JP2007284914A - Rigid-connecting structure of steel girder and pile - Google Patents

Rigid-connecting structure of steel girder and pile Download PDF

Info

Publication number
JP2007284914A
JP2007284914A JP2006110902A JP2006110902A JP2007284914A JP 2007284914 A JP2007284914 A JP 2007284914A JP 2006110902 A JP2006110902 A JP 2006110902A JP 2006110902 A JP2006110902 A JP 2006110902A JP 2007284914 A JP2007284914 A JP 2007284914A
Authority
JP
Japan
Prior art keywords
steel
girder
pile
steel shell
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006110902A
Other languages
Japanese (ja)
Other versions
JP4644880B2 (en
Inventor
Tamon Ueda
多門 上田
Takeshi Hanura
剛 半浦
Tsuyoshi Shiraishi
毅 白石
Kazuhiko Kawashiri
和彦 河尻
Isamu Kano
勇 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKO GIKEN KK
Hokkaido University NUC
JFE Engineering Corp
Original Assignee
WAKO GIKEN KK
Hokkaido University NUC
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKO GIKEN KK, Hokkaido University NUC, JFE Engineering Corp filed Critical WAKO GIKEN KK
Priority to JP2006110902A priority Critical patent/JP4644880B2/en
Publication of JP2007284914A publication Critical patent/JP2007284914A/en
Application granted granted Critical
Publication of JP4644880B2 publication Critical patent/JP4644880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rigid-connecting section structure improving durability, workability and strength. <P>SOLUTION: A steel-shell body structure rigidly connects a steel girder 30 as an upper building-structure member and a pile (40) as a lower building-structure member. In the steel-shell body structure, a steel shell body 50 is formed in a sealed hexagon, and has the steel shell body in a sealed hexagonal space with a hole having an inserted pile (40) in an underside. In the steel-shell body structure, the upper section of the pile (40) is penetrated into the hole in the steel shell body 50, the end section of the steel girder 30 is inserted to the steel shell body 50 and a space section in at least the steel-shell body is filled with concrete 60. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、上部土木・建築構造体部材である鋼桁と下部土木・建築構造体部材である杭を連結するための鋼殻体構造に係る。特に、複合ラーメン橋の剛結部に用いるのに好適な、鋼桁と杭の剛結構造、該剛結構造で鋼桁と接合された橋台や橋脚、該橋台や橋脚を備えた複合ラーメン橋、及び、前記剛結部構造を実現するための鋼桁と杭の剛結方法に関する。   The present invention relates to a steel shell structure for connecting a steel girder that is an upper civil engineering / building structure member and a pile that is a lower civil engineering / building structure member. In particular, a rigid structure of a steel girder and a pile, suitable for use in a rigid connection part of a composite rigid frame bridge, an abutment and a pier that are joined to a steel girder in the rigid connection structure, and a composite rigid frame bridge including the abutment and the pier Further, the present invention relates to a method for rigidly connecting a steel girder and a pile to realize the rigidly connected portion structure.

ここで、下部土木・建築構造体部材とは、土木・建築構造体を構成する部材のうち、杭やフーチング等の下部(基礎)土木・建築構造体部材をいう。また、上部土木・建築構造体部材とは、土木・建築構造体の上部建築を構成する部材であって、杭やフーチング等の下部(基礎)土木・建築構造体部材を除く。   Here, the lower civil engineering / building structure member refers to lower (foundation) civil engineering / building structure members such as piles and footings among members constituting the civil engineering / building structure. The upper civil engineering / building structure member is a member constituting the upper building of the civil engineering / building structure, and excludes lower (foundation) civil engineering / building structure members such as piles and footings.

従来の橋台等の躯体に桁等の鋼構造及び杭基礎構造を剛結させる構造は、図19に例示する従来技術1の如く、躯体を鉄筋コンクリート(RC)構造14とした上で、鋼床版桁やI桁でなる主桁10等の鋼構造にはコンクリートとの結合作用のためのずれ止め(例えばスタッドジベル(孔あき鋼板ジベル(PBL)なども含む)等を設け、又、鋼管杭12等でなる杭基礎頭部には、剛体挙動する鉄筋コンクリート構造16を用いた剛結部構造が用いられていた。鉄筋コンクリート構造16には鋼管杭12の頭部が差し込まれ、鋼管杭12はコンクリートとリングジベルで連結される。図において、18はRC構造内の鉄筋である。   A conventional structure of rigidly connecting a steel structure such as a girder and a pile foundation structure to a conventional frame such as an abutment is a steel slab with a reinforced concrete (RC) structure 14 as the conventional structure 1 illustrated in FIG. A steel structure such as a main girder 10 such as a girder or I-girder is provided with a slip stopper (for example, including a stud gibber (including a perforated steel plate jibel (PBL))) for a bonding action with concrete, and a steel pipe pile 12 The head portion of the pile foundation made of, for example, had a rigid connection structure using a reinforced concrete structure 16 that behaves as a rigid body, and the head of the steel pipe pile 12 was inserted into the reinforced concrete structure 16. In the figure, 18 is a reinforcing bar in the RC structure.

又、特許文献1の図7や特許文献2の図1に記載された従来技術2では、図20に示す如く、主桁10に箱構造の横桁22を取り付けている。横桁22は、その上フランジ(上板)22A(=主桁10の上フランジ10A)、横桁22のウェブ板(前後板)22B、横桁22のダイヤフラム(左右の側板)(=主桁10のウェブ10B)、横桁22の下フランジ(下板)22C(=主桁10の下フランジ10C)でなる鋼殻を構成し、鋼管杭12の頭部を鋼殻内に差し込んで、鋼殻内にコンクリート24を充填することで、鋼管杭12と連結している。ここで、鋼管12側は充填コンクリート24とリングジベルで合成される。なお、下フランジ22C側はコンクリート型枠としての部材であればよく、密閉構造ではない。特に特許文献2では、I形式主桁10の上フランジ10A側を密閉しないために開放されている。図において、26は、主桁10上に配設されるRC床版である。   Further, in the related art 2 described in FIG. 7 of Patent Document 1 and FIG. 1 of Patent Document 2, a box-shaped cross beam 22 is attached to the main beam 10 as shown in FIG. The cross beam 22 includes an upper flange (upper plate) 22A (= the upper flange 10A of the main beam 10), a web plate (front and rear plates) 22B of the horizontal beam 22, and a diaphragm (left and right side plates) of the horizontal beam 22 (= main beam). 10 web 10B), a steel shell composed of the lower flange (lower plate) 22C (= the lower flange 10C of the main girder 10) of the cross beam 22, and the head of the steel pipe pile 12 is inserted into the steel shell. The steel pipe pile 12 is connected by filling the shell with concrete 24. Here, the steel pipe 12 side is synthesized with the filled concrete 24 and a ring dowel. In addition, the lower flange 22C side should just be a member as a concrete formwork, and is not a sealing structure. In particular, in Patent Document 2, the upper flange 10A side of the I-type main beam 10 is opened so as not to be sealed. In the figure, 26 is an RC floor slab disposed on the main beam 10.

