JP2007284425A - Method for purification of protein - Google Patents

Method for purification of protein Download PDF

Info

Publication number
JP2007284425A
JP2007284425A JP2007066589A JP2007066589A JP2007284425A JP 2007284425 A JP2007284425 A JP 2007284425A JP 2007066589 A JP2007066589 A JP 2007066589A JP 2007066589 A JP2007066589 A JP 2007066589A JP 2007284425 A JP2007284425 A JP 2007284425A
Authority
JP
Japan
Prior art keywords
protein
solution
boronic acid
elution
glycated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066589A
Other languages
Japanese (ja)
Inventor
Takeshi Tanaka
剛 田中
Tadashi Matsunaga
是 松永
Manabu Harada
学 原田
Taikei Hayashi
泰圭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2007066589A priority Critical patent/JP2007284425A/en
Publication of JP2007284425A publication Critical patent/JP2007284425A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easy and quick purification of a non-glycosylated protein and enabling easy purification of even an extremely small amount of specimen. <P>SOLUTION: The method for the purification of a non-glycosylated protein comprises the adsorption of a solution (pH 6-8) containing a crude protein having an isoelectric point of 5-8 to a silica-based insoluble carrier having a boronic acid compound bonded thereto and the elution of the adsorbed protein. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、糖化されていないタンパク質の精製方法に関する。   The present invention relates to a method for purifying a non-glycated protein.

分子生物学、バイオテクノロジー分野等において、ビオチンや有機蛍光色素、フェロセン誘導体、ジゴキシゲニン等の小分子化合物で生体分子をマーキングするタンパク質の化学標識はその基盤技術である。蛍光標識抗体を例にすると、免疫測定による抗原測定、免疫染色による細胞中のタンパク質の発現解析等、用途は極めて広範囲に及ぶ。   In the field of molecular biology, biotechnology, etc., chemical labeling of proteins that mark biomolecules with small molecule compounds such as biotin, organic fluorescent dyes, ferrocene derivatives, digoxigenin is the basic technology. Taking a fluorescently labeled antibody as an example, the application range is extremely wide, such as antigen measurement by immunoassay and protein expression analysis in cells by immunostaining.

タンパク質への化学物質の標識は、両者を化学架橋剤を用いて共有結合させることによって行われ、その後反応しなかった未反応の化学物質を除去する操作(タンパク質精製)が必要となる。従来、当該タンパク質の精製には、透析、限外濾過、アフィニティークロマトグラフィー、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー等の手段が用いられている。   The labeling of the chemical substance on the protein is performed by covalently bonding the two using a chemical cross-linking agent, and then an operation (protein purification) is required to remove the unreacted chemical substance that has not reacted. Conventionally, means such as dialysis, ultrafiltration, affinity chromatography, gel filtration chromatography, ion exchange chromatography and the like are used for purification of the protein.

しかしながら、透析による方法では、長時間(2〜3日)を要し、限外濾過による方法では、フィルター付き遠沈管による遠心処理(遠心機)が必要であり、またそのフィルターが高価であるという問題がある。また、アフィニティークロマトグラフィーによる場合、低pHによりタンパク質が溶出する、中和処理等の煩雑なプロセスが必要となる、低pH処理の際にタンパク質の変性を引き起こす可能性がある、装置が高価である、といった問題がある。また、ゲル濾過クロマトグラフィーやイオン交換クロマトグラフィーによる方法では、タンパク質溶液の容量がおおよそ100μl以下及び/又はタンパク質濃度がおお
よそ100μg以下であるといった極微量サンプルには適応できないという問題がある。
更に、イオン交換クロマトグラフィーによる方法では、塩濃度変化、pH変化によるタンパク質の溶出が必要となるため、プロセス後脱塩、バッファー交換が必要な場合がある、等の種々の問題がある。
However, the dialysis method requires a long time (2 to 3 days), and the ultrafiltration method requires a centrifugal treatment (centrifuge) with a centrifuge tube with a filter, and the filter is expensive. There's a problem. In addition, in the case of affinity chromatography, proteins are eluted at a low pH, and a complicated process such as a neutralization treatment is required, which may cause protein denaturation during the low pH treatment, and the apparatus is expensive. There is a problem such as. In addition, the method using gel filtration chromatography or ion exchange chromatography has a problem that it cannot be applied to a trace amount sample in which the volume of the protein solution is approximately 100 μl or less and / or the protein concentration is approximately 100 μg or less.
Further, the method using ion exchange chromatography has various problems such as desalting after the process and buffer exchange may be necessary since protein elution is required due to salt concentration change and pH change.

