JP2007279477A - Liquid crystal element, its manufacturing method and liquid crystal display panel - Google Patents

Liquid crystal element, its manufacturing method and liquid crystal display panel Download PDF

Info

Publication number
JP2007279477A
JP2007279477A JP2006107218A JP2006107218A JP2007279477A JP 2007279477 A JP2007279477 A JP 2007279477A JP 2006107218 A JP2006107218 A JP 2006107218A JP 2006107218 A JP2006107218 A JP 2006107218A JP 2007279477 A JP2007279477 A JP 2007279477A
Authority
JP
Japan
Prior art keywords
liquid crystal
control layer
layer
crystal element
retardation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006107218A
Other languages
Japanese (ja)
Inventor
Hideo Asama
英夫 浅間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006107218A priority Critical patent/JP2007279477A/en
Publication of JP2007279477A publication Critical patent/JP2007279477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal cell that solves a problem about heat resistance in a retardation control layer and does not require an alignment layer for the retardation control layer in a liquid crystal element having a retardation control layer disposed in a cell, to provide a liquid crystal element and its manufacturing method that can maintain a constant cell gap and to provide a liquid crystal display panel. <P>SOLUTION: The liquid crystal element comprises a pair of electrodes and a liquid crystal layer sealed between the electrodes interposed by a pair of substrates opposing to each other and has a retardation control layer between at least one of the electrodes and the substrate, wherein the retardation control layer contains a lyotropic liquid crystal compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液晶素子およびその製造方法および液晶表示板に関するものである。   The present invention relates to a liquid crystal element, a method for manufacturing the same, and a liquid crystal display panel.

従来、液晶ディスプレイ(以下、LCDと略す)は、主に対向する基板間に、一対の電極及び液晶層を有する液晶素子と偏光板、カラーディスプレイ用途であればカラーフィルタなどから構成される。
しかし、近年LCDに求められる性能が高くなり、視野角性能が問題となってきている。具体的には、液晶を用いることによる光学的なゆがみが発生し、着色、色みのずれなどが生じ、LCDを正面から観察した時の性能に比べ、斜め方向から観察した時の性能は低下することである。そのため、位相差制御板を用い、光学的なゆがみを補正することが行われている。
通常、この位相差制御板は、対向する基板間に、一対の電極及び液晶層を有する液晶素子の外側に設けられている。例えば、液晶素子に位相差フィルムを粘着剤で貼り合わせる方法が知られているが、粘着層の界面で光の反射が発生しLCDの性能を低下させる問題があった。また、位相差フィルムが熱や吸湿により変形し、位相差制御の性能が低下する問題もあった。
これらの問題を解決するため、位相差制御層を液晶セル(液晶素子)内部に直接配置するインセル化で解決する方法が考案されている。
Conventionally, a liquid crystal display (hereinafter abbreviated as LCD) is mainly composed of a liquid crystal element and a polarizing plate having a pair of electrodes and a liquid crystal layer between opposed substrates, and a color filter for color display applications.
However, in recent years, performance required for LCDs has increased, and viewing angle performance has become a problem. Specifically, optical distortion occurs due to the use of liquid crystals, coloring, color shift, etc. occur, and the performance when observed from an oblique direction is lower than the performance when viewing the LCD from the front. It is to be. Therefore, optical distortion is corrected using a phase difference control plate.
Usually, the phase difference control plate is provided outside a liquid crystal element having a pair of electrodes and a liquid crystal layer between opposed substrates. For example, a method of attaching a retardation film to a liquid crystal element with an adhesive is known. However, there is a problem that light is reflected at the interface of the adhesive layer and the performance of the LCD is deteriorated. In addition, the retardation film is deformed by heat and moisture absorption, and there is a problem that the performance of retardation control is deteriorated.
In order to solve these problems, a method has been devised to solve the problem by in-cell arrangement in which the retardation control layer is directly arranged inside the liquid crystal cell (liquid crystal element).

