JP2007278168A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2007278168A
JP2007278168A JP2006105207A JP2006105207A JP2007278168A JP 2007278168 A JP2007278168 A JP 2007278168A JP 2006105207 A JP2006105207 A JP 2006105207A JP 2006105207 A JP2006105207 A JP 2006105207A JP 2007278168 A JP2007278168 A JP 2007278168A
Authority
JP
Japan
Prior art keywords
injection
amount
deviation
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006105207A
Other languages
Japanese (ja)
Other versions
JP4483823B2 (en
Inventor
Katsuhiko Takeuchi
克彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006105207A priority Critical patent/JP4483823B2/en
Priority to DE102007000211.6A priority patent/DE102007000211B4/en
Publication of JP2007278168A publication Critical patent/JP2007278168A/en
Application granted granted Critical
Publication of JP4483823B2 publication Critical patent/JP4483823B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device capable of keeping control properties of output of an internal combustion engine high even in a case that a plurality of times of fuel injection are performed in one combustion cycle. <P>SOLUTION: Predicted value of concentration of oxygen discharged from a combustion chamber is calculated based on demand injection quantity, opening of an EGR valve and air quantity in a step S22. Then, slippage quantity between the demand injection quantity and actual injection quantity is calculated based on difference between the predicted value and a detection value in a step S 26. Then, a learning value is calculated by dividing the slippage quantity by number of times of injection in multiple stage injection control in a step S28. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、1燃焼サイクル内に複数回の燃料噴射を行う多段噴射により内燃機関の出力を制御する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that controls the output of an internal combustion engine by multistage injection in which fuel is injected a plurality of times within one combustion cycle.

ディーゼル機関の排気系に排出される排気特性を制御すべく、排気系に酸素濃度センサを備えるものが周知である。ここでは、酸素濃度センサによって検出される酸素濃度と目標とする酸素濃度との差に基づくフィードバック制御により、排気特性を良好に保つことが意図されている。ただし、排気系に排気が排出された後、酸素濃度センサによって排気中の酸素濃度が検出されるまでには、特にディーゼル機関の運転状態が変化する過渡時等において、応答遅れが生じる。このため、ディーゼル機関の燃焼室内の酸素濃度と酸素センサによって検出されている酸素濃度との間にはずれが生じ、結果として排気特性の制御性が低下するおそれがある。   In order to control the exhaust characteristics discharged to the exhaust system of a diesel engine, it is well known to provide an oxygen concentration sensor in the exhaust system. Here, it is intended to maintain good exhaust characteristics by feedback control based on the difference between the oxygen concentration detected by the oxygen concentration sensor and the target oxygen concentration. However, after exhaust gas is discharged into the exhaust system, there is a delay in response, particularly during a transition in which the operating state of the diesel engine changes, until the oxygen concentration in the exhaust gas is detected by the oxygen concentration sensor. For this reason, a deviation occurs between the oxygen concentration in the combustion chamber of the diesel engine and the oxygen concentration detected by the oxygen sensor, and as a result, the controllability of the exhaust characteristics may be reduced.

そこで従来は、例えば下記特許文献1に見られるように、ディーゼル機関の排気中の酸素濃度を予測し、予測された酸素濃度と目標とする酸素濃度との差に基づくフィードバック制御をする制御装置も提案されている。この制御装置によれば、上記応答遅れの問題を回避することができ、ひいては、排気特性の制御性を高く維持することができる。   Therefore, conventionally, for example, as seen in Patent Document 1 below, there is also a control device that predicts the oxygen concentration in the exhaust of a diesel engine and performs feedback control based on the difference between the predicted oxygen concentration and the target oxygen concentration. Proposed. According to this control device, the problem of the response delay can be avoided, and as a result, the controllability of the exhaust characteristics can be kept high.

また、上記制御装置では、ディーゼル機関の定常運転状態時において、燃料噴射量と回転速度とによって定まる複数の領域のそれぞれにおいて、予測される酸素濃度と検出値との差に基づき、予測値のずれ量を学習することも提案されている。これにより、例えば燃料噴射弁の噴射特性が酸素濃度を予測する際に想定した基準となる噴射特性からずれるために予測値にずれが生じたとしても、そのずれ量を補償しつつ予測を行うことが可能となる。   Further, in the above control device, in the steady operation state of the diesel engine, the predicted value shifts based on the difference between the predicted oxygen concentration and the detected value in each of the plurality of regions determined by the fuel injection amount and the rotational speed. It has also been proposed to learn quantities. Thus, for example, even if a deviation occurs in the predicted value because the injection characteristic of the fuel injection valve deviates from the reference injection characteristic assumed when predicting the oxygen concentration, the prediction is performed while compensating for the deviation amount. Is possible.

ところで、ディーゼル機関においては、通常、単一の気筒における1燃焼サイクル内に複数回の燃料噴射を行う多段噴射制御がなされている。この場合、燃料噴射弁の噴射特性が基準となる特性に対してずれている場合、噴射回数の相違に応じて各燃焼サイクル内での上記酸素濃度の予測値のずれ量が異なることとなる。一方、多段噴射の噴射回数は、基本的には、ディーゼル機関の出力軸の回転速度と要求される噴射量とによって定められる。この場合、上記制御装置のように、燃料噴射量と回転速度とによって定まる複数の領域毎にずれ量を学習することで、上記噴射段の相違による酸素濃度の予測のずれ量を補償することができる。   By the way, in a diesel engine, usually, multistage injection control is performed in which fuel injection is performed a plurality of times within one combustion cycle in a single cylinder. In this case, when the injection characteristic of the fuel injection valve is deviated from the reference characteristic, the deviation amount of the predicted value of the oxygen concentration in each combustion cycle differs depending on the difference in the number of injections. On the other hand, the number of injections of multistage injection is basically determined by the rotational speed of the output shaft of the diesel engine and the required injection amount. In this case, as in the above control device, it is possible to compensate for the predicted shift amount of the oxygen concentration due to the difference in the injection stage by learning the shift amount for each of a plurality of regions determined by the fuel injection amount and the rotation speed. it can.

しかし、近年、排気特性の更なる向上や騒音の抑制等の要求から、上記噴射回数がディーゼル機関の暖機の有無等の様々な要素によって変更されるようになってきている。この場合には、上記領域毎のずれ量の学習によっては噴射回数の相違による噴射量のずれ量の相違を反映することができないため、酸素濃度の予測値のずれ量を適切に補償することができない。これに対し、上記噴射回数を定めるためのパラメータを全て用いて領域を定め、これら各領域毎にずれ量を学習することも考えられる。しかしこれでは、領域の数が膨大となり、各領域の学習機会が著しく少なくなるため、実用に耐え得るものではない。   However, in recent years, the number of injections has been changed depending on various factors such as whether or not the diesel engine has been warmed up due to demands for further improvement of exhaust characteristics and noise suppression. In this case, since the difference in the injection amount due to the difference in the number of injections cannot be reflected by learning the amount of deviation for each region, it is possible to appropriately compensate for the amount of deviation in the predicted value of the oxygen concentration. Can not. On the other hand, it is also conceivable that a region is defined using all the parameters for determining the number of injections, and a deviation amount is learned for each region. However, in this case, the number of areas becomes enormous, and learning opportunities in each area are remarkably reduced, so that it cannot be practically used.

なお、上記制御装置に限らず、多段噴射により内燃機関の出力を制御する燃料噴射制御装置にあっては、噴射特性のずれに起因した噴射量の合計のずれ量が噴射段に応じて変動するために内燃機関の出力の制御性が低下するこうした実情も概ね共通したものとなっている。
特開2002−327634号公報
In the fuel injection control device that controls the output of the internal combustion engine by multi-stage injection, not only the control device described above, the total deviation amount of the injection amount due to the deviation in the injection characteristics varies depending on the injection stage. For this reason, such a situation that the controllability of the output of the internal combustion engine is lowered is also common.
JP 2002-327634 A

本発明は、上記課題を解決するためになされたものであり、その目的は、1燃焼サイクル内に複数回の燃料噴射を行う場合であれ、内燃機関の出力の制御性を高く維持することのできる燃料噴射制御装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and the object thereof is to maintain high controllability of the output of an internal combustion engine even when a plurality of fuel injections are performed in one combustion cycle. An object of the present invention is to provide a fuel injection control device that can be used.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、前記燃料噴射制御に伴う前記内燃機関の排気中の酸素濃度の予測値を算出する手段と、前記酸素濃度の検出値と前記予測値との差を前記多段噴射の1回当たりの噴射による差に換算することで、前記内燃機関の燃料噴射弁の噴射特性のずれ量を学習する学習手段とを備えることを特徴とする。   According to a first aspect of the present invention, a means for calculating a predicted value of the oxygen concentration in the exhaust gas of the internal combustion engine accompanying the fuel injection control, and a difference between the detected value of the oxygen concentration and the predicted value are calculated by the multistage injection. Learning means for learning a deviation amount of the injection characteristic of the fuel injection valve of the internal combustion engine by converting into a difference due to one injection.

