JP2007285685A - Temperature and air capacity controller in vortex tube - Google Patents

Temperature and air capacity controller in vortex tube Download PDF

Info

Publication number
JP2007285685A
JP2007285685A JP2006116805A JP2006116805A JP2007285685A JP 2007285685 A JP2007285685 A JP 2007285685A JP 2006116805 A JP2006116805 A JP 2006116805A JP 2006116805 A JP2006116805 A JP 2006116805A JP 2007285685 A JP2007285685 A JP 2007285685A
Authority
JP
Japan
Prior art keywords
temperature
sequence
control signal
signal
vortex tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006116805A
Other languages
Japanese (ja)
Other versions
JP4769117B2 (en
Inventor
Tetsuro Yamamoto
哲朗 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Original Assignee
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp filed Critical Kogi Corp
Priority to JP2006116805A priority Critical patent/JP4769117B2/en
Publication of JP2007285685A publication Critical patent/JP2007285685A/en
Application granted granted Critical
Publication of JP4769117B2 publication Critical patent/JP4769117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Abstract

<P>PROBLEM TO BE SOLVED: To carry out easy and quick automatic adjustment to a set value of a temperature of cold air blowing out from a blowout opening, and to carry out automatic adjustment to an optimal value of air capacity also in a vortex tube. <P>SOLUTION: In the temperature controller, an electropneumatic regulator 8 is provided in a supply line of compressed gas to a generator 4 of the vortex tube, a motor operated proportional control valve 13 is provided on a tip of a hot air tube 5, and a temperature signal and a temperature signal of a humidity sensor 9 and an air capacity sensor 16 provided in the cold air blowout opening 7 of the vortex tube are respectively compared with set values in a temperature controller 11 and an air capacity controller 17 to provide a humidity control signal and an air capacity control signal to be supplied to a sequence circuit 15. Control of a drive circuit 12 of the electropneumatic regulator 8 based upon the air capacity control signal, control of the drive signal 12 of the electropneumatic regulator 8 based on the temperature control signal, and control of a drive circuit 14 of the motor operated proportional control valve 13 based upon the temperature control signal are carried out based upon a sequence carrying out alternative selection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボルテックスチューブにおいて、吐出されている冷風または熱風の温度を制御する装置にかかり、特に所望の温度の冷風または熱風を迅速に効率良く得る装置に関するものである。   The present invention relates to a device for controlling the temperature of discharged cold air or hot air in a vortex tube, and more particularly to an apparatus for quickly and efficiently obtaining cold air or hot air having a desired temperature.

液化気体や冷凍機を使用せずに冷風を得る装置としてボルテックス装置が知られており、特に大気汚染を嫌う場合や装置の小型化が要求される用途に使用されている。また高温の発熱体を使用せずに熱風を得ることができるところから、ボルテックスチューブは引火の危険を伴わない高度の安全性が要求される熱源としても使用されている。     A vortex device is known as a device that obtains cold air without using a liquefied gas or a refrigerator, and is particularly used in applications where air pollution is disliked or where downsizing of the device is required. Further, since hot air can be obtained without using a high-temperature heating element, the vortex tube is also used as a heat source that requires a high degree of safety without risk of ignition.

ボルテックスチューブは、一方向へ伸びる熱風管と反対方向へ伸びる冷風噴出口とを有し、その中間に位置するゼネレータより熱風管内へ高速で旋回する気流を送入すると、その内部に生ずる気圧勾配により温度差が生まれ、熱風管の先端より熱風を噴出すると同時に、熱風管内を逆流した冷風が冷風噴出口から噴出する。   The vortex tube has a hot air pipe that extends in one direction and a cold air outlet that extends in the opposite direction. When a high-speed swirling air stream is fed into the hot air pipe from a generator located in the middle of the vortex tube, A temperature difference is born, and hot air is ejected from the tip of the hot air tube. At the same time, cold air that has flowed back in the hot air tube is ejected from the cold air outlet.