特開2004−145327号公報JP 2004-145327 A

位相差制御層のインセル化では、重合性液晶分子を用いて位相差制御相を形成する。液晶セル基板上に配向膜を形成し、配向膜上にサーモトロピック液晶を塗布する。さらに、サーモトロピック液晶を重合し、固化および位相差の性能を固定する。
重合性液晶分子を用いる方法で作製された位相差制御層は、耐熱性が低く、カラーフィルタ層の形成などの後工程の熱により性能が劣化することが問題となる。位相差制御層を構成する分子を配向させるため、配向膜を必要とするが、配向膜はLCDの光学性能を低下させ問題となる。
また、液晶セルの対向する透明基板間のギャップ(以下、セルギャップ)は一定に保たねばならなく、スペーサーによりセルギャップが保たれている。しかし、配向膜上にサーモトロピック液晶を設けたものを用いる場合、基板を構成する位相差制御層の硬度が低いため、位相差制御層が変形しセルギャップを維持できなくなる問題もある。
本発明では、位相差制御層をインセル化したLCDにおいて、位相差制御層の耐熱性の問題を解決することを目的とする。また、位相差制御層の配向膜を必要としない液晶セル、セルギャップを一定に維持できる液晶素子の提供を目的とする。
In the in-cell phase difference control layer, a phase difference control phase is formed using polymerizable liquid crystal molecules. An alignment film is formed on the liquid crystal cell substrate, and a thermotropic liquid crystal is applied on the alignment film. Furthermore, the thermotropic liquid crystal is polymerized to fix the solidification and retardation performance.
A retardation control layer prepared by a method using polymerizable liquid crystal molecules has low heat resistance, and there is a problem that performance deteriorates due to heat in a subsequent process such as formation of a color filter layer. An alignment film is required to align the molecules constituting the phase difference control layer. However, the alignment film is problematic because it degrades the optical performance of the LCD.
Further, the gap between the transparent substrates facing the liquid crystal cell (hereinafter referred to as cell gap) must be kept constant, and the cell gap is kept by the spacer. However, in the case of using a film in which the thermotropic liquid crystal is provided on the alignment film, there is a problem that the retardation control layer constituting the substrate is low in hardness, so that the retardation control layer is deformed and the cell gap cannot be maintained.
An object of the present invention is to solve the problem of heat resistance of a phase difference control layer in an LCD in which the phase difference control layer is in-cell. It is another object of the present invention to provide a liquid crystal cell that does not require an alignment film of a retardation control layer and a liquid crystal element that can maintain a constant cell gap.

請求項1記載の発明は、対向する一対の基板間に、一組の電極及び該電極間に封入された液晶層を備え、少なくとも一方の電極と基板の間に位相差制御層を有する液晶素子であって、該位相差制御層がリオトロピック液晶性化合物を含むことを特徴とする液晶素子である。   According to a first aspect of the present invention, there is provided a liquid crystal element comprising a pair of electrodes and a liquid crystal layer sealed between the electrodes between a pair of opposing substrates, and having a phase difference control layer between at least one of the electrodes and the substrate. The liquid crystal element is characterized in that the retardation control layer contains a lyotropic liquid crystalline compound.

請求項2記載の発明は、前記位相差制御層と前記電極の間に保護層が設けられていることを特徴とする請求項1に記載の液晶素子である。   The invention according to claim 2 is the liquid crystal element according to claim 1, wherein a protective layer is provided between the retardation control layer and the electrode.

請求項3記載の発明は、さらにカラーフィルタ層が設けられていることを特徴とする請求項1または2に記載の液晶素子である。   The invention according to claim 3 is the liquid crystal element according to claim 1 or 2, further comprising a color filter layer.

請求項4記載の発明は、対向する一対の基板間に、一組の電極及び該電極間に封入された液晶層を備え、少なくとも一方の電極と基板の間に位相差制御層を有する液晶素子の製造方法であって、基板上に、リオトロピック液晶性化合物及び溶媒を含む塗布液をせん断流動をかけながら塗布する工程、該塗布液を乾燥固化することにより位相差制御層とする工程、を有する液晶素子の製造方法である。   According to a fourth aspect of the present invention, there is provided a liquid crystal element including a pair of electrodes and a liquid crystal layer sealed between the electrodes between a pair of opposing substrates, and having a retardation control layer between at least one of the electrodes and the substrate. And a step of applying a coating liquid containing a lyotropic liquid crystalline compound and a solvent on a substrate while applying shear flow, and a step of forming a retardation control layer by drying and solidifying the coating liquid. It is a manufacturing method of a liquid crystal element.

請求項5記載の発明は、請求項1〜3のいずれかに記載の液晶素子を備える液晶表示板である。   A fifth aspect of the present invention is a liquid crystal display panel comprising the liquid crystal element according to any one of the first to third aspects.

位相差制御層を液晶素子内に、リオトロピック液晶を乾燥固化し、位相差制御層を形成することで、耐熱性に優れ、かつ膜厚方向の変形量の少ない位相差制御層を設けることができる。すなわちセルギャップの変化のない又は少ないものとすることができる。また、位相差制御層の分子配向を制御するための配向層を必要としない、位相差制御層をインセル化した液晶素子を構成することが可能となる。   By forming the retardation control layer by drying and solidifying the lyotropic liquid crystal in the liquid crystal element and forming the retardation control layer, it is possible to provide a retardation control layer having excellent heat resistance and a small amount of deformation in the film thickness direction. . That is, the cell gap can be changed or reduced little. In addition, it is possible to configure a liquid crystal element in which the retardation control layer is in-celled, which does not require an alignment layer for controlling the molecular alignment of the retardation control layer.