一方、フェニルボロン酸等のボロン酸誘導体を基材に固定化したものを不溶性担体として用いるボロン酸アフィニティークロマトグラフィーは、アルカリ条件下において、そのジオール基と糖のシスジオール基が共有結合することから、糖化タンパク質の分離・精製に広く用いられている (非特許文献1)。
しかしながら、ボロン酸アフィニティークロマトグラフィーが糖化されていないタンパク質(非糖化タンパク質ともいう。)の分離に使用された報告は全くない。
Koyama and Terauchi "Synthesis and application of boronic acid-immobilized porous polymer particles: a novel packing for high-performance liquid affinity chromatography." J Chromatogr B Biomed Appl 679:31-40(1996)
On the other hand, boronic acid affinity chromatography using a boronic acid derivative such as phenylboronic acid immobilized on a base material as an insoluble carrier has a covalent bond between the diol group and the cis-diol group of the sugar under alkaline conditions. Widely used for separation and purification of glycated proteins (Non-patent Document 1).
However, there has been no report that boronic acid affinity chromatography was used for separation of non-glycated protein (also referred to as non-glycated protein).
Koyama and Terauchi "Synthesis and application of boronic acid-immobilized porous polymer particles: a novel packing for high-performance liquid affinity chromatography." J Chromatogr B Biomed Appl 679: 31-40 (1996)

本発明は、非糖化タンパク質を、短時間で簡便に、しかも極微量サンプルであっても容易に精製が可能な精製方法を提供することを目的とする。   An object of the present invention is to provide a purification method capable of easily purifying a non-glycated protein in a short time and easily even with a very small amount of sample.

従来、フェニルボロン酸等のボロン酸化合物を結合させた不溶性担体を充填剤とするアフィニティクロマトグラフィーは、ボロン酸と糖部分が親和性を有することから、糖化タンパク質の分離・濃縮に用いられる。
しかるところ、本発明者らは、溶液のコンディションをできるだけ変えずに、極微量サンプルを扱えるタンパク質の精製方法について検討したところ、固定相としてボロン酸化合物を結合させたシリカ系不溶性担体を用いることにより、糖化されていないタンパク質がボロン酸に強固に結合すると共に、溶出操作により簡単に溶出でき、精製が可能であることを見出した。
Conventionally, affinity chromatography using an insoluble carrier bound with a boronic acid compound such as phenylboronic acid as a filler is used for separation and concentration of glycated proteins because the boronic acid and the sugar moiety have affinity.
However, the present inventors examined a method for purifying a protein that can handle an extremely small amount of sample without changing the condition of the solution as much as possible. By using a silica-based insoluble carrier bound with a boronic acid compound as a stationary phase. The present inventors have found that non-glycated protein binds strongly to boronic acid and can be easily eluted by an elution operation and can be purified.

すなわち、本発明は、非糖化タンパク質の精製方法であって、等電点5−8の粗タンパク質を含有する溶液(pH6−9)を、ボロン酸化合物を結合させたシリカ系不溶性担体に吸着させ、次いで溶出操作を行うことを特徴とする非糖化タンパク質の精製方法に係るものである。   That is, the present invention is a method for purifying a non-glycated protein, wherein a solution (pH 6-9) containing a crude protein having an isoelectric point of 5-8 is adsorbed to a silica-based insoluble carrier to which a boronic acid compound is bound. Then, an elution operation is performed, and the present invention relates to a method for purifying a non-glycated protein.

本発明によれば、非糖化タンパク質の精製操作を、pH変化や塩濃度変化を伴わない比較的穏和な条件で、簡易・簡便に実行できる。また、この精製方法は簡易型チップで行うことができることから、極微少量のサンプルであっても精製が可能となる。   According to the present invention, the purification operation of a non-glycated protein can be carried out easily and simply under relatively mild conditions that do not involve pH change or salt concentration change. In addition, since this purification method can be performed with a simple chip, it is possible to purify even a very small amount of sample.

本発明おける「非糖化タンパク質」は、糖化されていないタンパク質であればタンパク質の種類は特に限定されるものではなく、抗原、受容体、レクチン、ホルモン、結合性タンパク質、酵素、マーカータンパク質及びこれらの化学標識体等のいずれのものでもよい。   The “non-glycated protein” in the present invention is not particularly limited as long as it is a non-glycated protein, and includes antigens, receptors, lectins, hormones, binding proteins, enzymes, marker proteins, and these proteins. Any of chemical labels and the like may be used.

非糖化タンパク質は、その等電点が5−8であるタンパク質であり、例えば、ヘモグロビン(pI 6.8-7.0)、アルブミン(pI 5.0-6.0)、ミオグロビン (pI 6.55)、ヒト炭酸脱水酵素B (pI 6.85)及び塩基性ミオグロビン (pI 7.35)等が挙げられ、好ましくは、ボロン酸化合物との吸着能が良好である点から6.5〜7.5であるものが好ましい。また、親水性のタンパク質であるのが好ましい。   A non-glycated protein is a protein having an isoelectric point of 5-8. For example, hemoglobin (pI 6.8-7.0), albumin (pI 5.0-6.0), myoglobin (pI 6.55), human carbonic anhydrase B (pI 6.85) and basic myoglobin (pI 7.35), and the like, preferably 6.5 to 7.5 from the viewpoint of good adsorption ability with a boronic acid compound. Moreover, it is preferable that it is a hydrophilic protein.