ゼネレータに供給する気体の圧力が一定であれば、熱風管の先端に設けた絞り弁を操作して、熱風の噴出量を変化させると、冷風の噴出量は熱風噴出量と相補的関係で変化する。即ち、熱風量を絞るほど熱風の温度は上昇すると共に、冷風量が増して冷風温度は常温に近づく。逆に熱風量を増すほどに熱風温度は低下し、冷風量は減少して冷風温度は低下する。そして、ゼネレータに供給する気体の圧力を高めると、冷風及び熱風の噴出量の合計値が増大し、熱風と冷風との温度差は大きくなる。   If the pressure of the gas supplied to the generator is constant, operating the throttle valve provided at the tip of the hot air tube to change the amount of hot air blown out will change the amount of cold air blown in a complementary relationship with the amount of hot air blown out. To do. That is, as the amount of hot air is reduced, the temperature of the hot air rises and the amount of cold air increases and the temperature of the cold air approaches normal temperature. Conversely, as the amount of hot air increases, the temperature of hot air decreases, the amount of cold air decreases, and the temperature of cold air decreases. And if the pressure of the gas supplied to a generator is raised, the total value of the ejection amount of cold air and hot air will increase, and the temperature difference of hot air and cold air will become large.

冷風の温度を制御する例として、特許文献1に半導体試料のためにその温度を制御する装置が示されており、この装置では電空レギュレータを用いてゼネレータへ供給する圧縮電気の圧力を冷風の温度に基づいて制御している。
特開平10−135315号公報
As an example of controlling the temperature of cold air, Patent Document 1 discloses an apparatus for controlling the temperature of a semiconductor sample. In this apparatus, the pressure of compressed electricity supplied to a generator using an electropneumatic regulator is adjusted. Control based on temperature.
Japanese Patent Laid-Open No. 10-135315

特許文献1に記載された装置は、検査条件がほぼ一定している場合には、冷風の温度を一定に維持することができる。しかし、幾通りかの温度条件について検査を実施したい場合には、熱風管端の絞り弁の開度を調節しないと冷風の温度の選択範囲が狭く、かつ冷風温度の如何によっては冷風量が少かったり、冷風量が多過ぎてエネルギの利用効率が悪化する。   The apparatus described in Patent Document 1 can keep the temperature of the cold air constant when the inspection conditions are substantially constant. However, when it is desired to perform inspections for several temperature conditions, the selection range of the cold air temperature is narrow unless the opening degree of the throttle valve at the end of the hot air pipe is adjusted, and the amount of cold air is small depending on the cold air temperature. The amount of cold air is too large, and the efficiency of energy use deteriorates.

しかも、絞り弁の開度を調節した後に電空レギュレータの自動制御によって冷風温度を調節すれば、冷風温度が設定値に安定するまでに数分以上を有するので、所望の温度条件下で必要な冷風量が得られる絞り弁開度を求めるのに長時間を要する。従って温度条件を頻繁に変化させなければならない検査には不向きである。   Moreover, if the cold air temperature is adjusted by automatic control of the electropneumatic regulator after adjusting the opening of the throttle valve, it takes several minutes or more for the cold air temperature to stabilize to the set value. It takes a long time to determine the opening of the throttle valve that provides the amount of cold air. Therefore, it is not suitable for inspections in which temperature conditions must be changed frequently.

よって、本発明は、ボルテックスチューブにおいて、使用する冷風または熱風の指定された温度条件下で、高いエネルギの利用効率が得られる温度制御装置を実現しようとするものである。   Therefore, the present invention intends to realize a temperature control device that can obtain high energy utilization efficiency under a specified temperature condition of cold air or hot air to be used in a vortex tube.

本発明は、ボルテックスチューブのゼネレータへの圧縮気体の供給路に設けたれ電空レギュレータと、上記ボルテックスチューブの熱風管端に設けた電動比例制御弁と、上記ボルテックスチューブの冷風噴出口または熱風管端に設けた温度センサと、この温度センサの検出温度と設定温度とを比較して制御信号を得る温度調節計と、この温度調節計の制御信号を上記で電空レギュレータ及び上記電動比例制御弁の各制御回路に交互に供給するシーケンス回路とを有する。ここで、上記温度センサは、冷風を利用する場合には冷風噴出口に設け、熱風を利用する場合には熱風管端に設ける。   The present invention includes an electropneumatic regulator provided in a compressed gas supply path to a generator of a vortex tube, an electric proportional control valve provided at a hot air tube end of the vortex tube, a cold air outlet or a hot air tube end of the vortex tube. A temperature sensor provided in the temperature sensor, a temperature controller that compares the detected temperature of the temperature sensor with a set temperature, and obtains a control signal, and the control signal of the temperature controller is transmitted to the electropneumatic regulator and the electric proportional control valve. And a sequence circuit that alternately supplies each control circuit. Here, the temperature sensor is provided at the cold air outlet when using cold air, and is provided at the end of the hot air tube when using hot air.