本発明は、対向する一対の基板間に、一組の電極及び該電極間に封入された液晶層を備え、少なくとも一方の電極と基板の間に濃度依存性液晶であるリオトロピック液晶性化合物を含む位相差制御層を有する液晶素子とするものである。
図1に本発明の液晶素子の一例を示す。図1では、二つの基板は、液晶が封入された層を中心に、平行に向かい合っており、各々の基板には位相差制御層の他に、保護層、カラーフィルタ層、電極層、配向層が形成されている。
The present invention includes a pair of electrodes and a liquid crystal layer sealed between the electrodes between a pair of opposing substrates, and includes a lyotropic liquid crystalline compound that is a concentration-dependent liquid crystal between at least one of the electrodes and the substrate. A liquid crystal element having a retardation control layer is provided.
FIG. 1 shows an example of the liquid crystal element of the present invention. In FIG. 1, the two substrates face each other in parallel, centering on the layer in which the liquid crystal is sealed, and each substrate has a protective layer, a color filter layer, an electrode layer, an alignment layer in addition to the phase difference control layer. Is formed.

基板は、特に限定するものではなく、透明性などの光学特性を満たすものであれば公知の材料を用いることができる。透過率が高く、光学的な異方性が小さい光学特性が好ましい。例えばガラス基板や、ポリエステル系樹脂、セルロース系樹脂などのプラスチック基材を用いてもかまわない。
膜厚も特に限定するものではないが一般的には、ガラス基材では100〜2000μm、プラスチック基材では50〜100μmの範囲内である。
The substrate is not particularly limited, and any known material can be used as long as it satisfies optical characteristics such as transparency. Optical characteristics with high transmittance and small optical anisotropy are preferred. For example, a plastic substrate such as a glass substrate, a polyester resin, or a cellulose resin may be used.
Although the film thickness is not particularly limited, it is generally in the range of 100 to 2000 μm for a glass substrate and 50 to 100 μm for a plastic substrate.

電極は、特に限定するものではなく公知のものを用いることができる。
例えば、視野側の電極として、透明性、導電性の高いインジウム−スズ酸化物(ITO)からなる電極を用い、反対側には、画素電極としてTFT電極を用いることができる。
The electrode is not particularly limited, and a known electrode can be used.
For example, an electrode made of indium-tin oxide (ITO) having high transparency and conductivity can be used as the viewing-side electrode, and a TFT electrode can be used as the pixel electrode on the opposite side.

電極間に封入される液晶層としては、公知の材料を用いることができる。また、一般的には図1に示すように電極上に配向膜を設け、その間に液晶物質を封入する。   As the liquid crystal layer sealed between the electrodes, a known material can be used. Further, generally, as shown in FIG. 1, an alignment film is provided on the electrode, and a liquid crystal substance is sealed between them.

本発明の位相差制御層はリオトロピック液晶性化合物を含むことを特徴としており、具体的には、リオトロピック液晶性化合物及び溶媒を含む塗布液をせん断をかけながら塗布することによりリオトロピック液晶性化合物を配向させ、その後乾燥固化させることにより、固体化した位相差制御層とするものである。
耐熱性が高く、液晶分子の偏光特性が強く、1.0μm以下の膜厚であっても十分な偏光特性が得られるリオトロピック液晶性化合物を用いることで、位相差制御層が変形してもセルギャップに与える影響が小さい。
The retardation control layer of the present invention is characterized by containing a lyotropic liquid crystalline compound. Specifically, the lyotropic liquid crystalline compound is aligned by applying a coating solution containing a lyotropic liquid crystalline compound and a solvent while shearing. And then dried and solidified to obtain a solidified retardation control layer.
Even if the phase difference control layer is deformed, the cell can be obtained by using a lyotropic liquid crystalline compound that has high heat resistance, strong polarization characteristics of liquid crystal molecules, and sufficient polarization characteristics even with a film thickness of 1.0 μm or less. The effect on the gap is small.

リオトロピック液晶性化合物としては、クロモニック色素のように、耐熱性に優れ、せん断流動により容易に配向を制御できる液晶を用いることが望ましい。クロモニック色素の一例としてクロモグリケイトナトリウム塩(DSCG:化学式(1)に示す化合物)やアセナフトキノキサリンスルホン酸塩などがあげられる。   As the lyotropic liquid crystalline compound, it is desirable to use a liquid crystal that is excellent in heat resistance and can be easily controlled in orientation by shear flow, such as a chromonic dye. Examples of chromonic dyes include cromoglycate sodium salt (DSCG: compound represented by chemical formula (1)), acenaphthoquinoxaline sulfonate, and the like.