当該タンパク質を標識するための標識化学物質としては、分子生物学、バイオテクノロジーの分野等において、生体分子のマーキングに使用される小分子化合物が挙げられ、例えば蛍光色素(例えば、フルオレセイン、フィコエリトリン、ユーロピウム、フィコシアニン、アロフィコシアニン、ローダミン、テキサスレッド、ウンベリフェロン等の誘導体)、オリゴペプチド(例えば、ヒスチジンタグ等)、ビオチン誘導体、フェロセン誘導体、ジゴキシゲニン、グルタチオン等が挙げられる。   Examples of the labeling chemical substance for labeling the protein include small molecule compounds used for the marking of biomolecules in the fields of molecular biology, biotechnology, etc. For example, fluorescent dyes (for example, fluorescein, phycoerythrin, europium) , Derivatives of phycocyanin, allophycocyanin, rhodamine, Texas red, umbelliferone, etc.), oligopeptides (for example, histidine tag, etc.), biotin derivatives, ferrocene derivatives, digoxigenin, glutathione and the like.

タンパク質への化学物質の標識は、一般に、ジメチルスホキサイド等の適当な有機溶媒の存在下、架橋剤(例えば、1−エチル−3−(3−ジメチルアミノプロピル)−カルボジイミド(EDC)、N−ヒドロキシスクシイミド、グルタルアルデヒド、アジピン酸ジヒドラジド等)を用いて、4℃〜室温(30℃)で、タンパク質と標識化学物質を反応させることにより行われる。   The labeling of a chemical substance on a protein is generally carried out in the presence of a suitable organic solvent such as dimethyl sulfoxide in the presence of a crosslinking agent (eg, 1-ethyl-3- (3-dimethylaminopropyl) -carbodiimide (EDC), N -Hydroxysuccinimide, glutaraldehyde, adipic acid dihydrazide, etc.) is performed by reacting the protein with a labeling chemical substance at 4 ° C. to room temperature (30 ° C.).

本発明において「粗タンパク質」とは、精製前のタンパク質、例えば、化学標識体の場合には、非糖化タンパク質と標識化学物質から化学標識されたタンパク質を製造する標識化反応における反応混合物、すなわち化学標識非糖化タンパク質(化学標識体ともいう。)、未反応の標識化学物質及び反応試薬を含むもの等が挙げられる。   In the present invention, “crude protein” refers to a reaction mixture in a labeling reaction for producing a protein before purification, for example, in the case of a chemically labeled product, a chemically labeled protein from a non-glycated protein and a labeled chemical substance, Examples include labeled non-glycated proteins (also referred to as chemical labels), unreacted labeled chemical substances and reaction reagents.

本発明の方法においては、斯かる粗タンパク質を溶液中に溶解させたものを、ボロン酸化合物を結合させたシリカ系不溶性担体に吸着させる。
ここで、用いる溶液は緩衝液が好ましく、緩衝液としては、具体的には、酢酸アンモニウム溶液、タウリン緩衝液、N-[2-ヒドロキシエチル]ピペラジン-N'-[3-プロパンスルホン酸](EPPS)、3‐モルホリノプロパンスルホン酸(MOPS)等が挙げられ、1種又は2種以上を組み合わせたものでもよいが、好ましくは酢酸アンモニウム溶液、酢酸アンモニウム/MOPS混液等が挙げられ、より好ましくは50〜300mMの酢酸アンモニウム溶液が挙げられる。また、当該緩衝液には、適宜塩化マグネシウム等の塩類を含ませてもよく、例えば50〜300mM酢酸アンモニウム及び/又は10〜30mMMOPS混液に1〜100mM塩化マグネシウムを加えた溶液が挙げられる。
In the method of the present invention, the crude protein dissolved in a solution is adsorbed on a silica-based insoluble carrier to which a boronic acid compound is bound.
Here, the solution to be used is preferably a buffer solution, and specific examples of the buffer solution include ammonium acetate solution, taurine buffer solution, N- [2-hydroxyethyl] piperazine-N ′-[3-propanesulfonic acid] ( EPPS), 3-morpholinopropane sulfonic acid (MOPS) and the like, and may be one or a combination of two or more, preferably ammonium acetate solution, ammonium acetate / MOPS mixed solution, etc., more preferably A 50-300 mM ammonium acetate solution is mentioned. Further, the buffer may contain salts such as magnesium chloride as appropriate, and examples thereof include a solution obtained by adding 1 to 100 mM magnesium chloride to a mixed solution of 50 to 300 mM ammonium acetate and / or 10 to 30 mM MOPS.