更に、冷風を利用する場合には上記ボルテックスチューブの冷風噴出口に風量センサを設け、熱風を利用する場合には上記ボルテックスチューブの熱風管端に風量センサを設けて、これらの検出風量と設定風量とを風量調節計で比較して得た風量制御信号を、上記シーケンス回路に導入して上記電空レギュレータ及び上記電動比例制御弁を交互に自動調整する。ここで、上記風量センサは、冷風を利用する場合には冷風噴出口に設け、熱風を利用する場合には熱風管端に設ける。   Further, when using cold air, an air volume sensor is provided at the cold air outlet of the vortex tube, and when hot air is used, an air volume sensor is provided at the end of the hot air tube of the vortex tube. Are introduced into the sequence circuit to automatically adjust the electropneumatic regulator and the electric proportional control valve alternately. Here, the air volume sensor is provided at the cold air outlet when using cold air, and provided at the end of the hot air tube when using hot air.

上述のように、利用する冷風または熱風の温度を設定するに当り、ゼネレータの入口の電空レギュレータだけでなく、熱風管端の電動比例制御弁をも制御しているので、選択できる温度範囲が拡がり、かつ熱風管端の絞り弁を操作しながら温度を調節するのに較べて、簡単かつ迅速に目的とする温度に到達させることができる。さらに、圧縮空気の利用効率を高めるために利用する冷風または熱風の風量を適正に制御することは、特許文献1に示されているような電空レギュレータのみによる温度制御では至難事であるが、本発明のように電動比例制御弁の追加と風量センサの検出風量信号の利用とにより、容易にこの制御を実施することができる。   As described above, when setting the temperature of the cold air or hot air to be used, not only the electropneumatic regulator at the inlet of the generator but also the electric proportional control valve at the end of the hot air pipe is controlled. Compared to adjusting the temperature while operating the throttle valve at the end of the hot air pipe, the target temperature can be reached easily and quickly. Furthermore, appropriately controlling the amount of cold air or hot air used to increase the utilization efficiency of compressed air is extremely difficult with temperature control using only an electropneumatic regulator as shown in Patent Document 1, As in the present invention, this control can be easily performed by adding an electric proportional control valve and using the air volume signal detected by the air volume sensor.

ボルテックスチューブのゼネレータへの圧縮空気の供給管路中に電空レギュレータを設け、熱風管の先端に電動比例制御弁を設け、冷風噴出管に温度センサ及び風量センサを設け、各サンサの検出信号をそれぞれ設定値と比較して温度制御信号及び風量制御信号を得る。そしてシーケンス回路は、第1のシーケンスでは風量制御信号により電空レギュレータを調節して所定の風量を得、第2のシーケンスでは温度制御信号により電動比例制御弁を調節して所定の温度を得、第3のシーケンスでは温度制御信号により電空レギュレータの再調節し、以後、第2及び第3のシーケンスの動作を反覆した後に第1のシーケンスに戻り、第2及び第3のシーケンスを反覆する。なお、シーケンスの切換えは、温度または風量の検出値が定常状態に達する度に、或いは一定時間経過する度に行う。   An electro-pneumatic regulator is provided in the compressed air supply line to the generator of the vortex tube, an electric proportional control valve is provided at the tip of the hot air pipe, a temperature sensor and an air volume sensor are provided in the cold air outlet pipe, and a detection signal of each sunsa is received. A temperature control signal and an air volume control signal are obtained by comparing with the set values, respectively. In the first sequence, the sequence circuit adjusts the electropneumatic regulator by the air volume control signal to obtain a predetermined air volume, and in the second sequence, adjusts the electric proportional control valve by the temperature control signal to obtain a predetermined temperature, In the third sequence, the electropneumatic regulator is readjusted by the temperature control signal, and thereafter, after the operations of the second and third sequences are repeated, the process returns to the first sequence, and the second and third sequences are repeated. Note that the sequence is switched every time the detected value of the temperature or the air volume reaches a steady state or whenever a certain time elapses.

図1において、ボルテックスチューブ1は、圧縮空気が圧縮空気源2から管路3を経てゼネレータ4に供給され、ゼネレータ4が生じた高速旋回気流が熱風管5内に送り込まれ、熱風管5の先端に設けた手動調節弁6を経て熱風が噴出すると共に、ゼネレータ4の熱風管5とは反対方向に指向した冷風噴出管7より冷風が噴出する。   In FIG. 1, a vortex tube 1 is supplied with compressed air from a compressed air source 2 through a pipeline 3 to a generator 4, and a high-speed swirling air flow generated by the generator 4 is fed into a hot air tube 5. Hot air is ejected through a manual control valve 6 provided at the same time, and cold air is ejected from a cold air ejection pipe 7 directed in a direction opposite to the hot air pipe 5 of the generator 4.