Figure 2007279477
Figure 2007279477

溶媒としては、水、アセトン、イソプロピルアルコール(IPA)、ジオキサン、メタノール、エタノール、ブタノールなどを用いることができる。
リオトロピック液晶性化合物の濃度は1〜50wt%程度であることが好ましい。
As the solvent, water, acetone, isopropyl alcohol (IPA), dioxane, methanol, ethanol, butanol and the like can be used.
The concentration of the lyotropic liquid crystalline compound is preferably about 1 to 50 wt%.

位相差制御層の形成方法は、例えば、洗浄を行った基材上にリオトロピック液晶性化合物及び溶媒を含む塗布液を塗布することで、位相差制御層は形成される。塗布方法として、スロットダイ塗布、ワイヤバー塗布などのウエット塗布法を利用することができ、塗布時に発生する塗布流動によりリオトロピック液晶性化合物の配向構造を制御し、必要とされる光学機能を発現させる。
その後塗布液の溶媒を蒸発させ、位相差制御層を固体化する。リオトロピック液晶の溶剤を蒸発させても、光学機能は維持されたままであり、固体化した位相差制御層が形成される。位相差制御層の配向層を設けなくとも、位相差制御層を形成することができる。また、リオトロピック液晶の溶媒を蒸発させた場合、特にクロモニック色素では熱安定性に優れている。
The phase difference control layer is formed by, for example, applying a coating solution containing a lyotropic liquid crystalline compound and a solvent onto a cleaned substrate, thereby forming the phase difference control layer. As a coating method, a wet coating method such as slot die coating or wire bar coating can be used, and the orientation structure of the lyotropic liquid crystalline compound is controlled by a coating flow generated at the time of coating to develop a required optical function.
Thereafter, the solvent of the coating solution is evaporated to solidify the retardation control layer. Even if the solvent of the lyotropic liquid crystal is evaporated, the optical function is maintained and a solid phase difference control layer is formed. The retardation control layer can be formed without providing the alignment layer of the retardation control layer. Further, when the solvent of the lyotropic liquid crystal is evaporated, the chromonic dye is excellent in thermal stability.

また、本発明では、位相差制御層を保護するための保護層を設けても良い。
保護層としては耐薬品性があり、透過率が高く、光学的に等方な層であることが望ましく、このようなものとして例えばシリカ膜が挙げられる。
保護層の膜厚は特に限定するものではないが、0.1〜1μm程度であればよい。
保護層を設ける位置に特に限定はないが、電極と位相差制御層の間に設ければよい。また、後述のカラーフィルタ層に位相差制御層の保護機能を持たせることも可能である。
In the present invention, a protective layer for protecting the retardation control layer may be provided.
The protective layer is desirably a chemical resistant, high transmittance, and optically isotropic layer, and examples of such a protective layer include a silica film.
Although the film thickness of a protective layer is not specifically limited, What is necessary is just about 0.1-1 micrometer.
The position where the protective layer is provided is not particularly limited, but may be provided between the electrode and the phase difference control layer. It is also possible to provide a later-described color filter layer with a retardation control layer protection function.

また、本発明では、カラーディスプレイ用とであればカラーフィルタ層を設けても良い。
カラーフィルタ層は、公知のものを用いることができ、設ける位置としては、基板上に位相差制御層、保護層、カラーフィルタ層の順に形成しても良いが、カラーフィルタ層の上に位相差制御層を形成しても良い。カラーフィルタが形成される基材面と反対の面に位相差制御層を形成しても構わない。
カラーフィルタ層を位相差制御層の上に直接形成し、位相差制御層を保護する役割を持たせても構わない。
In the present invention, a color filter layer may be provided for a color display.
A known color filter layer can be used, and as a position to be provided, a retardation control layer, a protective layer, and a color filter layer may be formed in this order on the substrate, but the retardation is formed on the color filter layer. A control layer may be formed. You may form a phase difference control layer in the surface opposite to the base-material surface in which a color filter is formed.
The color filter layer may be formed directly on the retardation control layer and may have a role of protecting the retardation control layer.

本発明の液晶素子は、偏光板、光源などと組み合わせることにより液晶表示板として用いることができる。   The liquid crystal element of the present invention can be used as a liquid crystal display plate by combining with a polarizing plate, a light source, and the like.