上記構成において、酸素濃度の検出値と予測値との差は、燃料噴射弁の噴射特性が酸素濃度の予測に際して想定した基準となる特性からずれることに起因して生じると考えられる。ただし、検出値と予測値との差は、上記噴射特性のずれのみならず、噴射回数にも依存している。この点、上記構成では、検出値と予測値との差を多段噴射の1回あたりの噴射による差に換算することで、噴射回数による影響を除去し、噴射特性のずれ量を学習することができる。このため、この学習されたずれ量に基づき、出力を制御するためのアクチュエータの操作量を補正することで、出力の制御性を高く維持することができる。   In the above configuration, the difference between the detected value and the predicted value of the oxygen concentration is considered to be caused by the deviation of the injection characteristic of the fuel injection valve from the reference characteristic assumed in the prediction of the oxygen concentration. However, the difference between the detected value and the predicted value depends not only on the deviation in the injection characteristics but also on the number of injections. In this regard, in the above configuration, the difference between the detected value and the predicted value is converted into the difference due to the injection per multistage injection, thereby removing the influence of the number of injections and learning the deviation amount of the injection characteristics. it can. For this reason, the controllability of the output can be maintained high by correcting the operation amount of the actuator for controlling the output based on the learned deviation amount.

請求項2記載の発明は、請求項1記載の発明において、前記噴射特性のずれは、噴射開始時期の指令値に対する実際の噴射開始時期の遅れ量のずれに起因して噴射期間がずれることによるものであり、前記学習手段は、前記噴射期間のずれを定量化したものを前記ずれ量として学習することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the deviation in the injection characteristic is caused by a deviation in an injection period due to a deviation in a delay amount of an actual injection start timing with respect to a command value of the injection start timing. According to another aspect of the present invention, the learning means learns, as the shift amount, a value obtained by quantifying the shift in the injection period.

上記構成では、噴射開始時期の指令値に対する実際の噴射開始時期の遅れ量のずれに起因して噴射期間がずれることに着目し、噴射期間のずれ量を定量化する。この定量化は、噴射期間のずれ量そのものや、噴射期間のずれによって生じる噴射量のずれ量等の噴射期間のずれと相関を有する要素の定量化として行うことができるため、噴射特性のずれ量を定量化する際に用いられるパラメータ数を低減することができる。   In the above configuration, focusing on the fact that the injection period is shifted due to a shift in the actual injection start timing delay amount with respect to the command value of the injection start timing, the amount of shift in the injection period is quantified. Since this quantification can be performed as a quantification of an element having a correlation with an injection period deviation, such as an injection period deviation itself or an injection quantity deviation caused by an injection period deviation, an injection characteristic deviation amount The number of parameters used in quantifying can be reduced.

請求項3記載の発明は、請求項1又は2記載の発明において、前記学習手段は、前記検出値及び前記予測値の差と前記内燃機関において燃焼に供される空気量とに基づき前記多段噴射に伴う噴射量の合計のずれ量を算出する手段と、該合計のずれ量を前記多段噴射の噴射回数によって除算することで前記噴射特性のずれ量を算出する算出手段とを備えることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the invention, the learning means is configured to perform the multistage injection based on a difference between the detected value and the predicted value and an amount of air to be burned in the internal combustion engine. And means for calculating a total deviation amount of the injection amount, and a calculation means for calculating the deviation amount of the injection characteristic by dividing the total deviation amount by the number of injections of the multistage injection. To do.

上記構成において、予測値と検出値との差に燃焼に供される空気量を乗算することで、同空気量当たりの酸素量の差を算出することができる。この酸素量の差は、燃料噴射量のずれによって生じると考えられる。このため、単位量の燃料を燃焼させるために必要な酸素量に基づき、酸素量差を上記合計のずれ量に換算することができる。そして、この合計のずれ量を噴射回数によって除算することで、1回の噴射に伴う噴射量のずれ量を算出することができる。   In the above configuration, by multiplying the difference between the predicted value and the detected value by the amount of air to be used for combustion, the difference in the amount of oxygen per the amount of air can be calculated. This difference in oxygen amount is considered to be caused by a difference in fuel injection amount. For this reason, based on the amount of oxygen required to burn the unit amount of fuel, the difference in oxygen amount can be converted into the total deviation amount. Then, by dividing the total deviation amount by the number of injections, the deviation amount of the injection amount accompanying one injection can be calculated.

請求項4記載の発明は、請求項2記載の発明において、前記燃料噴射弁は、噴射期間と噴射量との間に比例関係があるものであって且つその比例係数が変化する変曲点を有するものであり、前記学習手段は、前記検出値及び前記予測値の差と前記内燃機関において燃焼に供される空気量とに基づき前記多段噴射に伴う噴射量の合計のずれ量を算出する手段と、前記実際の噴射開始時期の遅れ量のずれ分だけ噴射期間がずれるとの想定の下で前記多段噴射の噴射回数及び前記変曲点に基づき前記合計のずれ量から前記噴射特性のずれ量を算出する算出手段とを備えることを特徴とする。   According to a fourth aspect of the present invention, in the invention of the second aspect, the fuel injection valve has an inflection point at which the proportionality coefficient changes between the injection period and the injection amount. And the learning means calculates a total deviation amount of the injection amounts associated with the multistage injection based on a difference between the detected value and the predicted value and an air amount to be burned in the internal combustion engine. And a deviation amount of the injection characteristic from the total deviation amount based on the number of injections of the multistage injection and the inflection point on the assumption that the injection period is shifted by a deviation amount of the delay amount of the actual injection start timing. And calculating means for calculating.

上記構成において、予測値と検出値との差に燃焼に供される空気量を乗算することで、同空気量当たりの酸素量の差を算出することができる。この酸素量の差は、燃料噴射量のずれによって生じると考えられる。このため、単位量の燃料を燃焼させるために必要な酸素量に基づき、酸素量差を上記合計のずれ量に換算することができる。   In the above configuration, by multiplying the difference between the predicted value and the detected value by the amount of air to be used for combustion, the difference in the amount of oxygen per the amount of air can be calculated. This difference in oxygen amount is considered to be caused by a difference in fuel injection amount. For this reason, based on the amount of oxygen required to burn the unit amount of fuel, the difference in oxygen amount can be converted into the total deviation amount.

一方、実際の噴射開始時期のずれ分だけ噴射期間がずれる場合には、噴射期間と噴射量とによって定まる直線であって基準となる噴射特性を示す直線全体を噴射期間方向に上記ずれ分だけずらすことで得られる直線が、実際の噴射特性を表すこととなる。このため、各噴射段の噴射による燃料噴射のずれ量は、噴射回数と変曲点と上記合計のずれ量とによって、一義的に定めることができる。   On the other hand, when the injection period deviates by the actual injection start timing, the entire straight line that is determined by the injection period and the injection amount and indicates the reference injection characteristic is shifted in the injection period direction by the above-described deviation. The straight line obtained in this way represents the actual injection characteristics. For this reason, the deviation amount of the fuel injection due to the injection of each injection stage can be uniquely determined by the number of injections, the inflection point, and the total deviation amount.

請求項5記載の発明は、請求項1〜4のいずれかに記載の発明において、前記学習手段は、前記噴射特性のずれ量を、前記燃料噴射弁に供給される燃料の圧力によって定義される複数の領域毎に学習するものであり、前記複数の領域毎に学習される前記噴射特性のずれ量を記憶する記憶手段を更に備えることを特徴とする。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the learning means defines the amount of deviation of the injection characteristic by the pressure of the fuel supplied to the fuel injection valve. Learning is performed for each of a plurality of regions, and further includes storage means for storing a deviation amount of the injection characteristic learned for each of the plurality of regions.

噴射特性のずれ量は、燃料噴射弁に供給される燃料の圧力に顕著に依存する傾向にある。この点、上記構成では、燃料の圧力によって定義される複数の領域毎に噴射特性のずれ量を学習することで噴射特性のずれ量の燃圧依存性を学習することができるため、噴射特性のずれ量を高精度に学習することができる。   The amount of deviation in the injection characteristics tends to depend significantly on the pressure of the fuel supplied to the fuel injection valve. In this regard, in the above configuration, since it is possible to learn the fuel pressure dependence of the amount of deviation of the injection characteristic by learning the amount of deviation of the injection characteristic for each of a plurality of regions defined by the fuel pressure, the deviation of the injection characteristic The amount can be learned with high accuracy.