又、特許文献2の図6に記載された従来技術3では、図21に示す如く、主桁10とは別構造の枕梁鋼殻(上面開放された鋼殻箱構造)28を主桁10の下に設置している。枕梁鋼殻28は、主桁10を支えるウェブ板(前後板)28A、同じくダイヤフラム(左右板)28B、同じく下フランジ(下板)28Cからなる5面箱構造を有する。図において、10Dは、主桁10の枕梁用横桁である。ここで、主桁鋼殻とは鋼殻同士の結合はせず、主桁側に配置した結合材(ジベル11等)により充填コンクリート24を通して、枕梁鋼殻28と主桁鋼殻が連結される。従って、ジベル11等の結合材が必須構造体となる。鋼管杭12の頭部は枕梁鋼殻28に差し込まれ、鋼殻内にコンクリート24が充填される。鋼管12側は、充填コンクリート24とリングジベル又は鋼管12に直接孔を開けた孔あき鋼板ジベルで合成される。   Moreover, in the prior art 3 described in FIG. 6 of Patent Document 2, as shown in FIG. 21, a pillow beam steel shell (a steel shell box structure having an open top surface) 28 having a structure different from that of the main girder 10 is provided below the main girder 10. It is installed in. The pillow beam steel shell 28 has a five-sided box structure including a web plate (front and rear plates) 28A for supporting the main girder 10, a diaphragm (left and right plates) 28B, and a lower flange (lower plate) 28C. In the figure, 10D is a cross beam for a main beam 10 for a pillow beam. Here, the main girder steel shells are not joined to each other, and the pillow beam steel shells 28 and the main girder steel shells are connected through the filling concrete 24 by a binding material (such as the gibber 11) arranged on the main girder side. Therefore, a binding material such as the gibber 11 is an essential structure. The head portion of the steel pipe pile 12 is inserted into a pillow beam steel shell 28, and concrete 24 is filled in the steel shell. The steel pipe 12 side is composed of filled concrete 24 and a ring gibber or a perforated steel plate gibber in which a hole is made directly in the steel pipe 12.

又、非特許文献1の図11.1.3には、脚がRC構造で主桁から鋼殻を下に延ばし、これに合成機構体を配設して主桁と脚とを剛結した、密閉構造ではない従来技術4が記載されている。   Further, in Fig. 11.1.3 of Non-Patent Document 1, the legs are RC structures and the steel shell is extended downward from the main girder, and a synthetic mechanism is disposed on this to rigidly connect the main girder and the legs. Prior art 4 which is not a sealed structure is described.

更に、本発明に類似するものとして、非特許文献2に記載された鋼とコンクリートのサンドイッチ構造の従来技術5がある。これも本発明と同様に充填コンクリートを持つ鋼殻六面体構造であり、その密閉構造による有利性を構造部材としてこれまでに利用されてきた。これまでは、鋼殻六面体構造を単独構造として、例えば床版セグメントやトンネル用覆工セグメント等として使われてきた。即ち、部材を一体化する構造としては用いられておらず、鋼殻六面体構造の外面から外力が働き、鋼殻六面体構造の一部でその外力を支持している構造である。   Further, as similar to the present invention, there is the prior art 5 of the sandwich structure of steel and concrete described in Non-Patent Document 2. This is also a steel shell hexahedron structure having filled concrete as in the present invention, and the advantage of the sealed structure has been used as a structural member so far. Until now, the steel shell hexahedron structure has been used as a single structure, for example, as a floor slab segment or a tunnel lining segment. In other words, the structure is not used as a structure for integrating the members, and an external force acts from the outer surface of the steel shell hexahedron structure, and the external force is supported by a part of the steel shell hexahedron structure.

特開2005−139613号公報(図7)Japanese Patent Laying-Open No. 2005-139613 (FIG. 7) 特開2003−313815号公報(図1、図6)JP 2003-313815 A (FIGS. 1 and 6) 土木学会「鋼・コンクリート複合構造の理論と設計(1)基礎編:理論編」 173頁〜175頁Japan Society of Civil Engineers "Theory and Design of Steel / Concrete Composite Structure (1) Basics: Theory" pages 173-175 上田 多門他「鋼コンクリート系サンドイッチ構造」コンクリート工学 Vol.30,No.5(1992年5月)5頁〜20頁Tamon Ueda et al. "Steel Concrete Sandwich Structure" Concrete Engineering Vol.30, No.5 (May 1992) 5-20

しかしながら、従来技術1〜4においては、主構造が密閉されていないために、密閉の効果は期待できず、変形が大きく、耐力も低い。更に、連結のために、主桁構造側にジベル等を配設しなければならない。特に、従来技術1では、結合部がRC構造であることから変形が大きくなり、剛結部のひび割れによる耐久性の悪化、及び、十分な耐力を得るには内部に鉄筋を密に配置しなければならず、又、鉄筋が他の鋼材と交錯することになり、施工性の悪化や耐力の低下を避けることはできない。更に、施工時には型枠を必要とする。又、容積も大きくなる。又、従来技術2及び3においても、一部には鉄筋の配置が必要となり、一部には型枠が必要となる。更に合成機構体も必要となる。従来技術3では、更に主桁間に鋼杭が配置されることが条件となり、互いの配置に任意性が無い等の問題点を有していた。   However, in the prior arts 1 to 4, since the main structure is not sealed, the sealing effect cannot be expected, the deformation is large, and the proof stress is low. In addition, a gibber or the like must be provided on the main girder structure side for connection. In particular, in the prior art 1, since the joint portion is an RC structure, the deformation becomes large, and in order to obtain a sufficient deterioration in durability due to cracks in the rigid joint portion and sufficient proof strength, the reinforcing bars must be densely arranged inside. In addition, since the reinforcing bars cross with other steel materials, it is impossible to avoid deterioration of workability and proof stress. Furthermore, a formwork is required at the time of construction. In addition, the volume increases. Also in the prior arts 2 and 3, some reinforcing bars are required, and some formwork is required. Furthermore, a synthesis mechanism is also required. In the prior art 3, the steel piles are further arranged between the main girders, and there is a problem that the mutual arrangement is not optional.

又、サンドイッチ構造の従来技術5においても、完全に密閉されておらず、効果は限定的であった。   Further, even in the prior art 5 having the sandwich structure, the effect is limited because it is not completely sealed.

本発明は、前記従来の問題点を解消するべくなされたもので、耐久性、施工性及び耐力が共に向上した剛結部構造を提供することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a rigid connection structure having improved durability, workability, and proof stress.