<実施例1>
基材としてガラス基板(コーニング社製)を用い、基材を硫酸中に1時間浸漬後、純水に浸漬した状態で超音波洗浄器にて基材の洗浄を行った。さらに、塗布工程直前にプラズマ洗浄を施した。
次に前期化学式(1)で表される化合物を水溶媒中に13w%添加し、室温にてネマチック相を示すリオトロピック液晶性化合物を含む塗布液を準備した。
この塗布液を基材上に、スロットダイ塗布法で塗布を行った。塗布速度をスロットダイヘッドと基材間のクリアランスで除した値をせん断速度とし、せん断速度が200(1/s)となるように設定し塗布を行った。塗布後、室温にて溶媒である水分を蒸発させ乾燥固化させ、位相差制御層を得た。なお、この時点で塗布時のせん断により配向した液晶性化合物が、乾燥固化した状態でも配向構造を維持しているため、配向膜無くして位相差機能が発現している。
次に、位相差機能が発現した塗布膜上に保護層として、SiOxをスパッタリング法にて500nm設け、その上に電極としてITO膜をスパッタ法にて200nm形成した。さらに、ポリイミド径樹脂(JSR(株)製)をスピンコーターで塗布を行った後、ラビング処理を施し配向膜を形成した。対向基板として、上記の洗浄方法で処理を施し、TFT電極および配向膜を設けた物を用意した。前期基板の配向膜面とと対向基板の配向膜面をスペーサーを介し貼りあわせ、液晶(メルク社製)を注入し10cm×10cmの液晶素子を得た。
<Example 1>
A glass substrate (manufactured by Corning) was used as a base material, and the base material was immersed in pure water for 1 hour, and then the base material was cleaned with an ultrasonic cleaner. Furthermore, plasma cleaning was performed immediately before the coating process.
Next, 13 w% of the compound represented by the chemical formula (1) was added to the aqueous solvent to prepare a coating solution containing a lyotropic liquid crystalline compound exhibiting a nematic phase at room temperature.
This coating solution was applied on a substrate by a slot die coating method. The value obtained by dividing the coating speed by the clearance between the slot die head and the substrate was defined as the shear rate, and the coating was performed so that the shear rate was 200 (1 / s). After coating, water as a solvent was evaporated at room temperature to dry and solidify to obtain a retardation control layer. In addition, since the liquid crystalline compound aligned by shearing at the time of application maintains the alignment structure even in a dried and solidified state, the phase difference function is expressed without the alignment film.
Next, a SiOx film having a thickness of 500 nm was formed as a protective layer on the coating film exhibiting the retardation function by sputtering, and an ITO film having a thickness of 200 nm was formed thereon as an electrode by sputtering. Furthermore, after applying a polyimide resin (manufactured by JSR Corporation) with a spin coater, a rubbing treatment was performed to form an alignment film. A counter substrate was prepared by performing the above-described cleaning method and providing a TFT electrode and an alignment film. The alignment film surface of the previous substrate and the alignment film surface of the counter substrate were bonded via a spacer, and liquid crystal (Merck) was injected to obtain a 10 cm × 10 cm liquid crystal element.

<比較例1>
基材としてガラス基板(コーニング社製)を用い、基材を硫酸中に1時間浸漬後、純水に浸漬した状態で超音波洗浄器にて基材の洗浄を行った。さらに、塗布工程直前にプラズマ洗浄を施した。
次に、基板上に、ポリイミド径樹脂(JSR(株)製)をスピンコーターで塗布を行った後、ラビング処理を施すことで配向膜を形成し、その上に重合性液晶性化合物(サーモトロピック液晶性化合物)としてトリフルオロアセテートエステル誘導体を含む塗布液を塗布し、光を照射により重合させ、位相差制御層を得た。
この後、実施例1と同様に電極、液晶層などを設け、液晶素子を得た。
<Comparative Example 1>
A glass substrate (manufactured by Corning) was used as a base material, and the base material was immersed in pure water for 1 hour, and then the base material was cleaned with an ultrasonic cleaner. Furthermore, plasma cleaning was performed immediately before the coating process.
Next, a polyimide resin (manufactured by JSR Co., Ltd.) is applied onto a substrate with a spin coater, and then an alignment film is formed by rubbing, and a polymerizable liquid crystal compound (thermotropic) is formed thereon. A coating liquid containing a trifluoroacetate ester derivative as a liquid crystal compound) was applied and polymerized by irradiation with light to obtain a retardation control layer.
Thereafter, an electrode, a liquid crystal layer, and the like were provided in the same manner as in Example 1 to obtain a liquid crystal element.

<評価>
上記の方法で得られた液晶素子のセルギャプを、LCDセルギャップ測定システム(大塚電子製)を用いて評価を行った。測定位置は、正方形の液晶セルの対角線をひき、中心部と中心からそれぞれ角に向かって1.2cm間隔で5点づつ、合計11点を測定した結果を表1に示す。表1に示す測定値の単位はμmである。
また、コントラスト比の評価を、偏光素子を組み込んだ偏光分光評価システム(オーシャンオプティクス社製)を用いて行った。液晶セルの中心にて評価を行った結果を、表2に示す。
<Evaluation>
The cell gap of the liquid crystal element obtained by the above method was evaluated using an LCD cell gap measurement system (manufactured by Otsuka Electronics). Table 1 shows the results of measuring 11 points in total, measuring 5 points at intervals of 1.2 cm from the center and the center toward the corners by drawing diagonal lines of a square liquid crystal cell. The unit of the measured value shown in Table 1 is μm.
The contrast ratio was evaluated using a polarization spectroscopy evaluation system (manufactured by Ocean Optics) incorporating a polarizing element. Table 2 shows the results of evaluation at the center of the liquid crystal cell.

