JP2007285921A - Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor - Google Patents
Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor Download PDFInfo
- Publication number
- JP2007285921A JP2007285921A JP2006114441A JP2006114441A JP2007285921A JP 2007285921 A JP2007285921 A JP 2007285921A JP 2006114441 A JP2006114441 A JP 2006114441A JP 2006114441 A JP2006114441 A JP 2006114441A JP 2007285921 A JP2007285921 A JP 2007285921A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- raw material
- nozzle
- liquid
- sweep
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
本発明は、例えば高温ガス炉被覆燃料粒子の製造装置に関するものであり、詳しくは、化学蒸着による被覆層形成用の反応容器へ液体原料をガス化して供給するための手段に関する。 The present invention relates to an apparatus for producing high temperature gas furnace coated fuel particles, for example, and more particularly to a means for gasifying and supplying a liquid raw material to a reaction vessel for forming a coating layer by chemical vapor deposition.
高温ガス炉は、燃料を含む炉心構造を、熱容量が大きく高温健全性の良好な黒鉛で形成すると共に、ヘリウム等の高温下でも化学的反応の起こらないガス冷却材を用いることにより、固有の安全性が高く、高い出口温度でヘリウムガスを取り出すことが可能であり、得られる約900℃の高温熱は、発電はもちろんのこと水素製造や化学プラント等、幅広い分野での熱利用を可能にするものである。 High-temperature gas reactors have a core structure that contains fuel, made of graphite with a large heat capacity and good high-temperature soundness, and by using a gas coolant that does not cause a chemical reaction even at high temperatures such as helium. Helium gas can be taken out at a high outlet temperature, and the resulting high-temperature heat of about 900 ° C. enables heat utilization in a wide range of fields such as hydrogen production and chemical plants as well as power generation. Is.
このような高温ガス炉の燃料には、通常、ウランを含む溶液を出発原料として製造した二酸化ウランをセラミックス状に焼結した直径約350〜650μmの真球粒子状の燃料核を基本構造とし、この燃料核の外表面に複数の被覆層を形成してなる被覆燃料粒子が用いられる。 The fuel of such a high temperature gas reactor is generally composed of a spherical particle-shaped fuel nucleus having a diameter of about 350 to 650 μm, which is obtained by sintering uranium dioxide produced from a solution containing uranium as a starting material into a ceramic form, Coated fuel particles formed by forming a plurality of coating layers on the outer surface of the fuel core are used.
この被覆燃料粒子は、例えば第1被覆層にはガス状の核分裂生成物のガス留めとしての機能及び燃料粒子の変形を吸収する緩衝部としての機能を併せ持つものとして密度約1g/cm3 の低密度熱分解炭素層を形成し、第2被覆層にはガス状核分裂生成物の保持機能を有するものとして密度約1.8g/cm3 の高密度熱分解炭素層を形成し、さらに第3被覆層には固体状核分裂生成物の保持機能を有すると共に被覆層の主要な強度部材として密度約3.2g/cm3 炭化珪素(SiC)層を、また第4被覆層には第2被覆層と同様のガス状核分裂生成物の保持機能と共に第3被覆層の保護層として密度約1.8g/cm3 の高密度熱分解炭素層を形成した計4層の被覆を施されたものが一般的となっている。 The coated fuel particles have a low density of about 1 g / cm 3 for the first coating layer, for example, which has both a function as a gas stopper for gaseous fission products and a function as a buffer for absorbing deformation of the fuel particles. A dense pyrolytic carbon layer is formed, and a high density pyrolytic carbon layer having a density of about 1.8 g / cm 3 is formed in the second coating layer as having a function of holding gaseous fission products. The layer has a function of retaining a solid fission product and has a density of about 3.2 g / cm 3 silicon carbide (SiC) as a main strength member of the coating layer, and the fourth coating layer includes a second coating layer and In general, a coating layer of a total of four layers in which a high-density pyrolytic carbon layer having a density of about 1.8 g / cm 3 is formed as a protective layer of the third coating layer together with the holding function of the similar gaseous fission product is provided. It has become.
