JP2007278955A - Analyzer for rotation vibration signal of rolling bearing, and rolling bearing manufacturing system - Google Patents

Analyzer for rotation vibration signal of rolling bearing, and rolling bearing manufacturing system Download PDF

Info

Publication number
JP2007278955A
JP2007278955A JP2006108199A JP2006108199A JP2007278955A JP 2007278955 A JP2007278955 A JP 2007278955A JP 2006108199 A JP2006108199 A JP 2006108199A JP 2006108199 A JP2006108199 A JP 2006108199A JP 2007278955 A JP2007278955 A JP 2007278955A
Authority
JP
Japan
Prior art keywords
bearing
vibration
signal
rolling bearing
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006108199A
Other languages
Japanese (ja)
Other versions
JP4912017B2 (en
Inventor
Tomoya Sakaguchi
智也 坂口
Mamoru Mizutani
守 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006108199A priority Critical patent/JP4912017B2/en
Publication of JP2007278955A publication Critical patent/JP2007278955A/en
Application granted granted Critical
Publication of JP4912017B2 publication Critical patent/JP4912017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzer of rotation vibration signals of a rolling bearing, permitting easy obtaining of the shape errors of component parts from a bearing oscillation waveform, without high level knowledge regarding influence due to the shape errors of the component parts acting on oscillation of the rolling bearing, thus giving expectation for improvement in the quality of bearing manufacturing and improvement in the estimated accuracy in the diagnosis of bearing abnormality. <P>SOLUTION: A measured signal input means 4 is provided for inputting a measured signal given, by measuring bearing oscillation due to a rotation swing of the rolling bearing 2. A condition storage means 5 is provided for storing operation conditions, internal specifications and measurement conditions of the rolling bearing 2. An analysis means 7 is provided for computing component part shape errors as one among the values of swelling of an inner ring raceway surface of the rolling bearing 2, swelling of an outer ring raceway surface, swelling of a rolling element, and the magnitude of the mutual of difference in the diameter of the rolling element from the measured signal input in the measured signal input means 4 in accordance with predetermined analysis rules 6, in response to the operating conditions, internal specifications and measurement conditions stored in the condition storage means 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、転がり軸受の回転振れ信号を分析して軸受構成部品の形状誤差を得る回転振れ信号分析装置およびこれを利用した転がり軸受生産システムに関する。   The present invention relates to a rotational runout signal analyzing apparatus for analyzing a rotational runout signal of a rolling bearing to obtain a shape error of a bearing component, and a rolling bearing production system using the same.

転がり軸受の構成部品が及ぼす軸受の回転精度への影響について,その周波数ならびに振幅比はともに明らかになっている(例えば、非特許文献)。
このような、対象とする運転条件における上記の軸受振動と構成部品単体の形状誤差との関係を利用し、構成部品毎に生じる特定の周波数の振動振幅値の変化を観察することで、加工工程の条件見直し等に利用することが提案されている(例えば、特許文献1「転がり軸受の音響検査装置」)。
Both the frequency and the amplitude ratio of the influence of the components of the rolling bearing on the rotational accuracy of the bearing have been clarified (for example, non-patent literature).
By utilizing the relationship between the above-described bearing vibration and the shape error of a single component under the target operating conditions, a change in the vibration amplitude value of a specific frequency that occurs for each component is observed. Has been proposed (for example, Patent Document 1 “Acoustic Inspection Device for Rolling Bearings”).

あるいは、回転を伴う機械での転がり軸受の寿命や異常の診断において、上記の転がり軸受の構成部品の形状誤差による軸受振動周波数の成分が、測定センサを含めた共振周波数の振幅変調成分として現れることを利用し、測定した振動波形をエンベロープ処理した後に周波数分析して、この振幅変調成分の大きさから、軸受交換時期の判定を行うことが提案されている(例えば、特許文献2「機械設備又は機器の異常診断方法及び異常診断装置。」)。
特開2000−171351号公報 特開2003−232674号公報 坂口智也・赤松良信,「玉軸受の振動シミュレーション」,NTNテクニカルジャーナル(NTN TECHNICAL JOURNAL ),No69,2001,P69−75)
Or, in the diagnosis of the life or abnormality of a rolling bearing in a machine with rotation, the bearing vibration frequency component due to the shape error of the components of the rolling bearing described above appears as an amplitude modulation component of the resonance frequency including the measurement sensor. It is proposed to perform a frequency analysis after envelope processing of the measured vibration waveform using the above and determine the bearing replacement time from the magnitude of this amplitude modulation component (for example, Patent Document 2 “Mechanical equipment or Device abnormality diagnosis method and apparatus ")).
JP 2000-171351 A JP 2003-232674 A Tomoya Sakaguchi, Yoshinobu Akamatsu, “Ball Bearing Vibration Simulation”, NTN TECHNICAL JOURNAL, No69, 2001, P69-75)

上記特許文献1,2の方法では、軸受の異常振動や、精度不良の構成部品がどの部品であるかの特定は可能であるが、構成部品の精度の特定は、上記の理論的な構成部品の精度と軸受振動の関係を利用して換算するか、または軸受を構成部品に分解して測定する必要がある。   In the methods of Patent Documents 1 and 2 above, it is possible to specify which component is the abnormal vibration of the bearing or the component with poor accuracy. However, the accuracy of the component is specified by the above theoretical component. It is necessary to carry out conversion using the relationship between the accuracy of the bearing and the vibration of the bearing, or to disassemble the bearing into components and measure it.

構成部品の形状誤差、例えば内輪軌道面のうねりの振幅を算出するためには、上記非特許文献1「玉軸受の振動シミュレーション」のように、センサーの向きがアキシアル方向とラジアル方向で異なり、また内輪回転と外輪回転とでも異なる。また、周波数だけでなく振動振幅に対する形状誤差への変換係数を把握して、形状誤差の絶対値に変換する必要がある。
このように、振動振幅から形状誤差振幅への変換は、転がり軸受の回転精度に及ぼす様々な要因を全て把握する必要がある。また、実際に変換作業を行うときにも、軸受の運転条件並びに測定条件から、問題となる周波数を決定し、かつその振幅を求め、最後に振幅比を用いて軸受構成部品の形状誤差に変換するという手順が必要になる。よって、難易度が高くかつ手間のかかる作業であった。
In order to calculate the shape error of the component parts, for example, the amplitude of the waviness of the inner ring raceway surface, the direction of the sensor differs between the axial direction and the radial direction as in Non-Patent Document 1 “Ball bearing vibration simulation”, and Different between inner ring rotation and outer ring rotation. Further, it is necessary to grasp not only the frequency but also the conversion coefficient to the shape error with respect to the vibration amplitude, and convert it into the absolute value of the shape error.
Thus, the conversion from the vibration amplitude to the shape error amplitude needs to grasp all the various factors that affect the rotation accuracy of the rolling bearing. Also, when actually performing the conversion work, determine the frequency in question from the bearing operating conditions and measurement conditions, find the amplitude, and finally convert it to the shape error of the bearing component using the amplitude ratio. The procedure to do is necessary. Therefore, it is a difficult and time-consuming work.

この発明の目的は、転がり軸受の振動に及ぼす構成部品の形状誤差の影響に関する高度な知識が無くても、軸受振動波形から構成部品の形状誤差を簡単に得ることができて、これにより、軸受製造品質の向上や、軸受異常診断の推定精度の向上が期待できる転がり軸受の回転振れ信号分析装置を提供することである。
この発明の他の目的は、この回転振れ信号分析装置を利用して軸受製造品質の向上が図れる転がり軸受生産システムを提供することである。
The object of the present invention is to easily obtain the shape error of the component from the bearing vibration waveform without the advanced knowledge about the influence of the shape error of the component on the vibration of the rolling bearing. It is an object of the present invention to provide a rolling bearing runout signal analyzer that can be expected to improve manufacturing quality and to improve bearing accuracy diagnosis estimation accuracy.
Another object of the present invention is to provide a rolling bearing production system capable of improving the bearing manufacturing quality using the rotational shake signal analyzing apparatus.