本発明は、上部建築構造体部材である鋼桁と下部建築構造体部材である杭を剛結する鋼殻体構造であって、前記鋼殻体は、密閉六面体であり、下面に前記杭を挿通させる穴を備えた密閉六面空間の鋼殻体を有し、該穴に前記杭の上部が貫入され、前記鋼殻体は前記鋼桁と一体化され、少なくとも前記鋼殻体内部の空間部にコンクリートが充填されていることを特徴とする鋼桁と杭の剛結構造により、前記課題を解決したものである。   The present invention is a steel shell structure for rigidly connecting a steel girder that is an upper building structure member and a pile that is a lower building structure member, wherein the steel shell body is a sealed hexahedron, and the pile is provided on a lower surface. It has a steel shell body in a sealed six-sided space with a hole to be inserted, the upper part of the pile penetrates into the hole, the steel shell body is integrated with the steel girder, and at least the space inside the steel shell body The above-mentioned problem is solved by a rigid structure of steel girders and piles, characterized in that the part is filled with concrete.

ここで、鋼殻体が鋼桁と一体化するとは、鋼殻体に鋼桁を挿入する形態の一部として、鋼殻と鋼桁の一部とを共有させる場合も含む。   Here, that the steel shell body is integrated with the steel girder includes a case where the steel shell and a part of the steel girder are shared as a part of the form in which the steel girder is inserted into the steel shell body.

本発明は、又、前記密閉六面空間の上面の一部を前記鋼桁上面と同一として、前記密閉六面空間の上面を前記鋼桁上面と一体化したものである。   In the present invention, a part of the upper surface of the sealed six-sided space is made the same as the upper surface of the steel girder, and the upper surface of the sealed six-sided space is integrated with the upper surface of the steel girder.

又、前記鋼桁の上面を鋼殻体の上面と一体化した状態で、該鋼殻体内部に挿入し、前記鋼桁の端部を該鋼殻体の鉛直面と接合したものである。   Further, the steel girder is inserted into the steel shell body with the upper surface of the steel girder being integrated with the upper surface of the steel shell body, and the end of the steel girder is joined to the vertical surface of the steel shell body.

又、前記密閉六面空間の橋軸直交幅と橋軸方向幅を、前記鋼桁の桁高と同程度としたものである。   Further, the width orthogonal to the bridge axis and the width in the direction of the bridge axis of the sealed six-face space are set to be approximately the same as the girder height of the steel girder.

本発明は、又、前記の剛結構造で鋼桁と接合されていることを特徴とする橋台や橋脚を提供するものである。   The present invention also provides an abutment or a pier characterized by being joined to a steel girder with the above-described rigid connection structure.

又、前記の橋台又は橋脚を備えたことを特徴とする複合ラーメン橋を提供するものである。   The present invention also provides a composite ramen bridge comprising the abutment or pier.

本発明は、又、鋼桁と杭を剛結する方法であって、密閉六面空間の鋼殻体の上面を鋼桁上面と一体化し、前記杭の上部を前記鋼殻体の下面に設けられた穴に通すことにより、該鋼殻体に挿入し、前記鋼桁の端部を鋼殻体の鉛直面と接合させた上で、少なくとも該鋼殻体内部の空間にコンクリートを充填させることを特徴とする鋼桁と杭の剛結方法を提供するものである。   The present invention is also a method for rigidly connecting a steel girder and a pile, wherein the upper surface of the steel shell body in a sealed six-sided space is integrated with the upper surface of the steel girder, and the upper portion of the pile is provided on the lower surface of the steel shell body. The steel girder is inserted into the steel shell body, the end of the steel girder is joined to the vertical surface of the steel shell body, and at least the space inside the steel shell body is filled with concrete. The present invention provides a method for rigidly connecting steel girders and piles.

本発明の基本構造要素は、図1に示す鋼桁30と、例えば鋼管でなる杭(鋼杭)40と、橋台や橋脚の躯体の一部となる密閉鋼殻六面体(以下、鋼殻体又は六面体とも称する)50と、該六面体50内に充填されたコンクリート60であり、前記密閉鋼殻六面体50と該六面体50内に充填されたコンクリート60により、図2に示す如く、鋼桁30と鋼杭40を結合・一体化した構造を特徴とする。   The basic structural elements of the present invention include a steel girder 30 shown in FIG. 1, a pile (steel pile) 40 made of, for example, a steel pipe, and a sealed steel shell hexahedron (hereinafter referred to as a steel shell or 2), and concrete 60 filled in the hexahedron 50. The sealed steel shell hexahedron 50 and the concrete 60 filled in the hexahedron 50 make the steel girder 30 and steel as shown in FIG. It features a structure in which piles 40 are combined and integrated.

本発明は、鋼桁30と鋼杭40のそれぞれの断面力を伝達する結合構造であり、鋼桁30あるいは鋼杭40の塑性領域あるいは破壊域までも断面力が伝達できることが望ましい。   The present invention is a coupling structure that transmits the cross-sectional force of each of the steel girder 30 and the steel pile 40, and it is desirable that the cross-sectional force can be transmitted even to the plastic region or the fracture region of the steel girder 30 or the steel pile 40.

本発明においては、コンクリート60を密閉鋼殻六面体50に充填するようにしたので、充填されるコンクリートのためだけの型枠を必要とせず、施工上有利である。   In the present invention, since the concrete 60 is filled in the sealed steel shell hexahedron 50, a formwork only for filling concrete is not required, which is advantageous in construction.

断面力の伝達経路は、上載荷重−鋼桁30−密閉鋼殻六面体50−該六面体50内に充填されたコンクリート60−鋼杭40−基礎地盤となる。しかし一部の断面力については、鋼桁30から密閉鋼殻六面体50内に充填されたコンクリート60に直接流れるものも考えられ、この場合の伝達経路は、鋼桁30−密閉鋼殻六面体50内に充填されたコンクリート60−鋼杭40−基礎地盤となる。   The transmission path of the cross-sectional force is: overlay load-steel girder 30-sealed steel shell hexahedron 50-concrete 60 filled in the hexahedron 50-steel pile 40-foundation ground. However, some of the cross-sectional force may flow directly from the steel girder 30 to the concrete 60 filled in the sealed steel shell hexahedron 50. In this case, the transmission path is within the steel girder 30-sealed steel shell hexahedron 50. It becomes concrete 60-steel pile 40-foundation ground filled in.

図3に示す前記鋼桁30と密閉鋼殻六面体50の結合方法には、
(1)鋼桁30の一部が密閉鋼殻六面体50の一部と共通部材であり、他の部分は溶接接合、あるいは高力ボルト接合された構造
(2)鋼桁30と密閉鋼殻六面体50は、それぞれ独立した構造で、それぞれが溶接接合、あるいは高力ボルト接合された構造など
が考えられる。
In the method of joining the steel beam 30 and the sealed steel shell hexahedron 50 shown in FIG.
(1) A structure in which a part of the steel girder 30 is a common member with a part of the sealed steel shell hexahedron 50 and the other part is welded or high-strength bolted. (2) The steel girder 30 and the sealed steel shell hexahedron Reference numeral 50 denotes an independent structure, which may be a welded joint or a high-strength bolted joint.