このようにして得られた被覆燃料粒子は、その粒径や真球度がオーバーコート粒子製造条件に大きく影響することから、篩による粒径選別および真球度選別を行った上でオーバーコート工程へ供される。被覆燃料粒子の表面に黒鉛粉末、粘結剤等からなる黒鉛マトリックス材をコーティングしてなるオーバーコート粒子は、さらに篩による粒径選別等を行った上で、コンパクトプレス工程にて黒鉛母材中に分散させ、中空円筒形や円筒形等の一定形状にプレス成型あるいはモールド成型され、焼結後に燃料コンパクトとなる。 The coated fuel particles obtained in this way have a particle size and sphericity that greatly affect the conditions for producing overcoat particles. To be served. The overcoat particles formed by coating the surface of the coated fuel particles with a graphite matrix material consisting of graphite powder, binder, etc. are further subjected to particle size selection with a sieve, and then in the graphite base material in a compact press process. And is pressed or molded into a fixed shape such as a hollow cylindrical shape or a cylindrical shape and becomes a fuel compact after sintering.
これら燃料コンパクトは黒鉛でできた筒に一定数量入れられ、上下に栓をした燃料棒の形にされる。最終的に燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に入れられ、この六角柱型黒鉛ブロックを多数個、ハニカム配列に複数段重ねて炉心を構成している。 These fuel compacts are put into a cylinder made of graphite, and are made into fuel rods that are plugged up and down. Finally, the fuel rod is inserted into a plurality of insertion holes of the hexagonal column type graphite block, and a large number of the hexagonal column type graphite blocks are stacked in a honeycomb array to constitute a core.
従来から、上記のような被覆燃料粒子は、高密度のセラミックス状二酸化ウランからなる球状の燃料核を流動床からなる反応容器内に装荷し、この反応容器内で被覆層となる原料ガスを熱分解させて化学蒸着による被覆層が形成されて製造されている(例えば、特許文献1参照。)。例えば、第1被覆層の低密度炭素層の場合は約1400℃でアセチレン(C2H2)を熱分解して被覆を施し、第2および第4被覆層の高密度熱分解炭素層の場合は約1400℃でプロピレン(C3H6)を熱分解して行う。第3被覆層のSiC層の場合は約1600℃でメチルトリクロロシラン(CH3SiCl3)を熱分解して被覆層を形成している。 Conventionally, the above-mentioned coated fuel particles are loaded with spherical fuel nuclei made of high-density ceramic-like uranium dioxide in a reaction vessel consisting of a fluidized bed, and the raw material gas serving as a coating layer in the reaction vessel is heated. It is manufactured by decomposing and forming a coating layer by chemical vapor deposition (see, for example, Patent Document 1). For example, in the case of the low-density carbon layer of the first coating layer, acetylene (C 2 H 2 ) is thermally decomposed at about 1400 ° C., and the high-density pyrolytic carbon layer of the second and fourth coating layers. Is carried out by thermally decomposing propylene (C 3 H 6 ) at about 1400 ° C. In the case of the SiC layer of the third coating layer, methyltrichlorosilane (CH 3 SiCl 3 ) is thermally decomposed at about 1600 ° C. to form the coating layer.
なお、このような流動床を利用した反応容器へ供給される原料は、アセチレンやプロピレンなどのようにガス原料をそのままで供給できるものだけでなく、メチルトリクロロシランのように液体原料を用いる場合もある。この場合、液体原料をスイープガスとの混合により蒸気ガスにして供給する気化器が用いられている。 In addition, the raw material supplied to the reaction vessel using such a fluidized bed is not limited to a gas raw material such as acetylene or propylene, but may be a liquid raw material such as methyltrichlorosilane. is there. In this case, a vaporizer is used which supplies a liquid raw material as a vapor gas by mixing with a sweep gas.
この気化器としては、液体原料が収容される原料タンクと液体原料中の所定深さ位置までスイープガスを導入してバブルを放出するノズルとを備えたものがあり、原料タンクの周囲に設置した電熱ヒータ等でタンク内を外側から加熱しつつ液体原料中のスイープガスのバブリングによって液体原料の蒸気をスイープガスのバブル中に取り込んで混合ガスとし、該混合ガスをタンクの液面上で回収する配管系を介して原料ガスとして反応容器へ供給するものである。このとき、反応容器への配管の途中にガス集合管と呼ばれる高流量の流動用水素ガスとの混合設備が備えられていることもある。 This vaporizer includes a raw material tank in which a liquid raw material is stored and a nozzle that introduces a sweep gas to a predetermined depth in the liquid raw material and discharges bubbles, and is installed around the raw material tank. While the inside of the tank is heated from the outside with an electric heater or the like, the vapor of the liquid raw material is taken into the bubble of the sweep gas by bubbling the sweep gas in the liquid raw material, and the mixed gas is recovered on the liquid level of the tank The raw material gas is supplied to the reaction vessel through a piping system. At this time, a mixing facility with a high-flowing hydrogen gas called a gas collecting pipe may be provided in the middle of the piping to the reaction vessel.