請求項6記載の発明は、請求項1〜5のいずれかに記載の発明において、前記学習手段は、前記噴射特性のずれ量を、前記燃料噴射弁に供給される燃料の圧力と前記内燃機関の出力軸の回転速度とによって定義される複数の領域毎に学習するものであり、前記複数の領域毎に学習される前記噴射特性のずれ量を記憶する記憶手段を更に備えることを特徴とする。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the learning means determines the amount of deviation in the injection characteristics, the pressure of fuel supplied to the fuel injection valve, and the internal combustion engine. And learning means for each of the plurality of regions defined by the rotational speed of the output shaft, and further comprising storage means for storing the deviation amount of the injection characteristic learned for each of the plurality of regions. .

上記酸素濃度の予測値と検出値との差に応じて噴射特性のずれ量を学習する場合、酸素濃度を検出する手段の検出誤差や、吸入空気量の検出誤差等の影響を受けるおそれがある。この場合、噴射特性のずれ量として学習されるものには、実際にはこれらの検出誤差が反映されるため、内燃機関の運転状態に応じて上記ずれ量が変動するおそれがある。そして、上記検出誤差によるずれ量の学習結果の変動を回避するためには、酸素濃度や吸入空気量の変動の要因となる回転速度と噴射量とによって分割される領域毎にずれ量の学習をすることが望ましい。一方、噴射特性のずれ量は、燃料の圧力に顕著に依存する傾向にある。このため、噴射特性のずれ量は、燃料の圧力によって定まる複数の領域毎に学習されることが望ましい。そして、燃料の圧力は、噴射量と回転速度とに応じて決定されるため、回転速度と燃料の圧力とによって分割された領域毎にずれ量を学習するなら、回転速度と噴射量とに応じた上記検出誤差による上記変動を抑制することができるとともに、噴射特性のずれ量の燃圧依存性をも学習することができる。   When the deviation amount of the injection characteristic is learned according to the difference between the predicted value and the detected value of the oxygen concentration, there is a risk of being influenced by a detection error of the means for detecting the oxygen concentration, a detection error of the intake air amount, etc. . In this case, since the detection error is actually reflected in what is learned as the deviation amount of the injection characteristic, the deviation amount may vary depending on the operating state of the internal combustion engine. In order to avoid the fluctuation in the learning result of the deviation amount due to the detection error, the deviation amount is learned for each region divided by the rotation speed and the injection amount that cause the fluctuation of the oxygen concentration and the intake air amount. It is desirable to do. On the other hand, the amount of deviation in the injection characteristics tends to depend significantly on the fuel pressure. For this reason, it is desirable that the deviation amount of the injection characteristic is learned for each of a plurality of regions determined by the fuel pressure. Since the fuel pressure is determined according to the injection amount and the rotation speed, if the deviation amount is learned for each region divided by the rotation speed and the fuel pressure, the fuel pressure is determined according to the rotation speed and the injection amount. In addition, it is possible to suppress the fluctuation due to the detection error and to learn the fuel pressure dependence of the deviation amount of the injection characteristic.

請求項7記載の発明は、請求項1〜6のいずれかに記載の発明において、前記排気中の酸素濃度の目標値を算出する目標値算出手段と、前記予測値を前記目標値にフィードバック制御すべく、前記排気中の酸素濃度を制御するためのアクチュエータを操作する操作手段とを更に備え、前記操作手段は、前記フィードバック制御に用いる前記予測値として、前記学習手段によって学習されるずれ量を用いて算出された予測値を用いることを特徴とする。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein target value calculation means for calculating a target value of the oxygen concentration in the exhaust gas and feedback control of the predicted value to the target value. Therefore, it further comprises an operating means for operating an actuator for controlling the oxygen concentration in the exhaust, and the operating means uses the deviation amount learned by the learning means as the predicted value used for the feedback control. It is characterized by using the predicted value calculated by using.

上記構成では、予測値を目標値にフィードバック制御するために、排気中の酸素濃度の検出値を目標値にフィードバック制御する場合と比較して、内燃機関の過渡運転時等において燃焼室から排出される排気中の実際の酸素濃度と検出値とのずれによる制御性の低下を好適に回避することができる。しかも、上記フィードバック制御に用いる予測値を、学習手段によって学習される噴射特性のずれ量を用いて算出することで、燃料噴射弁の噴射特性のずれを補償することもできる。   In the above configuration, in order to feedback control the predicted value to the target value, compared with the case where the detected value of the oxygen concentration in the exhaust gas is feedback controlled to the target value, the exhaust gas is discharged from the combustion chamber during the transient operation of the internal combustion engine. Therefore, it is possible to suitably avoid a decrease in controllability due to a difference between the actual oxygen concentration in the exhaust gas and the detected value. In addition, by calculating the predicted value used for the feedback control using the deviation amount of the injection characteristic learned by the learning means, the deviation of the injection characteristic of the fuel injection valve can be compensated.

請求項8記載の発明は、請求項7記載の発明において、前記内燃機関は、排気系に排出される排気を吸気系に還流させる排気還流通路と、該排気還流通路の流路面積を調節するEGRバルブとを備え、前記操作手段は、前記予測値を前記目標値にフィードバック制御すべく、前記EGRバルブの開度を操作することを特徴とする。   The invention according to claim 8 is the invention according to claim 7, wherein the internal combustion engine adjusts a flow area of the exhaust gas recirculation passage for recirculating the exhaust gas discharged to the exhaust system to the intake system and the exhaust gas recirculation passage. And an EGR valve, wherein the operation means operates an opening of the EGR valve so as to feedback control the predicted value to the target value.

上記構成では、EGRバルブの開度を操作することで、酸素濃度を目標値にフィードバック制御することができる。特に、上記噴射特性のずれを排気の還流量にて補正するために、上記ずれの学習に検出手段の検出誤差が反映されたとしても、噴射量補正をする場合と比較して、検出誤差による出力トルクの意図せぬ変動を生じさせにくい。   In the above configuration, the oxygen concentration can be feedback controlled to the target value by operating the opening of the EGR valve. In particular, in order to correct the deviation of the injection characteristic by the recirculation amount of the exhaust gas, even if the detection error of the detecting means is reflected in the learning of the deviation, the detection error is caused in comparison with the case of correcting the injection amount. It is difficult to cause unintended fluctuations in output torque.

請求項9記載の発明は、請求項1〜6のいずれかに記載の発明において、前記燃料噴射弁に対する噴射量の指令値に基づき、前記燃料噴射弁を開閉操作する開閉操作手段を更に備え、前記開閉操作手段は、前記指令値に応じて前記燃料噴射弁の操作量を設定するに際し、前記学習手段によって学習される前記ずれ量に応じて、その設定を補正することを特徴とする。   The invention according to claim 9 is the invention according to any one of claims 1 to 6, further comprising an opening / closing operation means for opening / closing the fuel injection valve based on a command value of an injection amount for the fuel injection valve, The opening / closing operation means corrects the setting according to the deviation amount learned by the learning means when setting the operation amount of the fuel injection valve according to the command value.

上記構成では、指令値に応じて燃料噴射弁の操作量を設定する際に、ずれ量に応じてその設定を補正することで、上記噴射特性のずれにかかわらず、実際の噴射量と指令値とを高精度に一致させることができる。   In the above configuration, when setting the operation amount of the fuel injection valve according to the command value, by correcting the setting according to the deviation amount, the actual injection amount and the command value regardless of the deviation in the injection characteristics. Can be matched with high accuracy.

(第1の実施形態)
以下、本発明にかかる燃料噴射制御装置をコモンレール式ディーゼル機関の燃料噴射制御装置に適用した第1の実施形態について、図面を参照しつつ説明する。
(First embodiment)
Hereinafter, a first embodiment in which a fuel injection control device according to the present invention is applied to a fuel injection control device of a common rail diesel engine will be described with reference to the drawings.

図1に本実施形態にかかるエンジンシステムの全体構成を示す。   FIG. 1 shows the overall configuration of the engine system according to the present embodiment.