鋼床版桁の場合は、(1)の結合方法が採られる場合が合理的で、共通部材は、デッキプレート(例えば密閉鋼殻六面体50の天板)とウェブプレート(密閉鋼殻六面体50の側面板)である。   In the case of a steel deck girder, it is reasonable that the coupling method (1) is adopted, and the common members are a deck plate (for example, a top plate of the sealed steel shell hexahedron 50) and a web plate (of the sealed steel shell hexahedron 50). Side plate).

密閉鋼殻六面体50と鋼桁30は、溶接接合等により一体化される。このとき、図4に示す密閉鋼殻六面体50の各面の大きさ(高さh、長さb、奥行き幅d)と、各面の鋼板厚さtは、与えられた断面力を伝達するのに十分な大きさ、厚さを持つ必要がある。又、充填コンクリート60の打設圧力に十分耐え得る鋼板厚さtを持つ必要がある。   The sealed steel shell hexahedron 50 and the steel girder 30 are integrated by welding or the like. At this time, the size (height h, length b, depth width d) of each surface of the sealed steel shell hexahedron 50 shown in FIG. 4 and the steel plate thickness t of each surface transmit a given cross-sectional force. It must be large and thick enough. Further, it is necessary to have a steel plate thickness t that can sufficiently withstand the casting pressure of the filled concrete 60.

更に、密閉鋼殻六面体50と充填されたコンクリート60を介しての鋼杭40との結合が、本願発明の基幹を成すものである。即ち、密閉鋼殻六面体50と鋼杭40とは、図5に示す如く、密閉構造の鋼殻六面体50の中に充填されたコンクリート60と、密閉鋼殻六面体50の密閉性によって一体化される。このとき、図6に示される鋼杭40の埋め込み長hp(図5参照)は、与えられた断面力を伝達するに十分な大きさでなければならず、充填コンクリート60と鋼杭40との関係で設計される。断面力として引抜力がある場合には、充填コンクリート60と鋼杭40との間の見掛け付着力を増すために、鋼管(40)に合成機構体等を配設することもできる。   Further, the connection between the sealed steel shell hexahedron 50 and the steel pile 40 through the filled concrete 60 forms the basis of the present invention. That is, as shown in FIG. 5, the sealed steel shell hexahedron 50 and the steel pile 40 are integrated with the concrete 60 filled in the steel shell hexahedron 50 having a sealed structure and the sealing property of the sealed steel shell hexahedron 50. . At this time, the embedding length hp (see FIG. 5) of the steel pile 40 shown in FIG. 6 must be large enough to transmit the given cross-sectional force, and between the filling concrete 60 and the steel pile 40 Designed in relationship. In the case where there is a pulling force as the cross-sectional force, a synthetic mechanism body or the like can be disposed on the steel pipe (40) in order to increase the apparent adhesion force between the filling concrete 60 and the steel pile 40.

前記密閉鋼殻六面体50の各面の大きさh、b、dと、各面の構成厚さt、及び、各面の溶接接合部の強度は、充填コンクリート60によって伝達される断面力に対して十分な大きさ、厚さ、強度を持つようにされる。   The size h, b, d of each surface of the sealed steel shell hexahedron 50, the constituent thickness t of each surface, and the strength of the welded joint on each surface are relative to the cross-sectional force transmitted by the filled concrete 60. To have sufficient size, thickness and strength.

本発明においては、鋼殻六面体構造(50)の内部に鋼杭40を挿入して、充填コンクリート60を持つ密閉鋼殻六面体構造の有利性を利用して、鋼殻六面体構造と鋼杭の力(断面力)の伝達を行なう。このとき、前記したように、鋼殻六面体構造は橋梁桁に結合されているので、橋梁桁で受けた外力は、鋼殻六面体構造を通して基礎構造である鋼杭に伝達される。密閉構造による有利性とは、充填コンクリートを持つ鋼殻六面体構造の内部に挿入された鋼杭から断面力が作用したときに、その充填コンクリートを取り囲む鋼殻六面体構造が3次元的に拘束する密閉構造であるが故に、充填コンクリートが通常持ち合わせる強度が大きくなり、より大きな鋼杭の断面力に対して破壊を伴わず鋼殻六面体構造に伝達できることになる。又、同じく六面体構造の拘束により、鋼杭を拘束する剛性が高まり、同じ鋼杭の断面力に対して、鋼杭の変形を低く抑えられる。従って、鋼杭の持つ断面性能を損なうことなく、鋼殻六面体構造に受け渡すことが可能となる。   In the present invention, a steel pile 40 is inserted into the steel shell hexahedron structure (50), and the advantages of the steel shell hexahedron structure and the steel pile are utilized by utilizing the advantage of the sealed steel shell hexahedron structure having the filled concrete 60. (Section force) is transmitted. At this time, as described above, since the steel shell hexahedron structure is coupled to the bridge girder, the external force received by the bridge girder is transmitted to the steel pile as the basic structure through the steel shell hexahedron structure. The advantage of the sealed structure is that the steel shell hexahedron structure surrounding the filled concrete is three-dimensionally constrained when a cross-sectional force is applied from a steel pile inserted into the steel shell hexahedral structure with the filled concrete. Because of the structure, the strength that the filled concrete normally has is increased, and the larger cross-sectional force of the steel pile can be transmitted to the steel shell hexahedral structure without breaking. Moreover, the rigidity which restrains a steel pile increases similarly by restraint of a hexahedron structure, and the deformation | transformation of a steel pile can be restrained low with respect to the cross-sectional force of the same steel pile. Therefore, it can be transferred to the steel shell hexahedron structure without impairing the cross-sectional performance of the steel pile.

即ち、図7に示す如く、Aの部分の充填コンクリート60は圧縮力を受けるが、鋼殻(50)により密閉されたコンクリートが3次元効果を発揮して破壊には至らず、見掛け上梃子の支点の役割を果たす。   That is, as shown in FIG. 7, the filled concrete 60 in the portion A receives a compressive force, but the concrete sealed by the steel shell (50) exhibits a three-dimensional effect and does not break, and apparently appears to be an insulator. Act as a fulcrum.

一方、Bの部分の充填コンクリート60は、見掛け上梃子の作用から圧縮力を受けるが、鋼殻(50)により密閉された3次元効果からコンクリートは破壊に至らず、高い断面力伝達能力を発揮する。   On the other hand, the filled concrete 60 in part B apparently receives a compressive force from the action of the insulator, but the concrete does not break down due to the three-dimensional effect sealed by the steel shell (50), and exhibits a high cross-sectional force transmission capability. To do.