上記のような気化器を用いた従来の液体原料のガス化供給においては、形成される蒸着被覆層の密度や厚さ等の特性が、反応容器内の蒸着温度や混合ガス流量だけでなく、気化器において決定される混合ガス中の原料蒸気ガスの混合比にも繊細に依存するものであるため、均一な膜厚の被覆層を形成するには、原料供給を管理して安定させることが必然である。 In the gasification supply of the conventional liquid raw material using the vaporizer as described above, characteristics such as the density and thickness of the vapor deposition coating layer to be formed are not only the vapor deposition temperature and the mixed gas flow rate in the reaction vessel, Since the mixing ratio of the raw material vapor gas in the mixed gas determined in the vaporizer also depends delicately, in order to form a coating layer with a uniform film thickness, it is necessary to manage and stabilize the raw material supply. It is inevitable.
しかしながら、実際のメチルトリクロロシラン等の液体原料の供給量は、作業前後のタンク残量によって管理するのが一般的方法であり、経過時間に対する供給量変動等はわかりにくく、均一被覆層の形成のために必要な安定した原料供給状態の確保が困難であるという問題があった。 However, the actual supply amount of liquid raw materials such as methyltrichlorosilane is generally controlled by the remaining amount of the tank before and after the work, and fluctuations in the supply amount with respect to the elapsed time are difficult to understand. For this reason, there is a problem that it is difficult to ensure a stable raw material supply state necessary.
さらに、上記のような気化器のタンク内では液体原料の蒸発時の気化熱によって液体原料自身の温度が低下してしまい、原料タンクを外側から加熱していても液体原料の温度を一定に維持するのは困難で、液体原料の温度変化によって蒸気量にも変動が生じ、原料ガス供給量の不安定化を招いていた。 Furthermore, in the vaporizer tank as described above, the temperature of the liquid raw material itself decreases due to the vaporization heat at the time of evaporation of the liquid raw material, and the temperature of the liquid raw material is kept constant even when the raw material tank is heated from the outside. It is difficult to do this, and the amount of vapor also fluctuates due to the temperature change of the liquid source, leading to instability of the source gas supply amount.
本発明の目的は、上記問題点に鑑み、高温ガス炉用被覆燃料粒子の製造工程における液体原料のガス化供給を従来よりも安定に管理可能とし、高品質な被覆燃料粒子を製造できる装置を提供することにある。 In view of the above problems, an object of the present invention is to provide an apparatus that can manage gasification and supply of a liquid raw material in the production process of coated fuel particles for high-temperature gas reactors more stably than before and can produce high-quality coated fuel particles. It is to provide.
上記目的を達成するため、請求項1に記載の発明に係る高温ガス炉用被覆燃料粒子製造装置は、真球状粒子に成形された多数の二酸化ウラン燃料核を収容した反応容器内に、該容器底部に装着されたガス噴出ノズルのノズル孔を介して流動ガスおよび被覆原料ガスを噴出供給しつつ加熱することにより、前記燃料核を流動させながら被覆原料ガスの熱分解反応によって燃料核表面を各被覆原料分子の蒸着層で被覆する高温ガス炉用被覆燃料粒子の製造装置において、前記被覆原料ガスの液体原料をガス化供給するための手段と、前記流動ガスの供給源からの流動ガスと、被覆原料ガスの供給源からの原料ガスとを合流混合させるガス集合管と、該ガス集合管で混合されたガスを前記ノズルへ送る配管とを有し、前記ガス化供給手段は、前記液体原料を収容するための原料タンクと、該原料タンク内の液体原料を加熱する加熱手段と、液体原料中でスイープガスを放出するノズル手段と、ノズル手段から放出されたスイープガスがバブルとして液体原料中を浮上する間にバブルに取り込まれた液体原料の蒸気を原料タンク内の液面上でスイープガスとの混合ガスとして回収して前記配管へ送る原料ガス取り出し手段と、を備え、前記配管の予め定められたノズル上流位置で前記ガス集合管から送られてくる混合ガスの一部を摂取して原料濃度を測定するオンラインガス分析装置をさらに備えたものである。
In order to achieve the above object, a coated fuel particle manufacturing apparatus for a HTGR according to the invention described in
また、請求項2に記載の発明に係る高温ガス炉用被覆燃料粒子製造装置は、請求項1に記載の高温ガス炉用被覆燃料粒子製造装置において、前記オンラインガス分析装置による測定結果に基づいて、前記加熱手段の加熱動作機構、または前記スイープガスの供給量調整機構を制御する自動制御部を備えたものである。 According to a second aspect of the present invention, there is provided a coated fuel particle manufacturing apparatus for a high temperature gas reactor according to the first aspect of the present invention, wherein the coated fuel particle manufacturing apparatus for a high temperature gas reactor is based on a measurement result by the online gas analyzer. And an automatic control unit for controlling the heating operation mechanism of the heating means or the supply amount adjusting mechanism of the sweep gas.
