JP2007285289A - Reverse direction-half rotation blade perpendicular shaft type windmill - Google Patents

Reverse direction-half rotation blade perpendicular shaft type windmill Download PDF

Info

Publication number
JP2007285289A
JP2007285289A JP2006140826A JP2006140826A JP2007285289A JP 2007285289 A JP2007285289 A JP 2007285289A JP 2006140826 A JP2006140826 A JP 2006140826A JP 2006140826 A JP2006140826 A JP 2006140826A JP 2007285289 A JP2007285289 A JP 2007285289A
Authority
JP
Japan
Prior art keywords
blade
rotation
windmill
wind
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006140826A
Other languages
Japanese (ja)
Inventor
Masaru Yuasa
勝 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006140826A priority Critical patent/JP2007285289A/en
Publication of JP2007285289A publication Critical patent/JP2007285289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make blades "reverse direction-half rotation blades" to make both of lift and drag generated on the blade most effectively act on rotation of a rotor at any position and design blade area large although it is believed that using lift at high speed rotation is a condition to show high performance and slim and flow line shape blade to keep drag generated on the blade as small as possible are used for most of present windmills. <P>SOLUTION: This windmill is a windmill having a shaft perpendicular to flow of wind as represented by a straight Darrieus wind turbine. A bearing allowing rotation of the blade itself is provided on an edge support part of a plurality of blades provided in parallel with the rotary shaft and with keeping equal distances. Each blade rotates by half (1/2) of rotation of the rotor when the same rotates around a rotor (windmill main body) center shaft by one rotation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、反・半回転翼風車に関する。  The present invention relates to an anti-semi-rotary blade wind turbine.

現代の風車は、プロペラ型風車・ダリウメ風車など、高速タイプで揚力利用型の風車が高性能風車となる条件とされている。そして、大型の風車の羽根の相対速度は、毎秒100メートルを超えるものもある。  Modern windmills are considered to be conditions for high-speed, high-efficiency windmills, such as propeller-type windmills and darume windmills, to become high-performance windmills. And the relative speed of the blades of a large windmill may exceed 100 meters per second.

しかし、風車をいかに高速で回しても、ベッツの限界値があり、さらに高速回転ゆえに発生する損失の増大や騒音の問題もおきてくる。 また、翼に発生する揚力は相対速度の2乗に比例するが、発生する力の方向は回転方向から大きくずれて発生するので、有効に働く回転力は何分の一かになってしまう。このとき翼自体は発生した全揚力を負荷することになり、翼の強度はかなり高く設計する必要性がある。 さらに高速型風車は翼に発生する抗力による抵抗を小さくするため翼面積を小さく設計してあり、弱風時の起動性能及び運転性能が悪いのが現実である。  However, no matter how fast the windmill is rotated, there is a limit value of Betz, and there are also problems of increased loss and noise caused by high speed rotation. Further, although the lift generated on the blade is proportional to the square of the relative speed, the direction of the generated force is greatly deviated from the rotation direction, so that the effective rotating force is reduced to a fraction. At this time, the blade itself is loaded with the total lift generated, and the strength of the blade needs to be designed to be quite high. Furthermore, the high-speed type windmill is designed to have a small blade area in order to reduce the resistance caused by the drag generated on the blades, and in reality the start-up performance and operation performance during low winds are poor.

ストレート・ダリウス風車に代表されるような、風の流れに直角軸の風車で、回転軸に平行かつ等距離に設置された複数の翼(ブレード)の各支持部に翼自体が回転できるよう軸受けを設け、それぞれの翼がローター〔風車本体〕中心軸の周りを1回転するときに、ローターの回転にたいし反方向に半分(1/2)の回転をしながら回る翼を特徴とする型の風車である。  A wind turbine whose axis is perpendicular to the wind flow, as represented by a straight Darius wind turbine, and a bearing that allows the blade itself to rotate on each support part of multiple blades (blades) installed parallel to the rotation axis and equidistant. A type characterized by a blade that rotates half (1/2) in the opposite direction to the rotation of the rotor when each blade rotates once around the center axis of the rotor (wind turbine body). The windmill.