本発明では、主桁との接合部の外側全てを鋼板で覆ってコンクリートを充填したので、別途ずれ止めを使う必要性は無い。更に、鋼殻の抗頭部挿入用開口部以外の外側全てを鋼板で覆ったので、その鋼殻による拘束によってコンクリートに対する鉄筋の役割を果たし、充填コンクリートには鉄筋が無くても良い。鋼板で覆ったことが、充填コンクリートに対して拘束効果を高め、ずれ止めなどの接合材を不要にしている。更には、コンクリートのひび割れを原因とする材料劣化も、鋼殻に覆われているために軽減され、構造物の耐久性を大幅に向上させる。又、充填コンクリートのための型枠の役割も果たすために、型枠が不要となり、現地作業が軽減される。更には、鉄筋あるいはずれ止めが不要であるため、構造容積も小さくなる。   In the present invention, the entire outside of the joint with the main girder is covered with steel plate and filled with concrete, so there is no need to use a separate stopper. Furthermore, since all the outside of the steel shell other than the anti-head insertion opening is covered with the steel plate, it acts as a reinforcing bar for the concrete by restraint by the steel shell, and the filled concrete may not have a reinforcing bar. Covering with steel plate enhances the restraining effect on the filled concrete and eliminates the need for jointing materials such as slip stoppers. Furthermore, material deterioration caused by cracks in the concrete is also reduced because the steel shell is covered, and the durability of the structure is greatly improved. Moreover, since the role of the formwork for filling concrete is also fulfilled, the formwork becomes unnecessary and the field work is reduced. Furthermore, since a reinforcing bar or slip stopper is not required, the structure volume is also reduced.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、図2に示す如く、例えば上フランジが鋼床版32とされた鋼床版桁でなる主桁30と、鋼杭40とを、内部にコンクリート60が充填された鋼殻六面体構造(鋼殻体とも称する)50で剛結したものである。   In the present embodiment, as shown in FIG. 2, for example, a main girder 30 composed of a steel deck slab whose upper flange is a steel deck slab 32, a steel pile 40, and a steel shell hexahedron filled with concrete 60 inside. It is rigidly bonded with a structure (also referred to as a steel shell) 50.

前記主桁30は鋼殻体50の一部であり、主桁30の下部にも鋼殻箱52が作られ、主桁30と一体になって、鋼殻体構造を形成している。このように、鋼殻箱52を主桁30の下にも構成することで、主桁30の芯位置と、鋼杭40の位置を独立配置できる。主桁30は、鋼床版桁の他、I桁や合成床版桁であっても良い。   The main girder 30 is a part of the steel shell body 50. A steel shell box 52 is also formed below the main girder 30 and is integrated with the main girder 30 to form a steel shell structure. Thus, the core position of the main girder 30 and the position of the steel pile 40 can be independently arranged by configuring the steel shell box 52 also under the main girder 30. The main girder 30 may be a steel floor slab girder, an I girder, or a composite floor slab girder.

前記鋼殻体50は、主桁30の鋼床版32でなる上板と、主桁30の横桁となる上側の前後板34、35と、下側の鋼殻箱52の前面板54及び背面板55でなる下側の前後板と、主桁30のウェブ36と鋼殻箱52のダイヤフラム56でなる左右の側板と、鋼殻箱52の床板58でなる下板で構成される六面密閉構造を有する。   The steel shell 50 includes an upper plate made of a steel deck 32 of the main girder 30, upper front and rear plates 34 and 35 that become the cross beams of the main girder 30, a front plate 54 of the lower steel shell box 52, and Six sides composed of lower front and rear plates made of a back plate 55, left and right side plates made of a web 36 of a main girder 30 and a diaphragm 56 of a steel shell box 52, and a lower plate made of a floor plate 58 of the steel shell box 52. Has a sealed structure.

鋼殻箱53の側板は、主桁30のウェブ直下に配置したダイヤフラム56とすることが一般的であるが、必ずしもウェブとダイヤフラムとは一致させる必要なく、側板を独立させて鋼殻箱を形成することも考えられる。この場合は、主桁ウェブとは関係ない位置に、ダイヤフラムが立てられて、鋼殻の側板を形成することになる。   The side plate of the steel shell box 53 is generally a diaphragm 56 arranged immediately below the web of the main girder 30, but the web and the diaphragm do not necessarily coincide with each other, and the side plate is made independent to form a steel shell box. It is also possible to do. In this case, a diaphragm is erected at a position unrelated to the main girder web to form a side plate of the steel shell.

前記鋼杭40の頭部は、鋼殻箱52に差し込まれ、鋼殻体50内にコンクリート60が充填される。この際、鋼殻体50と充填コンクリート60とは、ジベル等の積極的な合成材を設けなくても、鋼殻体六面の閉塞作用によって連結される。一方、鋼杭40側は、必要に応じて、合成材(例えばジベル)によって充填コンクリート60と合成することができる。   The head of the steel pile 40 is inserted into a steel shell box 52 and the steel shell 50 is filled with concrete 60. At this time, the steel shell 50 and the filled concrete 60 are connected by the blocking action of the six surfaces of the steel shell without providing an active synthetic material such as a diver. On the other hand, the steel pile 40 side can be combined with the filled concrete 60 with a synthetic material (for example, a diver) as required.

次に、コンクリート充填鋼殻の設計方法について説明する。   Next, a method for designing a concrete-filled steel shell will be described.

コンクリート充填鋼殻構造の標準的な設計手法は確立されていない。従って、近似する適切なモデルから既存の設計手法を用い断面寸法などを設計する。以下、鋼床版桁を主桁とする場合を例にとり簡単に設計手法例を示す。   The standard design method of concrete filled steel shell structure has not been established. Therefore, a cross-sectional dimension and the like are designed from an appropriate model to be approximated using an existing design method. In the following, an example of a design method will be briefly shown by taking the case where the steel deck slab is the main girder as an example.

・ 上板、ダイヤフラム(側面板)の設計
上部工の設計によって決定された鋼床版桁の断面から、断面力伝達を考えて鋼殻の上板は鋼床版デッキ板厚を延長させるのがよい。ダイヤフラム(側面板)は、主桁からの断面力を確実に伝達させることを考慮して主桁直下に配置することがよく、その板厚も主桁ウェブ板厚と同等以上とするのがよい。
・ Design of upper plate and diaphragm (side plate) From the cross section of the steel deck slab determined by the design of the superstructure, the upper plate of the steel shell should extend the thickness of the steel deck deck considering the cross-sectional force transmission. Good. The diaphragm (side plate) should be placed directly under the main girder in consideration of reliably transmitting the cross-sectional force from the main girder, and the plate thickness should be equal to or greater than the main girder web plate thickness. .