また、請求項3に記載の発明に係る高温ガス炉用被覆燃料粒子製造装置は、請求項1に記載の高温ガス炉用被覆燃料粒子製造装置において、前記オンラインガス分析装置は、ガスクロマトグラフ機器を含むものである。
Moreover, the coated fuel particle manufacturing apparatus for a HTGR according to the invention described in
本発明による高温ガス炉用被覆燃料粒子製造装置においては、液体原料をガス化供給するための手段として、原料タンク内の液体原料中へのスイープガスのバブリングによって液体原料を蒸気にしてスイープガスとの混合ガスとして回収し、ガス集合管へ送り、ここで流動ガスと合流させ、反応容器のガス噴出ノズルへ配管を介して送り込むものを備え、配管の所定ノズル上流位置で混合ガスの一部を摂取して原料濃度を測定するオンラインガス分析装置を備えたものであるため、この分析装置による測定結果に基づいて、液体原料のガス化供給量を調整して、安定した供給量を維持でき、膜厚の均一な被覆層を形成できるという効果がある。 In the coated fuel particle manufacturing apparatus for a HTGR according to the present invention, as means for gasifying and supplying the liquid raw material, the liquid raw material is vaporized by bubbling the sweep gas into the liquid raw material in the raw material tank, and the sweep gas and It is collected as a mixed gas, sent to a gas collecting pipe, where it is combined with a flowing gas, and sent to the gas ejection nozzle of the reaction vessel via a pipe, and a part of the mixed gas is provided at a predetermined nozzle upstream position of the pipe Because it is equipped with an on-line gas analyzer that ingests and measures the concentration of raw materials, it can adjust the gasification supply amount of the liquid raw material based on the measurement results by this analyzer, and maintain a stable supply amount, There is an effect that a coating layer having a uniform thickness can be formed.
本発明の高温ガス炉用被覆燃料粒子製造装置は、被覆原料ガスの液体原料をガス化供給するための手段として、前記ガス化供給手段は、前記液体原料を収容するための原料タンクと、該原料タンク内の液体原料を加熱する加熱手段と、液体原料中でスイープガスを放出するノズル手段と、ノズル手段から放出されたスイープガスがバブルとして液体原料中を浮上する間にバブルに取り込まれた液体原料の蒸気を原料タンク内の液面上でスイープガスとの混合ガスとして回収して、流動ガス供給源からの流動ガスと被覆原料ガス供給源からの原料ガスとを合流混合させるためのガス集合管ガス集合管へ送る原料ガス取り出し手段と、を備え、ガス集合管からの混合ガスを反応容器底部のガス噴出ノズルへ送る配管の予め定められたノズル上流位置で、その混合ガスの一部を摂取して原料濃度を測定するオンラインガス分析装置を備えたものである。 The coated fuel particle manufacturing apparatus for a HTGR of the present invention is a means for gasifying and supplying a liquid raw material of a coating raw material gas, the gasification supply means includes a raw material tank for containing the liquid raw material, The heating means for heating the liquid raw material in the raw material tank, the nozzle means for discharging the sweep gas in the liquid raw material, and the sweep gas discharged from the nozzle means were taken into the bubbles while rising in the liquid raw material as bubbles. Gas for recovering vapor of liquid raw material as a mixed gas with sweep gas on the liquid level in the raw material tank, and mixing and mixing the fluid gas from the fluid gas supply source and the material gas from the coating material gas supply source And a raw material gas take-out means for sending to the gas collecting pipe, and a predetermined upstream position of the pipe for sending the mixed gas from the gas collecting pipe to the gas jet nozzle at the bottom of the reaction vessel In, those having a line gas analyzer for measuring the material density ingest a portion of the mixed gas.