ボロン酸化合物としては、ジヒドロキシボリル基を構造上有していればよく、たとえば、(1−アミノ−2−フェニルエチル)ボロン酸、[3−[(アミノカルボニル)アミノ]フェニル]ボロン酸、(4−アミノフェニル)ボロン酸、[3−(ハイドロオキシ)フェニル]ボロン酸塩酸塩、[2−(ハイドロキシアミノ)フェニル]ボロン酸、[4−(ハイドロオキシアミノ)フェニル]ボロン酸塩酸塩等が挙げられ、特にアミノ基を有するボロン酸誘導体が好ましい。   The boronic acid compound only needs to have a dihydroxyboryl group in structure. For example, (1-amino-2-phenylethyl) boronic acid, [3-[(aminocarbonyl) amino] phenyl] boronic acid, ( 4-aminophenyl) boronic acid, [3- (hydroxyoxy) phenyl] boronic acid hydrochloride, [2- (hydroxyamino) phenyl] boronic acid, [4- (hydroxyamino) phenyl] boronic acid hydrochloride, etc. In particular, boronic acid derivatives having an amino group are preferred.

また、シリカ系不溶性担体としては、例えば、ゾルゲル法や溶解法で作製される非晶質シリカが挙げられ、多孔性、非多孔性、いずれのものでも使用できる。
形状は、ビーズ状、テストプレート状、チューブ状、ディスク状、球状、スティック状、ラテックス状等の何れの形状のものでもよいが、ビーズ状のものが好ましい。
本発明においては、特に、ゾルゲル法で作成された多孔性、非晶質シリカビーズをコアとし、その表面にアミノフェニルボロン酸を結合させたものが好ましい。また、さらにその粒径が1μm〜500μmのものが好ましく、70μm〜120μmのものがより好ましい。斯かるボロン酸化合物が結合したシリカ系不溶性担体としては、市販の「Prosep−PB」(ミリポア社)等を使用することができる。
Examples of the silica-based insoluble carrier include amorphous silica produced by a sol-gel method or a dissolution method, and any porous or non-porous one can be used.
The shape may be any shape such as a bead shape, a test plate shape, a tube shape, a disk shape, a spherical shape, a stick shape, or a latex shape, but a bead shape is preferred.
In the present invention, in particular, a porous and amorphous silica bead prepared by a sol-gel method is used as a core, and aminophenylboronic acid is bonded to the surface thereof. Further, those having a particle size of 1 μm to 500 μm are preferable, and those having a particle size of 70 μm to 120 μm are more preferable. As the silica-based insoluble carrier to which such a boronic acid compound is bonded, commercially available “Prosep-PB” (Millipore) or the like can be used.

後記実施例1に示すように、等電点が5−8のタンパク質は、斯かるボロン酸化合物を結合させたシリカ系不溶性担体に完全に吸着される。   As shown in Example 1 described later, a protein having an isoelectric point of 5-8 is completely adsorbed on a silica-based insoluble carrier to which such a boronic acid compound is bound.

当該ボロン酸化合物を結合させたシリカ系不溶性担体は、粗タンパク質を吸着させる前に、上記緩衝溶液で平衡化することが好ましい。また、粗タンパク質を吸着させた後に、標識化学物質等のボロン酸に吸着しない不純物を除去する点からタンパク質を溶解させたときの緩衝液で洗浄することが好ましい。   The silica-based insoluble carrier to which the boronic acid compound is bound is preferably equilibrated with the buffer solution before adsorbing the crude protein. Moreover, after adsorb | sucking a crude protein, it is preferable to wash | clean with the buffer solution when protein is dissolved from the point which removes the impurities which are not adsorb | sucking to boronic acids, such as a labeled chemical substance.

