させる。これにより、後に続く冷凍過程において、細胞内凍結温度が低下するため、細胞に与えるダメージの少ない微細な氷晶が発生し、保存期間中の氷晶の成長も抑制することができる。その結果、微細な氷晶により細胞又は組織の損傷が低減され、生体組織の保存性が改善される。本発明において凍結し保存するための方法・手段については特に制限はなく、公知の方法・手段を用いることができる。以下、実施例により本発明を詳述する。 In the present invention, the cell or tissue is dehydrated by pre-drying prior to freezing, and the number of water molecules involved in freezing is reduced to allow passage through the maximum ice crystal formation zone. More specifically, using a microwave vacuum drying method that can be uniformly and dried at room temperature, the cells are dried to a minimum moisture content that can maintain high cell viability or maintain good cell conditions. Thereby, in the subsequent freezing process, the intracellular freezing temperature is lowered, so that fine ice crystals with little damage to the cells are generated, and the growth of ice crystals during the storage period can be suppressed. As a result, cell or tissue damage is reduced by the fine ice crystals, and the preservation of living tissue is improved. In the present invention, the method and means for freezing and storing are not particularly limited, and known methods and means can be used. Hereinafter, the present invention will be described in detail by way of examples.

先ず、細胞の凍結挙動が観察できるたまねぎの表皮組織を用い、室温乾燥を行った後、冷却ステージを備えた顕微鏡で凍結させ、細胞内凍結の生じる温度と氷晶の様子を観察した。実験に使用するたまねぎ表皮組織は、トリパンブルー染色液により生死判定を行い、細胞が生存状態にあることを確認した後、室温に放置し、自然乾燥を行った。放置時間を変えることにより乾燥の程度を変え、含水率を変化させた。また、トリパンブルーにより生死判定を行い、含水率と生存率との関係を求めた。その結果を図1に示した。乾燥によって細胞が死んでしまっては意味が無いと考え、以後の凍結実験は生存範囲にある含水率の細胞について行った。 First, an onion epidermis tissue in which the freezing behavior of cells can be observed was dried at room temperature and then frozen with a microscope equipped with a cooling stage, and the temperature at which intracellular freezing occurred and the state of ice crystals were observed. The onion epidermal tissue used in the experiment was subjected to life / death determination with trypan blue staining solution, and after confirming that the cells were in a viable state, the cells were left at room temperature and air-dried. By changing the standing time, the degree of drying was changed and the water content was changed. In addition, viability was determined with trypan blue, and the relationship between moisture content and survival rate was determined. The results are shown in FIG. It was considered meaningless if the cells died due to drying, and subsequent freezing experiments were performed on cells with a moisture content in the survival range.

凍結実験におけるたまねぎ表皮組織の冷却速度は、乾燥脱水の効果を見るために1℃/min程度に遅い速度とした。細胞内凍結の生じる温度と含水率との関係を図2に示した。たまねぎ細胞の場合、乾燥しない場合にも、0℃から−7℃程度とされる最大氷晶生成帯よりも低温で凍結するものもあるが、事前の乾燥によって含水率を減少させると、明らかに最大氷晶生成帯より低温で凍結し、乾燥と共に凍結温度が低下していることがわかる。このことより、事前に乾燥した細胞ほどより低温で細胞内凍結が生じ、損傷を与える最大氷晶生成帯を未凍結状態で通過できることが確認された。 The cooling rate of the onion epidermal tissue in the freezing experiment was set to a slow rate of about 1 ° C./min in order to see the effect of dry dehydration. The relationship between the temperature at which intracellular freezing occurs and the water content is shown in FIG. In the case of onion cells, even if they are not dried, some freeze at a temperature lower than the maximum ice crystal formation zone, which is about 0 ° C to -7 ° C. It turns out that it freezes at a temperature lower than the maximum ice crystal formation zone, and the freezing temperature decreases with drying. From this, it was confirmed that the cells dried in advance were intracellular frozen at a lower temperature and could pass through the damaging maximum ice crystal formation zone in an unfrozen state.

凍結時の細胞の様子を透過照明を用いたデジタル顕微鏡で観察したところ(図示せず)、凍結した細胞は暗くなるが、含水率の多い細胞では光の透過度が良く、さほど暗くなっていないのに対し、乾燥させて含水率を低くした細胞では、微細な氷晶が生成しているために光の屈折が進み、暗い画像となっていた。このことから、予備乾燥が、細胞に損傷を与えにくい微細な氷晶を生成し、凍結保存に効果的であると判断できる。 Observation of cells during freezing with a digital microscope using transmitted illumination (not shown), frozen cells become dark, but cells with high water content have good light transmission and are not so dark. On the other hand, in the cells that had been dried to reduce the water content, fine ice crystals were formed, and light refraction advanced, resulting in dark images. From this, it can be judged that pre-drying is effective for cryopreservation because it produces fine ice crystals that do not damage cells.