通常は管路3の途中にゼネレータへ供給される圧縮空気の圧力を調節するために手動調節弁が設けられるが、特許文献1に示された装置では、この手動調節弁の代りに電空レギュレータ8が設けられ、冷風噴出管より噴出する冷風の温度をセンサ9で検出し、その温度信号を温度調節計10へ導いてその温度設定器11の設定温度と比較し、得られた温度制御信号を駆動回路12に供給して、電空レギュレータ8の弁の開度を自動制御している。   Normally, a manual adjustment valve is provided in the middle of the pipeline 3 to adjust the pressure of the compressed air supplied to the generator. However, in the apparatus shown in Patent Document 1, an electropneumatic regulator is used instead of this manual adjustment valve. 8 is provided, the temperature of the cold air ejected from the cold air ejection pipe is detected by the sensor 9, the temperature signal is guided to the temperature controller 10 and compared with the set temperature of the temperature setting device 11, and the obtained temperature control signal Is supplied to the drive circuit 12 to automatically control the opening degree of the valve of the electropneumatic regulator 8.

本発明においては熱風管5の先端に電動比例制御弁13を取付けるが、このとき手動調節弁6は取外すか或いは全開状態にしておく。そして、上述の電空レギュレータ8の駆動回路12と電動比例制御弁13の駆動回路14とを、温度調節計10の温度制御信号に基づいてシーケンス回路15により次の態様で動作させる。   In the present invention, the electric proportional control valve 13 is attached to the tip of the hot air pipe 5, and at this time, the manual adjustment valve 6 is removed or left fully opened. Then, the drive circuit 12 of the electropneumatic regulator 8 and the drive circuit 14 of the electric proportional control valve 13 are operated in the following manner by the sequence circuit 15 based on the temperature control signal of the temperature controller 10.

先ず、温度設定器11を所望の冷風温度に設定すると共に、電空レギュレータ8の吐出側の圧力を適当と思われる任意の値に仮設定し、ゼネレータ4へ圧縮空気の供給を開始する。
(1)シーケンスの第1段では、温度調節計10の温度制御信号により電動比例制御弁13の調節が行われ、これにより冷風温度が目標値へ向って変化する。そして冷風温度が安定状態に達した時点では、仮設定された電空レギュレータ8の弁開度のもとでは、ボルテックスチューブ1における冷風と熱風の配分量が最適状態になる。
(2)シーケンスの第2段では、第1段目で自動調節された電動比例制御弁13の弁開度をそのまま固定し、温度調節計10の温度制御信号により電空レギュレータ8の調節が行われ、仮設定されていた弁開度が適切な方向に変更される。
First, the temperature setting device 11 is set to a desired cold air temperature, the pressure on the discharge side of the electropneumatic regulator 8 is temporarily set to an arbitrary value that seems to be appropriate, and the supply of compressed air to the generator 4 is started.
(1) In the first stage of the sequence, the electric proportional control valve 13 is adjusted by the temperature control signal of the temperature controller 10, whereby the cold air temperature changes toward the target value. When the cold air temperature reaches a stable state, the distribution amount of the cold air and the hot air in the vortex tube 1 is in an optimum state under the temporarily set valve opening of the electropneumatic regulator 8.
(2) In the second stage of the sequence, the valve opening degree of the electric proportional control valve 13 automatically adjusted in the first stage is fixed as it is, and the electropneumatic regulator 8 is adjusted by the temperature control signal of the temperature controller 10. Thus, the temporarily set valve opening is changed to an appropriate direction.

シーケンスの第2段で決定された電空レギュレータ8の弁開度のもとでは、第1段で得た電動比例制御弁13の弁開度が必ずしも理想的な値ではなくなってくるので、その場合には第1段と第2段とを交互にくり返して実施する。このシーケンスの切換えには、温度センサ9による検出温度が定常状態に達したことが検知される度に行う方法と、一定時間ごとに行う方法とがある。   Under the valve opening of the electropneumatic regulator 8 determined in the second stage of the sequence, the valve opening of the electric proportional control valve 13 obtained in the first stage is not necessarily an ideal value. In some cases, the first stage and the second stage are repeated alternately. This sequence switching includes a method that is performed whenever it is detected that the temperature detected by the temperature sensor 9 has reached a steady state, and a method that is performed at regular intervals.