上記担体に吸着された、非糖化タンパク質は、ボロン酸に対して親和性の強い成分を含む溶液を用いた溶出操作により速やかに溶出される(実施例1及び2)。
斯かる溶液としては、例えば、ソルビトール等の糖質含有溶液、トリス(ヒドロキシメチル)アミノメタン、(2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸等の水酸基を有する化合物を含有する溶液やリン酸溶液等が挙げられる。これらは適宜1種又は2種以上組み合わせて用いてもよい。
斯かる溶出液は、pH6−9、より好ましくはpH6.5−8.5のものが使用される。このうち、好ましくは、50〜300 mMのソルビトール溶液であり、特に好ましくは、50〜300mMソルビトール及び50〜500mMトリス(ヒドロキシメチル)アミノメタン混液である。
また、当該溶液には、ナトリウム、カリウム、リチウム等の塩類を含まないのが好ましい。
The non-glycated protein adsorbed on the carrier is rapidly eluted by an elution operation using a solution containing a component having a strong affinity for boronic acid (Examples 1 and 2).
Examples of such a solution include a saccharide-containing solution such as sorbitol, a compound having a hydroxyl group such as tris (hydroxymethyl) aminomethane, (2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid, etc. A solution containing phosphoric acid, a phosphoric acid solution, etc. These may be used alone or in combination of two or more.
As such an eluent, one having pH 6-9, more preferably pH 6.5-8.5 is used. Of these, a 50 to 300 mM sorbitol solution is preferable, and a 50 to 300 mM sorbitol and 50 to 500 mM tris (hydroxymethyl) aminomethane mixed solution is particularly preferable.
The solution preferably does not contain salts such as sodium, potassium and lithium.

本発明の精製方法は、上記の処理手段を実行できるものであれば、その手法は限定されないが、好ましくは液体クロマトグラフィーの形態とするのが好ましい。
そして、上述したように本発明の非糖化タンパク質のボロン酸化合物結合担体への吸着は、溶出操作施行後、直ちに精製されたタンパク質の回収が可能であることから、装置全体を簡易型のチップ(例えば、カード型微小デバイス、ピペットチップにビーズを充填した簡易クロマトグラフィー)とすることで、タンパク質溶液の容量が大凡100μl以下及び/又はタンパク質濃度が大凡100μg以下であるといった極微量サンプルに対してもその精製が可能となる。
The purification method of the present invention is not limited as long as the above-described processing means can be executed, but it is preferably in the form of liquid chromatography.
As described above, the adsorption of the non-glycated protein of the present invention to the boronic acid compound-bound carrier allows the purified protein to be recovered immediately after the elution operation, so that the entire apparatus can be used with a simple chip ( For example, by using a card-type microdevice or a simple chromatography in which beads are packed in a pipette chip), even for a trace amount sample in which the volume of the protein solution is about 100 μl or less and / or the protein concentration is about 100 μg or less Its purification becomes possible.

実施例1 タンパク質の吸着・溶出評価
(1)高速クロマトグラフィーを用いたボロン酸クロマトグラフィーによるHbA1cの分離
ボロン酸修飾ガラスビーズ(「Prosep−PB」(ミリポア社))懸濁液500 μlをカラムへ充填し, Loading Buffer (250 mM 酢酸アンモニウム+50 mM MgCl2+20 mM MOPS(3-Morpholinopropanesulfonic acid)混合溶液, pH 8.3) 10 mlを流すことでカラムを平衡化した。
400 μg/ml ヘモグロビンまたはアルブミン 500 μlをLoading bufferで溶解後、当該溶液をカラムへ導入しビーズへ吸着させた。吸着後、Loading buffer 10mlを流すことでカラムを洗浄した。
流速600 μl/minで Loading Bufferに対するElution Buffer (100 mM Tris + 200 mM ソルビトール混合溶液, pH 8.3 ) の割合を1分間に1.0 %ずつ変化させることで濃度勾配をつくり、ビーズに吸着したタンパク質の溶出を行った。溶出液はUV測定器によりそれぞれの溶出液の吸光度 (280 nm) を測定した。
Example 1 Adsorption / elution evaluation of protein (1) Separation of HbA 1c by boronic acid chromatography using high-speed chromatography Column of 500 μl suspension of boronic acid-modified glass beads (“Prosep-PB” (Millipore)) The column was equilibrated by flowing 10 ml of Loading Buffer (250 mM ammonium acetate + 50 mM MgCl 2 +20 mM MOPS (3-Morpholinopropanesulfonic acid) mixed solution, pH 8.3).
After 400 μg / ml hemoglobin or albumin 500 μl was dissolved in a loading buffer, the solution was introduced into a column and adsorbed onto beads. After adsorption, the column was washed by flowing 10 ml of Loading buffer.
Elution of protein adsorbed on beads by creating a concentration gradient by changing the ratio of Elution Buffer (100 mM Tris + 200 mM sorbitol mixed solution, pH 8.3) to Loading Buffer at a flow rate of 600 μl / min by 1.0% per minute. Went. For the eluate, the absorbance (280 nm) of each eluate was measured with a UV measuring device.