次に、本発明が実際の冷凍操作において有効な方法であることを示すために、生牡蠣の凍結実験を実施し、解凍後のドリップ量を比較した。図3にその結果を示した。生牡蠣15〜17gを用いて、冷凍後に解凍し、その際のドリップ量を比較した。凍結前の乾燥には、マイクロ波減圧乾燥を用い(前記WO2005/100891号参照)、乾燥時の温度が30℃を超えない条件で行った。冷凍は、家庭用の冷蔵庫の冷凍室を使用した。図3の結果からわかるように、事前の常温乾燥によって解凍後のドリップ量が少なくなり、細胞損傷を抑制していることが確認できた。以上により、本発明が凍結保存に有効な方法であることが示された。 Next, in order to show that the present invention is an effective method in an actual freezing operation, a freezing experiment of raw oysters was performed and the amount of drip after thawing was compared. The results are shown in FIG. Using 15-17 g of raw oysters, it was thawed after freezing and the amount of drip at that time was compared. For drying before freezing, microwave vacuum drying was used (see WO 2005/100891), and the drying temperature was 30 ° C. For freezing, the freezer room of a household refrigerator was used. As can be seen from the results in FIG. 3, it was confirmed that the amount of drip after thawing was reduced by prior room temperature drying, and cell damage was suppressed. From the above, it was shown that the present invention is an effective method for cryopreservation.

鮪と鯖(2cm角)を用いて、実施例2の場合と同様に一定の含水率まで予備乾燥した後、鮪は−20℃で、鯖は−20℃又は−80℃で凍結し、その後、−20℃の冷凍庫で凍結保存した。そのまま1週間保存したものを、水道水で流水解凍した。そして、パネラーによって味、におい、色、食感の4項目について官能検査を行った。なお、鮪は全項目を生で、鯖はにおいと色を生で、味と食感は蒸したもので比較した。 After pre-drying with cocoons and cocoons (2 cm square) to a constant moisture content as in Example 2, the cocoons were frozen at −20 ° C. and cocoons were frozen at −20 ° C. or −80 ° C. And stored frozen in a -20 ° C freezer. What was stored as it was for one week was thawed with running water. And the sensory test was done about four items, a taste, smell, a color, and food texture, by the panelist. All the items were raw, and the sardines were scented and colored, and the taste and texture were steamed.

鮪は12人、鯖は11人のパネラーによって行った。最初に新鮮な試料を食べて味やにおいなどを記憶し、基準の0点とする。その後、これと比較して他の各種試料がどうであったかを、表1の評価点表をもとに評価する。なお、味以外の項目についても表1を参考にして、新鮮なものに近いものに低い得点をつけた。結果は表2に示したとおり、鮪と鯖の
いずれの場合も、約3%程度の予備乾燥を行ったものが高い評価となった。また鯖においては冷却速度の速い方(表2の(b))が評価も高かった。なお、鯖の場合、冷却速度の遅い方(表2の(a))は−20℃まで冷却したものであり、冷却速度の速い方(表2の(b))は−80℃まで冷却したものである。
The nephew was carried out by 12 panelists and the nephew was carried out by 11 panelists. First, eat a fresh sample, memorize the taste and smell, and set it as the reference 0 point. Then, it is evaluated based on the evaluation score table of Table 1 how other various samples were compared with this. Regarding items other than the taste, referring to Table 1, a low score was given to a fresh one. As shown in Table 2, the results obtained by pre-drying about 3% were highly evaluated in both cases. In addition, the higher the cooling rate ((b) in Table 2) of the soot was evaluated highly. In the case of firewood, the slower cooling rate (Table 2 (a)) was cooled to −20 ° C., and the faster cooling rate (Table 2 (b)) was cooled to −80 ° C. Is.