この発明の転がり軸受の回転振れ信号分析装置(1)は、転がり軸受(2)の回転振れによる軸受振動の測定信号を入力する測定信号入力手段(4)と、転がり軸受(2)の運転条件、内部諸元、および測定条件を記憶する条件記憶手段(5)と、この条件記憶手段(5)に記憶された運転条件、内部諸元、および測定条件に応じて、前記測定信号入力手段(4)に入力された測定信号から、前記転がり軸受(2)の内輪軌道面のうねり、外輪軌道面のうねり、転動体のうねり、および転動体の直径相互差の大きさのうちの少なくとも一つの値である構成部品形状誤差を、所定分析規則(6)に従って算出する分析手段(7)とを備えることを特徴とする。
この構成によると、条件記憶手段(5)に記憶された運転条件、内部諸元、および測定条件に応じて、測定信号から、内輪軌道面のうねり、外輪軌道面のうねり、転動体のうねり、転動体の直径相互差等を所定分析規則に従って算出する分析手段(7)を設けたため、転がり軸受の振動に及ぼす構成部品の形状誤差の影響に関する知識がオペレータに無くても、軸受振動波形から構成部品の形状誤差を簡単に得ることができる。これにより、軸受製造品質の向上や、軸受異常診断の推定精度の向上が期待できる。
The rolling bearing rotational vibration signal analyzing apparatus (1) of the present invention includes a measurement signal input means (4) for inputting a bearing vibration measurement signal due to rotational vibration of the rolling bearing (2), and operating conditions of the rolling bearing (2). , Condition storage means (5) for storing the internal specifications and measurement conditions, and the measurement signal input means (in accordance with the operating conditions, internal specifications and measurement conditions stored in the condition storage means (5)) 4) From the measurement signal input to 4), at least one of the swell of the inner ring raceway surface, the swell of the outer ring raceway surface, the swell of the rolling element, and the diameter difference between the rolling elements of the rolling bearing (2). Analyzing means (7) for calculating a component part shape error as a value according to a predetermined analysis rule (6).
According to this configuration, according to the operating conditions, internal specifications and measurement conditions stored in the condition storage means (5), from the measurement signal, the inner ring raceway swell, the outer ring raceway swell, the rolling element swell, Since the analysis means (7) for calculating the diameter difference of the rolling elements in accordance with a predetermined analysis rule is provided, even if the operator has no knowledge about the influence of the shape error of the component parts on the vibration of the rolling bearing, it is constructed from the bearing vibration waveform. The shape error of the part can be easily obtained. Thereby, improvement of bearing manufacturing quality and the estimation accuracy of bearing abnormality diagnosis can be expected.

前記測定信号は、転がり軸受(2)の回転振れによる軸受振動の変位に換算できる信号であれば良く、変位を直接に示す振幅信号に限らず、加速度または速度の信号であっても良い。 また、前記分析手段(7)として、周波数分析により構成部品の形状誤差を求める手段が採用できる。その場合、前記分析手段(7)およびその所定分析規則(6)は、例えば次の各構成する。   The measurement signal only needs to be a signal that can be converted into the displacement of the bearing vibration due to the rotational vibration of the rolling bearing (2), and is not limited to the amplitude signal that directly indicates the displacement but may be an acceleration or speed signal. Further, as the analyzing means (7), means for obtaining the shape error of the component by frequency analysis can be adopted. In this case, the analysis means (7) and the predetermined analysis rule (6) are configured as follows, for example.

前記測定信号が軸受振動の変位を測定した波形の振幅信号である場合、前記分析手段の前記所定分析規則(6)は、種々の運転条件、内部諸元、および測定条件に対応する軸受振動の周波数成分中の分析対象とする周波数と、その分析対象周波数における振動振幅の前記構成部品形状誤差に対する比である振幅比とを定めた振動分析テーブル(27)を有するものとする。前記分析手段(7)は、前記測定信号入力手段に入力された測定信号をフーリェ変換して周波数成分毎の振幅信号を得るフーリェ変換手段(17)と、前記条件記憶手段(5)に記憶された運転条件、内部諸元、および測定条件を前記振動分析テーブル(27)と照合して分析対象周波数を決定し、前記フーリェ変換手段(17)で得た周波数成分毎の振幅信号のうち、決定された分析対象周波数の成分の振幅信号を選択してその選択した振幅信号の振幅に対応する構成部品形状誤差を、前記振動分析テーブル(27)と照合して求める形状誤差算出手段(19)とを有するものとする。   When the measurement signal is an amplitude signal of a waveform obtained by measuring the displacement of the bearing vibration, the predetermined analysis rule (6) of the analysis means is that the bearing vibration corresponding to various operating conditions, internal specifications, and measurement conditions. It is assumed that a vibration analysis table (27) defining a frequency to be analyzed in the frequency component and an amplitude ratio that is a ratio of the vibration amplitude at the analysis target frequency to the component shape error is provided. The analysis means (7) is stored in the Fourier transform means (17) for obtaining the amplitude signal for each frequency component by performing Fourier transform on the measurement signal input to the measurement signal input means, and the condition storage means (5). The operating conditions, internal specifications, and measurement conditions are collated with the vibration analysis table (27) to determine the frequency to be analyzed, and the amplitude signal for each frequency component obtained by the Fourier transform means (17) is determined. A shape error calculating means (19) for selecting the amplitude signal of the component of the frequency to be analyzed and obtaining a component part shape error corresponding to the amplitude of the selected amplitude signal with the vibration analysis table (27); It shall have.

転がり軸受(2)において、運転条件、内部諸元、および測定条件に対応する軸受振動について、分析対象とすべき周波数と、その周波数における振動振幅の、構成部品形状誤差に対する振幅比の関係が、玉軸受において明らかになっている。
そのため、このような関係を所定分析規則(6)として振動分析テーブル(27)に設定しておいて、測定信号をフーリェ変換し、振動分析テーブル(27)との照合により分析対象周波数を決定して、前記フーリェ変換手段(17)で得た周波数成分毎の振幅信号のうち、決定された分析対象周波数の成分の振幅を求め、この振幅を前記振動分析テーブル(27)と照合することで、構成部品形状誤差を求めることができる。
このように、各種条件、分析対象周波数、およびその周波数に対応する振動振幅と形状誤差の振幅比の関係を設定した振動分析テーブル(27)を設けておき、形状誤差算出手段(19)は、上記振動分析テーブル(27)と照合して分析対象周波数の決定、および振動振幅に対応する形状誤差の計算を行うものとしたため、オペレータが、転がり軸受(2)の振動に及ぼす構成部品の形状誤差の影響に関する知識が無くても、構成部品の形状誤差を得ることができる。
In the rolling bearing (2), for the bearing vibration corresponding to the operating conditions, internal specifications, and measurement conditions, the relationship between the frequency to be analyzed and the amplitude ratio of the vibration amplitude at that frequency to the component shape error is as follows: This is evident in ball bearings.
Therefore, such a relationship is set in the vibration analysis table (27) as a predetermined analysis rule (6), the measurement signal is subjected to Fourier transform, and the analysis target frequency is determined by collation with the vibration analysis table (27). Then, the amplitude of the component of the determined analysis target frequency is obtained from the amplitude signal for each frequency component obtained by the Fourier transform means (17), and this amplitude is collated with the vibration analysis table (27). The component shape error can be obtained.
As described above, the vibration analysis table (27) in which the relationship between the various conditions, the analysis target frequency, and the relationship between the vibration amplitude corresponding to the frequency and the amplitude ratio of the shape error is provided, and the shape error calculating means (19) Since the determination of the frequency to be analyzed and the calculation of the shape error corresponding to the vibration amplitude are performed by collating with the vibration analysis table (27), the operator has the shape error of the component parts affecting the vibration of the rolling bearing (2). Even if there is no knowledge about the influence of the component, the shape error of the component can be obtained.

前記測定信号が加速度または速度の信号である場合、上記分析手段(7)は、例えば次の構成とされる。この場合、分析手段(7)の所定分析規則(6)として前記と同じ振動分析テーブル(27)を有するものとする。前記分析手段(7)は、前記と同じく、フーリェ変換手段(17)と形状誤差算出手段(19)とを有するものとする。この場合のフーリェ変換手段(17)は、前記測定信号入力手段(4)に入力された測定信号をフーリェ変換して周波数成分毎の加速度または速度信号を得るものとする。前記形状誤差算出手段(19)は、前記条件記憶手段(5)に記憶された運転条件、内部諸元、および測定条件を前記振動分析テーブル(27)と照合して分析対象周波数を決定し、この決定された分析対象周波数成分の信号を周波数で除算する積分処理を行って振幅信号とし、この振幅信号の振幅に対応する構成部品形状誤差を、前記振動分析テーブル(27)と照合して求めるものとする。
測定信号が加速度または速度の信号である場合は、周波数分析後に、周波数で除算する積分処理を行えば、振幅が求められるため、前記と同じ振動分析テーブル(27)を用いて、構成部品の形状誤差の大きさの算出が可能となる。
When the measurement signal is an acceleration or velocity signal, the analysis means (7) has the following configuration, for example. In this case, it is assumed that the vibration analysis table (27) is the same as the predetermined analysis rule (6) of the analysis means (7). The analysis means (7) has a Fourier transform means (17) and a shape error calculation means (19) as described above. In this case, the Fourier transform means (17) performs Fourier transform on the measurement signal input to the measurement signal input means (4) to obtain an acceleration or velocity signal for each frequency component. The shape error calculation means (19) collates the operating conditions, internal specifications and measurement conditions stored in the condition storage means (5) with the vibration analysis table (27) to determine the analysis target frequency, An integration process is performed to divide the signal of the determined frequency component to be analyzed by the frequency to obtain an amplitude signal, and a component part shape error corresponding to the amplitude of the amplitude signal is obtained by collating with the vibration analysis table (27). Shall.
When the measurement signal is an acceleration or velocity signal, the amplitude can be obtained by performing an integration process that divides by the frequency after the frequency analysis. Therefore, by using the same vibration analysis table (27) as described above, the shape of the component is obtained. The magnitude of the error can be calculated.