その結果、ヘモグロビン及びアルブミンについては、それぞれカラムに吸着後、溶出液を添加するとそれぞれ100%及び50%溶出できることが分かった(表1)。アルブミンは、ヘモグロビンと比較して溶出量が小さくなったのは、アルブミンの等電点(5〜6)が酸性に偏っているためカラムへの吸着量が少なくなったことによると考えられた。
また、濃度を50〜600μgまで変化させた場合においても吸着率に差異は見られなかった。ボロン酸は糖鎖との結合能があることが知られているが、本条件においては糖鎖の有無にかかわらず、ビーズ上に非糖化タンパク質が結合し、溶出できることが確認された(図1)。
As a result, it was found that hemoglobin and albumin can be eluted by 100% and 50%, respectively, by adding an eluate after adsorption onto the column (Table 1). It was thought that the amount of albumin that was eluted less than that of hemoglobin was that the amount of adsorption to the column decreased because the isoelectric point (5-6) of albumin was biased to acidity.
Further, even when the concentration was changed from 50 to 600 μg, no difference was observed in the adsorption rate. Boronic acid is known to have the ability to bind to sugar chains. Under these conditions, it was confirmed that non-glycated proteins can be bound and eluted on beads regardless of the presence or absence of sugar chains (FIG. 1). ).

Figure 2007284425
Figure 2007284425

(2)タンパク質結合のpH依存性の評価
上記条件でLoading BufferのpHを5〜8まで変化させた時のHbA1cの溶出プロファイルを図2に示す。この結果、少なくともヘモグロビンの吸着・溶出にはpH7以上の溶液が必要であることが分かった。
(2) Evaluation of pH dependence of protein binding FIG. 2 shows the elution profile of HbA 1c when the pH of the loading buffer was changed from 5 to 8 under the above conditions. As a result, it was found that a solution having a pH of 7 or higher is required for at least hemoglobin adsorption / elution.

(3)各種等電点を有するタンパク質の吸着評価
各種等電点を有するタンパク質をボロン酸修飾ビーズ(「Prosep−PB」(ミリポア社))と反応させ、等電点電気泳動により確認したところ、ミオグロビン (pI 6.55)、ヒト炭酸脱水酵素B (pI 6.85)、塩基性ミオグロビン (pI 7.35)の結合が確認され、ウシ炭酸脱水酵素B (pI 5.85)、レクチン (pI 8.15)においては結合が見られなかった。これらのことから、中性付近のタンパク質に対するアフィニティーが高いことが示唆された。
(3) Adsorption evaluation of proteins having various isoelectric points When proteins having various isoelectric points were reacted with boronic acid modified beads ("Prosep-PB" (Millipore)) and confirmed by isoelectric focusing, Binding of myoglobin (pI 6.55), human carbonic anhydrase B (pI 6.85), basic myoglobin (pI 7.35) was confirmed, and binding was observed in bovine carbonic anhydrase B (pI 5.85) and lectin (pI 8.15). There wasn't. From these, it was suggested that the affinity for proteins near neutrality is high.

参考例1
HbA1c、抗ヘモグロビン抗体についても上記実施例1と同様に実験を行った。表2に結果を示す。
Reference example 1
Experiments were also conducted on HbA 1c and anti-hemoglobin antibody in the same manner as in Example 1. Table 2 shows the results.

Figure 2007284425
Figure 2007284425

参考例2 フェロセン標識タンパク質の精製
(1)フェロセン標識タンパク質の作製
フェロセンカルボキシル誘導体 (以下、フェロセン)をジメチルスルフォキサイド(DMSO)1mlに溶解した (A液)。1-Ethyl-3-(3-dimethylaminopropyl) carbodiimidehydrochloride (EDC) (0.14 mmol) とN- Hydroxy succinimide (NHS) (0.14 mmol) をDMSO 1 mlに溶解した (B液)。A液をB液に滴下し、攪拌しながら室温で3 時間反応させ、フェロセンにサクシンイミド基を導入した(フェロセン活性化エステル)。0.13 M NaHCO3 緩衝液中の抗ヘモグロビン抗体 (3mg/ml ; 300 μl) に、フェロセン : 抗体のモル比が100:1になるようにフェロセン活性化エステル溶液を加え、4℃で一晩攪拌した。
Reference Example 2 Purification of ferrocene labeled protein (1) Preparation of ferrocene labeled protein A ferrocene carboxyl derivative (hereinafter referred to as ferrocene) was dissolved in 1 ml of dimethyl sulfoxide (DMSO) (solution A). 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) (0.14 mmol) and N-hydroxyxy succinimide (NHS) (0.14 mmol) were dissolved in 1 ml of DMSO (solution B). Liquid A was added dropwise to liquid B and reacted at room temperature for 3 hours with stirring to introduce a succinimide group into ferrocene (ferrocene activated ester). To the anti-hemoglobin antibody (3 mg / ml; 300 μl) in 0.13 M NaHCO 3 buffer, the ferrocene-activated ester solution was added so that the molar ratio of ferrocene: antibody was 100: 1, and the mixture was stirred overnight at 4 ° C. .