Figure 2007289157
Figure 2007289157

Figure 2007289157
Figure 2007289157

種々の試料を、冷凍前に実施例2と同様に予備乾燥を行うことによって、解凍後に生じるドリップ率(ドリップ量)の変化を調べた。また、生牡蠣については、ドリップに含まれるたんぱく質量を測定し、細胞組織破壊の程度との関連を調べた。ここで、ドリップ率は、解凍前の質量と解凍後の質量との質量差をドリップ量としたときの、解凍前の質量に対するドリップ量の割合である。試料しては、生牡蠣は100g、鮪は100g、鯖は100g、イチゴは100g、イチジクは130g、鶏肉ササミは45g、ゆで卵は55g用いた。 Various samples were pre-dried before freezing in the same manner as in Example 2 to examine changes in the drip rate (drip amount) generated after thawing. For raw oysters, the amount of protein contained in the drip was measured, and the relationship with the degree of cell tissue destruction was examined. Here, the drip rate is the ratio of the drip amount to the mass before thawing when the mass difference between the mass before thawing and the mass after thawing is defined as the drip amount. As samples, 100 g of raw oysters, 100 g of strawberries, 100 g of strawberries, 100 g of strawberries, 130 g of figs, 45 g of chicken fillets, and 55 g of boiled eggs were used.

図4に生牡蠣のドリップ率、図5に生牡蠣100gのドリップに含まれるたんぱく質の割合を示した。生牡蠣の含水率は、乾燥してないものが5.8g(乾燥重量1g当たり、以下同じ)、全体の質量の5%だけ乾燥させたものが5.4g、同様に10%乾燥させたものが5.07g、15%乾燥させたものが4.75gであった。予備乾燥によってドリップ量が減少するとともに、ドリップ中のたんぱく質も減っていることから、凍結前の予備乾燥によって、細胞の損傷を抑えられることが確認された。また、冷却速度の大きいほど、ドリップと細胞損傷の程度も低下することが分かる。 FIG. 4 shows the drip rate of raw oysters, and FIG. 5 shows the ratio of protein contained in 100 g of raw oysters. The moisture content of raw oysters is 5.8 g (not shown) per gram of dry oysters, 5.4 g of dried oysters by 5% of the total mass, and 10% dried similarly. Was 5.07 g and 15% dried was 4.75 g. Since the amount of drip decreased by pre-drying and the protein in the drip also decreased, it was confirmed that pre-drying before freezing can suppress cell damage. It can also be seen that the greater the cooling rate, the lower the drip and cell damage.

生牡蠣の場合と同様な条件で、鮪(図6)、鯖(図7)、イチゴ(図8)、イチジク(図9)、鶏肉ササミ(図10)、ゆで卵(図11)を予備乾燥し、同様に冷却した場合のドリップ量を図6〜11に示した。いずれも予備乾燥による含水率の低下によって、ドリップを減らすことができている。 Pre-dried persimmon (Fig. 6), persimmon (Fig. 7), strawberry (Fig. 8), fig (Fig. 9), chicken fillet (Fig. 10) and boiled egg (Fig. 11) under the same conditions as for raw oysters The amount of drip when cooled in the same manner is shown in FIGS. In any case, the drip can be reduced by the reduction of the moisture content due to the preliminary drying.

なお、図4〜11において、Refrigeratorとあるのは、−20℃まで冷却してその雰囲気で冷凍したことを、Cryogenic freezingとあるのは、−80℃まで冷却してその雰囲気で冷凍したことを意味する。記載がないものは、−20℃まで冷却してその雰囲気で冷凍したものである。保管はいずれも−20℃で冷凍保管したものである。 4-11, “Refrigerator” means that it was cooled to −20 ° C. and frozen in that atmosphere, and “Cryogenic freezing” means that it was cooled to −80 ° C. and frozen in that atmosphere. means. Those not described are those cooled to −20 ° C. and frozen in that atmosphere. All the storages are frozen at -20 ° C.

乾燥と凍結による組織の変化を観察した。凍結切片をミクロトームにより10μmの薄さにカットし、ヘマトキシリン・エオジン溶液で染色を行なった後、デジタル顕微鏡により観察を行なった。倍率は300倍とした。図12に鮪の場合の観察結果を示した。凍結前と解凍後の組織の様子を比較してみると、予備乾燥せず凍結したものは、細胞内に氷晶による大きな空洞が目立つのに対し、予備乾燥したものは、細胞内の空洞が減少あるいは小さくなっていることがわかる。このことは、予備乾燥した組織の方が予備乾燥しなかったものに比べ、組織の損傷も少なく、形状を保ちながら凍結できていることを示している。 The tissue changes due to drying and freezing were observed. The frozen section was cut to a thickness of 10 μm with a microtome, stained with a hematoxylin / eosin solution, and then observed with a digital microscope. The magnification was 300 times. FIG. 12 shows the observation result in the case of a heel. Comparing the state of the tissue before freezing and after thawing, the one that was frozen without pre-drying had large cavities due to ice crystals in the cells, whereas the one that had been pre-dried had cavities inside the cells. It can be seen that it is decreasing or decreasing. This indicates that the pre-dried tissue is less damaged than the tissue that was not pre-dried and can be frozen while maintaining its shape.