図示するように、ディーゼル機関10の吸気通路12の上流には、スロットルバルブ14が設けられている。吸気通路12は、吸気バルブ16の開動作によって、燃焼室18と連通される。燃焼室18には、燃料噴射弁40の先端部が突出しており、燃料噴射弁40により燃料が供給される。これにより燃焼室18内で燃料の燃焼が生じ、この燃焼エネルギが、ピストン20の運動エネルギに変換される。燃焼室18は、排気バルブ22の開動作によって、排気通路24と連通される。排気通路24には、排気浄化装置26が設けられている。更に、排気通路24に排出される排気を吸気通路12に還流させるべく、排気通路24と吸気通路12とが、排気還流通路28によって連通可能とされている。そして、排気還流通路28の流路面積は、バルブアクチュエータ32によってEGRバルブ30の開度が操作されることで、調節される。   As shown in the drawing, a throttle valve 14 is provided upstream of the intake passage 12 of the diesel engine 10. The intake passage 12 communicates with the combustion chamber 18 by opening the intake valve 16. The tip of the fuel injection valve 40 projects into the combustion chamber 18, and fuel is supplied by the fuel injection valve 40. As a result, combustion of fuel occurs in the combustion chamber 18, and this combustion energy is converted into kinetic energy of the piston 20. The combustion chamber 18 communicates with the exhaust passage 24 by opening the exhaust valve 22. An exhaust gas purification device 26 is provided in the exhaust passage 24. Further, the exhaust passage 24 and the intake passage 12 can be communicated with each other by an exhaust recirculation passage 28 in order to recirculate the exhaust discharged to the exhaust passage 24 to the intake passage 12. The flow area of the exhaust gas recirculation passage 28 is adjusted by operating the opening degree of the EGR valve 30 by the valve actuator 32.

上記燃料噴射弁40は、図示しないコモンレールから供給される高圧燃料を、ディーゼル機関10の燃焼室18に噴射供給するものである。詳しくは、燃料噴射弁40は、その先端に円柱状のニードル収納部42が設けられている。そして、ニードル収納部42には、その軸方向に変位可能なノズルニードル44が収納されている。ノズルニードル44は、燃料噴射弁40の先端部に形成されている環状のニードルシート部46に着座することで、ニードル収納部42を外部(燃焼室18)から遮断する一方、ニードルシート部46から離座することで、ニードル収納部42を外部と連通させる。また、ニードル収納部42には、コモンレールから高圧燃料通路48を介して高圧燃料が供給される。   The fuel injection valve 40 injects and supplies high pressure fuel supplied from a common rail (not shown) to the combustion chamber 18 of the diesel engine 10. Specifically, the fuel injection valve 40 is provided with a cylindrical needle storage portion 42 at the tip thereof. The needle storage portion 42 stores a nozzle needle 44 that can be displaced in the axial direction. The nozzle needle 44 is seated on an annular needle seat portion 46 formed at the distal end portion of the fuel injection valve 40, thereby blocking the needle storage portion 42 from the outside (combustion chamber 18), and from the needle seat portion 46. By separating, the needle storage portion 42 communicates with the outside. Further, high pressure fuel is supplied from the common rail to the needle storage portion 42 via the high pressure fuel passage 48.

ノズルニードル34の背面側(ニードルシート部46と対向する側の反対側)は、背圧室50に対向している。背圧室50には、高圧燃料通路48を介してコモンレールから高圧燃料が供給される。また、ノズルニードル44の中間部には、ニードルスプリング52が備えられており、ニードルスプリング52によりノズルニードル44は燃料噴射弁40の先端側へ押されている。   The back side of the nozzle needle 34 (the side opposite to the side facing the needle seat portion 46) faces the back pressure chamber 50. High pressure fuel is supplied to the back pressure chamber 50 from the common rail via the high pressure fuel passage 48. Further, a needle spring 52 is provided at an intermediate portion of the nozzle needle 44, and the nozzle needle 44 is pushed toward the distal end side of the fuel injection valve 40 by the needle spring 52.

一方、背圧室50は、オリフィス54を介して、低圧燃料通路56と連通可能となっている。そして、低圧燃料通路56は、燃料タンクと接続されている。上記背圧室50と低圧燃料通路56とは、弁体58によって連通及び遮断される。すなわち、背圧室50と低圧燃料通路56とを連通するオリフィス54が弁体58によって塞がれることで、背圧室50と低圧燃料通路56とが遮断される一方、オリフィス54が開放されることで背圧室50と低圧燃料通路56とが連通される。   On the other hand, the back pressure chamber 50 can communicate with the low pressure fuel passage 56 via the orifice 54. The low pressure fuel passage 56 is connected to a fuel tank. The back pressure chamber 50 and the low pressure fuel passage 56 are communicated and blocked by a valve body 58. That is, the orifice 54 communicating the back pressure chamber 50 and the low pressure fuel passage 56 is closed by the valve body 58, whereby the back pressure chamber 50 and the low pressure fuel passage 56 are blocked, while the orifice 54 is opened. Thus, the back pressure chamber 50 and the low pressure fuel passage 56 are communicated with each other.

弁体58は、バルブスプリング60によって燃料噴射弁40の先端側へ押されている。また、弁体58は、電磁ソレノイド62の電磁力により吸引されることで、燃料噴射弁40の後方側に変位可能となっている。   The valve body 58 is pushed toward the distal end side of the fuel injection valve 40 by a valve spring 60. Further, the valve body 58 can be displaced to the rear side of the fuel injection valve 40 by being attracted by the electromagnetic force of the electromagnetic solenoid 62.

こうした構成において、電磁ソレノイド62が通電されず電磁ソレノイド62による吸引力が働いていないときには、弁体58は、バルブスプリング60の力によって、オリフィス54を塞ぐこととなる。一方、ノズルニードル44は、ニードルスプリング52によって燃料噴射弁40の先端側へ押され、ニードルシート部46に着座した状態(燃料噴射弁40の閉弁状態)となる。   In such a configuration, when the electromagnetic solenoid 62 is not energized and the attraction force by the electromagnetic solenoid 62 is not working, the valve body 58 closes the orifice 54 by the force of the valve spring 60. On the other hand, the nozzle needle 44 is pushed toward the distal end side of the fuel injection valve 40 by the needle spring 52 and is in a state of being seated on the needle seat portion 46 (the fuel injection valve 40 is closed).

ここで、電磁ソレノイド62が通電されると、電磁ソレノイド62による吸引力により弁体58は燃料噴射弁40の後方側へ変位し、オリフィス54を開放する。これにより、背圧室50の高圧燃料は、オリフィス54を介して低圧燃料通路56へと流出する。このため、背圧室50の高圧燃料がノズルニードル44へ印加する圧力は、ニードル収納部42内の高圧燃料がノズルニードル44に印加する圧力よりも小さくなる。そして、この圧力差による力が、ニードルスプリング52がノズルニードル44を燃料噴射弁40の先端側へ押す力よりも大きくなると、ノズルニードル44がニードルシート部46から離座した状態(燃料噴射弁40の開弁状態)となる。   Here, when the electromagnetic solenoid 62 is energized, the valve body 58 is displaced to the rear side of the fuel injection valve 40 by the suction force of the electromagnetic solenoid 62 and opens the orifice 54. As a result, the high pressure fuel in the back pressure chamber 50 flows out to the low pressure fuel passage 56 via the orifice 54. For this reason, the pressure applied to the nozzle needle 44 by the high-pressure fuel in the back pressure chamber 50 is smaller than the pressure applied to the nozzle needle 44 by the high-pressure fuel in the needle housing portion 42. When the force due to this pressure difference becomes larger than the force by which the needle spring 52 pushes the nozzle needle 44 toward the tip of the fuel injection valve 40, the nozzle needle 44 is separated from the needle seat portion 46 (the fuel injection valve 40). Open state).

上記エンジンシステムは、更に、吸気通路12に吸入される吸入空気量のうち、特にスロットルバルブ14の上流の吸入空気量を検出するエアフロメータ70や、吸気通路12内の圧力を検出する吸気圧センサ72、吸気の温度を検出する吸気温センサ74、排気浄化装置26の下流の排気の酸素濃度を検出する空燃比センサ76、ディーゼル機関10の出力軸の回転角度を検出するクランク角センサ78、コモンレール内の燃圧を検出する燃圧センサ80、ディーゼル機関10の冷却水の温度を検出する水温センサ82等、ディーゼル機関10の運転状態を検出する各種センサを備えている。また、エンジンシステムは、アクセルペダルの操作量を検出するアクセルセンサ84を備えている。   The engine system further includes an air flow meter 70 for detecting the amount of intake air taken into the intake passage 12, particularly the amount of intake air upstream of the throttle valve 14, and an intake pressure sensor for detecting the pressure in the intake passage 12. 72, an intake air temperature sensor 74 that detects the temperature of the intake air, an air-fuel ratio sensor 76 that detects the oxygen concentration in the exhaust downstream of the exhaust purification device 26, a crank angle sensor 78 that detects the rotation angle of the output shaft of the diesel engine 10, and a common rail Various sensors for detecting the operating state of the diesel engine 10 are provided, such as a fuel pressure sensor 80 for detecting the fuel pressure in the engine and a water temperature sensor 82 for detecting the temperature of the cooling water of the diesel engine 10. The engine system also includes an accelerator sensor 84 that detects the amount of operation of the accelerator pedal.