図2において、ボルテックスチューブ1の冷風噴出管7に、温度センサ9と共に風量センサ16を設け、検出された風量信号を風量調節計17へ導く。風量調節計17は風量設定器18を有し、風量信号をその風量設定値と比較して、得られた風量制御信号をシーケンス回路15を経て電空レギュレータ8の駆動回路12及び電動比例制御弁13の駆動回路14を次の態様で動作させる。   In FIG. 2, an air volume sensor 16 is provided together with the temperature sensor 9 on the cold air jet pipe 7 of the vortex tube 1, and the detected air volume signal is guided to the air volume controller 17. The air volume controller 17 has an air volume setting device 18, compares the air volume signal with the air volume setting value, and sends the obtained air volume control signal to the drive circuit 12 of the electropneumatic regulator 8 and the electric proportional control valve via the sequence circuit 15. The 13 drive circuits 14 are operated in the following manner.

先ず、温度設定器11及び風量設定器18を所望の冷風温度及び風量にそれぞれ設定し、電動比例制御弁13を閉状態に設定し、電空レギュレータ8を吐出側の圧力が適当と思われる値になるように仮設定し、その上でゼネレータ4へ圧縮空気の供給を開始する。
(1)シーケンスの第1段では、風量調節計17の風量制御信号により、電空レギュレータ8が制御され、設定風量が得られるようにゼネレータ4への供給空気圧が制御される。
(2)シーケンスの第2段では、電空レギュレータ8の吐出圧力はそのままに固定され、温度調節計10の温度制御信号により電動比例制御弁13の自動調節が行われ、冷風温度が設定値へ向って変化する。
(3)シーケンスの第3段では、電動比例制御弁13の弁開度がそのままに固定され、温度調節計10の温度制御信号により電空レギュレータ8が制御され、その吐出圧力の修正が行われる。
First, the temperature setting device 11 and the air flow setting device 18 are set to desired cold air temperature and air flow, respectively, the electric proportional control valve 13 is set to a closed state, and the pressure on the discharge side of the electropneumatic regulator 8 is considered appropriate. Then, provision of compressed air to the generator 4 is started.
(1) In the first stage of the sequence, the electropneumatic regulator 8 is controlled by the air volume control signal of the air volume controller 17, and the air pressure supplied to the generator 4 is controlled so that the set air volume is obtained.
(2) In the second stage of the sequence, the discharge pressure of the electropneumatic regulator 8 is fixed as it is, the electric proportional control valve 13 is automatically adjusted by the temperature control signal of the temperature controller 10, and the cold air temperature is set to the set value. Change towards.
(3) In the third stage of the sequence, the valve opening degree of the electric proportional control valve 13 is fixed as it is, the electropneumatic regulator 8 is controlled by the temperature control signal of the temperature controller 10, and the discharge pressure is corrected. .

上述のシーケンス第2段及び第3段の反覆により冷風温度が設定値に安定すると、再びシーケンスの第1段に戻り風量制御信号に基づく電空レギュレータ8の吐出圧力が修正されシーケンスの2段および第3段を反覆して最終的には冷風の温度及び風量が最も少い圧縮空気の使用量のもとで得られる状態に到達する。   When the cold air temperature is stabilized at the set value due to the reversal of the second and third stages of the sequence described above, the flow returns to the first stage of the sequence again, and the discharge pressure of the electropneumatic regulator 8 is corrected based on the air volume control signal. The third stage is repeated to finally reach a state where the temperature and the air volume of the cold air can be obtained with the least amount of compressed air used.

図3に示すように、温度センサ9を電動比例制御弁13の熱風噴出口19に設けてその温度信号を温度調節計10に導入し、その温度制御信号をシーケンス回路15で電空レギュレータ制御回路12と電動比例制御弁14とに交互に供給することによって、速やかに所望温度の熱風を得ることができる。   As shown in FIG. 3, the temperature sensor 9 is provided at the hot air outlet 19 of the electric proportional control valve 13 and its temperature signal is introduced into the temperature controller 10, and the temperature control signal is sent to the electropneumatic regulator control circuit by the sequence circuit 15. By supplying alternately to 12 and the electric proportional control valve 14, hot air at a desired temperature can be obtained quickly.

図3に点線で示すように、熱風噴出口19に更に風量センサ16を設け、その風量信号から風量調節計17において風量制御信号を得て、シーケンス回路15により実施例2と同じ順序のシーケンス動作を営ませることにより、所望の温度及び風量の熱風を容易に得ることができる。   As shown by a dotted line in FIG. 3, an air volume sensor 16 is further provided at the hot air outlet 19, and an air volume control signal is obtained from the air volume signal by the air volume controller 17, and the sequence circuit 15 performs the sequence operation in the same order as in the second embodiment. It is possible to easily obtain hot air having a desired temperature and air volume.