この発明において、前記条件記憶手段(5)に記憶された運転条件、内部諸元、および測定条件に応じて、前記測定信号入力手段に入力された測定信号の周波数分析結果から、転がり軸受の内部の形状誤差に起因する全ての周波数成分の振幅の和を前記転がり軸受(2)の非同期回転振れとして算出する非同期振れ算出手段(29)を設けても良い。
軸受単体で非同期回転振れを測定する場合にも、記憶させた運転条件、内部諸元、および測定条件に応じて、周波数分析により所定算出規則に従って転がり軸受(2)の非同期回転振れを算出するようにすれば、オペレータによる詳しい知識が無くても、非同期回転振れを算出することができる。
In the present invention, from the frequency analysis result of the measurement signal input to the measurement signal input means according to the operating conditions, internal specifications, and measurement conditions stored in the condition storage means (5), the inside of the rolling bearing Asynchronous shake calculation means (29) may be provided for calculating the sum of the amplitudes of all frequency components resulting from the shape error as the asynchronous rotational shake of the rolling bearing (2).
Even when measuring the asynchronous rotational runout of a single bearing, the asynchronous rotational runout of the rolling bearing (2) is calculated according to a predetermined calculation rule by frequency analysis according to the stored operating conditions, internal specifications, and measurement conditions. As a result, the asynchronous rotational shake can be calculated without detailed knowledge by the operator.

前記非同期振れ算出手段(29)の前記所定算出規則は、回転輪の回転角を基準に振れ信号波形を複数回分重ね書きし、各位相での重ね書きされた波形群の最大値と最小値の差を全て求め、この差が最大となる位相での値を非同期回転振れとして算出するものとしても良い。重ね書き手法を用いると、非同期回転振れの算出が、簡易なプログラムによって計算することができる。   The predetermined calculation rule of the asynchronous shake calculating means (29) is that the shake signal waveform is overwritten a plurality of times based on the rotation angle of the rotating wheel, and the maximum value and the minimum value of the overwritten waveform group in each phase are set. It is also possible to obtain all the differences and calculate the value at the phase where the difference is the maximum as the asynchronous rotational shake. When the overwriting method is used, the calculation of the asynchronous rotational shake can be performed by a simple program.

この発明の生産システムは、転がり軸受を製造する生産システムであって、この発明の上記いずれか構成の転がり軸受の回転振れ信号分析装置(1)と、この装置(1)で得た構成部品形状誤差を、前記転がり軸受(2)の内輪、外輪、および転動体のうちの前記構成部品形状誤差に対応する構成部品の製造するライン(31,…)における加工工程にフィードバックする手段(40)とを備えることを特徴とする。
この発明の回転振れ信号分析装置(1)は、構成部品形状誤差値を自動的に計算することができるため、その計算された構成部品形状誤差値を加工工程にフィードバックすることができ、これにより、軸受製造品質の向上を図ることができる。
The production system of the present invention is a production system for manufacturing a rolling bearing, and the rolling shake signal analyzing device (1) of the rolling bearing having any one of the configurations of the present invention and the component shape obtained by the device (1) Means (40) for feeding back an error to a machining step in a line (31,...) For producing a component corresponding to the component shape error of the inner ring, outer ring, and rolling element of the rolling bearing (2); It is characterized by providing.
Since the rotational shake signal analyzing apparatus (1) of the present invention can automatically calculate the component shape error value, the calculated component shape error value can be fed back to the machining process. The bearing manufacturing quality can be improved.

この発明の転がり軸受の回転振れ信号分析装置は、転がり軸受の回転振れによる軸受振動の測定信号を入力する測定信号入力手段と、転がり軸受の運転条件、内部諸元、および測定条件を記憶する条件記憶手段と、この条件記憶手段に記憶された運転条件、内部諸元、および測定条件に応じて、前記測定信号入力手段に入力された測定信号から、前記転がり軸受の内輪軌道面のうねり、外輪軌道面のうねり、転動体のうねり、および転動体の直径相互差の大きさのうちの少なくとも一つの値である構成部品形状誤差を、所定分析規則に従って算出する分析手段とを備えるため、転がり軸受の振動に及ぼす構成部品の形状誤差の影響に関する知識が無くても、軸受振動波形から構成部品の形状誤差を簡単に得ることができる。これにより、軸受製造品質の向上や、軸受異常診断の推定精度の向上が期待できる。
この発明の転がり軸受の生産シスタムは、この発明の転がり軸受の回転振れ信号分析装置と、この装置で得た構成部品形状誤差を、前記転がり軸受の内輪、外輪、および転動体のうちの前記構成部品形状誤差に対応する構成部品を製造するラインにおける加工工程にフィードバックする手段とを備えるため、この発明の回転振れ信号分析装置を利用して軸受製造品質の向上を図ることができる。
The rolling bearing rotational vibration signal analyzing apparatus of the present invention includes a measurement signal input means for inputting a bearing vibration measurement signal due to the rotational vibration of the rolling bearing, and conditions for storing the operating conditions, internal specifications, and measurement conditions of the rolling bearing. From the measurement signal input to the measurement signal input means according to the operating conditions, internal specifications and measurement conditions stored in the storage means, the swell of the inner ring raceway surface of the rolling bearing, the outer ring The rolling bearing comprises: an analyzing means for calculating a component shape error, which is at least one of the swell of the raceway surface, the swell of the rolling element, and the size of the diameter difference between the rolling elements, according to a predetermined analysis rule. Even if there is no knowledge about the effect of the shape error of the component on the vibration of the bearing, the shape error of the component can be easily obtained from the bearing vibration waveform. Thereby, improvement of bearing manufacturing quality and the estimation accuracy of bearing abnormality diagnosis can be expected.
A rolling bearing production system according to the present invention includes a rolling runout signal analyzing device for a rolling bearing according to the present invention and a component shape error obtained by the device, the configuration of the inner ring, outer ring, and rolling element of the rolling bearing. Means for feeding back to a machining process in a line for manufacturing a component corresponding to a part shape error, the rotational shake signal analyzer of the present invention can be used to improve bearing manufacturing quality.

この発明の第1の実施形態を図1および図2に基づいて説明する。この転がり軸受の回転振れ信号分析装置1は、コンピュータとこれに実行させる数値処理プログラム等によって構成され、次の各手段を有するものとされる。   A first embodiment of the present invention will be described with reference to FIGS. The rolling bearing runout signal analyzing apparatus 1 includes a computer and a numerical processing program executed by the computer, and includes the following units.

この回転振れ信号分析装置1は、転がり軸受2の回転振れの変位を測定した波形の測定信号aを入力する測定信号入力手段4と、転がり軸受2の運転条件、内部諸元、および測定条件を記憶する条件記憶手段5と、この条件記憶手段5に記憶された運転条件、内部諸元、および測定条件に応じて、測定信号入力手段4に入力された測定信号aから、転がり軸受2の内輪軌道面のうねり、外輪軌道面のうねり、転動体のうねり、および転動体の直径相互差の大きさのうちの少なくとも一つの値である構成部品形状誤差を、所定分析規則6に従って算出する分析手段7とを備える。なお、軌道面のうねりは、軌道面の円周方向の各部で径方向に凹凸していることを言う。   This rotational shake signal analyzing apparatus 1 includes a measurement signal input means 4 for inputting a measurement signal a having a waveform obtained by measuring the displacement of the rotational shake of the rolling bearing 2, and operating conditions, internal specifications, and measurement conditions of the rolling bearing 2. The condition storage means 5 to be stored and the inner ring of the rolling bearing 2 from the measurement signal a input to the measurement signal input means 4 according to the operating conditions, internal specifications and measurement conditions stored in the condition storage means 5 Analyzing means for calculating a component part shape error, which is at least one of the swell of the raceway surface, the swell of the outer ring raceway surface, the swell of the rolling element, and the diameter difference between the rolling elements, according to a predetermined analysis rule 6. 7. In addition, the waviness of a raceway surface means that it is uneven | corrugated to radial direction in each part of the circumferential direction of a raceway surface.