更に、エンジンシステムは、電子制御装置(ECU90)を備えている。ECU90は、中央処理装置や常時記憶保持メモリ92を備えており、上記各種センサの検出値を取り込み、これらに基づいて、ディーゼル機関10の出力(出力トルク、排気特性等)を制御する。ここで、常時記憶保持メモリ92とは、ECU90の起動スイッチ(イグニッションスイッチ)の状態にかかわらず常時給電状態とされるバックアップRAMや、給電状態の有無にかかわらず記憶内容を保持する不揮発性メモリ(EEPROM等)など、ECU90の起動スイッチの状態にかかわらず記憶内容を保持するメモリである。   The engine system further includes an electronic control unit (ECU 90). The ECU 90 includes a central processing unit and a constant memory holding memory 92, takes in the detection values of the various sensors, and controls the output (output torque, exhaust characteristics, etc.) of the diesel engine 10 based on these values. Here, the constant memory holding memory 92 is a backup RAM that is always in the power supply state regardless of the state of the start switch (ignition switch) of the ECU 90, or a non-volatile memory that holds the stored contents regardless of the presence or absence of the power supply state ( This is a memory that holds the stored contents regardless of the state of the start switch of the ECU 90, such as an EEPROM.

図2に、上記出力制御のための燃料噴射制御の処理手順を示す。この処理は、ECU90により、例えば所定周期で繰り返し実行される。   FIG. 2 shows a processing procedure of the fuel injection control for the output control. This process is repeatedly executed by the ECU 90, for example, at a predetermined cycle.

この一連の処理では、まずステップS10において、アクセルセンサ84によって検出されるアクセルペダルの操作量と、クランク角センサ78の検出値によるディーゼル機関10の出力軸の回転速度とに基づき、アクセルペダルの操作に応じた出力トルクを生成するために要求される噴射量(要求噴射量)を算出する。図3に、アクセルペダルの操作量ACCPと回転速度とから噴射量を算出するマップを示す。なお、図3には、こうして算出される噴射量と回転速度とからコモンレール内の燃圧の目標値(目標燃圧)を設定するマップを併せて示している。目標燃圧は、図示しない別のロジックにて、図3に示すマップにより、回転速度や噴射量が多いほど高圧に設定される。   In this series of processing, first, in step S10, the accelerator pedal operation is performed based on the operation amount of the accelerator pedal detected by the accelerator sensor 84 and the rotation speed of the output shaft of the diesel engine 10 based on the detection value of the crank angle sensor 78. The injection amount (requested injection amount) required to generate the output torque corresponding to the is calculated. FIG. 3 shows a map for calculating the injection amount from the accelerator pedal operation amount ACCP and the rotational speed. FIG. 3 also shows a map for setting the target value (target fuel pressure) of the fuel pressure in the common rail from the injection amount and the rotational speed calculated in this way. The target fuel pressure is set to a higher pressure as the rotational speed and the injection amount are larger according to the map shown in FIG.

続くステップS12では、要求噴射量に基づき、噴射段数を設定する。これは、燃焼サイクルの1サイクル内で、パイロット噴射、メイン噴射、アフタ噴射の中からいくつかを選択して、これら選択した噴射を行なう多段噴射制御を行うための処理である。ここで、パイロット噴射は、極微小な燃料が噴射されて着火の直前の燃料と空気との混合を促進させるとともに、メイン噴射後の着火時期の遅れを短縮して窒素酸化物(NOx)の発生を抑制し、燃焼音及び振動を低減する。メイン噴射は、ディーゼル機関の出力トルクの生成に寄与して且つ多段噴射中の最大の噴射量を有する。アフタ噴射は、微粒子物質(PM)を再燃焼させる。ここでは、例えば噴射段数が「2」であるときには、1段のパイロット噴射と、1段のメイン噴射を行い、噴射段数が「4」であるときには、2段のパイロット噴射と1段のメイン噴射と1段のアフタ噴射とを行う。   In subsequent step S12, the number of injection stages is set based on the required injection amount. This is a process for performing multi-stage injection control in which some of the pilot injection, main injection, and after injection are selected within one cycle of the combustion cycle, and these selected injections are performed. Here, in pilot injection, a very small amount of fuel is injected to promote the mixing of fuel and air immediately before ignition, and the ignition timing delay after main injection is shortened to generate nitrogen oxides (NOx). To reduce combustion noise and vibration. The main injection contributes to the generation of output torque of the diesel engine and has the maximum injection amount during multi-stage injection. After-injection recombusts particulate matter (PM). Here, for example, when the number of injection stages is “2”, one stage of pilot injection and one stage of main injection are performed, and when the number of injection stages is “4”, two stages of pilot injection and one stage of main injection are performed. And one-stage after injection.

上記噴射段数の設定は、要求噴射量のみならず、例えば上記水温センサ82によって検出される冷却水の温度等に応じて設定される。   The setting of the number of injection stages is set according to not only the required injection amount but also the temperature of the cooling water detected by the water temperature sensor 82, for example.

続くステップS14では、各噴射段の噴射開始時期の指令値(指令噴射開始時期)や各噴射段の噴射期間の指令値(指令噴射期間)を算出する。ここで、指令噴射期間は、燃圧センサによって検出される燃圧と当該噴射段の噴射量とに基づきマップ演算される。そして、ステップS16では、燃料噴射弁40を操作することで、各噴射段の燃料噴射を行なう。なお、ステップS16の処理が完了すると、この一連の処理を一旦終了する。   In the subsequent step S14, a command value (command injection start timing) for the injection start timing of each injection stage and a command value (command injection period) for the injection period of each injection stage are calculated. Here, the command injection period is map-calculated based on the fuel pressure detected by the fuel pressure sensor and the injection amount of the injection stage. In step S16, the fuel injection valve 40 is operated to inject fuel at each injection stage. In addition, when the process of step S16 is completed, this series of processes is once complete | finished.

上記指令噴射期間を設定するマップは、燃料噴射弁40が基準となる特性を有するとの前提の下に生成されるものである。しかし、実際の燃料噴射弁40の噴射特性には、個体差や経時変化に起因して、上記基準となる特性に対してずれを生じることがある。このため、ディーゼル機関10の出力の制御性を高く維持するためには、噴射特性のずれ量を学習することが望ましい。しかし、上述したように多段噴射を行う際には、燃料噴射によって生成されるディーゼル機関10の出力が多段噴射による平均的な噴射量ずれの影響を受けるために、そのずれ量を学習することが困難である。   The map for setting the command injection period is generated on the assumption that the fuel injection valve 40 has a reference characteristic. However, the actual injection characteristics of the fuel injection valve 40 may deviate from the reference characteristics due to individual differences and changes over time. For this reason, in order to maintain high controllability of the output of the diesel engine 10, it is desirable to learn the deviation amount of the injection characteristics. However, when performing multi-stage injection as described above, since the output of the diesel engine 10 generated by fuel injection is affected by the average injection amount deviation due to multi-stage injection, the deviation amount can be learned. Have difficulty.

すなわち、図4に実線にて示す基準となる噴射特性に対して実際の特性が一点鎖線にて示すようにずれている場合、要求噴射量を、指令噴射量Q11〜Q14の4段の噴射に分割するときと、指令噴射量Q11、Q15の2段に分割するときとでは、多段噴射の噴射量のずれ量が相違する。すなわち、上記4段噴射の場合には、指令噴射量Q11〜Q14と実際の噴射量Q21〜Q24との差が合計のずれ量となる一方、上記2段噴射の場合には、指令噴射量Q11,Q15と実際の噴射量Q21,Q25との差が合計のずれ量となる。   That is, when the actual characteristics deviate from the reference injection characteristics indicated by the solid line in FIG. 4 as indicated by the alternate long and short dash line, the required injection quantity is changed to the four-stage injection of the command injection quantities Q11 to Q14. The amount of deviation in the injection amount of the multi-stage injection differs between when dividing and when dividing into two stages of command injection amounts Q11 and Q15. That is, in the case of the above-described four-stage injection, the difference between the command injection amounts Q11 to Q14 and the actual injection amounts Q21 to Q24 is the total deviation amount, whereas in the case of the two-stage injection, the command injection amount Q11. , Q15 and the actual injection amounts Q21, Q25 are the total deviation amount.