上述のように、本発明によるときは所望の温度への調節操作が容易かつ迅速に行うことができるので、特に利用温度を頻繁に変更しなければならない用途に適し、更に使用風量を調節して圧縮空気の利用効率を高めることも可能である。よって、ボルテックスチューブが従来使用されていた用途に加えて、更にその利用範囲を拡大することができる。   As described above, according to the present invention, the adjustment operation to a desired temperature can be performed easily and quickly, so that it is particularly suitable for an application in which the use temperature must be frequently changed, and further, the use air volume is adjusted. It is also possible to increase the utilization efficiency of compressed air. Therefore, in addition to the use for which the vortex tube has been conventionally used, the range of use can be further expanded.

本発明の実施例1のブロック図である。It is a block diagram of Example 1 of the present invention. 本発明の実施例2のブロック図である。It is a block diagram of Example 2 of the present invention. 本発明の実施例3及び4のブロック図である。It is a block diagram of Example 3 and 4 of this invention.

符号の説明Explanation of symbols

1 ボルテックスチューブ
2 圧縮空気源
3 圧縮空気供給管路
4 ゼネレータ
5 熱風管
6 手動調節弁
7 冷風噴出口
8 電空レギュレータ
9 温度センサ
10 温度調節計
11 温度設定器
12 駆動回路
13 電動比例制御弁
14 駆動回路
15 シーケンス回路
16 風量センサ
17 風量調節計
18 風量設定器
19 熱風噴出口
DESCRIPTION OF SYMBOLS 1 Vortex tube 2 Compressed air source 3 Compressed air supply line 4 Generator 5 Hot air pipe 6 Manual adjustment valve 7 Cold air outlet 8 Electropneumatic regulator 9 Temperature sensor 10 Temperature controller 11 Temperature setting device 12 Drive circuit 13 Electric proportional control valve 14 Drive circuit 15 Sequence circuit 16 Air flow sensor 17 Air flow controller 18 Air flow setter 19 Hot air outlet

Claims (7)