化石燃料の多用により、地球の温暖化や大気汚染がすすみ、環境破壊、異常気象などでさまざまな災害が引き起こされている現在、クリーンな自然エネルギー活用の開発が、全世界的急務となっている。 太陽光発電の普及は、世界の中でもわが国が一番進んでいるが、エネルギー密度の低さや取り扱いにくさから、風力エネルギー利用の開発は遅れている。さわやかなそよ風からはちいさなエネルギーを、また強風からは大きなエネルギーを安定して取り出せる風車、そして一般民家の屋根上やビルの屋上に安易に設置できる小型風車から、沿岸、海上、丘陵や山頂に建設する大型風車まで、立地のゆるす場所には、全国津々浦々にまで設置できる普及型風車の開発に当発明は効果的である。  Due to the heavy use of fossil fuels, global warming and air pollution have been promoted, and various disasters have been caused by environmental destruction, abnormal weather, etc. Currently, the development of clean natural energy utilization is an urgent need worldwide. . The spread of solar power generation is the most advanced in Japan in the world, but the development of wind energy utilization has been delayed due to low energy density and difficulty in handling. Constructed on the coast, on the sea, on hills and mountain peaks from windmills that can stably extract small energy from refreshing breeze and large energy from strong winds, and small windmills that can be easily installed on the roofs of buildings and rooftops of buildings The present invention is effective in the development of a popular wind turbine that can be installed in places where the location is relaxed, even in large-scale wind turbines.

図1は、ストレート.ダリウス風車と比較させながら、本発明の風車のイメージをわかり易くするためのものである。
この発明は、風車の翼の表面積を大きく設計し、風の流れに対し風車のそれぞれの位置にあるときの翼の角度を制御することにより、翼に発生する揚力と抗力を風車の回転力として有効に引き出すことを目的とする低速タイプの風車である。
1 is straight. It is for making it easy to understand the image of the windmill of the present invention while comparing with the Darius windmill.
In this invention, the surface area of the blade of the wind turbine is designed to be large, and the lift and drag generated in the blade are controlled as the rotational force of the wind turbine by controlling the angle of the blade when the wind turbine is at each position with respect to the wind flow. It is a low-speed type windmill that aims to draw out effectively.

図2は風車の断面図で、風の流れに対して、翼のA.B.C.D各位置での向かえ角を示したものである。A点では揚力Laが、B点では抗力Dbが、C点では揚力Lcがそれぞれ矢印の向きに働きトルクを発生する。D点においては、翼の風に対する迎え角は0度なので力は発生しない。
図2において、Poは風車の中心軸に設置したプーリー、Peは翼に取り付けたプーリーでPeの径はPoの径の2倍とし、双方をベルトまたはチェーンで連結する。ベルトやチェーンの代わりに、奇数個のギアを使用して連結してもよい。(この場合はPe・Poは2対1のギア比のギアを使う)・A点で発生したトルクLaにより翼が90度回転しB点まで動くと翼は左方向に45度回転して図で示した迎え角になることを説明するためのものである。また風向きが変わったときは、Poの矢印を風の吹いてくる方向へ向くように回転させれば、風の流れに対する翼の迎え角は図に示すごとくに保て(追尾でき)る。
FIG. 2 is a cross-sectional view of the wind turbine, and the wing A.V. B. C. D shows the heading angle at each position. The lift La acts at point A, the drag Db at point B, and the lift Lc at point C, respectively, in the direction of the arrow to generate torque. At point D, the angle of attack of the wing against the wind is 0 degrees, so no force is generated.
In FIG. 2, Po is a pulley installed on the central axis of the windmill, Pe is a pulley attached to the blade, and the diameter of Pe is twice the diameter of Po, and both are connected by a belt or a chain. Instead of a belt or a chain, an odd number of gears may be used for connection. (In this case, Pe / Po uses a gear with a gear ratio of 2 to 1.) ・ When the blade rotates 90 degrees by the torque La generated at point A and moves to point B, the blade rotates 45 degrees to the left. This is for explaining that the angle of attack shown in (3) is obtained. When the wind direction is changed, the angle of attack of the blade against the wind flow can be kept as shown in the figure (tracking) by rotating the Po arrow in the direction of the wind.