・ 前面板、背面板の設計
a.立体フレーム計算より得られる剛結部に発生する断面力を用い、鋼材を鉄筋とみなしRC部材として設計する(設計荷重時)。
b.施工時のフレッシュコンクリート側圧に対して設計フレッシュコンクリート側圧の最大値を用い、主桁ウェブ(ダイヤフラム)、天板又は主桁下フランジ、底板で固定された垂直・水平リブを持つ4辺固定板として設計する(仮設時)。
c.鉛直リブや、水平リブがある場合は、これらを六面鋼殻体の剛性を増すことを期待して付加的に利用するために、それらのリブに孔を開けることもよい。また、積極的に、孔あき鋼板ジベル(PBL)として使用し剛結部の変形を抑えるという方法をとることもできる。
-Design of front plate and back plate a. Using the cross-sectional force generated at the rigid connection obtained by the solid frame calculation, the steel material is regarded as a reinforcing bar and designed as an RC member (at the time of design load).
b. As a four-sided fixed plate with vertical and horizontal ribs fixed at the main girder web (diaphragm), top plate or main girder lower flange, and bottom plate, using the maximum value of the fresh concrete side pressure against the fresh concrete side pressure during construction. Design (at the time of temporary installation).
c. When there are vertical ribs or horizontal ribs, holes may be formed in these ribs in order to use them additionally in the hope of increasing the rigidity of the hexagonal steel shell. In addition, it is possible to actively use a perforated steel plate diver (PBL) to suppress deformation of the rigid joint.

・ 底板の設計
a.杭頭結合部に発生する水平支圧応力の合力が底板に作用するとみなし、断面を設計する(設計荷重時)。
b.フレッシュコンクリートの鉛直圧に対し、側面板、前面板、背面板とで固定された縦・横リブを持った4辺固定板として設計する(仮設時)。
-Bottom plate design a. The cross section is designed (at the time of design load), assuming that the resultant force of horizontal bearing stress generated at the pile head joint acts on the bottom plate.
b. Designed as a four-sided fixed plate with vertical and horizontal ribs fixed to the side plate, front plate and back plate against the vertical pressure of fresh concrete (temporary).

図8に、主桁構造を鋼床版桁としたときの実施例1を示す。   FIG. 8 shows Example 1 when the main girder structure is a steel deck slab.

この実施例1では、主桁横桁と鋼殻箱の前面板54及び背面板55が同じ鋼板で構成されると共に、鋼杭40が全ての主桁30のウェブ36間に1本ずつ配設されている。   In the first embodiment, the main girder cross beam and the front plate 54 and the rear plate 55 of the steel shell box are made of the same steel plate, and one steel pile 40 is arranged between the webs 36 of all the main girders 30 one by one. Has been.

この実施例2では、図9に示す如く、鋼杭40が所定の主桁30のウェブ36間に、間を置いて配設されている。他の点については実施例1と同じである。   In the second embodiment, as shown in FIG. 9, the steel piles 40 are disposed between the webs 36 of the predetermined main beam 30. The other points are the same as in the first embodiment.

この実施例3では、図10に示す如く、鋼杭40が主桁30の位置と重なるため、側板56の一部を切り欠いている。このようにすることで、主桁30の間隔dにかかわらず、鋼杭40を任意の位置に所望の間隔lで配設できる。   In the third embodiment, as shown in FIG. 10, the steel pile 40 overlaps with the position of the main girder 30, and thus a part of the side plate 56 is notched. By doing in this way, regardless of the space | interval d of the main beam 30, the steel pile 40 can be arrange | positioned by the desired space | interval l in arbitrary positions.

図11に示す如く、主桁30の間隔dが、鋼殻体50を形成する高さh、幅bに比較して大きい場合は、実施例4のように、主桁30と主桁30の間に、主桁30のウェブ36とは別の側板(ダイヤフラム)57を受けることもできる。 As shown in FIG. 11, when the distance d 0 between the main girders 30 is larger than the height h and the width b forming the steel shell 50, as in the fourth embodiment, the main gird 30 and the main gird 30 In the meantime, a side plate (diaphragm) 57 different from the web 36 of the main beam 30 can be received.

図においては、鋼杭40の頭部を逃げるため、側板57の下方が切り欠かれているが、側板57と鋼杭40が干渉しない場合には、切り欠きは不要である。   In the drawing, in order to escape the head of the steel pile 40, the lower side of the side plate 57 is cut away. However, if the side plate 57 and the steel pile 40 do not interfere with each other, the cutout is not necessary.

図12に示す如く、主桁30と主桁30との間に鋼杭40は配置される場合で、鋼杭40の本数が主桁間隔の数より少ない場合は、実施例5のように、密閉鋼殻体50を連続形成せず、不連続として、鋼杭40の頭部が挿入される所のみに設けることもできる。   As shown in FIG. 12, in the case where the steel piles 40 are arranged between the main girders 30 and the main girders 30 and the number of the steel piles 40 is less than the number of main girder intervals, as in Example 5, The sealed steel shell 50 may not be continuously formed, but may be provided only where the head of the steel pile 40 is inserted as discontinuous.

図13に示す実施例6のように、鋼殻箱を主桁下フランジ38の下に設けることなく、密閉鋼殻体50の底板58を、主桁30の下フランジ38の位置に、下フランジ38の一部を補足するように形成して、密閉鋼殻体50を構成することもできる。   As in the sixth embodiment shown in FIG. 13, the bottom plate 58 of the sealed steel shell 50 is placed at the position of the lower flange 38 of the main girder 30 without providing the steel shell box under the main girder lower flange 38. It is also possible to form the sealed steel shell 50 by supplementing a part of 38.

図14に、主桁構造をI桁70としたときの実施例7を示す。   FIG. 14 shows a seventh embodiment in which the main girder structure is the I girder 70.

図15に、主桁構造を合成床版桁80としたときの実施例8を示す。   FIG. 15 shows an eighth embodiment when the main girder structure is a composite floor slab girder 80.

図16に、本発明に係る剛結構造の橋台90を備えた実施例9を示す。   FIG. 16 shows a ninth embodiment provided with an abutment 90 having a rigid structure according to the present invention.

図17に、主桁30と、本発明に係る剛結構造の橋台90が採用された上下部一体型の単純ラーメン橋の実施例10を示す。   FIG. 17 shows a tenth embodiment of a simple rigid frame bridge integrated with upper and lower parts, in which the main girder 30 and the abutment 90 having a rigid connection structure according to the present invention are employed.

図18に、主桁30と、本発明に係る剛結部構造の橋台90が採用された上下部一体型の連続ラーメン橋の実施例11を示す。   FIG. 18 shows an eleventh embodiment of an integrated upper and lower unit continuous rigid frame bridge employing the main girder 30 and the abutment 90 having a rigid connection structure according to the present invention.