Figure 2007279477
Figure 2007279477

Figure 2007279477
Figure 2007279477

表1より、実施例1におけるセルギャップは、標準偏差が0.027μmとばらつきが小さくまた、最大値と最小値の差が0.09μmであり小さかったのに対し、比較例1におけるセルギャップは、標準偏差が0.151μmとばらつきが大きくまた、最大値と最小値の差も0.40μmと大きかった。
また、表2より、実施例1では、位相差制御相を形成するための配向膜を省略できるため、コントラスト比が向上した。
From Table 1, the cell gap in Example 1 has a small standard deviation of 0.027 μm, and the difference between the maximum value and the minimum value is 0.09 μm, whereas the cell gap in Comparative Example 1 is small. The standard deviation was as large as 0.151 μm, and the difference between the maximum value and the minimum value was as large as 0.40 μm.
Also, from Table 2, in Example 1, since the alignment film for forming the phase difference control phase can be omitted, the contrast ratio is improved.

<実施例2>
基材としてガラス基板(コーニング社製)を用い、基材を硫酸中に1時間浸漬後、超音波洗浄器にて基材の洗浄を行った。
次に前期化学式(1)で表される化合物を水溶媒中に13w%添加し、室温にてネマチック相を示すリオトロピック液晶性化合物を含む塗布液を準備した。
この塗布液を基材上に、スロットダイ塗布法で塗布を行った。塗布速度をスロットダイヘッドと基材間のクリアランスで除した値をせん断速度とし、せん断速度が200(1/s)となるように設定し塗布を行った。塗布後、室温にて溶媒である水分を蒸発させ乾燥固化させ、位相差制御層を得た。なお、この時点で塗布時のせん断により配向した液晶性化合物が、乾燥固化した状態でも配向構造を維持しているため、配向膜無くして位相差機能が発現している。
次に、位相差機能が発現した塗布膜上に保護層として、SiOxをスパッタリング法にて500nm設けた。
この段階で、波長400〜700nmの波長領域で位相差値を複屈折位相差測定システムで測定した。
次に保護層上にカラーフィルタ層を設けた。その後、前記複屈折位相差測定システムで波長400〜700nmの波長領域で位相差値を測定した。
この後、実施例1と同様に電極、液晶層などを設け、液晶素子を得た。
<Example 2>
A glass substrate (manufactured by Corning) was used as the base material, and the base material was immersed in sulfuric acid for 1 hour, and then the base material was cleaned with an ultrasonic cleaner.
Next, 13 w% of the compound represented by the chemical formula (1) was added to the aqueous solvent to prepare a coating solution containing a lyotropic liquid crystalline compound exhibiting a nematic phase at room temperature.
This coating solution was applied on a substrate by a slot die coating method. The value obtained by dividing the coating speed by the clearance between the slot die head and the substrate was defined as the shear rate, and the coating was performed so that the shear rate was 200 (1 / s). After coating, water as a solvent was evaporated at room temperature to dry and solidify to obtain a retardation control layer. In addition, since the liquid crystalline compound aligned by shearing at the time of application maintains the alignment structure even in a dried and solidified state, the phase difference function is expressed without the alignment film.
Next, 500 nm of SiOx was provided as a protective layer on the coating film exhibiting the retardation function by a sputtering method.
At this stage, the phase difference value was measured with a birefringence phase difference measurement system in the wavelength region of 400 to 700 nm.
Next, a color filter layer was provided on the protective layer. Thereafter, the phase difference value was measured in the wavelength region of 400 to 700 nm with the birefringence phase difference measurement system.
Thereafter, an electrode, a liquid crystal layer, and the like were provided in the same manner as in Example 1 to obtain a liquid crystal element.