ボルテックスチューブの旋回気流を発生するゼネレータの圧縮気体供給路に設けた電空レギュレータと、上記ゼネレータから上記旋回気流が供給される熱風管の先端の熱風噴出口に設けた電動比例制御弁と、上記熱風噴出口または上記熱風管の基端の冷風噴出口に設けた温度センサと、この温度センサの温度信号を設定温度と比較して温度制御信号を得る温度調節計と、上記電空レギュレータ及び上記電動比例制御弁の各駆動回路を上記温度制御信号に基いて交互に制御するシーケンス回路とよりなるボルテックスチューブにおける温度制御装置。   An electro-pneumatic regulator provided in a compressed gas supply path of a generator that generates a swirling airflow of the vortex tube; an electric proportional control valve provided at a hot air outlet at a tip of a hot air pipe to which the swirling airflow is supplied from the generator; A temperature sensor provided at a hot air outlet or a cold air outlet at the base end of the hot air pipe, a temperature controller that obtains a temperature control signal by comparing a temperature signal of the temperature sensor with a set temperature, the electropneumatic regulator, and the above A temperature control device in a vortex tube comprising a sequence circuit that alternately controls each drive circuit of an electric proportional control valve based on the temperature control signal. 請求項1において、上記シーケンス回路は、上記電空レギュレータの駆動回路及び上記電導比例制御弁の駆動回路の制御動作の切換えを、上記温度センサの温度信号が定常状態に到達する度に行うよう構成されていることをと特徴とするボルテックスチューブにおける温度制御装置。   3. The sequence circuit according to claim 1, wherein the sequence circuit switches the control operation of the drive circuit of the electropneumatic regulator and the drive circuit of the conductive proportional control valve each time the temperature signal of the temperature sensor reaches a steady state. A temperature control device for a vortex tube, characterized in that 請求項1において、上記シーケンス回路は、上記電空レギュレータの駆動回路及び上記電導比例制御弁の駆動回路の制御動作の切換えを、所定の時間経過後に行うよう構成されていることを特徴とするボルテックスチューブにおける温度制御装置。   2. The vortex according to claim 1, wherein the sequence circuit is configured to switch control operations of the drive circuit of the electropneumatic regulator and the drive circuit of the conductive proportional control valve after a predetermined time has elapsed. Temperature control device for tubes. ボルテックスチューブの旋回気流を発生するゼネレータの圧縮気体供給路に設けた電空レギュレータと、上記ゼネレータから上記旋回気流が供給される熱風管の先端の熱風噴出口に設けた電動比例制御弁と、上記熱風噴出口または上記熱風管の基端の冷風噴出口に設けた温度センサと、この温度センサの温度信号を設定温度と比較して温度制御信号を得る温度調節計と、上記両噴出口のうちの上記温度センサのある側に設けた風量センサと、この風量センサの風量信号を設定風量と比較して風量制御信号を得る風量調節計と、上記電空レギュレータ及び上記電動比例制御弁の各駆動回路を制御するシーケンス回路とよりなり、このシーケンス回路は、上記風量制御信号に基いて上記電空レギュレータの駆動回路を制御する第1のシーケンス段階及び上記温度制御信号に基いて上記電空レギュレータの駆動回路と上記電動比例制御弁の駆動回路とを交互に制御する第2のシーケンス段階を交互に生ずるよう構成されていることを特徴とする温度、風量制御装置。   An electro-pneumatic regulator provided in a compressed gas supply path of a generator that generates a swirling airflow of the vortex tube; an electric proportional control valve provided at a hot air outlet at a tip of a hot air pipe to which the swirling airflow is supplied from the generator; A temperature sensor provided at a hot air outlet or a cold air outlet at the base end of the hot air pipe, a temperature controller for obtaining a temperature control signal by comparing a temperature signal of the temperature sensor with a set temperature, and An air volume sensor provided on the side of the temperature sensor, an air volume controller for obtaining an air volume control signal by comparing an air volume signal of the air volume sensor with a set air volume, and driving each of the electropneumatic regulator and the electric proportional control valve. A sequence circuit for controlling the circuit, the sequence circuit being a first sequence stage for controlling the driving circuit of the electropneumatic regulator based on the air flow control signal. And a second sequence step for alternately controlling the drive circuit of the electropneumatic regulator and the drive circuit of the electric proportional control valve based on the temperature control signal. Airflow control device. 請求項4において、シーケンス回路は、第1のシーケンス段階と第2のシーケンス段階の切換えを所定の時間経過後に行なうよう構成されていることを特徴とするボルテックスチューブにおける温度、風量制御装置。   5. The temperature / air volume control device in a vortex tube according to claim 4, wherein the sequence circuit is configured to switch between the first sequence stage and the second sequence stage after a predetermined time has elapsed. 請求項4において、シーケンス回路は、第2のシーケンス段階における上記温度制御信号に基づく上記電空レギュレータの駆動回路の制御と上記温度制御信号に基づく上記電動比例制御弁の制御との切換えを、上記温度センサの温度信号が定常状態に達する度に行うよう構成されていることを特徴とするボルテックスチューブにおける温度、風量制御装置。   The sequence circuit according to claim 4, wherein the sequence circuit switches between the control of the electropneumatic regulator drive circuit based on the temperature control signal and the control of the electric proportional control valve based on the temperature control signal in the second sequence stage. A temperature and air volume control device for a vortex tube, which is configured to be performed each time a temperature signal of a temperature sensor reaches a steady state. 請求項4において、シーケンス回路は、第2のシーケンス段階における上記温度制御信号に基づく上記電空レギュレータの駆動回路と上記温度制御信号に基づく上記電動比例制御弁の制御との切換えを、所定の時間経過後に行なうよう構成されていることを特徴とするボルテックスチューブにおける温度、風量制御装置。
The sequence circuit according to claim 4, wherein switching between the electropneumatic regulator drive circuit based on the temperature control signal and the control of the electric proportional control valve based on the temperature control signal in a second sequence stage is performed for a predetermined time. A device for controlling temperature and air volume in a vortex tube, which is configured to be performed after elapse of time.
JP2006116805A 2006-04-20 2006-04-20 Temperature and air volume control device for vortex tube. Active JP4769117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116805A JP4769117B2 (en) 2006-04-20 2006-04-20 Temperature and air volume control device for vortex tube.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116805A JP4769117B2 (en) 2006-04-20 2006-04-20 Temperature and air volume control device for vortex tube.

Publications (2)

Publication Number Publication Date
JP2007285685A true JP2007285685A (en) 2007-11-01
JP4769117B2 JP4769117B2 (en) 2011-09-07

Family

ID=38757623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116805A Active JP4769117B2 (en) 2006-04-20 2006-04-20 Temperature and air volume control device for vortex tube.