転がり軸受2は、例えば図6に示す深溝玉軸受などの玉軸受であり、内輪8と、外輪9と、これら内外輪8,9の軌道面8a,9a間に介在したボール等からなる複数の転動体10と、これら転動体10を保持する保持器11と、内外輪8,9間の軸受空間の両端を密封するシール12とで構成される。   The rolling bearing 2 is, for example, a ball bearing such as a deep groove ball bearing shown in FIG. The rolling elements 10, a cage 11 that holds the rolling elements 10, and a seal 12 that seals both ends of the bearing space between the inner and outer rings 8 and 9 are configured.

図1において、回転振れ測定手段3は、例えば、外輪固定、内輪回転として外輪のラジアル振れの変位を変位センサ(図示せず)で測定するものであり、転がり軸受1の外輪を固定する手段、内輪を回転させる手段、および外輪の周面に対向する前記変位センサにより構成される。変位センサには、例えば静電容量型の変位センサが用いられる。   In FIG. 1, the rotational runout measuring means 3 measures, for example, a displacement of a radial runout of the outer ring by a displacement sensor (not shown) as outer ring fixation and inner ring rotation, and means for fixing the outer ring of the rolling bearing 1, It comprises the means for rotating the inner ring and the displacement sensor facing the peripheral surface of the outer ring. For example, a capacitance type displacement sensor is used as the displacement sensor.

回転振れ測定手段3の変位センサの出力であるアナログ信号の測定信号aは、AD変換手段13によりディジタル信号に変換してから、回転振れ信号分析装置1の測定信号入力手段4に入力される。ディジタル信号に変換した測定信号aは、図2に示すように、回転振れ信号分析装置1の外部の回転振れ変位測定結果記憶手段13に一旦データファイルとして記憶させておき、そのデータファイルを転送して測定信号入力手段4により読み込むようにしても良い。また、測定信号aは、アナログ信号のままで測定信号入力手段4に入力するようにしても良いが、その場合、回転振れ信号分析装置1に、測定信号入力手段4に入力された信号をディジタル信号に変換するAD変換手段14を設ける。   The analog measurement signal a which is the output of the displacement sensor of the rotational shake measuring means 3 is converted into a digital signal by the AD converting means 13 and then input to the measurement signal input means 4 of the rotational shake signal analyzing apparatus 1. The measurement signal a converted into a digital signal is temporarily stored as a data file in the rotational shake displacement measurement result storage means 13 outside the rotational shake signal analyzer 1 as shown in FIG. 2, and the data file is transferred. Then, it may be read by the measurement signal input means 4. Further, the measurement signal a may be input to the measurement signal input unit 4 as an analog signal, but in this case, the signal input to the measurement signal input unit 4 is digitally input to the rotational shake signal analyzer 1. AD conversion means 14 for converting the signal is provided.

測定信号入力手段4は、ディジタル信号用の入力ポート、またはデータファイルの入力手段、またはアナログ信号用の入力ポートのいずれかとされ、またはこれらのうちの複数種類のものを選択的に使用可能なものとされる。
回転振れ測定手段3の出力する測定信号aは、振幅信号に限らず、速度または加速度の信号であっても良いが、この実施形態では、測定信号aが転がり軸受2の回転振れの変位を測定した振幅信号である場合につき説明する。
The measurement signal input means 4 is either an input port for a digital signal, an input means for a data file, or an input port for an analog signal, or a plurality of types of these can be selectively used. It is said.
The measurement signal a output from the rotational shake measuring means 3 is not limited to an amplitude signal, but may be a speed or acceleration signal. In this embodiment, the measurement signal a measures the displacement of the rotational shake of the rolling bearing 2. A case where the amplitude signal is the same will be described.

分析手段7は、周波数分析により形状誤差を算出する手段であり、フーリェ変換手段17と、形状誤差算出手段19とを備える。測定信号aは、AD変換手段14で離散化と量子化され、測定信号入力手段4からフーリェ変換手段17に入力される。測定信号入力手段4に測定信号aがアナログ信号で入力される場合は、回転振れ信号分析装置1の内部のAD変換手段14でディジタル信号に変換してフーリェ変換手段17に入力する。
フーリェ変換手段17は、周波数成分毎の振幅信号に変換する手段である。ここで、フーリェ変換手段17の前段に、窓関数やバンドパスフィルタなど、S/N比を改善するための前処理手段18を設けても良い。
The analysis unit 7 is a unit that calculates a shape error by frequency analysis, and includes a Fourier transform unit 17 and a shape error calculation unit 19. The measurement signal a is discretized and quantized by the AD conversion means 14 and input from the measurement signal input means 4 to the Fourier transform means 17. When the measurement signal a is input as an analog signal to the measurement signal input means 4, it is converted into a digital signal by the AD conversion means 14 inside the rotational shake signal analyzer 1 and input to the Fourier conversion means 17.
The Fourier transform means 17 is a means for converting into an amplitude signal for each frequency component. Here, a pre-processing means 18 for improving the S / N ratio, such as a window function or a band-pass filter, may be provided before the Fourier transform means 17.

条件記憶手段5は、上記のように転がり軸受2の運転条件、測定条件、軸受諸元を記憶させておく。運転条件は、例えば、内輪回転と外輪回転の区別、回転速度等である。軸受諸元は、ピッチ円径,転動体径,接触角など,転動体の自転と公転速度を決定できる指標となる値である。測定条件は、回転振れ変位測定手段3の軸受振動を検出するセンサの方向(アキシアル方向とラジアル方向の区別)、センサの種類(変位/速度/加速度,センサの物理量に対する電圧の変換係数)等である。これらの条件は、条件入力手段16から入力しておく。条件入力手段16は、キーボード等のオペレータによる入力手段であっても、また外部データの読み込み手段であっても良い。   The condition storage means 5 stores the operating conditions, measurement conditions, and bearing specifications of the rolling bearing 2 as described above. The operating conditions are, for example, distinction between inner ring rotation and outer ring rotation, rotation speed, and the like. The bearing specifications are values that can be used to determine the rotation speed and revolution speed of the rolling element, such as the pitch circle diameter, rolling element diameter, and contact angle. The measurement conditions are the direction of the sensor for detecting the bearing vibration of the rotational vibration displacement measuring means 3 (differentiation between the axial direction and the radial direction), the type of the sensor (displacement / speed / acceleration, conversion coefficient of voltage with respect to the physical quantity of the sensor), etc. is there. These conditions are input from the condition input means 16 in advance. The condition input means 16 may be an input means by an operator such as a keyboard, or may be an external data reading means.

分析手段7の上記所定分析規則19は、振動分析テーブル27で定められており、この振動分析テーブル27は、種々の運転条件、内部諸元、および測定条件に対応する軸受振動の周波数成分中の分析対象とする周波数と、その分析対象周波数における振動振幅の前記構成部品形状誤差に対する比である振幅比とを定めたものとされる。   The predetermined analysis rule 19 of the analysis means 7 is defined by a vibration analysis table 27. The vibration analysis table 27 is included in frequency components of bearing vibration corresponding to various operating conditions, internal specifications, and measurement conditions. The frequency to be analyzed and the amplitude ratio that is the ratio of the vibration amplitude at the frequency to be analyzed to the component shape error are defined.

形状誤差算出手段19は、条件記憶手段5に記憶された運転条件、内部諸元、および測定条件を、上記所定分析規則19の定められた振動分析テーブル27と照合して分析対象周波数を決定し、前記フーリェ変換手段17で得た周波数成分毎の振幅信号のうち、決定された分析対象周波数の成分の振幅信号を選択する周波数成分選択部20と、その選択した振幅信号の振幅に対応する構成部品形状誤差を、前記振動分析テーブル27と照合して求める形状誤差算出部21とで構成される。   The shape error calculation means 19 collates the operating conditions, internal specifications, and measurement conditions stored in the condition storage means 5 with the vibration analysis table 27 defined in the predetermined analysis rule 19 to determine the analysis target frequency. The frequency component selection unit 20 for selecting the amplitude signal of the component of the frequency to be analyzed among the amplitude signals for each frequency component obtained by the Fourier transform means 17, and the configuration corresponding to the amplitude of the selected amplitude signal The shape error calculating unit 21 is configured to obtain a component shape error by collating with the vibration analysis table 27.