そこで本実施形態では、ディーゼル機関10の燃焼室18から排出直後の酸素濃度(又は燃焼室18における燃焼空気中の酸素濃度)を予測し、この予測値と、上記空燃比センサ76による検出値との差を、多段噴射の1回当たりの噴射に起因する差に換算することで、噴射特性のずれ量を学習する。ここでは、燃料噴射弁40の噴射特性のずれが、図4に示す 性質を有することを利用する。図示されるように、噴射量と噴射期間との間には比例関係があり、噴射特性のずれは、上記比例関係を定める線を噴射期間方向に所定量ずらすものとなる。これは、次の理由による。   Therefore, in the present embodiment, the oxygen concentration immediately after being discharged from the combustion chamber 18 of the diesel engine 10 (or the oxygen concentration in the combustion air in the combustion chamber 18) is predicted, and this predicted value and the value detected by the air-fuel ratio sensor 76 are calculated. Is converted into a difference resulting from the injection per multistage injection, thereby learning the amount of deviation in the injection characteristics. Here, the fact that the deviation of the injection characteristic of the fuel injection valve 40 has the properties shown in FIG. 4 is utilized. As shown in the figure, there is a proportional relationship between the injection amount and the injection period, and the deviation in the injection characteristic shifts the line defining the proportional relationship by a predetermined amount in the injection period direction. This is due to the following reason.

すなわち、燃料噴射弁40の噴射特性のずれは、図5に示されるように、指令噴射開始時期に対する実際の噴射開始時期の遅れ量のずれとして生じる。図5(a)は、燃料噴射弁40に対する通電信号を示し、図5(b)は、燃料噴射弁40による実際の噴射率を示す。図示されるように、指令噴射開始時期となる時刻t1に燃料噴射弁40に対する通電が開始されるが、実際に燃料噴射弁40が開弁し燃料噴射が開始されるのは、これよりも遅い時刻t2となる。そして、指令噴射開始時期から指令噴射期間が経過する時刻t3に燃料噴射弁40に対する通電が停止されると、噴射率が減少し、燃料噴射が終了する。   That is, the deviation in the injection characteristic of the fuel injection valve 40 occurs as a deviation in the actual injection start timing with respect to the command injection start timing, as shown in FIG. FIG. 5A shows an energization signal for the fuel injection valve 40, and FIG. 5B shows an actual injection rate by the fuel injection valve 40. As shown in the drawing, energization to the fuel injection valve 40 is started at time t1 which is the command injection start timing, but the fuel injection valve 40 is actually opened and fuel injection is started later than this. Time t2 is reached. When the energization of the fuel injection valve 40 is stopped at time t3 when the command injection period elapses from the command injection start timing, the injection rate is decreased and the fuel injection is ended.

ここで、燃料噴射弁40の実際の噴射特性が基準となる噴射特性からずれると、図5(b)に一点鎖線にて示すように、燃料噴射弁40の実際の噴射開始時期が基準となるものに対してずれたものとなる。このため、実際の噴射期間が上記噴射開始時期のずれ分だけ変化し、ひいては噴射量が変化する。このため、先の図4に示した基準となる特性の直線を、噴射期間方向に「t2´−t2」だけオフセットさせたものが、実際の噴射特性となる。   Here, when the actual injection characteristic of the fuel injection valve 40 deviates from the reference injection characteristic, the actual injection start timing of the fuel injection valve 40 becomes the reference, as shown by a one-dot chain line in FIG. It will be shifted with respect to the thing. For this reason, the actual injection period changes by the deviation of the injection start timing, and as a result, the injection amount changes. Therefore, the actual injection characteristic is obtained by offsetting the reference characteristic line shown in FIG. 4 by “t2′−t2” in the injection period direction.

図4に示す噴射特性のずれによれば、指令噴射期間の長さにかかわらず、噴射量のずれ量は同一となる。そこで、本実施形態では、多段噴射による合計の噴射量についての実際の量と基準となる特性による量との差を、噴射回数によって除算することで、1噴射当たりの噴射量差を算出する。   According to the deviation in the injection characteristics shown in FIG. 4, the deviation amount of the injection amount is the same regardless of the length of the command injection period. Therefore, in the present embodiment, the difference in the injection amount per injection is calculated by dividing the difference between the actual amount of the total injection amount by the multistage injection and the amount by the reference characteristic by the number of injections.

図6に、本実施形態にかかる噴射特性のずれ量の学習処理の手順を示す。この処理は、ECU90により、例えば所定周期で繰り返し実行される。   FIG. 6 shows the procedure of the learning process of the injection characteristic deviation amount according to the present embodiment. This process is repeatedly executed by the ECU 90, for example, at a predetermined cycle.

この一連の処理では、まずステップS20において、学習条件が成立したか否かを判断する。この学習条件としては、回転速度の変化量が所定以下である状態が規定時間以上継続することや、噴射量の変化量が所定以下である状態が規定時間以上継続すること等、要は、ディーゼル機関10の運転状態が定常状態であることとすればよい。   In this series of processing, first, in step S20, it is determined whether or not a learning condition is satisfied. The learning conditions include that the state in which the amount of change in the rotational speed is less than or equal to a predetermined time continues for a specified time or that the state in which the amount of change in the injection amount is less than or equal to a predetermined time continues for a specified time. The operating state of the engine 10 may be a steady state.

続くステップS22においては、先の図2の処理にて算出される要求噴射量や、EGRバルブ30の開度、各種センサの検出値に基づき、排気中の酸素濃度を予測する。ここではまず、エアフロメータ70の検出値や、吸気圧センサ72の検出値、吸気温センサ74の検出値、EGRバルブ30の開度等に基づき、燃焼室18への流入気体の酸素濃度を算出する。この算出手法としては、例えば上記特許文献1に記載された手法とすればよい。そして、酸素濃度が算出されると、燃焼室18内の気体中の酸素量から要求噴射量の燃料の燃焼によって消費される酸素量を減算することで、排気中の酸素濃度を算出する。この算出手法も、例えば上記特許文献1に記載された手法とすればよい。   In the subsequent step S22, the oxygen concentration in the exhaust gas is predicted based on the required injection amount calculated in the processing of FIG. 2, the opening degree of the EGR valve 30, and the detection values of various sensors. Here, first, the oxygen concentration of the gas flowing into the combustion chamber 18 is calculated based on the detection value of the air flow meter 70, the detection value of the intake pressure sensor 72, the detection value of the intake air temperature sensor 74, the opening degree of the EGR valve 30, and the like. To do. As the calculation method, for example, the method described in Patent Document 1 may be used. When the oxygen concentration is calculated, the oxygen concentration in the exhaust gas is calculated by subtracting the oxygen amount consumed by the combustion of the required injection amount of fuel from the oxygen amount in the gas in the combustion chamber 18. This calculation method may also be the method described in Patent Document 1, for example.

続くステップS24においては、空燃比センサ76の検出値を取得する。そして、ステップS26では、ステップS22の処理による酸素濃度の予測値と上記検出値とのずれに基づき、実際に噴射された燃料量と要求噴射量とのずれ量を算出する。すなわち、単位噴射量当たりにこれを燃焼させるために必要な酸素濃度は予め求めることができるため、予測値と検出値との差に燃焼室18内の気体量を乗算することで燃焼室18内の酸素量を算出し、この酸素量を上記必要な酸素濃度で除算することで多段噴射による噴射量の合計のずれ量を算出することができる。   In the subsequent step S24, the detection value of the air-fuel ratio sensor 76 is acquired. In step S26, a deviation amount between the actually injected fuel amount and the required injection amount is calculated based on the deviation between the predicted value of the oxygen concentration in the process of step S22 and the detected value. That is, since the oxygen concentration necessary for burning this per unit injection amount can be obtained in advance, the difference between the predicted value and the detected value is multiplied by the amount of gas in the combustion chamber 18 to increase the oxygen concentration in the combustion chamber 18. By calculating this oxygen amount and dividing this oxygen amount by the required oxygen concentration, it is possible to calculate the total deviation amount of the injection amounts due to the multistage injection.

続くステップS28においては、一回の噴射あたりの噴射量のずれ量(学習値)を算出する。これは、上記ステップS26にて算出される合計の噴射量のずれ量を噴射回数で徐算することで算出することができる。   In the subsequent step S28, a deviation amount (learning value) of the injection amount per injection is calculated. This can be calculated by gradually calculating the total injection amount deviation calculated in step S26 by the number of injections.