Country Status (1)

Country Link
JP (1) JP4769117B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013671A1 (en) * 2008-08-01 2010-02-04 株式会社ニコン Exposure method and system, and device manufacturing method
KR101388881B1 (en) * 2012-05-21 2014-04-23 에스티엑스조선해양 주식회사 EGW Cooling apparatus control system and method thereof
CN105485803A (en) * 2014-09-15 2016-04-13 张奠立 Fan temperature adjusting device
JP2017142027A (en) * 2016-02-10 2017-08-17 株式会社富士通ゼネラル Air conditioning device
JP2017153340A (en) * 2016-02-22 2017-08-31 エルエス産電株式会社Lsis Co., Ltd. Cooling apparatus for power converter
US10100854B2 (en) 2013-06-25 2018-10-16 Emerson Process Management Regulator Technologies, Inc. Heated fluid regulators
CN110425667A (en) * 2019-06-21 2019-11-08 浙江大学 A kind of portable cold/hot Dual-purpose electric fan based on vortex tube
US10571157B2 (en) 2014-09-24 2020-02-25 Fisher Centrols International LLC Field instrument temperature apparatus and related methods
US11529678B2 (en) * 2020-06-11 2022-12-20 Pratt & Whitney Canada Corp. System and method for encapsulating a workpiece
CN116727079A (en) * 2023-08-14 2023-09-12 烟台巨先药业有限公司 Hard capsule processing raw material deep crushing equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013671A1 (en) * 2008-08-01 2010-02-04 株式会社ニコン Exposure method and system, and device manufacturing method
KR101388881B1 (en) * 2012-05-21 2014-04-23 에스티엑스조선해양 주식회사 EGW Cooling apparatus control system and method thereof
US10100854B2 (en) 2013-06-25 2018-10-16 Emerson Process Management Regulator Technologies, Inc. Heated fluid regulators
CN105485803A (en) * 2014-09-15 2016-04-13 张奠立 Fan temperature adjusting device
US10571157B2 (en) 2014-09-24 2020-02-25 Fisher Centrols International LLC Field instrument temperature apparatus and related methods
JP2017142027A (en) * 2016-02-10 2017-08-17 株式会社富士通ゼネラル Air conditioning device
JP2017153340A (en) * 2016-02-22 2017-08-31 エルエス産電株式会社Lsis Co., Ltd. Cooling apparatus for power converter
US10426065B2 (en) 2016-02-22 2019-09-24 Lsis Co., Ltd. Cooling apparatus for power converter
CN110425667A (en) * 2019-06-21 2019-11-08 浙江大学 A kind of portable cold/hot Dual-purpose electric fan based on vortex tube
US11529678B2 (en) * 2020-06-11 2022-12-20 Pratt & Whitney Canada Corp. System and method for encapsulating a workpiece
CN116727079A (en) * 2023-08-14 2023-09-12 烟台巨先药业有限公司 Hard capsule processing raw material deep crushing equipment
CN116727079B (en) * 2023-08-14 2023-12-05 烟台巨先药业有限公司 Hard capsule processing raw material deep crushing equipment

Also Published As

Publication number Publication date
JP4769117B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP4769117B2 (en) Temperature and air volume control device for vortex tube.
KR101577608B1 (en) Method and arrangement for gas turbine engine surge control
US10480512B2 (en) Method for controlling an oil-injected compressor device
JP2006284168A (en) Method and apparatus for drying fibrous material
KR20200042393A (en) Temperature controlling system and temperature controlling method
JP5496771B2 (en) Temperature control method using temperature control device
JP2008032235A (en) Superheated steam generator and superheated steam treatment device
JP7223718B2 (en) Power cycle test device and power cycle test method
JP2009123594A (en) Fuel cell evaluation testing device
JP2008138973A (en) Boiler control device and boiler control method
US7364095B2 (en) Apparatus for judging target to be temperature-regulated
JP2009280223A (en) Pressure regulator for carbon dioxide gas
JP2009222345A (en) Temperature control device
KR20210028842A (en) Cooling system for Rapid Thermal Processing
JP3694359B2 (en) Gas laser oscillator
JP2007240070A (en) Operation control method of air conditioner
JP2015121332A (en) Air conditioner and air conditioning control method
JP4641277B2 (en) Linked hot water system
JP3744355B2 (en) Water heater
JP2006166551A (en) Feeding method of generated power fed from generator, and device for the method
JP4234145B2 (en) Air conditioner
JP2005351239A (en) Hot-blast generator
JP4471529B2 (en) Boiler that can prevent flashing when blowing the bottom of a split can
JPH10103079A (en) Humidifying tower changeover mechanism of wet air gas turbine
KR200259450Y1 (en) Temperature controlling apparatus for bake plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110617

R150 Certificate of patent or registration of utility model

Ref document number: 4769117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250