実施例10、11によれば、主桁30をコンクリート充填鋼殻構造(90)に剛結することで、桁高を小さくし、更にコンクリート充填鋼管構造(90)下部から基礎杭40を貫入して一体化することにより、耐震性を高めることができる。   According to Examples 10 and 11, the main girder 30 is rigidly connected to the concrete-filled steel shell structure (90), thereby reducing the girder height and further penetrating the foundation pile 40 from the lower part of the concrete-filled steel pipe structure (90). By integrating them, the earthquake resistance can be improved.

本発明は、主桁及び杭基礎との接合部を剛結とした橋台、橋脚、その他、桁や梁等の鋼構造との剛結部、及び、鋼管杭等の杭基礎との剛結部を有する土木・建築構造物一般に利用が可能である。   The present invention relates to an abutment, a pier, a rigid connection part with a steel structure such as a girder and a beam, and a rigid connection part with a pile foundation such as a steel pipe pile. It can be used for civil engineering and building structures in general.

本発明の基本構成要素を示す分解図Exploded view showing basic components of the present invention 本発明の実施形態の構成を示す(A)斜視図及び(B)断面図1A is a perspective view and FIG. 1B is a cross-sectional view illustrating a configuration of an embodiment of the present invention. 本発明による鋼殻と鋼桁の接合状態を模式的に示す断面図Sectional drawing which shows typically the joining state of the steel shell and steel girder by this invention 同じく鋼殻の形状を示す断面図Sectional view showing the shape of the steel shell 同じく鋼殻と鋼杭の接続状態を模式的に示す断面図Similarly, a sectional view schematically showing the connection between the steel shell and steel pile 同じく鋼杭の形状を示す断面図Sectional view showing the shape of steel piles 同じく密閉構造の有利性を示す断面図Cross-sectional view showing the advantage of sealed structure 本発明の実施例1を示す、一部を切り欠いた斜視図The perspective view which notched a part which shows Example 1 of this invention 同じく実施例2を示す、一部を切り欠いた斜視図The perspective view which notched the part which shows Example 2 similarly. 同じく実施例3を示す、一部を切り欠いた斜視図The perspective view which notched the part which shows Example 3 similarly. 同じく実施例4を示す、一部を切り欠いた斜視図The perspective view which notched the part which shows Example 4 similarly. 同じく実施例5を示す、一部を切り欠いた斜視図The perspective view which notched the part which shows Example 5 similarly. 同じく実施例6を示す、一部を切り欠いた斜視図The perspective view which notched a part which shows Example 6 similarly. 同じく実施例7を示す、一部を切り欠いた斜視図The perspective view which notched a part which shows Example 7 similarly 同じく実施例8を示す、一部を切り欠いた斜視図The perspective view which notched the part which shows Example 8 similarly. 同じく実施例9を示す、一部を切り欠いた斜視図The perspective view which notched a part which shows Example 9 similarly. 同じく実施例10の全体構成を示す模式図The schematic diagram which similarly shows the whole structure of Example 10. 同じく実施例11の全体構成を示す模式図The schematic diagram which similarly shows the whole structure of Example 11. 従来技術1の要部構成を示す断面図Sectional drawing which shows the principal part structure of the prior art 1 従来技術2の要部構成を示す断面図Sectional drawing which shows the principal part structure of the prior art 2 従来技術3の要部構成を示す断面図Sectional drawing which shows the principal part structure of the prior art 3

符号の説明Explanation of symbols

26…RC床版
30…主桁
32…鋼床版
40…鋼杭
50…密閉鋼殻六面体
60…充填コンクリート
70…I桁
80…合成床版桁
90…橋台
26 ... RC slab 30 ... Main girder 32 ... Steel slab 40 ... Steel pile 50 ... Sealed steel shell hexahedron 60 ... Filled concrete 70 ... I girder 80 ... Synthetic slab girder 90 ... Abutment

Claims (8)

上部土木・建築構造体部材である鋼桁と下部土木・建築構造体部材である杭を剛結する鋼殻体構造であって、
前記鋼殻体は、密閉六面体であり、下面に前記杭を挿通させる穴を備えた密閉六面空間の鋼殻体を有し、
該穴に前記杭の上部が貫入され、
前記鋼殻体は前記鋼桁と一体化され、
少なくとも前記鋼殻体内部の空間部にコンクリートが充填されていることを特徴とする鋼桁と杭の剛結構造。
A steel shell structure that rigidly connects a steel girder that is an upper civil engineering / building structure member and a pile that is a lower civil engineering / building structure member,
The steel shell is a sealed hexahedron, having a steel shell of a sealed hexahedral space with a hole through which the pile is inserted on the lower surface,
The upper part of the pile penetrates into the hole,
The steel shell is integrated with the steel girder,
A rigid connection structure of steel girders and piles, wherein at least a space inside the steel shell is filled with concrete.
前記密閉六面空間の上面の一部が前記鋼桁上面と同一とされていることを特徴とする請求項1に記載の鋼桁と杭の剛結構造。   The steel girder and pile rigid connection structure according to claim 1, wherein a part of the upper surface of the sealed six-faced space is made the same as the upper surface of the steel girder. 前記鋼桁の上面が鋼殻体の上面と一体化された状態で、該鋼殻体内部に挿入され、前記鋼桁の端部が該鋼殻体の鉛直面と接合されていることを特徴とする請求項1又は2に記載の鋼桁と杭の剛結構造。   The steel girder is inserted into the steel shell body with the upper surface of the steel girder being integrated with the upper surface of the steel shell body, and the end of the steel girder is joined to the vertical surface of the steel shell body. The rigid connection structure of the steel girder and pile according to claim 1 or 2. 前記密閉六面空間の橋軸直交幅と橋軸方向幅が、前記鋼桁の桁高と同程度とされていることを特徴とする請求項1乃至3のいずれかに記載の鋼桁と杭の剛結構造。   The steel girder and pile according to any one of claims 1 to 3, wherein a width perpendicular to the bridge axis and a width in the bridge axis direction of the sealed six-face space are approximately the same as a girder height of the steel girder. Rigid structure. 請求項1乃至4のいずれかに記載の剛結構造で鋼桁と接合されていることを特徴とする橋台。   An abutment characterized by being joined to a steel girder by the rigid structure according to any one of claims 1 to 4. 請求項1乃至4のいずれかに記載の剛結構造で鋼桁と接合されていることを特徴とする橋脚。   A bridge pier characterized by being joined to a steel girder in the rigid structure according to any one of claims 1 to 4. 請求項5に記載の橋台又は請求項6に記載の橋脚を備えたことを特徴とする複合ラーメン橋。   A composite ramen bridge comprising the abutment according to claim 5 or the pier according to claim 6. 鋼桁と杭を剛結する方法であって、
密閉六面空間の鋼殻体の上面を鋼桁上面と一体化し、
前記杭の上部を前記鋼殻体の下面に設けられた穴に通すことにより、該鋼殻体に挿入し、
前記鋼桁の端部を鋼殻体の鉛直面と接合させた上で、
少なくとも該鋼殻体内部の空間にコンクリートを充填させることを特徴とする鋼桁と杭の剛結方法。
A method of rigidly connecting steel girders and piles,
The upper surface of the steel shell in the sealed six-sided space is integrated with the upper surface of the steel girder,
By passing the upper part of the pile through a hole provided in the lower surface of the steel shell, it is inserted into the steel shell,
After joining the end of the steel girder with the vertical surface of the steel shell,
A method for rigidly connecting steel girders and piles, wherein at least the space inside the steel shell is filled with concrete.
JP2006110902A 2006-04-13 2006-04-13 Steel girder and pile rigid structure Active JP4644880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110902A JP4644880B2 (en) 2006-04-13 2006-04-13 Steel girder and pile rigid structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110902A JP4644880B2 (en) 2006-04-13 2006-04-13 Steel girder and pile rigid structure