図13に示したように、ゆで卵の場合にも、細胞損傷の原因となる氷晶の形跡が、予備乾燥と共に少なくなっており、予備乾燥が損傷の少ない冷凍保存法であることを示していた。 As shown in FIG. 13, even in the case of boiled eggs, the traces of ice crystals that cause cell damage are reduced along with preliminary drying, indicating that preliminary drying is a cryopreservation method with little damage. It was.

以上の官能検査と組織観察から、食材としては、含水率3〜5%程度に予備乾燥を行った後、凍結保存するのが良いことが裏付けられた。また、予備乾燥とともにドリップ量が低下し、流出するたんぱく質量も減少することから、予備乾燥によって細胞破壊が抑制されていることが分かった。このことは、食材の品質維持のためにも、本発明が有効であることを示している。 From the above sensory test and tissue observation, it was proved that the food should be cryopreserved after preliminary drying to a moisture content of about 3 to 5%. Moreover, since the amount of drip fell with predrying and the protein mass which flows out also decreased, it turned out that cell destruction is suppressed by predrying. This shows that the present invention is also effective for maintaining the quality of foodstuffs.

本発明は、例えば、食品の冷凍及び凍結保存、あるいは生体又は生体組織の凍結保存のために有用であり、後者においては、移植治療や品種改良、あるいは新薬開発等の分野で利用できる。 The present invention is useful, for example, for freezing and cryopreservation of foods, or cryopreservation of living organisms or living tissues, and the latter can be used in fields such as transplantation therapy, breed improvement, and new drug development.

たまねぎ細胞の含水率と生存率の関係を示す図である。It is a figure which shows the relationship between the moisture content of an onion cell, and a survival rate. たまねぎ細胞の含水率と細胞内凍結温度の関係を示す図である。It is a figure which shows the relationship between the moisture content of an onion cell, and intracellular freezing temperature. 生牡蠣の常温での乾燥時間とドリップ量の関係を示す図である。It is a figure which shows the relationship between the drying time at the normal temperature of raw oyster, and the drip amount. 生牡蠣のドリップ率と含水率の関係を示す図である。It is a figure which shows the relationship between the drip rate of a raw oyster, and a moisture content. 生牡蠣のドリップに含まれるタンパク質の割合を示す図である。It is a figure which shows the ratio of the protein contained in the drip of a raw oyster. 鮪のドリップ率と含水率の関係を示す図である。It is a figure which shows the relationship between the drip rate of a cocoon, and a moisture content. 鯖のドリップ率と含水率の関係を示す図である。It is a figure which shows the relationship between the drip rate of a cocoon, and a moisture content. イチゴのドリップ率と含水率の関係を示す図である。It is a figure which shows the relationship between the drip rate of a strawberry, and a moisture content. イチジクのドリップ率と含水率の関係を示す図である。It is a figure which shows the relationship between the drip rate and the moisture content of FIG. 鶏肉ササミのドリップ率と含水率の関係を示す図である。It is a figure which shows the relationship between the drip rate and moisture content of chicken fillet. ゆで卵のドリップ率と含水率の関係を示す図である。It is a figure which shows the relationship between the drip rate of a boiled egg, and a moisture content. 鮪の組織変化を示す図である。It is a figure which shows the structure | tissue change of a heel. ゆで卵の組織変化を示す図である。It is a figure which shows the structure | tissue change of a boiled egg.