従って、液体原料のガス化供給の際には、オンラインガス分析装置により配管へ送られる混合ガス中の原料濃度を測定して、該測定値が所望の濃度に対して差があれば、その差を解消するように原料タンクの加熱温度調整やスイープガスの流量調整を行って、液体原料のガス化供給量を所望のものに調整することができ、被覆層形成工程の間、このようなサンプリングと測定およびフィードバック制御という工程を適切な時間間隔毎に行って行けば、液体原料のガス化供給量を一定に調整して、均一な被覆層形成状態を確保することができる。 Therefore, when gasifying and supplying the liquid raw material, the raw material concentration in the mixed gas sent to the pipe by the online gas analyzer is measured, and if the measured value is different from the desired concentration, the difference By adjusting the heating temperature of the raw material tank and the flow rate of the sweep gas so as to eliminate the above, the gasification supply amount of the liquid raw material can be adjusted to a desired one, and such sampling is performed during the coating layer forming process. If the steps of measurement and feedback control are performed at appropriate time intervals, the gasification supply amount of the liquid raw material can be adjusted to be constant and a uniform coating layer forming state can be ensured.
即ち、本発明では、第3被覆層形成用の液体原料であるメチルトリクロロシランをガス化供給する際には、原料タンク内でスイープガスバブルに取り込まれる液体原料の蒸気は、液面上で回収されてガス集合管へ送られ、ここで流動ガスと合流し混合されて反応容器に連通する配管へ送られるが、その途中で混合ガスの一部がオンラインガス分析装置によってサンプリングされてメチルトリクロロシラン濃度が測定されるため、その結果に基づいて、所望濃度より低い濃度の場合は加熱温度を上げたりスイープガス流量を増やしてバブリングによる蒸気発生量を増加させたり、逆に所望濃度より高い場合は加熱温度を下げたりスイープガス流量を減らしてバブリングによる蒸気発生量を減少させるという調整を行うことができる。従って、これらのサンプリングと測定およびフィードバック制御という工程を第3被覆層形成工程中に亘って適切な時間間隔毎に行えば、メチルトリクロロシランのガス化供給量は一定に制御され、第3被覆層は均一な膜厚に形成され、高品質な被覆燃料粒子が得られる。 That is, in the present invention, when methyltrichlorosilane, which is a liquid raw material for forming the third coating layer, is gasified and supplied, the vapor of the liquid raw material taken into the sweep gas bubble in the raw material tank is recovered on the liquid surface. Is sent to the gas collecting pipe, where it is mixed with the flowing gas, mixed, and sent to the pipe communicating with the reaction vessel. A part of the mixed gas is sampled by an on-line gas analyzer on the way, and methyltrichlorosilane Since the concentration is measured, based on the results, if the concentration is lower than the desired concentration, the heating temperature is increased or the sweep gas flow rate is increased to increase the amount of steam generated by bubbling. Adjustment can be performed to reduce the amount of steam generated by bubbling by lowering the heating temperature or reducing the sweep gas flow rate. Therefore, if these sampling, measurement, and feedback control processes are performed at appropriate time intervals throughout the third coating layer forming process, the gasification supply amount of methyltrichlorosilane is controlled to be constant, and the third coating layer is controlled. Is formed in a uniform film thickness, and high quality coated fuel particles can be obtained.
なお、上記のようなオンラインガス分析装置による測定結果に基づく加熱温度の調整やスイープガス流量の調整は、別個に人的に行うこともできるが、自動制御によって調整する構成とするのが迅速なフィードバック制御によるより安定した液体原料のガス化供給を実現でき望ましい。即ち、自動制御部により前記分析装置による測定結果に基づいて加熱手段の加熱動作機構またはスイープガスの供給量調整機構を制御すればよい。 Note that the adjustment of the heating temperature and the adjustment of the sweep gas flow rate based on the measurement result by the online gas analyzer as described above can be performed manually, but it is quick to adopt a configuration in which adjustment is performed by automatic control. It is desirable to realize more stable gasification supply of liquid raw material by feedback control. That is, the automatic control unit may control the heating operation mechanism of the heating means or the supply amount adjustment mechanism of the sweep gas based on the measurement result by the analyzer.
また、スイープガスは、通常、水素ガス等の流動ガスと同種のものが使われるため、流動ガス供給源からガス集合管へ向かう流動ガスの一部を分岐してスイープガスとして用いる構成としても良い。この場合、スイープガス流量調整は、この分岐流動ガスの流量調整によって行えば良い。 Further, since the same kind of flowing gas as hydrogen gas or the like is usually used as the sweep gas, a part of the flowing gas from the flowing gas supply source to the gas collecting pipe may be branched and used as the sweep gas. . In this case, the sweep gas flow rate may be adjusted by adjusting the flow rate of the branched flow gas.