また、この風車は、地表(水平)面に対しては、垂直軸型と水平軸型の両方が考えられ、それぞれの特長をもっている。
先に風向きが変化した時の対応について触れたが、これは垂直軸型の場合に有効なヨー制御装置である。図2においては、風車を上(または下)から見た断面で、風車の中心軸上にとりつけたギアまたはプーリーPoを風向きの変化に合わせて回してやることでヨー制御が可能である。 垂直軸型は屋根上やビルの屋上にも設置しやすく、比較的小型なものに適している。
水平軸型のものは、図2において、Bを上Dを下として横から見た断面図となり、この場合の風向きの変化は水平方向であり、地表に沿って流れる風の垂直方向の変化はないものとして、中心軸に取り付けたPoは固定しておき、風車全体を、風の流れに対して風車の回転軸が直角になりかつA側が風上となるよう制御する必要がある。したがって水平軸型のヨー制御には、風車全体を回転させる大掛かりな装置が必要となる。このタイプの翼の風に対する迎え角を見ると、上にいくほど強いトルクを得やすくなっており、一般的に上空ほど風速は高いので大型風車に向いているといえる。これからの風車設置場所として、沿岸や洋上などが考えられるが、水上に設置する場合は風車全体をフロート上に設置し、しっかりした杭などに繋留することにより、ダウンウィンド型風車として作動するので、大掛かりなヨー制御装置は必要ない。また、この理論は、地上に設置する場合にも回転軸の中心より風下側の風車の両側に尾翼を兼ねた整流版を設けるなどの工夫により応用することが可能である。
Moreover, this windmill can be considered as both a vertical axis type and a horizontal axis type with respect to the ground surface (horizontal) surface, and has respective features.
The correspondence when the wind direction changes is mentioned earlier. This is an effective yaw control device for the vertical axis type. In FIG. 2, yaw control is possible by turning the gear or pulley Po attached to the center axis of the windmill in accordance with the change in the wind direction in a cross section as seen from the top (or bottom) of the windmill. The vertical axis type is easy to install on the roof or the roof of a building and is suitable for relatively small ones.
The horizontal axis type is a cross-sectional view as seen from the side with B as the top and D as the bottom in FIG. 2. In this case, the change in the wind direction is the horizontal direction, and the change in the vertical direction of the wind flowing along the ground surface is The Po attached to the central shaft is fixed, and it is necessary to control the entire wind turbine so that the rotational axis of the wind turbine is perpendicular to the wind flow and the A side is upwind. Therefore, the horizontal axis type yaw control requires a large device for rotating the entire wind turbine. Looking at the angle of attack of this type of wing against the wind, the higher the torque, the easier it is to obtain a stronger torque. Generally, the higher the wind speed is, the better the wind turbine is. As wind turbine installation locations in the future, coastal or offshore can be considered, but when installing on the water, the entire wind turbine is installed on the float and anchored to a solid pile etc., so it operates as a downwind type wind turbine, There is no need for a large yaw control device. In addition, this theory can also be applied by means such as providing a rectifying plate that also serves as a tail on both sides of a windmill on the leeward side from the center of the rotating shaft when installed on the ground.

次に、翼の風の流れに対する迎え角の制御について述べたい。
(制御法1)
この風車は、ローターが1回転するとき翼は反対回りに半(1/2)回転するが、図2の説明で述べた2対1の径またはギア比で制御する場合には、常にローター回転速度の1/2の回転速度で反対方向に回転する。
図3は、もう1つの迎え角制御について説明するためのものである。
(制御法2)
図3のE点からF点まで(1/4周)の間は、翼をローターの回転と同じ速度で反対向きに回転させる。F点からG点までの1/4周は、翼を翼の回転軸に固定させる。G点からH点までの1/4周は翼をローターの回転と同じ速度で反対方向に回転させる。H点からE点までの1/4周は、翼をその軸に固定させる。
このように制御すると、翼の迎え角はEからFの間は直角(90度)に、GからHの間は平行(0度)になる。また、F〜G間は直角(90度)から平行(0度)まで、H〜E間は平行(0度)から直角(90度)までそれぞれ90度づつ回転し、ローターが1回転(360度)すると翼は反対向きに半回転(180度)する。この迎え角制御の場合は、E〜F間は100%抗力を利用、G〜H間では多少の揚力の効果は捨てて回転のマイナス方向に働く抗力を0にし、F〜G間及びH〜E間では主に揚力を利用する。このように、ローターを1周する間の翼を半回転させる制御の仕方にも、2通りの方法があり、それぞれの特徴と利点を活かした風車の設計に使い分けることができる。
Next, I would like to describe the control of the angle of attack for the wing wind flow.
(Control method 1)
In this wind turbine, when the rotor rotates once, the blades rotate half (1/2) counterclockwise. However, when the control is performed with the 2 to 1 diameter or gear ratio described in the explanation of FIG. 2, the rotor always rotates. Rotate in the opposite direction at half the speed.
FIG. 3 is a diagram for explaining another angle of attack control.
(Control method 2)
From point E to point F in FIG. 3 (1/4 turn), the blade is rotated in the opposite direction at the same speed as the rotation of the rotor. In the ¼ turn from the point F to the point G, the wing is fixed to the rotating shaft of the wing. The quarter turn from point G to point H rotates the blade in the opposite direction at the same speed as the rotor. The wings are fixed to the shaft for ¼ turn from point H to point E.
When controlled in this way, the angle of attack of the wing is a right angle (90 degrees) between E and F, and parallel (0 degrees) between G and H. Further, the angle between F and G rotates from 90 degrees to 90 degrees from parallel (0 degrees), and the distance between H and E rotates from 90 degrees to parallel (0 degrees) to 90 degrees, respectively, and the rotor rotates once (360). The wings make a half turn (180 degrees) in the opposite direction. In this attack angle control, 100% drag is used between E and F, the effect of some lift is discarded between G and H, the drag acting in the negative direction of rotation is set to 0, and between F and G and between H and H Between E, lift is mainly used. As described above, there are two methods for controlling the blades to make a half rotation during one round of the rotor, and they can be selectively used for designing a wind turbine utilizing the respective features and advantages.