振動分析テーブル27は、振動シミュレーションの結果、または振動測定による結果を纏め、前記各種条件等に応じて特定周波数の振幅比に対応する構成部品形状誤差形状が示されたものであれば良いが、具体例を挙げると、転がり軸受2が玉軸受の場合、表1に示すものとされる。
この表1は、前述の非特許文献1に示された表であって、玉軸受について、転動体と軌道面の弾性接触部における非線型接触を仮想の線ばねに置き換えて計算した振動シミュレーションの結果を纏めたものであり、内輪回転,外輪静止下の玉軸受における構成要素の形状誤差と振動の関係を示す。外輪回転の場合は、別の表(図示せず)を用いる。
The vibration analysis table 27 may be any table as long as the result of vibration simulation or the result of vibration measurement is summarized and the component shape error shape corresponding to the amplitude ratio of the specific frequency is indicated according to the various conditions. If a specific example is given, when the rolling bearing 2 is a ball bearing, it will be shown in Table 1.
This Table 1 is a table shown in the above-mentioned Non-Patent Document 1, and for a ball bearing, a vibration simulation calculated by replacing the non-linear contact in the elastic contact portion between the rolling element and the raceway surface with a virtual wire spring. The results are summarized and the relationship between the shape error and vibration of the components in ball bearings with inner ring rotation and outer ring stationary is shown. In the case of outer ring rotation, another table (not shown) is used.

Figure 2007278955
Figure 2007278955

表1において、各変数ないし定数は次の事項を示す。
b :玉の自転周波数,Hz
c :保持器の自転周波数,Hz
i :保持器に対する内輪の相対回転周波数(fr −fc ),Hz
r :内輪回転周波数,Hz
n:任意の自然数
Z:転動体(玉)の数
α:接触角
In Table 1, each variable or constant indicates the following.
f b : Ball rotation frequency, Hz
f c : rotation frequency of cage, Hz
f i : Relative rotation frequency of inner ring with respect to cage (f r −f c ), Hz
f r : Inner ring rotation frequency, Hz
n: Arbitrary natural number Z: Number of rolling elements (balls) α: Contact angle

表1を用いた計算手法を説明すると、ラジアル方向の振動測定結果から内輪軌道のうねりを求める場合、振動分析すべき周波数は、nZfi ±fr であり、fi (保持器に対する内輪の相対回転周波数)はfr −fc であるから、表1を用いる条件である内輪回転であること、センサの方向の他、n,Z,fc ,fr の値がわかれば良い。
このうち、内輪回転であることは、軸受運転条件からわかり、センサの方向は測定条件からわかる。また、Z(玉数)は、軸受諸元から、fc (保持器の自転周波数),fr (内輪回転周波数)は、運転条件における回転速度と軸受諸元とから定まる。nは任意の自然数であり、どの値とするかは周波数成分選択部20に適宜設定しておく。
周波数成分選択部20は、このように、振動分析テーブル27となる表1から、分析すべき周波数を決定する。
The calculation method using Table 1 will be explained. When the waviness of the inner ring raceway is obtained from the vibration measurement result in the radial direction, the frequency to be analyzed for vibration is nZf i ± f r and f i (relative of the inner ring to the cage). since the rotation frequency) is f r -f c, it is the inner ring rotation, which is the conditions used in Table 1, the other direction of the sensor, n, Z, f c, may know the value of f r.
Of these, the inner ring rotation is known from the bearing operating conditions, and the sensor direction is known from the measurement conditions. Z (the number of balls) is determined from the bearing specifications, and f c (rotation frequency of the cage) and f r (inner ring rotation frequency) are determined from the rotational speed and the bearing specifications under the operating conditions. n is an arbitrary natural number, and which value is set in the frequency component selection unit 20 as appropriate.
Thus, the frequency component selection unit 20 determines the frequency to be analyzed from Table 1 which is the vibration analysis table 27.

形状誤差算出部21は、フーリェ変換手段17で得た周波数成分毎の振幅信号のうち、上記のように周波数成分選択部20で決定した周波数成分についての振動の振幅値に対して、表1の該当する振幅比(上記の計算手法の例では「1」)で除算し、内輪軌道のうねりを求める。   The shape error calculation unit 21 calculates the amplitude value of the vibration of the frequency component determined by the frequency component selection unit 20 as described above from the amplitude signal for each frequency component obtained by the Fourier transform unit 17 as shown in Table 1. Divide by the corresponding amplitude ratio (“1” in the above calculation method example) to determine the waviness of the inner ring track.

形状誤差算出手段19は、上記と同様に表1を用いて、内輪軌道のうねりの他に、外輪軌道のうねり、玉の直径誤差、玉のうねりを求める。なお、形状誤差算出手段19は、これらの構成部品形状誤差である、内輪軌道のうねり、外輪軌道のうねり、玉の直径誤差、玉のうねりにつき、必ずしも全てを求めるものでなくても良く、少なくとも一つを求めるものであれば良い。   The shape error calculation means 19 uses Table 1 in the same manner as described above to obtain the swell of the outer ring raceway, the ball diameter error, and the swell of the ball in addition to the swell of the inner ring raceway. The shape error calculating means 19 may not necessarily obtain all of these component part shape errors, such as the inner ring raceway swell, outer ring raceway swell, ball diameter error, and ball swell. Anything that seeks one is acceptable.

なお、軸受のラジアル内部すきまや荷重の大きさにより、振動周波数が計算上の値から僅かに異なる場合があるため、形状誤差算出手段19の周波数成分選択部20は、計算上の周波数近傍で周波数スペクトルのピーク検出機能を持たせ、これによる振幅を代表値して形状誤差算出部21により形状誤差を算出するようにしても良い。   Since the vibration frequency may be slightly different from the calculated value depending on the radial internal clearance of the bearing and the load, the frequency component selecting unit 20 of the shape error calculating means 19 has a frequency near the calculated frequency. A spectrum peak detection function may be provided, and the shape error may be calculated by the shape error calculation unit 21 using the amplitude obtained as a representative value.

形状誤差算出手段19は、このように求めた誤差を、出力手段23により、液晶表示装置やブラウン管等の画面表示装置24に出力する。   The shape error calculation means 19 outputs the error thus obtained to the screen display device 24 such as a liquid crystal display device or a cathode ray tube by the output means 23.

判定手段22は、形状誤差算出手段19の形状誤差算出部21の出力となる内輪軌道のうねり等の算出結果を設定値と比較し、異常有無の判定を行う手段である。例えば、選出された内輪軌道のうねりが閾値を超えると、異常と判定するものとする。あるいは、複数段階の閾値を設定し、第1の閾値未満は推奨範囲、第1の閾値を超え、第2の閾値までの間は要注意範囲、第2の閾値異常は異常範囲として判定するものとしても良い。   The determination unit 22 is a unit that compares the calculation result such as the waviness of the inner ring raceway, which is the output of the shape error calculation unit 21 of the shape error calculation unit 19, with a set value to determine whether there is an abnormality. For example, when the swell of the selected inner ring raceway exceeds a threshold value, it is determined that it is abnormal. Alternatively, a plurality of thresholds are set, and a value less than the first threshold is determined as a recommended range, a value exceeding the first threshold, a range requiring attention until the second threshold, and a second threshold abnormality determined as an abnormal range It is also good.

このような形状誤差算出手段19による形状誤差の算出結果や、判定手段22の判定結果は、出力手段23により、表示装置24に表示させる他に、分析結果記憶手段25に記憶させるようにしても良く、また加工設備26に転送して加工設備26における各部の調整等のためのフィードバック信号として用いるようにしても良い。   The calculation result of the shape error by the shape error calculation unit 19 and the determination result of the determination unit 22 are displayed on the display unit 24 by the output unit 23 and stored in the analysis result storage unit 25. Alternatively, it may be transferred to the processing equipment 26 and used as a feedback signal for adjusting each part in the processing equipment 26.

この構成の回転振れ信号分析装置によると、このように、条件記憶手段5に記憶された運転条件、内部諸元、および測定条件に応じて、測定信号から、内輪軌道面のうねり、外輪軌道面のうねり、転動体のうねり、転動体の直径相互差等を所定分析規則に従って算出する分析手段7を設けたため、転がり軸受2の振動に及ぼす構成部品の形状誤差の影響に関する高度な知識がオペレータに無くても、軸受振動波形から構成部品の形状誤差を簡単に得ることができる。また、各種の換算や、軸受構成部品を単体に分解して測定するなどの煩雑な作業を行うことなく、軸受構成部品の形状誤差を求めることができる。これにより、軸受製造品質の向上や、軸受異常診断の推定精度の向上が期待できる。   According to the rotational shake signal analyzing apparatus having this configuration, the inner ring raceway swell, the outer ring raceway surface, and the like from the measurement signal in accordance with the operating conditions, internal specifications, and measurement conditions stored in the condition storage unit 5 as described above. The analysis means 7 for calculating the undulation of the rolling element, the undulation of the rolling element, the difference between the diameters of the rolling elements, etc. according to a predetermined analysis rule is provided. Even without it, the shape error of the component can be easily obtained from the bearing vibration waveform. Further, the shape error of the bearing component can be obtained without performing various conversions and complicated operations such as disassembling and measuring the bearing component. Thereby, improvement of bearing manufacturing quality and the estimation accuracy of bearing abnormality diagnosis can be expected.