オンラインガス分析装置の具体的分析方式には、ガスクロマトグラフが簡便なものとして挙げられるが、これに限定されるものではなく、メチルトリクロロシランの濃度測定が可能な機構であれば、広く採用可能であり、特に制限はない。 As a specific analysis method of an on-line gas analyzer, a gas chromatograph can be mentioned as a simple one, but it is not limited to this, and any mechanism that can measure the concentration of methyltrichlorosilane can be widely used. There are no particular restrictions.
本発明の一実施例による高温ガス炉用被覆燃料粒子製造装置において、被覆燃料粒子の第3被覆層の液体原料であるメチルトリクロロシラン(MTSと記す)をガス化して供給するためのガス化供給手段を、ガス供給量の調整を自動制御で行う場合を例として図1の概略構成図に示す。 In the apparatus for producing coated fuel particles for a HTGR according to an embodiment of the present invention, gasification supply for gasifying and supplying methyltrichlorosilane (referred to as MTS) which is a liquid raw material for the third coating layer of the coated fuel particles The means is shown in the schematic configuration diagram of FIG. 1 as an example in which the adjustment of the gas supply amount is performed by automatic control.
本装置においては、それぞれ、第1被覆原料であるアセチレンガスの供給源21と、第2および第4被覆原料であるプロピレンガスの供給源22から供給される被覆原料ガスが、互いに切り換えられながら対応する被覆層形成工程においてガス集合管5へ送られ、ここで流動水素ガスの供給源3から送られる流動ガスと合流混合されて配管6から反応容器20側へ送られ、該反応容器20の底部に装着されたガス噴射ノズル(不図示)から反応容器20内に噴射供給されるものであり、第3被覆層の被覆原料ガスの供給源としてMTSのガス化供給手段1を備えている。
In this apparatus, the acetylene
ガス化供給手段1は、液体原料MTSが収容された原料タンク2と、液体原料MTS中の所定深さ位置までスイープガスを導入してバブルを放出するノズル7とを備えたものである。本実施例では、スイープガスに流動ガスの一部を用いるものとした。即ち、流動水素ガス供給源3からガス集合管5へ向かう流動ガス配管4から分岐する配管4xを原料タンク2へ導入し、該分岐配管4xの先端にノズル7を連通させることによって、反応容器20へ送られる流動ガスの一部をスイープガスとして用いる。
The gasification supply means 1 includes a
このガス化供給手段1では、液体原料MTS中のスイープガスのバブリングによってMTSの蒸気がスイープガスのバブル中に取り込まれてMTSの蒸気ガスとして原料タンク2内の液面上から回収配管11によって回収され、ガス集合管5へ送られる。このガス集合管5にて他の被覆原料ガスの場合と同様に流動ガスと合流混合されて混合ガスとして配管6を介して反応容器20へ供給される。
In this gasification supply means 1, the MTS vapor is taken into the bubble of the sweep gas by bubbling the sweep gas in the liquid raw material MTS, and is recovered as MTS vapor gas from the liquid surface in the
なお、スイープガスの流量は、分岐配管4xに設けられた開閉弁8の開度によって決定され、その調整は、流量計9の値に基づいてスイープガス供給量調整機構10によって行われる。また、本実施例のガス化供給手段1では、液体原料MTSの蒸発時の気化熱によって液体原料自身の温度が低下するので、その分を補って液体原料MTSの温度を一定に維持するために液体原料MTSの温度を計測装置14で計測しながら原料タンク2の周囲に設置した電熱ヒータ13でタンク2内を加熱する温度調整機構12を備えているものとした。
The flow rate of the sweep gas is determined by the opening degree of the on-off
実質的にMTSガスの供給量はタンク2内での蒸気発生量に依存するものであるため、加熱温度の高低またはスイープガス(流動ガス)の供給流量の増減によってMTSガス供給量も増減する。
Since the supply amount of the MTS gas substantially depends on the amount of steam generated in the
本実施例においては、配管6のノズル上流位置でガス集合管5から送られてくる混合ガスの一部をサンプリングして分析するガスクロマトグラフ機器からなるオンラインガス分析装置15を備えている。従って、この分析装置15によるMTS混合ガスのMTS濃度測定結果によって、所望の原料濃度に対する差異が判るため、それに応じて温度調整機構12またはスイープガス供給量調整機構10を制御してMTSの蒸気発生量を増減調整し、所望の原料濃度に調整することができる。
In this embodiment, an on-line gas analyzer 15 comprising a gas chromatograph device for sampling and analyzing a part of the mixed gas sent from the
このようなサンプリングガスの濃度測定およびその結果に基づくMTS蒸気発生量の調整という作業を、第3被覆層形成工程の期間中、所定時間間隔毎に行えば、該工程の間に亘って、所望のMTSガス供給量を安定に維持することができる。 If such an operation of measuring the concentration of the sampling gas and adjusting the amount of MTS vapor generation based on the result is performed at predetermined time intervals during the third coating layer forming step, it can be performed over the step. The MTS gas supply amount can be maintained stably.