上記学習値が算出されると、ステップS30においてこの学習値を、先の図1に示した常時記憶保持メモリ92に記憶する。詳しくは、学習値は、図7に示すように、ディーゼル機関10の出力軸の回転速度とコモンレール内の燃圧とによって分割される複数の領域毎に学習され、記憶される。これは以下の理由による。   When the learning value is calculated, the learning value is stored in the constant memory holding memory 92 shown in FIG. 1 in step S30. Specifically, as shown in FIG. 7, the learning value is learned and stored for each of a plurality of regions divided by the rotational speed of the output shaft of the diesel engine 10 and the fuel pressure in the common rail. This is due to the following reason.

上述したように、上記燃料噴射弁40の指令噴射開始時期に対する実際の噴射開始時期の遅延量のずれに起因した噴射特性のずれは、燃料噴射弁40に供給される燃料の圧力に顕著に依存する。このため、噴射特性のずれ量は、燃圧によって分割された領域毎に各別に学習されることが望ましい。このことは、検出される酸素濃度のずれ量が燃料噴射弁40の噴射特性のずれ量によって一義的に定まるなら、燃圧毎に分割された領域毎に各別に学習される学習値を用いることで、酸素濃度の予測値と検出値との差を高精度に補償することができることを意味する。   As described above, the deviation of the injection characteristic due to the deviation of the delay amount of the actual injection start timing with respect to the command injection start timing of the fuel injection valve 40 remarkably depends on the pressure of the fuel supplied to the fuel injection valve 40. To do. For this reason, it is desirable that the deviation amount of the injection characteristic is learned separately for each region divided by the fuel pressure. This is because, if the detected shift amount of the oxygen concentration is uniquely determined by the shift amount of the injection characteristic of the fuel injection valve 40, the learning value learned separately for each region divided for each fuel pressure is used. This means that the difference between the predicted value and the detected value of the oxygen concentration can be compensated with high accuracy.

しかし実際には、上記予測値と検出値との差を生じさせる要因としては、燃料噴射弁40の噴射特性のずれによるものが支配的であるものの、予測値を算出するために用いるセンサの検出誤差が含まれている。一方、先の図3に示したように、燃圧が一定であっても、回転速度や噴射量は様々な値をとり得、このため、エアフロメータ70によって検出される吸入空気量や空燃比センサ76によって検出される酸素濃度等も様々な値をとり得る。したがって、燃圧によって分割された複数の領域毎に学習値を記憶したのでは、同一の燃圧における学習時であっても回転速度や噴射量等が異なることでこれらの検出誤差の大きさが変動することに起因して、学習値が収束しないおそれがある。   In practice, however, the cause of the difference between the predicted value and the detected value is predominantly due to the difference in the injection characteristics of the fuel injection valve 40, but detection of the sensor used to calculate the predicted value. Error is included. On the other hand, as shown in FIG. 3 above, even if the fuel pressure is constant, the rotational speed and the injection amount can take various values. For this reason, the intake air amount detected by the air flow meter 70 and the air-fuel ratio sensor The oxygen concentration detected by 76 can take various values. Therefore, if the learning value is stored for each of the plurality of regions divided by the fuel pressure, the magnitude of these detection errors varies due to the difference in rotational speed, injection amount, etc. even during learning at the same fuel pressure. As a result, the learning value may not converge.

上記センサによる検出誤差をも管理するためには、噴射量と回転速度とによって分割される領域毎に学習値を学習することが望ましい。一方、上述したように燃料噴射弁40の噴射特性のずれ量を管理する上では、燃圧によって分割された領域毎に学習値を学習することが望ましい。また、燃圧は、先の図3に示したように、回転速度と噴射量とによって定まる。このことは、燃圧と回転速度とから噴射量が定まることを意味する。したがって、回転速度と燃圧とによって分割される領域毎に学習値を学習するなら、上記センサによる検出誤差をも管理することができる。すなわち、これにより、各領域において検出される学習値には、噴射特性のずれに加えて、センサによる検出誤差としてその領域固有の量が含まれることとなる。このため、ディーゼル機関10の運転状態の変化によって学習値が変動することを回避することができる。   In order to manage the detection error by the sensor, it is desirable to learn the learning value for each region divided by the injection amount and the rotation speed. On the other hand, as described above, in order to manage the deviation amount of the injection characteristic of the fuel injection valve 40, it is desirable to learn the learning value for each region divided by the fuel pressure. Further, the fuel pressure is determined by the rotational speed and the injection amount as shown in FIG. This means that the injection amount is determined from the fuel pressure and the rotational speed. Therefore, if the learning value is learned for each region divided by the rotation speed and the fuel pressure, the detection error by the sensor can be managed. That is, in this way, the learning value detected in each region includes a specific amount of the region as a detection error by the sensor in addition to the deviation in the injection characteristics. For this reason, it is possible to avoid the learning value from fluctuating due to a change in the operating state of the diesel engine 10.

なお、先の図6のステップS20において否定判断されるときや、ステップS30の処理が完了するときには、この一連の処理を一旦終了する。   When a negative determination is made in step S20 of FIG. 6 or when the process of step S30 is completed, this series of processes is temporarily terminated.

図8に、本実施形態における上記学習値を用いたディーゼル機関10の出力制御の補正にかかる処理手順を示す。この処理は、ECU90により、例えば所定周期で繰り返し実行される。   FIG. 8 shows a processing procedure for correcting output control of the diesel engine 10 using the learning value in the present embodiment. This process is repeatedly executed by the ECU 90, for example, at a predetermined cycle.

この一連の処理においては、まずステップS40において、ディーゼル機関10の運転状態に基づき、EGRバルブ30の開度の基本値を設定する。ここでは、例えば回転速度及び噴射量から基本値を定める2次元マップを用いて、基本値をマップ演算すればよい。続くステップS42においては、ディーゼル機関10の運転状態に基づき、酸素濃度の目標値(目標酸素濃度)を算出する。ここでは、例えば回転速度及び噴射量から目標酸素濃度を定める2次元マップを用いて、目標酸素濃度をマップ演算すればよい。続いてステップS44においては、酸素濃度の予測値を、先の図7に示したマップに記憶される学習値に基づき算出する。ここでは、要求噴射量を学習値によって補正したものを用いて先の図6のステップS22における処理を行なうことで、予測値を算出すればよい。すなわち、要求噴射量を、例えば先の図4に示した指令噴射量Q11〜Q14の4つの噴射量に分割する場合、学習値を4倍した値だけ要求噴射量を増加補正したものを用いて上記処理を行なえばよい。また、要求噴射量を指令噴射量Q11,Q15の2つの噴射量に分割する場合、学習値を2倍した値だけ要求噴射量を増加補正すればよい。   In this series of processes, first, in step S40, the basic value of the opening degree of the EGR valve 30 is set based on the operating state of the diesel engine 10. Here, for example, the basic value may be calculated by using a two-dimensional map that determines the basic value from the rotation speed and the injection amount. In the subsequent step S42, a target value of oxygen concentration (target oxygen concentration) is calculated based on the operating state of the diesel engine 10. Here, for example, a map calculation of the target oxygen concentration may be performed using a two-dimensional map that determines the target oxygen concentration from the rotation speed and the injection amount. Subsequently, in step S44, the predicted value of the oxygen concentration is calculated based on the learned value stored in the map shown in FIG. Here, the predicted value may be calculated by performing the process in step S22 of FIG. 6 using the corrected required injection amount with the learned value. That is, when the required injection amount is divided into, for example, the four injection amounts of the command injection amounts Q11 to Q14 shown in FIG. 4, the required injection amount is increased and corrected by a value that is four times the learning value. What is necessary is just to perform the said process. Further, when the required injection amount is divided into two injection amounts, that is, the command injection amounts Q11 and Q15, the required injection amount may be increased and corrected by a value obtained by doubling the learning value.

続くステップS46においては、目標酸素濃度と予測値との差に基づくフィードバック補正量を算出する。ここでは、予測値は、ディーゼル機関10の燃焼室18内の酸素濃度を正確に表すものとして用いられている。すなわち、空燃比センサ76によって検出される酸素濃度は燃焼室18の酸素濃度と比較して応答遅れによる誤差を伴うものであるため、ここでは、予測値を目標酸素濃度にフィードバック制御すべく、補正量を算出する。ステップS48では、EGRバルブ30の開度の基本値を上記補正量にて補正する。そして、ステップS50では、上記補正量にて補正された基本値にてEGRバルブ30の開度を操作することで、実際の酸素濃度を目標酸素濃度にフィードバック制御する。これにより、実際の噴射量が指令噴射量よりも多くなること等により学習値が大きくなるほど、酸素濃度を増加させるべく、EGRバルブ30の開度が減少操作される。   In the subsequent step S46, a feedback correction amount based on the difference between the target oxygen concentration and the predicted value is calculated. Here, the predicted value is used as an accurate representation of the oxygen concentration in the combustion chamber 18 of the diesel engine 10. That is, since the oxygen concentration detected by the air-fuel ratio sensor 76 is accompanied by an error due to a response delay as compared with the oxygen concentration in the combustion chamber 18, here, correction is performed to feedback control the predicted value to the target oxygen concentration. Calculate the amount. In step S48, the basic value of the opening degree of the EGR valve 30 is corrected with the correction amount. In step S50, the actual oxygen concentration is feedback-controlled to the target oxygen concentration by operating the opening degree of the EGR valve 30 with the basic value corrected with the correction amount. Thereby, the opening degree of the EGR valve 30 is decreased to increase the oxygen concentration as the learning value increases due to the actual injection amount becoming larger than the command injection amount.