次に、翼についての考えを述べる。本発明の風車の発想は、風をはらみ、風を大きくとらえて疾走するヨットや帆船の帆に働く力を効率よく回転力に変換することから始まった。したがって、翼の受風面積は大きく(スリムな翼を使う場合は翼の枚数を多く)して、抗力と揚力の両方を効率よく発生するような形状が望ましい。アルミやFRPなどの剛性が強く比較的軽量な素材を使った固形の対称翼型のものがまず考えられるが、高速型に比べて翼にかかる負荷が小さい低速型なので、軽量かつ柔軟性のある素材を使用した、セール状の翼や、揚力.抗力をより効率よく発生するように湾曲するような構造の翼の開発が、今後の課題である。  Next, the idea about the wing is described. The idea of the windmill according to the present invention began by efficiently converting the force acting on the sail of a yacht or sailing ship that captures the wind and sprints with a large wind to a rotational force. Therefore, it is desirable that the wind receiving area of the wing be large (when the slim wing is used, the number of wings is large), and the shape that efficiently generates both drag and lift. A solid symmetrical wing type using strong and relatively lightweight materials such as aluminum and FRP can be considered first, but it is light and flexible because it is a low speed type with less load on the wing than the high speed type. Sail-like wings and lift using materials. The future challenge is to develop a wing that is curved to generate drag more efficiently.

突風や定格出力を超える強風の場合は、一時的にフライホイール等にエネルギーをため込み、風が弱まったらそのエネルギーを放出するような工夫も低速型ゆえに、有効な手段である。さらにそれを超える強風が続くときは、ヨー制御の項で述べたPoの風向き方向の矢印の向きを、風向き(水平軸型においては水平方向)からずらすことにより出力制御を行うことが出来る。  In the case of gusty winds or strong winds exceeding the rated output, a device that temporarily accumulates energy in a flywheel or the like and releases the energy when the wind weakens is an effective means because it is a low speed type. When a strong wind exceeding that continues, output control can be performed by shifting the arrow direction of the Po wind direction described in the section of yaw control from the wind direction (horizontal direction in the horizontal axis type).

ストレート・ダリウス風車と本発明の風車の断面図。  Sectional drawing of a straight Darius windmill and the windmill of this invention. 風車の断面図。風の流れに対し、風車のそれぞれの位置における翼の迎え角と、そこに発生する力〔矢印〕を示す。  Sectional drawing of a windmill. The angle of attack of the wing at each position of the wind turbine and the force (arrow) generated there are shown for the wind flow. 反・半回転翼制御法の説明図。  Explanatory drawing of the anti-half-rotary blade control method.

符号の説明Explanation of symbols

Oは風車の中心軸。
A・B・C・D・Eは風の流れに対するO点からのそれぞれの位置を示す。
O is the central axis of the windmill.
A, B, C, D, and E indicate positions from the point O with respect to the wind flow.