Publications (2)

Publication Number Publication Date
JP2007284914A true JP2007284914A (en) 2007-11-01
JP4644880B2 JP4644880B2 (en) 2011-03-09

Family

ID=38756954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110902A Active JP4644880B2 (en) 2006-04-13 2006-04-13 Steel girder and pile rigid structure

Country Status (1)

Country Link
JP (1) JP4644880B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831618A (en) * 2015-04-20 2015-08-12 福州大学 Abutment reaming hole construction for optimizing deformation capability of integral abutment bridge
KR102051255B1 (en) * 2019-03-07 2019-12-05 (주)아이오컨스텍 Steel girder formed semicircle column stiffener filling concrete
CN114606868A (en) * 2022-03-29 2022-06-10 中国铁建港航局集团有限公司 Construction method and supporting structure for over-span gas pipeline bridge

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492007A (en) * 1990-08-03 1992-03-25 Shiyuto Kosoku Doro Kodan Composite pier
JPH06220917A (en) * 1993-01-25 1994-08-09 Taisei Corp Frame structure of building
JP2003193564A (en) * 2001-12-27 2003-07-09 Kajima Corp Column-beam structural body, its construction method, and connection metal fitting
JP2004011142A (en) * 2002-06-04 2004-01-15 Mitsui Eng & Shipbuild Co Ltd Sea area environment-coexistent quay structure
JP2004092078A (en) * 2002-08-29 2004-03-25 Nippon Ps:Kk Structure and construction method for bridge
JP2004156292A (en) * 2002-11-06 2004-06-03 Nippon Steel Corp Three dimensional rigid frame structure
JP2004183324A (en) * 2002-12-03 2004-07-02 Nippon Steel Corp Repair structure and repair construction method for existing pile pier
JP2004263501A (en) * 2003-03-04 2004-09-24 Sumitomo Mitsui Construction Co Ltd Beam-column joint structural body
JP2005139613A (en) * 2003-11-04 2005-06-02 Nippon Steel Corp Continuous girder bridge supported by jacket pier
JP2007132046A (en) * 2005-11-09 2007-05-31 Jfe Engineering Kk Composite rigid-frame bridge

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492007A (en) * 1990-08-03 1992-03-25 Shiyuto Kosoku Doro Kodan Composite pier
JPH06220917A (en) * 1993-01-25 1994-08-09 Taisei Corp Frame structure of building
JP2003193564A (en) * 2001-12-27 2003-07-09 Kajima Corp Column-beam structural body, its construction method, and connection metal fitting
JP2004011142A (en) * 2002-06-04 2004-01-15 Mitsui Eng & Shipbuild Co Ltd Sea area environment-coexistent quay structure
JP2004092078A (en) * 2002-08-29 2004-03-25 Nippon Ps:Kk Structure and construction method for bridge
JP2004156292A (en) * 2002-11-06 2004-06-03 Nippon Steel Corp Three dimensional rigid frame structure
JP2004183324A (en) * 2002-12-03 2004-07-02 Nippon Steel Corp Repair structure and repair construction method for existing pile pier
JP2004263501A (en) * 2003-03-04 2004-09-24 Sumitomo Mitsui Construction Co Ltd Beam-column joint structural body
JP2005139613A (en) * 2003-11-04 2005-06-02 Nippon Steel Corp Continuous girder bridge supported by jacket pier
JP2007132046A (en) * 2005-11-09 2007-05-31 Jfe Engineering Kk Composite rigid-frame bridge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831618A (en) * 2015-04-20 2015-08-12 福州大学 Abutment reaming hole construction for optimizing deformation capability of integral abutment bridge
CN104831618B (en) * 2015-04-20 2016-07-06 福州大学 A kind of abutment reaming structure optimizing Integral Abutment Bridge deformability
KR102051255B1 (en) * 2019-03-07 2019-12-05 (주)아이오컨스텍 Steel girder formed semicircle column stiffener filling concrete
CN114606868A (en) * 2022-03-29 2022-06-10 中国铁建港航局集团有限公司 Construction method and supporting structure for over-span gas pipeline bridge
CN114606868B (en) * 2022-03-29 2023-06-30 中国铁建港航局集团有限公司 Construction method and supporting structure for overspan gas pipeline bridge

Also Published As

Publication number Publication date
JP4644880B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
TWI495776B (en) Joint Structure of Steel Reinforced Concrete Column and Steel Bone Beam
KR20060083776A (en) Steel beam with capping shear connector and composite beam using the steel beam
JP4644880B2 (en) Steel girder and pile rigid structure
JP2015165065A (en) liquefaction countermeasure structure
KR102153857B1 (en) Coupler for connecting pc panels
JP2007297861A (en) Joint part structure of bridge pier with pile
KR20130081605A (en) Corrugated steel plate web-psc composite beam structure which combined corrugated steel plate and concrete plate with l shape steel
JP5142200B2 (en) SC pile jointer and joint structure
JP4949116B2 (en) Wall unit and shear wall
JP4414833B2 (en) Seismic walls using corrugated steel
JP6429652B2 (en) Stress transmission structure between seismic wall and lower beam in concrete column beam frame
JP7158231B2 (en) Composite column, bridge pier using same, construction method
JP5532852B2 (en) Steel pipe concrete pillar
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP7070890B2 (en) Joint structure
JP6299919B1 (en) Precast dam body and pile-type dam body
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP4644146B2 (en) PC box girder bridge
JP2005127056A (en) Joint structure of column and beam in rigid frame structural body
JP2005344388A (en) Pile head connection structure
KR101513598B1 (en) A web member for improving the connection structure of the node connecting of composite truss girder
JP2000213061A (en) Connection section structure between concrete-filled steel pipe column and steel frame beam
JP2021528580A (en) Joint structure of concrete-filled steel pipe columns and reinforced concrete slabs
JP3317057B2 (en) Construction method of earthquake-resistant tube frame and frame structure of high-rise office building
JP7265343B2 (en) steel building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4644880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250