なお、上記サンプリング、測定、フィードバック調整の一連の作業を自動制御によって定期的に行う構成とすれば、MTSガス供給量調整が迅速に且つより確実に行えて、原料ガスのさらなる安定供給状態が確保できる。本実施例では、コンピュータからなる自動制御部16からの指令によって、オンラインガス分析装置(ガスクロマトグラフ)15による所定時間毎のサンプリング、分析が実行され、測定データが送信される。
If the above-described series of sampling, measurement, and feedback adjustment operations are performed periodically by automatic control, the MTS gas supply amount can be adjusted quickly and more reliably, and a more stable supply state of the source gas can be secured. it can. In this embodiment, sampling and analysis are performed every predetermined time by an on-line gas analyzer (gas chromatograph) 15 according to a command from an
自動制御部16は、この測定データと予め定められているMTSガス供給量に応じた混合ガス中の原料濃度との差を求め、設定濃度より実測値が低い場合は、スイープガス供給量調整機構10へ指令して開閉弁8を駆動制御させて、開度を上げてスイープガスの供給流量を増加させる、あるいは、温度調整機構12に指令して電熱ヒータ13を制御させて、タンク2内の液体料MTSの加熱温度を上昇させることによって、MTS蒸気発生量を増加させる。
The
逆に、設定濃度より実測値が高い場合は、自動制御部16は、スイープガス供給量調整機構10へ指令して開閉弁8を駆動制御させて、開度を下げてスイープガスの供給流量を減少させることによって、MTS蒸気発生量を減少させる。
On the other hand, when the measured value is higher than the set concentration, the
以上のように、本実施例における液体原料のガス化供給手段1によれば、第3被覆層形成工程において、メチルトリクロロシランを一定の所望濃度に調整しつつ安定にガス化供給することができるため、均一な膜厚で高品質な被覆燃料粒子を得ることができる。 As described above, according to the gasification supply means 1 of the liquid raw material in the present embodiment, in the third coating layer forming step, methyltrichlorosilane can be stably gasified while being adjusted to a certain desired concentration. Therefore, high quality coated fuel particles can be obtained with a uniform film thickness.
1:ガス化供給手段
2:原料タンク
MTS:メチルトリクロロシラン
3:流動水素ガス供給源
4:流動ガス配管
4x:分岐配管
5:ガス集合管
6:配管
7:ノズル
8:開閉弁
9:流量計
10:スイープガス供給量調整機構
11:回収配管
12:温度調整機構
13:電熱ヒータ
14:温度計
15:オンラインガス分析装置
16:自動制御部
1: Gasification supply means 2: Raw material tank MTS: Methyltrichlorosilane 3: Fluid hydrogen gas supply source 4:
Claims (3)
前記被覆原料ガスの液体原料をガス化供給するための手段と、前記流動ガスの供給源からの流動ガスと被覆原料ガスの供給源からの原料ガスとを合流混合させるガス集合管と、該ガス集合管で混合されたガスを前記ノズルへ送る配管とを有し、
前記ガス化供給手段は、前記液体原料を収容するための原料タンクと、該原料タンク内の液体原料を加熱する加熱手段と、液体原料中でスイープガスを放出するノズル手段と、ノズル手段から放出されたスイープガスがバブルとして液体原料中を浮上する間にバブルに取り込まれた液体原料の蒸気を原料タンク内の液面上でスイープガスとの混合ガスとして回収して前記ガス集合管へ送る原料ガス取り出し手段と、を備え、
前記配管の予め定められたノズル上流位置で前記ガス集合管から送られてくる混合ガスの一部を摂取して原料濃度を測定するオンラインガス分析装置をさらに備えたことを特徴とする高温ガス被覆燃料粒子製造装置。 A reaction vessel containing a large number of uranium dioxide fuel nuclei formed into spherical particles is heated while jetting and supplying a flowing gas and a coating material gas through a nozzle hole of a gas jet nozzle mounted on the bottom of the vessel. Thus, in the apparatus for producing coated fuel particles for a high-temperature gas reactor in which the fuel nucleus surface is coated with a vapor deposition layer of each coating material molecule by a thermal decomposition reaction of the coating material gas while flowing the fuel nucleus,
Means for gasifying and supplying the liquid raw material of the coating raw material gas, a gas collecting pipe for joining and mixing the fluid gas from the fluid gas supply source and the raw material gas from the coating raw material gas source, and the gas A pipe for sending the gas mixed in the collecting pipe to the nozzle,
The gasification supply means includes a raw material tank for containing the liquid raw material, a heating means for heating the liquid raw material in the raw material tank, a nozzle means for releasing a sweep gas in the liquid raw material, and a discharge from the nozzle means. The raw material vapor collected in the bubble while the generated sweep gas floats in the liquid raw material as a bubble is recovered as a mixed gas with the sweep gas on the liquid surface in the raw material tank and sent to the gas collecting pipe A gas extraction means,