図3は、この発明の他の実施形態を示す。第1の実施形態は、回転振れ測定手段3が振幅信号を測定するものである場合につき説明したが、回転振れ測定手段3は、転がり軸受2の回転振れの加速度または速度の信号を出力するものであっても良い。その場合、分析手段7は、図3に示すように、積分手段28を設け、周波数分析後に周波数で除算する積分処理を行うものとする。これにより、各軸受構成部品の形状誤差の大きさを算出可能になる。   FIG. 3 shows another embodiment of the present invention. Although the first embodiment has been described with respect to the case where the rotational shake measuring means 3 measures the amplitude signal, the rotational shake measuring means 3 outputs a rotational shake acceleration or speed signal of the rolling bearing 2. It may be. In this case, as shown in FIG. 3, the analysis unit 7 is provided with an integration unit 28, and performs an integration process of dividing by frequency after frequency analysis. Thereby, the magnitude of the shape error of each bearing component can be calculated.

この場合、分析手段7の所定分析規則6として前記と同じ振動分析テーブル27を有するものとし、また前記と同じく、フーリェ変換手段17と形状誤差算出手段19とを有するものとする。ただし、この場合のフーリェ変換手段17は、測定信号入力手段4に入力された測定信号をフーリェ変換して周波数成分毎の加速度または速度信号を得るものとする。形状誤差算出手段19は、周波数成分選択部20により、前記条件記憶手段5に記憶された運転条件、内部諸元、および測定条件を前記振動分析テーブル27と照合して分析対象周波数を決定する。この決定された分析対象周波数成分の信号を、周波数で除算する積分処理を、前記積分手段28で行って振幅信号とする。形状誤差算出27は、この振幅信号の振幅に対応する構成部品形状誤差を、振動分析テーブル27と照合して求める。
測定信号が加速度または速度の信号である場合は、周波数分析後に、周波数で除算する積分処理を行えば、振幅が求められるため、前記と同じ振動分析テーブル27を用いて、構成部品の形状誤差の大きさの算出が可能となる。
In this case, it is assumed that the predetermined analysis rule 6 of the analysis means 7 has the same vibration analysis table 27 as described above, and also has the Fourier transform means 17 and the shape error calculation means 19 as described above. However, in this case, the Fourier transform means 17 performs Fourier transform on the measurement signal input to the measurement signal input means 4 to obtain an acceleration or velocity signal for each frequency component. The shape error calculation means 19 uses the frequency component selection unit 20 to collate the operating conditions, internal specifications, and measurement conditions stored in the condition storage means 5 with the vibration analysis table 27 and determine the analysis target frequency. The integration process for dividing the determined frequency component signal to be analyzed by the frequency is performed by the integration means 28 to obtain an amplitude signal. The shape error calculation 27 obtains the component part shape error corresponding to the amplitude of the amplitude signal by collating with the vibration analysis table 27.
When the measurement signal is an acceleration or velocity signal, the amplitude can be obtained by performing an integration process that divides by the frequency after the frequency analysis. Therefore, by using the same vibration analysis table 27 as described above, the shape error of the component part can be obtained. The size can be calculated.

図4は、この発明のさらに他の実施形態を示す。この実施形態は、図1,図2に示す第1の実施形態において、非同期回転振れ算出手段29を設けたものである。非同期回転振れ(いわゆるNRRO)は、転がり軸受2の前記内輪軌道うねり等の各種の構成要素の製造誤差により発生するものとされており、許容値以下に管理する必要がある。非同期回転振れ算出手段29は、条件記憶手段5に記憶された運転条件、内部諸元、および測定条件に応じて、前記測定信号入力手段4に入力された測定信号から、周波数分析により所定算出規則に従って転がり軸受2の非同期回転振れを算出する手段する手段である。非同期振れ算出手段29の前記所定算出規則は、内輪、外輪および転動体の形状誤差に起因する回転振れの全ての周波数の振幅の和を算出するものとされる。   FIG. 4 shows still another embodiment of the present invention. In this embodiment, an asynchronous rotational shake calculating means 29 is provided in the first embodiment shown in FIGS. Asynchronous rotational runout (so-called NRRO) is caused by manufacturing errors of various components such as the inner ring raceway swell of the rolling bearing 2 and needs to be managed below an allowable value. Asynchronous rotational shake calculation means 29 is a predetermined calculation rule by frequency analysis from the measurement signal input to measurement signal input means 4 according to the operating conditions, internal specifications, and measurement conditions stored in condition storage means 5. The means for calculating the asynchronous rotational runout of the rolling bearing 2 according to The predetermined calculation rule of the asynchronous shake calculation means 29 is to calculate the sum of the amplitudes of all the frequencies of the rotational shake caused by the shape error of the inner ring, the outer ring and the rolling element.

上記の周波数分析による転がり軸受の非同期回転振れを算出する手法以外に、回転振れ波形の重ね書きにより、非同期回転振れを算出する手法も一般に用いられる場合がある。軸受内部の形状誤差のみでなく、例えばグリースのちょう度や粘度の安定性や潤滑油中のゴミ量を推し量る場合に有効である。使用する測定信号が同じであることから、この重ね書きによる処理法を前記処理装置に併設してもよい。重ね書き法では、回転輪の位相を横軸に、縦軸に測定信号とし、複数回分の波形を重ね書きした場合の、各位相での重ね書きされた波形群の最大値と最小値の差を全て求め,この差が最大となる位相での値を転がり軸受の非同期回転振れとして、算出する機能を備えればよい。   In addition to the above-described method of calculating the asynchronous rotational shake of the rolling bearing by frequency analysis, a method of calculating the asynchronous rotational shake by overwriting the rotational shake waveform may be generally used. This is effective not only for determining the shape error inside the bearing but also for estimating the consistency and viscosity of the grease and the amount of dust in the lubricating oil. Since the measurement signals to be used are the same, this overwriting processing method may be provided in the processing apparatus. In the overwriting method, the phase of the rotating wheel is the horizontal axis and the vertical axis is the measurement signal, and when multiple waveforms are overwritten, the difference between the maximum value and minimum value of the overlaid waveform group at each phase. It is only necessary to have a function of calculating all of the above and calculating the value at the phase where the difference is maximum as the asynchronous rotational runout of the rolling bearing.

つぎに、この発明の転がり軸受の回転振れ信号分析装置を装備した転がり軸受の生産システムの一例を説明する。
図5は、回転振れ信号分析装置1を備えた転がり軸受製造ラインを示すブロック図である。この軸受製造ラインは、図6と共に前述した転がり軸受2を製造するものである。
Next, an example of a rolling bearing production system equipped with the rolling bearing rotational vibration signal analyzer of the present invention will be described.
FIG. 5 is a block diagram showing a rolling bearing production line provided with the rotational shake signal analyzing apparatus 1. This bearing manufacturing line manufactures the rolling bearing 2 described above with reference to FIG.

図5において、この軸受製造ラインは、軌道輪製造ライン部31、組立工程部32、洗浄工程部33、第1の検査工程部34、充填工程部35、第2の検査工程部36、および梱包部37を順に有し、この他に転動体準備部38および保持器準備部39を有する。転動体準備部38および保持器準備部39は、他のラインで製造された転動体10および保持器11を各々準備する準備部であるが、これら転動体10および保持器11を製造する製造ライン部であっても良い。軌道輪製造ライン部31は、1本のライン部のみを図示してあるが、2本設けられ、各々の軌道輪製造ライン部31で内外の軌道輪である内輪8および外輪9が各々製造される。これら軌道輪製造ライン部31は、内輪8または外輪9の概略形状に鍛造した軌道輪素材を準備する素材準備部31aと、旋削工程部31bと、熱処理工程部31cと、研削工程部31dとを順に有し、素材準備部31aで準備された鍛造品の素材を旋削し、熱処理し、その後に研削する。   In FIG. 5, this bearing production line includes a bearing ring production line section 31, an assembly process section 32, a cleaning process section 33, a first inspection process section 34, a filling process section 35, a second inspection process section 36, and a packaging. It has the part 37 in order, and has the rolling-element preparation part 38 and the holder preparation part 39 in addition to this. The rolling element preparation unit 38 and the cage preparation unit 39 are preparation units for preparing the rolling element 10 and the cage 11 manufactured in other lines, respectively, and the production line for manufacturing the rolling element 10 and the cage 11. May be part. Although only one line portion is illustrated in the bearing ring manufacturing line section 31, two are provided, and the inner ring 8 and the outer ring 9 that are inner and outer bearing rings are manufactured in each of the bearing ring manufacturing line sections 31. The The bearing ring production line section 31 includes a material preparation section 31a for preparing a bearing ring material forged into the approximate shape of the inner ring 8 or the outer ring 9, a turning process section 31b, a heat treatment process section 31c, and a grinding process section 31d. The material of the forged product which has in order and prepared by the material preparation part 31a is turned, heat-treated, and then ground.