<比較例2>
基材としてガラス基板(コーニング社製)を用い、基材を硫酸中に1時間浸漬後、超音波洗浄器にて基材の洗浄を行った。
次に、基板上に、ポリイミド径樹脂(JSR(株)製)をスピンコーターで塗布を行った後、ラビング処理を施すことで配向膜を形成し、その上に重合性液晶性化合物(サーモトロピック液晶性化合物)としてトリフルオロアセテートエステル誘導体を含む塗布液を塗布し、光を照射により重合させ、位相差制御層を得た。
この段階で、波長400〜700nmの波長領域で位相差値を複屈折位相差測定システムで測定した。
次に保護層上にカラーフィルタ層を設けた。その後、前記複屈折位相差測定システムで波長400〜700nmの波長領域で位相差値を測定した。
この後、実施例1と同様に電極、液晶層などを設け、液晶素子を得た。
<Comparative example 2>
A glass substrate (manufactured by Corning) was used as the base material, and the base material was immersed in sulfuric acid for 1 hour, and then the base material was cleaned with an ultrasonic cleaner.
Next, a polyimide resin (manufactured by JSR Co., Ltd.) is applied onto a substrate with a spin coater, and then an alignment film is formed by rubbing, and a polymerizable liquid crystal compound (thermotropic) is formed thereon. A coating liquid containing a trifluoroacetate ester derivative as a liquid crystal compound) was applied and polymerized by irradiation with light to obtain a retardation control layer.
At this stage, the phase difference value was measured with a birefringence phase difference measurement system in the wavelength region of 400 to 700 nm.
Next, a color filter layer was provided on the protective layer. Thereafter, the phase difference value was measured in the wavelength region of 400 to 700 nm with the birefringence phase difference measurement system.
Thereafter, an electrode, a liquid crystal layer, and the like were provided in the same manner as in Example 1 to obtain a liquid crystal element.

<評価>
実施例2、比較例2におけるカラーフィルタ層を設ける前後の位相差変化を表3に示す。
<Evaluation>
Table 3 shows the phase difference change before and after providing the color filter layer in Example 2 and Comparative Example 2.

Figure 2007279477
Figure 2007279477

表3より、比較例2ではカラーフィルタ層形成前後において位相差変化が大きかった。すなわちカラーフィルタ層形成時の過熱工程で位相差制御層が変形、変質したためであると思われる。これに対し、実施例2では、カラーフィルタ層形成前後において位相差変化が小さく、カラーフィルタ層形成時の過熱工程の影響が少なかったと思われる。   From Table 3, in Comparative Example 2, the phase difference change was large before and after the formation of the color filter layer. That is, it is considered that the phase difference control layer was deformed and deteriorated during the heating process when forming the color filter layer. In contrast, in Example 2, the change in the phase difference before and after the formation of the color filter layer was small, and it seems that the influence of the overheating process during the formation of the color filter layer was small.

本発明の液晶素子の一例を示す断面図である。It is sectional drawing which shows an example of the liquid crystal element of this invention. 従来の液晶素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional liquid crystal element.

符号の説明Explanation of symbols

1 基板
2 位相差制御層
3 保護層
4 カラーフィルタ層
5 電極層
6 配向層
7 液晶
8 位相差制御層の配向層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Phase difference control layer 3 Protective layer 4 Color filter layer 5 Electrode layer 6 Alignment layer 7 Liquid crystal 8 Alignment layer of phase difference control layer

Claims (5)

対向する一対の基板間に、一組の電極及び該電極間に封入された液晶層を備え、少なくとも一方の電極と基板の間に位相差制御層を有する液晶素子であって、
該位相差制御層がリオトロピック液晶性化合物を含むことを特徴とする液晶素子。
A liquid crystal device comprising a pair of electrodes and a liquid crystal layer sealed between the electrodes between a pair of opposing substrates, and having a phase difference control layer between at least one electrode and the substrate,
The liquid crystal element, wherein the retardation control layer contains a lyotropic liquid crystalline compound.
前記位相差制御層と前記電極の間に保護層が設けられていることを特徴とする請求項1に記載の液晶素子。   The liquid crystal element according to claim 1, wherein a protective layer is provided between the retardation control layer and the electrode. さらにカラーフィルタ層が設けられていることを特徴とする請求項1または2に記載の液晶素子。   The liquid crystal element according to claim 1, further comprising a color filter layer. 対向する一対の基板間に、一組の電極及び該電極間に封入された液晶層を備え、少なくとも一方の電極と基板の間に位相差制御層を有する液晶素子の製造方法であって、基板上に、リオトロピック液晶性化合物及び溶媒を含む塗布液をせん断流動をかけながら塗布する工程、該塗布液を乾燥固化することにより位相差制御層とする工程、を有する液晶素子の製造方法。   A method of manufacturing a liquid crystal element comprising a pair of electrodes and a liquid crystal layer sealed between the electrodes between a pair of opposing substrates, and having a phase difference control layer between at least one electrode and the substrate, A method for producing a liquid crystal element, comprising: a step of applying a coating liquid containing a lyotropic liquid crystalline compound and a solvent while applying shear flow; and a step of forming a retardation control layer by drying and solidifying the coating liquid. 請求項1〜3のいずれかに記載の液晶素子を備える液晶表示板。   A liquid crystal display board provided with the liquid crystal element in any one of Claims 1-3.
JP2006107218A 2006-04-10 2006-04-10 Liquid crystal element, its manufacturing method and liquid crystal display panel Pending JP2007279477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107218A JP2007279477A (en) 2006-04-10 2006-04-10 Liquid crystal element, its manufacturing method and liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107218A JP2007279477A (en) 2006-04-10 2006-04-10 Liquid crystal element, its manufacturing method and liquid crystal display panel