(2)フェロセンとヘモグロビンとの分離条件の評価
(1)の混合液を実施例1と同様のプロトコールで分離操作を行った。
600 μlを1フラクションとして回収し、そこに含まれるヘモグロビン量をBradford法に基づくタンパク質定量により測定した。また、あわせて各フラクションの280 nmの吸光度を測定した。ここで、フェロセン誘導体、タンパク質ともに280 nmの吸光が確認される。タンパク質の溶出を開始する前のフラクション(No 1−3)において280 nmの吸光が確認されたが、タンパク質は検出されなかったことから、未反応のフェロセン誘導体がビーズに結合せずに溶出したと考えられた(図3)。一方、わずかに吸光度が確認される溶出後フラクション(No 13−15)においてのみタンパク質が検出された。
さらに、タンパク質画分の電気化学的性質を評価するために、Cyclic Voltammetry (CV) の測定を行った結果、タンパク質を含むフラクションにおいても電気化学シグナルが得られたことから、フェロセン標識タンパク質が精製できていることが示された。
(2) Evaluation of Separation Conditions for Ferrocene and Hemoglobin The mixture of (1) was subjected to a separation operation in the same protocol as in Example 1.
600 μl was collected as one fraction, and the amount of hemoglobin contained therein was measured by protein quantification based on the Bradford method. In addition, the absorbance at 280 nm of each fraction was measured. Here, absorption at 280 nm is confirmed for both the ferrocene derivative and the protein. Absorption at 280 nm was confirmed in the fraction before starting protein elution (No 1-3), but no protein was detected, so the unreacted ferrocene derivative was eluted without binding to the beads. (Figure 3). On the other hand, protein was detected only in the fraction after elution (No 13-15) in which the absorbance was slightly confirmed.
In addition, as a result of Cyclic Voltammetry (CV) measurement to evaluate the electrochemical properties of the protein fraction, an electrochemical signal was obtained even in the fraction containing the protein, so that the ferrocene labeled protein could be purified. It was shown that.

ボロン酸結合シリカビーズを用いたクロマトグラフィーの溶出プロファイルChromatographic elution profile using boronic acid bonded silica beads 各pHの溶液を用いたタンパク質の溶出プロファイルProtein elution profile using solutions at different pH 未反応フェロセン誘導体とタンパク質の分離を示したグラフGraph showing separation of unreacted ferrocene derivative and protein

Claims (8)

非糖化タンパク質の精製方法であって、等電点5−8の粗タンパク質を含有する溶液(pH6−9)を、ボロン酸化合物を結合させたシリカ系不溶性担体に吸着させ、次いで溶出操作を行うことを特徴とする非糖化タンパク質の精製方法。   A method for purifying non-glycated protein, wherein a solution (pH 6-9) containing a crude protein having an isoelectric point of 5-8 is adsorbed onto a silica-based insoluble carrier to which a boronic acid compound is bound, followed by elution operation. A method for purifying a non-glycated protein characterized by the above. 溶出操作が、ソルビトール、トリス(ヒドロキシメチル)アミノメタン、(2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸及びリン酸から選ばれる1種以上を含有する溶出液(pH6−8)を用いて行うものである請求項1記載の方法。   An elution solution (pH 6) containing at least one selected from sorbitol, tris (hydroxymethyl) aminomethane, (2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid and phosphoric acid. The method according to claim 1, wherein the method is carried out using -8). 非糖化タンパク質が、抗原、受容体、レクチン、ホルモン、結合性タンパク質、酵素、マーカータンパク質及びこれらの化学標識体から選ばれるものである請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the non-glycated protein is selected from an antigen, a receptor, a lectin, a hormone, a binding protein, an enzyme, a marker protein, and a chemical label thereof. 非糖化タンパク質が、ヘモグロビン、アルブミン、ミオグロビン、ヒト炭酸脱水酵素B、塩基性ミオグロビン及びこれらの化学標識体から選ばれるものである請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the non-glycated protein is selected from hemoglobin, albumin, myoglobin, human carbonic anhydrase B, basic myoglobin, and chemical labels thereof. 粗タンパク質含有溶液が、酢酸アンモニウム溶液である請求項1〜4のいずれか1項記載の方法。   The method according to any one of claims 1 to 4, wherein the crude protein-containing solution is an ammonium acetate solution. 溶出液が、塩類を含まないものである請求項2〜5のいずれか1項記載の方法。   The method according to any one of claims 2 to 5, wherein the eluate does not contain salts. 標識化学物質が、蛍光色素、オリゴペプチド、ビオチン誘導体、フェロセン誘導体、ジゴケシゲニン又はグルタチオンである請求項3〜6のいずれか1項記載の方法。   The method according to any one of claims 3 to 6, wherein the labeling chemical substance is a fluorescent dye, an oligopeptide, a biotin derivative, a ferrocene derivative, digokesigenin or glutathione. 液体クロマトグラフィーを用いて、吸着及び溶出操作を行うものである請求項1〜7のいずれか1項記載の方法。   The method according to claim 1, wherein the adsorption and elution operations are performed using liquid chromatography.
JP2007066589A 2006-03-20 2007-03-15 Method for purification of protein Pending JP2007284425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066589A JP2007284425A (en) 2006-03-20 2007-03-15 Method for purification of protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006077100 2006-03-20
JP2007066589A JP2007284425A (en) 2006-03-20 2007-03-15 Method for purification of protein