Claims (1)

ストレートダリウス風車に代表されるような、風の流れに直角軸の風車で、回転軸に平行かつ等距離に設置された複数の翼(ブレード)の各支持部に、翼自体が回転できるよう軸受けを儲け、それぞれの翼がローター(風車本体)中心軸の周りを1回転するときに、ローターの回転に対し反方向に半分(1/2)の回転をしながら回ることを特徴とする風車。  A wind turbine whose axis is perpendicular to the wind flow, as represented by a straight Darius wind turbine, and a bearing that allows the blade itself to rotate on each support part of a plurality of blades (blades) installed in parallel and equidistant to the rotation axis. The wind turbine is characterized in that when each wing rotates once around the central axis of the rotor (wind turbine body), it rotates while rotating half (1/2) in the opposite direction to the rotation of the rotor.
JP2006140826A 2006-04-19 2006-04-19 Reverse direction-half rotation blade perpendicular shaft type windmill Pending JP2007285289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140826A JP2007285289A (en) 2006-04-19 2006-04-19 Reverse direction-half rotation blade perpendicular shaft type windmill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140826A JP2007285289A (en) 2006-04-19 2006-04-19 Reverse direction-half rotation blade perpendicular shaft type windmill

Publications (1)

Publication Number Publication Date
JP2007285289A true JP2007285289A (en) 2007-11-01

Family

ID=38757287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140826A Pending JP2007285289A (en) 2006-04-19 2006-04-19 Reverse direction-half rotation blade perpendicular shaft type windmill

Country Status (1)

Country Link
JP (1) JP2007285289A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245564A (en) * 2012-05-23 2013-12-09 Ritsumeikan Blade for vertical axial wind turbine and vertical axial wind turbine
CN104477373A (en) * 2014-12-15 2015-04-01 佛山市神风航空科技有限公司 Half-rotating-mechanism lifting-wing low-speed aircraft
CN107061148A (en) * 2016-12-28 2017-08-18 王伟民 Real-time pitch-adjusting wind wheel and wind-driven generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245564A (en) * 2012-05-23 2013-12-09 Ritsumeikan Blade for vertical axial wind turbine and vertical axial wind turbine
CN104477373A (en) * 2014-12-15 2015-04-01 佛山市神风航空科技有限公司 Half-rotating-mechanism lifting-wing low-speed aircraft
CN104477373B (en) * 2014-12-15 2016-08-31 佛山市神风航空科技有限公司 A kind of half-rotating mechanism lift wing dopey
CN107061148A (en) * 2016-12-28 2017-08-18 王伟民 Real-time pitch-adjusting wind wheel and wind-driven generator

Similar Documents

Publication Publication Date Title
US9404474B2 (en) System and method for efficient wind power generation
EP2893186B1 (en) Vertical axis wind turbine
US7802967B2 (en) Vertical axis self-breaking wind turbine
US9328717B1 (en) Golden ratio axial flow apparatus
US20100233919A1 (en) Check valve turbine
US20080159873A1 (en) Cross fluid-flow axis turbine
Chen et al. Perspectives on innovative concepts in wind-power generation
KR20130099036A (en) System and method for generating electrical power from a flowing current of fluid
CN105569928A (en) Single point mooring type deep sea floating type draught fan
US20230108917A1 (en) Wind turbine comprising variable swept area and method of controlling a wind turbine
CN109441727A (en) Marine wave energy-wind energy integrated system and integrated electricity-generating method
US20120256423A1 (en) Device of floating wind turbine capable of counterbalancing torques therein
JP2007285289A (en) Reverse direction-half rotation blade perpendicular shaft type windmill
US20180209402A1 (en) Sail based wind energy system
US20070160477A1 (en) Vertical axis fluid actuated turbine
US11473557B2 (en) Sail device
WO2019190387A1 (en) A floating vertical axis wind turbine with peripheral water turbine assemblies and a method of operating such
JP2023513447A (en) Drag-and-lift based wind turbine system with adjustable blades
US20190277252A1 (en) Systems and Methods for Maximizing Wind Energy
JP2003222071A (en) Invention of darries wind turbine power generation setting a plurality of power generators and wind collecting panel
WO2015155782A1 (en) Vertical axis windmill
Bajaro Horizontal and Vertical Axis Wind Turbines
JP2016217151A (en) Power generation system and control method of power generation system
CN101315060A (en) Blade pitch-adjustable and self-starting vertical axis aerogenerator group
Acosta et al. Advance high efficient aerodynamic blades for vertical axis wind turbine modular aggregate