Publications (1)

Publication Number Publication Date
JP2007279477A true JP2007279477A (en) 2007-10-25

Family

ID=38680977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107218A Pending JP2007279477A (en) 2006-04-10 2006-04-10 Liquid crystal element, its manufacturing method and liquid crystal display panel

Country Status (1)

Country Link
JP (1) JP2007279477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015019A (en) * 2008-07-04 2010-01-21 Hitachi Displays Ltd Liquid crystal display device and manufacturing method for the same
JP2010128166A (en) * 2008-11-27 2010-06-10 Tosoh Corp Method of manufacturing optical film
JP2013231994A (en) * 2013-07-03 2013-11-14 Japan Display Inc Method for manufacturing liquid crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504238A (en) * 1996-04-15 2001-03-27 オプティバ,インコーポレイティド Liquid crystal display and method
JP2002296415A (en) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd Phase contrast film and circularly polarizing plate
WO2004092808A2 (en) * 2003-04-09 2004-10-28 Nitto Denko Corporation Liquid crystal display with internal polarizer
JP2005275322A (en) * 2004-03-26 2005-10-06 Dainippon Printing Co Ltd Color filter substrate, base material for liquid crystal display, and liquid crystal display device
WO2006010431A1 (en) * 2004-07-28 2006-02-02 Merck Patent Gmbh Transflective lcd comprising a patterned retardation film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504238A (en) * 1996-04-15 2001-03-27 オプティバ,インコーポレイティド Liquid crystal display and method
JP2002296415A (en) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd Phase contrast film and circularly polarizing plate
WO2004092808A2 (en) * 2003-04-09 2004-10-28 Nitto Denko Corporation Liquid crystal display with internal polarizer
JP2005275322A (en) * 2004-03-26 2005-10-06 Dainippon Printing Co Ltd Color filter substrate, base material for liquid crystal display, and liquid crystal display device
WO2006010431A1 (en) * 2004-07-28 2006-02-02 Merck Patent Gmbh Transflective lcd comprising a patterned retardation film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015019A (en) * 2008-07-04 2010-01-21 Hitachi Displays Ltd Liquid crystal display device and manufacturing method for the same
JP2010128166A (en) * 2008-11-27 2010-06-10 Tosoh Corp Method of manufacturing optical film
JP2013231994A (en) * 2013-07-03 2013-11-14 Japan Display Inc Method for manufacturing liquid crystal display device

Similar Documents

Publication Publication Date Title
JP6427340B2 (en) Optically anisotropic layer and method of manufacturing the same, laminate and method of manufacturing the same, polarizing plate, liquid crystal display device and organic EL display device
WO2015008773A1 (en) Phase difference film, polarization plate, and liquid crystal display device
JP4592005B2 (en) Polarizing element, liquid crystal panel, liquid crystal television, liquid crystal display device, and manufacturing method of polarizing element
KR20100105484A (en) Optical film, retardation plate, elliptica polarizing plate, liquid crystal display device and compound
JP2015043073A (en) Retardation film, polarizing plate, and liquid crystal display device
JP4195252B2 (en) Method for stretching cellulose acylate film and method for producing retardation plate
JP6193192B2 (en) Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
TWI540366B (en) Optical compensation films
JP2002006138A (en) Optical compensation sheet and manufacturing method for the same
CN105122104A (en) Optical film, circularly polarizing plate and organic electroluminescent display device
JP2012519301A (en) Optical compensation film in which alignment in thickness direction of nematic liquid crystal compound in which two or more mesogens have a constant bond angle is a hybrid type, and method for producing the same
JP2007279477A (en) Liquid crystal element, its manufacturing method and liquid crystal display panel
JPH1062624A (en) Polarizing plate with wide angle of visibility
JP2007241037A (en) Polarizing element, its manufacturing method and liquid crystal display element
WO2002035263A1 (en) Polarizing plate comprising polymer film and polarizing membrane
JP4832796B2 (en) Optical compensation sheet, polarizing plate, and liquid crystal display device
JP2004054257A (en) Optical compensation sheet, its manufacturing method and polarizing plate and liquid crystal display device using the same
JPH10332933A (en) Optical anisotropic element
JP4637698B2 (en) Polarizing plate integrated optical compensation film and liquid crystal display device
JP4744232B2 (en) Optically anisotropic film, liquid crystal display device and compound used therefor
JP2006184646A (en) Optical compensation sheet, manufacturing method of same, and liquid crystal display device using same
JP2001100032A (en) Polarizing plate, elliptic polarizing plate and liquid crystal display device
JP4429122B2 (en) Optically anisotropic film, manufacturing method thereof, and liquid crystal display device
KR102126682B1 (en) Polarizing Element and use thereof
JP6543675B2 (en) Retardation film, polarizing plate and liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115