組立工程部12は、軌道輪製造ライン部31で製造された内輪8および外輪9と、転動体準備部38および保持器準備部39で各々準備された転動体10および保持器11とを組立て、組立品2Aとするものである。この組立品2Aは、洗浄工程部33で洗浄され、第1の検査工程部34で所定の検査が行われ、充填工程部35でグリースの充填およびシール12の取付けが行われて完成品の軸受2とされた後、第2の検査工程部36で再度所定の検査が行われ、梱包工程部37で梱包される。   The assembly process unit 12 assembles the inner ring 8 and the outer ring 9 manufactured by the bearing ring manufacturing line unit 31, and the rolling elements 10 and the cage 11 respectively prepared by the rolling element preparation unit 38 and the cage preparation unit 39, respectively. This is an assembly 2A. The assembly 2A is cleaned in the cleaning process section 33, subjected to a predetermined inspection in the first inspection process section 34, filled with grease and attached to the seal 12 in the filling process section 35, and the finished bearing. Then, the second inspection process unit 36 performs a predetermined inspection again, and the packing process unit 37 packs it.

各検査工程部34,36は、図1,図2に示した実施形態の回転振れ信号分析装置1を備え、それぞれ組立品2Aを、シール未装着の状態、および完成品の転がり軸受2となった状態で音響検査する。また、各検査工程部34,36は、回転振れ信号分析装置1により、またはその出力から別の判定手段により良否判定した結果、不良品と判定された組立品2Aを良品搬送経路外に排出する選別工程部34a,36aを有している。選別工程部34a,36aは、検査工程部34,36の直後の工程として設けても良く、また省略しても良い。   Each of the inspection process units 34 and 36 includes the rotational shake signal analyzing apparatus 1 of the embodiment shown in FIGS. 1 and 2, and the assembly 2 </ b> A is used as a rolling bearing 2 in a state where no seal is attached and a finished product. Inspect the sound in a wet state. In addition, each inspection process unit 34, 36 discharges the assembly 2A determined to be defective as a result of non-defective product conveyance path as a result of determining whether the rotational shake signal analyzing apparatus 1 or another output is good by another determination means. It has sorting process parts 34a and 36a. The sorting process units 34a and 36a may be provided as a process immediately after the inspection process units 34 and 36, or may be omitted.

各検査工程部34,36に設けられた回転振れ信号分析装置1の出力となる形状誤差値は、その形状誤差を持つ軸受構成部品の製造ラインにフィードバック手段40によってフィードバックされる。例えば、回転振れ信号分析装置1で得た内輪8または外輪9の真円度(すなわち、軌道面のうねり)や直径相互差を、対応する各部品の加工工程にフィードバックし、例えば、研削工程部31dを構成する研削盤のドレス装置40の回数制御や研削液の保守・交換あるいは研削盤の保守に利用する。
このように形状誤差を加工工程にフィードバックすることで、精度の高い軸受構成部品を製造することができる。
The shape error value that is the output of the rotational shake signal analyzer 1 provided in each inspection process section 34, 36 is fed back by the feedback means 40 to the production line of the bearing component having the shape error. For example, the roundness (that is, the waviness of the raceway surface) and the difference in diameter of the inner ring 8 or outer ring 9 obtained by the rotational shake signal analyzer 1 are fed back to the corresponding parts machining process, for example, a grinding process section It is used for controlling the number of times of the dressing device 40 of the grinding machine constituting 31d, maintenance and replacement of the grinding fluid, or maintenance of the grinding machine.
By feeding back the shape error to the machining process in this way, a highly accurate bearing component can be manufactured.

この発明の第1の実施形態に係る転がり軸受の回転振れ信号分析装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the rotational shake signal analyzer of the rolling bearing which concerns on 1st Embodiment of this invention. 同回転振れ信号分析装置の具体的構成を示すブロック図である。It is a block diagram which shows the specific structure of the rotational shake signal analyzer. この発明の他の実施形態に係る転がり軸受の回転振れ信号分析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the rotational shake signal analyzer of the rolling bearing which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る転がり軸受の回転振れ信号分析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the rotational shake signal analyzer of the rolling bearing which concerns on further another embodiment of this invention. 図1の実施形態に係る転がり軸受の回転振れ信号分析装置を備えた転がり軸受の生産システムを示す概念構成のブロック図である。It is a block diagram of a conceptual structure which shows the production system of a rolling bearing provided with the rotational shake signal analyzer of the rolling bearing which concerns on embodiment of FIG. 同回転振れ信号分析装置の分析対象となる転がり軸受の一例を示す断面図である。It is sectional drawing which shows an example of the rolling bearing used as the analysis object of the rotational shake signal analyzer.

符号の説明Explanation of symbols

1…回転振れ信号分析装置
2…転がり軸受
3…回転振れ測定手段
4…測定信号入力手段
5…条件記憶手段
6…所定分析規則
7…分析手段
13,14…AD変換手段
17…フーリェ変換手段
18…形状誤差算出手段
20…周波数成分選択部
21…形状誤差算出部
26…加工設備
27…振動分析テーブル
28…積分手段
29…非同期振れ算出手段
40…フィードバック手段
DESCRIPTION OF SYMBOLS 1 ... Rotary shake signal analyzer 2 ... Rolling bearing 3 ... Rotary shake measuring means 4 ... Measurement signal input means 5 ... Condition storage means 6 ... Predetermined analysis rule 7 ... Analyzing means 13, 14 ... AD converting means 17 ... Fourier transform means 18 ... shape error calculation means 20 ... frequency component selection section 21 ... shape error calculation section 26 ... machining equipment 27 ... vibration analysis table 28 ... integration means 29 ... asynchronous shake calculation means 40 ... feedback means

Claims (6)