The high-temperature gas coating further includes an on-line gas analyzer that ingests a part of the mixed gas sent from the gas collecting pipe at a predetermined nozzle upstream position of the pipe and measures a raw material concentration Fuel particle production equipment.
The coated gas particle manufacturing apparatus for a HTGR according to claim 1, wherein the online gas analyzer includes a gas chromatograph device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006114441A JP2007285921A (en) | 2006-04-18 | 2006-04-18 | Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006114441A JP2007285921A (en) | 2006-04-18 | 2006-04-18 | Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007285921A true JP2007285921A (en) | 2007-11-01 |
Family
ID=38757827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006114441A Withdrawn JP2007285921A (en) | 2006-04-18 | 2006-04-18 | Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007285921A (en) |
-
2006
- 2006-04-18 JP JP2006114441A patent/JP2007285921A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4271207A (en) | Process for the coating of particles for the production of fuel and/or absorbing elements for nuclear reactors and apparatus therefor | |
JP2007285921A (en) | Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor | |
US20090130307A1 (en) | Method for the rapid densification of a porous substrate, comprising the formation of a solid deposit within the porosity of the substrate | |
JP2007315940A (en) | System for manufacturing coated fuel particle for high-temperature gas-cooled reactor | |
JP2006045637A (en) | Bubbling type vaporizer | |
JP2007278956A (en) | Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor | |
JP2006046998A (en) | Manufacturing equipment of coated fuel particle for high-temperature gas-cooled reactor | |
JP4417879B2 (en) | Production equipment for coated fuel particles for HTGR | |
JP4409405B2 (en) | Production equipment for coated fuel particles for HTGR | |
JP2007107901A (en) | Device for manufacturing coated fuel particle for high temperature gas furnace | |
JP4521763B2 (en) | Production equipment for coated fuel particles for HTGR | |
JP4502397B2 (en) | Apparatus and method for producing coated fuel particles for HTGR | |
JP4417867B2 (en) | Production equipment for coated fuel particles for HTGR | |
JP4450814B2 (en) | Coated fuel particle manufacturing equipment for HTGR | |
JP4354903B2 (en) | Production equipment for coated fuel particles for HTGR | |
JP4417871B2 (en) | Production equipment for coated fuel particles for HTGR | |
JP2007147504A (en) | Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor | |
JP4455467B2 (en) | Method and apparatus for overcoating coated fuel particles | |
JP4415272B2 (en) | Equipment for producing fuel particles for HTGR | |
JP2007114037A (en) | Device for manufacturing coated fuel particle for high-temperature gas-cooled reactor | |
JP2006266805A (en) | Manufacturing equipment and manufacturing method for coated fuel particle for high-temperature gas-cooled reactor | |
JP4450762B2 (en) | Gas introduction nozzle of coated fuel particle manufacturing equipment for HTGR | |
Keeley et al. | Development of a continuous CVD process for TRISO coating of AGR fuel | |
JP2005337947A (en) | Device and method for manufacturing coated fuel particle for high-temperature gas-cooled reactor | |
JP4357437B2 (en) | Production equipment for coated fuel particles for HTGR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090707 |