Publications (1)

Publication Number Publication Date
JP2007284425A true JP2007284425A (en) 2007-11-01

Family

ID=38756531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066589A Pending JP2007284425A (en) 2006-03-20 2007-03-15 Method for purification of protein

Country Status (1)

Country Link
JP (1) JP2007284425A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283346A (en) * 1985-06-10 1986-12-13 Mitsubishi Chem Ind Ltd Preparation of protein adsorbent
JPH0459798A (en) * 1990-06-28 1992-02-26 Ngk Insulators Ltd Purification of antibody by affinity chromatography
JPH1017597A (en) * 1996-06-27 1998-01-20 B M L:Kk Hemoglobulin aic composition
JPH11509525A (en) * 1995-05-25 1999-08-24 デルタ、バイオテクノロジー、リミテッド Method for producing high-purity albumin
JP2002542761A (en) * 1999-01-30 2002-12-17 デルタ バイオテクノロジー リミテッド Method
WO2005095450A2 (en) * 2004-03-30 2005-10-13 Nsgene A/S Therapeutic use of a growth factor, nsg33

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728553A (en) * 1992-09-23 1998-03-17 Delta Biotechnology Limited High purity albumin and method of producing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283346A (en) * 1985-06-10 1986-12-13 Mitsubishi Chem Ind Ltd Preparation of protein adsorbent
JPH0459798A (en) * 1990-06-28 1992-02-26 Ngk Insulators Ltd Purification of antibody by affinity chromatography
JPH11509525A (en) * 1995-05-25 1999-08-24 デルタ、バイオテクノロジー、リミテッド Method for producing high-purity albumin
JPH1017597A (en) * 1996-06-27 1998-01-20 B M L:Kk Hemoglobulin aic composition
JP2002542761A (en) * 1999-01-30 2002-12-17 デルタ バイオテクノロジー リミテッド Method
WO2005095450A2 (en) * 2004-03-30 2005-10-13 Nsgene A/S Therapeutic use of a growth factor, nsg33

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012018059; Susanne Gal, et al.: 'Use of chromatofocusing for separation of beta-lactamases.' Journal of Chromatography Vol.545, 1991, p.189-195 *

Similar Documents

Publication Publication Date Title
US10662261B2 (en) Chelator and use thereof
Chen et al. Recent advances of boronate affinity materials in sample preparation
Lata et al. Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk
US8551332B2 (en) Affinity particle and affinity separation method
US20200332028A1 (en) Charged surface reversed phase chromatographic materials method for analysis of glycans modified with amphipathic, strongly basic moieties
JP2006007203A (en) Affinity particle and affinity separation method
JPWO2009150834A1 (en) Sugar chain sample preparation method, sugar chain sample and sugar chain analysis method
WO2007137752A1 (en) A method for generating metal chelating affinity ligands
Pichon Aptamer-based and immunosorbents
WO2009003952A2 (en) Column and method for preparing a biological sample for protein profiling
CN112823875B (en) Phenylboronic acid solid-phase extraction column filler and preparation method thereof
JP2011232098A (en) Measuring method for immunoglobulin amount in solution
Li et al. Selective extraction and enrichment of glycoproteins based on boronate affinity SPME and determination by CIEF-WCID
JP2007003411A (en) Measuring method of hemoglobin a1c, and measuring kit for hemoglobin a1c measurement
JP2022547309A (en) Sample preparation compositions, devices, systems and methods
Alzahrani et al. Fabrication of a TCEP-immobilised monolithic silica microchip for reduction of disulphide bonds in proteins
JP2007284425A (en) Method for purification of protein
Shu et al. Glycan-selective in-situ growth of thermoresponsive polymers for thermoprecipitation and enrichment of N-glycoprotein/glycopeptides
JP6781154B2 (en) Ligand immobilization method
Angal et al. Purification by exploitation of activity
WO2020195514A1 (en) Method for supporting thiol group-including compound
JP6937039B2 (en) Method for concentrating and purifying alkyne-containing molecules
JP5424505B2 (en) Method for purifying 8-isoplastane
Gupta et al. Protein imprinting via epitope approach: An overview
Wang et al. Selective Enrichment Methods for N-Glycosite Containing Peptides in N-Glycoproteomics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925