転がり軸受の回転振れによる軸受振動を測定した測定信号を入力する測定信号入力手段と、転がり軸受の運転条件、内部諸元、および測定条件を記憶する条件記憶手段と、この条件記憶手段に記憶された運転条件、内部諸元、および測定条件に応じて、前記測定信号入力手段に入力された測定信号から、前記転がり軸受の内輪軌道面のうねり、外輪軌道面のうねり、転動体のうねり、および転動体の直径相互差の大きさのうちの少なくとも一つの値である構成部品形状誤差を、所定分析規則に従って算出する分析手段とを備えた転がり軸受の回転振れ信号分析装置。   Measurement signal input means for inputting a measurement signal obtained by measuring bearing vibration due to rolling vibration of the rolling bearing, condition storage means for storing the operating conditions, internal specifications, and measurement conditions of the rolling bearing, and stored in the condition storage means From the measurement signal input to the measurement signal input means according to the operating conditions, internal specifications, and measurement conditions, the swell of the inner ring raceway surface, the swell of the outer ring raceway surface, the swell of the rolling element, and An apparatus for analyzing a rotational vibration signal of a rolling bearing, comprising: analysis means for calculating a component shape error, which is at least one value of a difference in diameter of rolling elements, according to a predetermined analysis rule. 請求項1において、前記測定信号が、軸受振動の変位を測定した波形の振幅信号であって、前記分析手段の所定分析規則として、種々の運転条件、内部諸元、および測定条件に対応する軸受振動の周波数成分中の分析対象とする周波数と、その分析対象周波数における振動振幅の前記構成部品形状誤差に対する比である振幅比とを定めた振動分析テーブルを有し、前記分析手段は、前記測定信号入力手段に入力された測定信号をフーリェ変換して周波数成分毎の振幅信号を得るフーリェ変換手段と、前記条件記憶手段に記憶された運転条件、内部諸元、および測定条件を前記振動分析テーブルと照合して分析対象周波数を決定し、前記フーリェ変換手段で得た周波数成分毎の振幅信号のうち、決定された分析対象周波数の成分の振幅信号を選択してその選択した振幅信号の振幅に対応する構成部品形状誤差を、前記振動分析テーブルと照合して求める形状誤差算出手段とを有する転がり軸受の回転振れ信号分析装置。   2. The bearing according to claim 1, wherein the measurement signal is an amplitude signal having a waveform obtained by measuring a displacement of a bearing vibration, and the predetermined analysis rule of the analysis means corresponds to various operating conditions, internal specifications, and measurement conditions. A vibration analysis table that defines a frequency to be analyzed in a frequency component of vibration and an amplitude ratio that is a ratio of a vibration amplitude at the analysis target frequency to the component shape error; and the analysis means includes the measurement Fourier transform means for obtaining an amplitude signal for each frequency component by performing Fourier transform on the measurement signal input to the signal input means, and the vibration analysis table indicating the operating conditions, internal specifications, and measurement conditions stored in the condition storage means. To determine the analysis target frequency, and select the amplitude signal of the determined analysis target frequency component from the amplitude signal for each frequency component obtained by the Fourier transform means. To a component shape errors corresponding to the amplitude of the selected amplitude signal, rotational deflection signal analyzer of a rolling bearing having a shape error calculating means for determining by matching with the vibration analysis table. 請求項1において、前記測定信号が、加速度または速度の信号であって、前記分析手段の前記所定分析規則として、種々の運転条件、内部諸元、および測定条件に対応する軸受振動の周波数成分中の分析対象とする周波数と、その分析対象周波数における振動振幅の前記構成部品形状誤差に対する比である振幅比とを定めた振動分析テーブルを有し、前記分析手段は、前記測定信号入力手段に入力された測定信号をフーリェ変換して周波数成分毎の加速度または速度信号を得るフーリェ変換手段と、前記条件記憶手段に記憶された運転条件、内部諸元、および測定条件を前記振動分析テーブルと照合して分析対象周波数を決定し、この決定された分析対象周波数成分の信号を周波数で除算する積分処理を行って振幅信号とし、この振幅信号の振幅に対応する構成部品形状誤差を、前記振動分析テーブルと照合して求める形状誤差算出手段とを有する転がり軸受の回転振れ信号分析装置。   2. The bearing signal according to claim 1, wherein the measurement signal is an acceleration or velocity signal, and the predetermined analysis rule of the analysis means includes various operating conditions, internal specifications, and frequency components of bearing vibration corresponding to the measurement conditions. A vibration analysis table that defines a frequency to be analyzed and an amplitude ratio that is a ratio of the vibration amplitude at the analysis target frequency to the component shape error, and the analysis means is input to the measurement signal input means Fourier transform means for obtaining the acceleration or velocity signal for each frequency component by performing Fourier transform on the measured signal, and comparing the operating conditions, internal specifications and measurement conditions stored in the condition storage means with the vibration analysis table. The frequency to be analyzed is determined and integration processing is performed to divide the signal of the determined frequency component to be analyzed by the frequency to obtain an amplitude signal. Components shape errors corresponding to the width, rotational deflection signal analyzer of a rolling bearing having a shape error calculating means for determining by matching with the vibration analysis table. 請求項1ないし請求項3のいずれか1項において、前記条件記憶手段に記憶された運転条件、内部諸元、および測定条件に応じて、前記測定信号入力手段に入力された測定信号の周波数分析結果から、転がり軸受の内部の形状誤差に起因する全ての周波数成分の振幅の和を前記転がり軸受の非同期回転振れとして算出する非同期振れ算出手段を設けた転がり軸受の回転振れ信号分析装置。   The frequency analysis of the measurement signal input to the measurement signal input means according to any one of claims 1 to 3, in accordance with the operating conditions, internal specifications, and measurement conditions stored in the condition storage means. A rolling vibration signal analyzing apparatus for a rolling bearing provided with asynchronous vibration calculating means for calculating the sum of the amplitudes of all frequency components resulting from the shape error inside the rolling bearing as the asynchronous rotational vibration of the rolling bearing. 請求項4において、前記非同期振れ算出手段の前記所定算出規則は、回転輪の回転角を基準に振れ信号波形を複数回分重ね書きし、各位相での重ね書きされた波形群の最大値と最小値の差を全て求め、この差が最大となる位相での値を回転の非同期の振れとして算出するものとした転がり軸受の回転振れ信号分析装置。   5. The predetermined calculation rule of the asynchronous shake calculation means according to claim 4, wherein the shake signal waveform is overwritten a plurality of times based on the rotation angle of the rotating wheel, and the maximum value and minimum value of the overwritten waveform group at each phase are overwritten. A rolling runout signal analysis device for a rolling bearing that calculates all the difference in values and calculates a value at a phase where the difference is maximum as an asynchronous runout of rotation. 転がり軸受を製造する生産システムであって、請求項1ないし請求項5のいずれかに記載の転がり軸受の回転振れ信号分析装置と、この装置で得た構成部品形状誤差を、前記転がり軸受の内輪、外輪、および転動体のうちの前記構成部品形状誤差に対応する構成部品を製造するラインにおける加工工程にフィードバックする手段とを備えることを特徴とする転がり軸受の生産システム。
6. A production system for manufacturing a rolling bearing, wherein the rolling runout signal analyzing apparatus according to any one of claims 1 to 5 and a component part shape error obtained by the apparatus are used as an inner ring of the rolling bearing. A rolling bearing production system comprising: an outer ring; and a means for feeding back to a machining process in a line for producing a component corresponding to the component shape error of the rolling element.
JP2006108199A 2006-04-11 2006-04-11 Rolling bearing runout signal analyzer and rolling bearing production system Active JP4912017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108199A JP4912017B2 (en) 2006-04-11 2006-04-11 Rolling bearing runout signal analyzer and rolling bearing production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108199A JP4912017B2 (en) 2006-04-11 2006-04-11 Rolling bearing runout signal analyzer and rolling bearing production system

Publications (2)

Publication Number Publication Date
JP2007278955A true JP2007278955A (en) 2007-10-25
JP4912017B2 JP4912017B2 (en) 2012-04-04

Family

ID=38680537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108199A Active JP4912017B2 (en) 2006-04-11 2006-04-11 Rolling bearing runout signal analyzer and rolling bearing production system

Country Status (1)

Country Link
JP (1) JP4912017B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255821A (en) * 2008-04-18 2009-11-05 Nsk Ltd Derailment detector of railway vehicle
CN104697794A (en) * 2013-12-04 2015-06-10 中国直升机设计研究所 Tungsten carbide bearing performance test device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658849A (en) * 1992-08-07 1994-03-04 Nippon Seiko Kk Vibration inspecting apparatus
JPH07103815A (en) * 1993-10-06 1995-04-21 Nippon Seiko Kk Nonrepetitive rotational accuracy measuring apparatus
JP2000171351A (en) * 1998-12-07 2000-06-23 Ntn Corp Acoustic inspecting device for rolling bearing
JP2003004592A (en) * 2001-06-22 2003-01-08 Koyo Seiko Co Ltd Device for measuring rotational accuracy of rolling bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658849A (en) * 1992-08-07 1994-03-04 Nippon Seiko Kk Vibration inspecting apparatus
JPH07103815A (en) * 1993-10-06 1995-04-21 Nippon Seiko Kk Nonrepetitive rotational accuracy measuring apparatus
JP2000171351A (en) * 1998-12-07 2000-06-23 Ntn Corp Acoustic inspecting device for rolling bearing
JP2003004592A (en) * 2001-06-22 2003-01-08 Koyo Seiko Co Ltd Device for measuring rotational accuracy of rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255821A (en) * 2008-04-18 2009-11-05 Nsk Ltd Derailment detector of railway vehicle
CN104697794A (en) * 2013-12-04 2015-06-10 中国直升机设计研究所 Tungsten carbide bearing performance test device

Also Published As

Publication number Publication date
JP4912017B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US10684193B2 (en) Strain based systems and methods for performance measurement and/or malfunction detection of rotating machinery
US9791856B2 (en) Fault frequency set detection system and method
CN111435105B (en) Bearing and fault frequency identification based on vibration spectrogram
CN101639395B (en) Improved holographic dynamic balancing method of high-speed main shaft
Adamczak et al. Influence of raceway waviness on the level of vibration in rolling-element bearings
JP2008249699A (en) Method of detecting damage to engine bearing
US8315826B2 (en) Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system
JP2001304954A (en) Fault diagnosis method and device
Vafaei et al. Indicated repeatable runout with wavelet decomposition (IRR-WD) for effective determination of bearing-induced vibration
US7437917B1 (en) Method of evaluating a disc brake rotor
CN106872186B (en) System and method for characterizing a tire uniformity testing machine
CN108020409A (en) A kind of 4 points of dynamic measurements of spindle rotation error and separation method
US7599804B2 (en) Method for detecting structure-borne noise events in a roller bearing
Vogl et al. A defect-driven diagnostic method for machine tool spindles
CN108195584A (en) A kind of Fault Diagnosis of Roller Bearings based on accuracy spectrogram
JP4912017B2 (en) Rolling bearing runout signal analyzer and rolling bearing production system
JP2007003507A (en) Gear inspection device
JP7082585B2 (en) Bearing information analysis device and bearing information analysis method
CN114812468B (en) H-shaped six-point method-based precise rotation shafting rotation error in-situ separation method
RU2432560C1 (en) Procedure for diagnosis of radial gap in ball bearings
JP2006189333A (en) Device for diagnosing abnormality of bearing
US6631337B2 (en) Modulation error compensation for a rotating load cell
KR0169714B1 (en) Turbine generator shaft torsion monitor
Knežević et al. Analysis of the impact of lubrication on the dynamic behavior of ball bearings using artificial neural networks
US10914656B2 (en) Condition monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4912017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250