Claims (4)

細胞又は組織を凍結保存するに際し、先ず、細胞又は組織を、常温で細胞又は組織に損傷を与えない程度に乾燥し、次いで、凍結し保存することを特徴とする細胞又は組織の凍結保存法。 A method for cryopreserving a cell or tissue, wherein the cell or tissue is first cryopreserved at room temperature so that the cell or tissue is not damaged, and then frozen and stored. 最大氷晶生成帯以下の温度で凍結させることを特徴とする請求項1記載の細胞又は組織の凍結保存法。 2. The method for cryopreserving cells or tissues according to claim 1, wherein the cells are frozen at a temperature below the maximum ice crystal formation zone. 常温乾燥としてマイクロ波減圧乾燥を用いることを特徴とする請求項1又は2記載の細胞又は組織の凍結保存法。 3. The method for cryopreserving cells or tissues according to claim 1 or 2, wherein microwave drying under reduced pressure is used as room temperature drying. 冷凍保存に際し、凍害防御剤等の添加物を添加しないことを特徴とする請求項1〜3のいずれか1項記載の細胞又は組織の凍結保存法。
The cryopreservation method for cells or tissues according to any one of claims 1 to 3, wherein an additive such as a frost damage preventive agent is not added during cryopreservation.
JP2007075947A 2006-03-30 2007-03-23 Cryopreservation method of cells or tissues Active JP5039972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075947A JP5039972B2 (en) 2006-03-30 2007-03-23 Cryopreservation method of cells or tissues

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006092811 2006-03-30
JP2006092811 2006-03-30
JP2007075947A JP5039972B2 (en) 2006-03-30 2007-03-23 Cryopreservation method of cells or tissues

Publications (2)

Publication Number Publication Date
JP2007289157A true JP2007289157A (en) 2007-11-08
JP5039972B2 JP5039972B2 (en) 2012-10-03

Family

ID=38760395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075947A Active JP5039972B2 (en) 2006-03-30 2007-03-23 Cryopreservation method of cells or tissues

Country Status (1)

Country Link
JP (1) JP5039972B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202856A (en) * 2010-03-25 2011-10-13 Panasonic Corp Refrigerator
JP2013201979A (en) * 2012-03-28 2013-10-07 Kyushu Institute Of Technology Method for freezing biological material
JP2013247868A (en) * 2012-05-30 2013-12-12 Kyushu Institute Of Technology Method of freeze preserving fish eggs
JP2015013829A (en) * 2013-07-04 2015-01-22 大陽日酸株式会社 Apparatus and method of dehydrating biological material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100891A1 (en) * 2004-04-12 2005-10-27 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method and apparatus for reduced pressure drying using microwave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100891A1 (en) * 2004-04-12 2005-10-27 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method and apparatus for reduced pressure drying using microwave

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202856A (en) * 2010-03-25 2011-10-13 Panasonic Corp Refrigerator
JP2013201979A (en) * 2012-03-28 2013-10-07 Kyushu Institute Of Technology Method for freezing biological material
JP2013247868A (en) * 2012-05-30 2013-12-12 Kyushu Institute Of Technology Method of freeze preserving fish eggs
JP2015013829A (en) * 2013-07-04 2015-01-22 大陽日酸株式会社 Apparatus and method of dehydrating biological material

Also Published As

Publication number Publication date
JP5039972B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4370288B2 (en) Method for producing frozen food
Hu et al. Novel synergistic freezing methods and technologies for enhanced food product quality: A critical review
JP5039972B2 (en) Cryopreservation method of cells or tissues
BRPI0617628A2 (en) method for preparing aquatic eggs from aquatic animals in refined delicacies and ovulated eggs prepared by using said method
CN101385480A (en) Fresh fish fresh-keeping method
EP2151167B1 (en) Method for producing frozen foods
JPWO2015016171A1 (en) Method for thawing frozen food
KR100696645B1 (en) Method for processing globefish
JP5156747B2 (en) Fish processing method
JP5824178B1 (en) Aged meat production method and aging management device, frozen aged meat production method, low temperature management method and low temperature management device
KR100767020B1 (en) A hygiene processing method of aquatic products
KR20050079971A (en) The smoking method of fish using steam
CN108902284A (en) A kind of processing method of chicken storing at ice temperature
CN107711640A (en) A kind of method for fine finishing of artemia cysts
CN105851198A (en) Preservation method for aquatic products
Zaki et al. Drying characteristics of papaya (Carica papaya L.) during microwave-vacuum treatment
CN105409900A (en) Freeze-dried snail meat bait
JP2006204222A (en) Cold vegetable sustaining vegetable texture
US20020106443A1 (en) Method of freezing salted meat products
KR101813961B1 (en) Fish processing method
Hamidi et al. Improvement of freezing quality of food by pre-dehydration with microwave-vacuum drying
KR20130083331A (en) Immersion coolant containing natural material
CN101288419B (en) Fresh water caltrop pulp freezing preservation technique
KR20230041949A (en) Fish rapid freezing vacuum drying method with steam semi drying process
KR20050015461A (en) Rapid freezing dry method of antler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150