このように、本実施形態では、酸素濃度の予測値と検出値とのずれ量を噴射特性のずれとして学習し、酸素濃度のずれをEGRバルブの操作による排気還流量(EGR量)の補正によって補償した。これにより、上記学習値に燃料噴射弁40の噴射特性のずれ以外の要因がある場合であっても、酸素濃度を高精度に制御することができる。これに対し、燃料噴射弁40による燃料噴射量を補正する場合には、学習値に上記センサの検出誤差等による影響が含まれる場合に、出力トルクの意図せぬ変化を招くことがある。   As described above, in this embodiment, the deviation amount between the predicted value and the detected value of the oxygen concentration is learned as the deviation in the injection characteristics, and the deviation in the oxygen concentration is corrected by correcting the exhaust gas recirculation amount (EGR amount) by operating the EGR valve. Compensated. Thereby, even if there is a factor other than the deviation of the injection characteristic of the fuel injection valve 40 in the learning value, the oxygen concentration can be controlled with high accuracy. On the other hand, when the fuel injection amount by the fuel injection valve 40 is corrected, an unintended change in the output torque may be caused if the learning value includes the influence of the detection error of the sensor.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)燃料噴射制御に伴うディーゼル機関10の排気中の酸素濃度の予測値と検出値との差を多段噴射の1回当たりの噴射による差に換算することで、噴射回数による影響を除去してディーゼル機関10の燃料噴射弁40の噴射特性のずれ量を学習することができる。   (1) By converting the difference between the predicted value and the detected value of the oxygen concentration in the exhaust of the diesel engine 10 associated with the fuel injection control into the difference due to the injection per multistage injection, the influence due to the number of injections is eliminated. Thus, the deviation amount of the injection characteristic of the fuel injection valve 40 of the diesel engine 10 can be learned.

(2)噴射特性のずれは、噴射開始時期の指令値に対する実際の噴射開始時期の遅れ量のずれに起因して噴射期間がずれることによるものであるとして、噴射期間のずれを定量化したものを噴射特性のずれ量として学習した。これにより、噴射特性のずれ量を定量化する際に用いられるパラメータ数を低減することができる。   (2) The deviation in the injection period is quantified by assuming that the deviation in the injection characteristic is caused by the deviation in the injection period due to the deviation in the actual injection start timing from the command value of the injection start timing. Was learned as a deviation amount of the injection characteristic. Thereby, the number of parameters used when quantifying the deviation | shift amount of an injection characteristic can be reduced.

(3)酸素濃度の検出値及び予測値の差に基づき多段噴射に伴う噴射量の合計のずれ量を算出し、この合計のずれ量を多段噴射の噴射回数によって除算することで噴射特性のずれ量を算出した。これにより、1回の噴射に伴う噴射量のずれ量を噴射特性のずれ量として算出することができる。   (3) Based on the difference between the detected value and the predicted value of the oxygen concentration, the total deviation amount of the injection amount associated with the multistage injection is calculated, and this total deviation amount is divided by the number of injections of the multistage injection, thereby causing a deviation in the injection characteristics. The amount was calculated. Thereby, the amount of deviation of the injection amount accompanying one injection can be calculated as the amount of deviation of the injection characteristic.

(4)燃圧によって定義される複数の領域毎に噴射特性のずれ量を学習することで、噴射特性のずれ量の燃圧依存性を学習することができる。   (4) By learning the deviation amount of the injection characteristic for each of a plurality of regions defined by the fuel pressure, it is possible to learn the fuel pressure dependency of the deviation amount of the injection characteristic.

(5)ディーゼル機関10の出力軸の回転速度と燃圧とによって定義される複数の領域毎に噴射特性のずれ量を学習することで、回転速度と噴射量とに応じた各種検出誤差によるずれ量の変動を抑制することができる。   (5) By learning the deviation amount of the injection characteristic for each of a plurality of regions defined by the rotational speed and fuel pressure of the output shaft of the diesel engine 10, deviation amounts due to various detection errors according to the rotational speed and the injection amount Fluctuations can be suppressed.

(6)酸素濃度の予測値を目標値にフィードバック制御すべくEGRバルブ30の開度を操作するに際し、学習されるずれ量に基づき算出された予測値を用いた。これにより、ディーゼル機関10の過渡運転時等における実際の酸素濃度と検出値とのずれによる制御性の低下を好適に回避することができるとともに、燃料噴射弁40の噴射特性のずれによる酸素濃度の制御性の低下を補償することができる。   (6) When the opening degree of the EGR valve 30 is operated to feedback control the predicted value of the oxygen concentration to the target value, the predicted value calculated based on the learned deviation amount is used. Thereby, it is possible to suitably avoid a decrease in controllability due to a deviation between the actual oxygen concentration and the detected value during a transient operation of the diesel engine 10, and the oxygen concentration due to a deviation in the injection characteristics of the fuel injection valve 40. A decrease in controllability can be compensated.

(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

本実施形態では、噴射特性のずれ量の学習値に基づき、燃料噴射制御自体を補正する。図9に、本実施形態にかかる燃料噴射制御の処理手順を示す。この処理は、ECU90により、例えば所定周期で繰り返し実行される。   In the present embodiment, the fuel injection control itself is corrected based on the learned value of the deviation amount of the injection characteristic. FIG. 9 shows a processing procedure of fuel injection control according to the present embodiment. This process is repeatedly executed by the ECU 90, for example, at a predetermined cycle.

この一連の処理では、まずステップS60において、先の図2のステップS12の処理に付随して算出される指令噴射量を取得する。続くステップS62では、学習値により指令噴射量を補正する。ここでは、単純に指令噴射量から学習値を減算すればよい。続くステップS64では、補正後の指令噴射量と燃圧とに基づき、補正後の指令噴射量を指令噴射期間に換算する。そしてステップS66では、上記指令噴射期間に応じて燃料噴射弁40を操作する。   In this series of processes, first, in step S60, a command injection amount calculated in association with the process of step S12 of FIG. 2 is acquired. In the subsequent step S62, the command injection amount is corrected by the learned value. Here, the learning value may be simply subtracted from the command injection amount. In the subsequent step S64, the corrected command injection amount is converted into a command injection period based on the corrected command injection amount and the fuel pressure. In step S66, the fuel injection valve 40 is operated in accordance with the command injection period.

以上説明した本実施形態によれば、先の第1の上記(1)〜(5)の効果に加えて、更に以下の効果が得られるようになる。   According to the present embodiment described above, the following effects can be obtained in addition to the effects (1) to (5) described above.

(7)燃料噴射弁40の操作量を設定するに際し、学習される噴射特性のずれ量に応じて、その設定を補正した。これにより、噴射特性のずれにかかわらず、実際の噴射量と指令値とを高精度に一致させることができる。   (7) When setting the operation amount of the fuel injection valve 40, the setting was corrected according to the learned deviation amount of the injection characteristic. Thereby, the actual injection amount and the command value can be made to coincide with each other with high accuracy regardless of the deviation of the injection characteristics.

(第3の実施形態)
以下、第3の実施形態について、先の第1及び第2の実施形態との相違点を中心に図面を参照しつつ説明する。
(Third embodiment)
Hereinafter, a third embodiment will be described with reference to the drawings, focusing on differences from the first and second embodiments.

図10に、本実施形態にかかる燃料噴射弁40の噴射特性を示す。図中、実線は、燃料噴射弁40の基準となる特性を示す。図示されるように、燃料噴射弁40の噴射特性は、噴射期間と噴射量との間に比例関係を有して且つ、その比例係数が変化する変曲点を有することによって特徴付けられる。また、一点鎖線にて、燃料噴射弁40の個体差や経時変化に起因して噴射特性が基準となる特性からずれた場合の一例を示す。図示されるように、この場合にも、噴射量と噴射期間とを関係付ける直線が、オフセット量ΔTQだけ噴射期間方向にずれたものとなっている。このため、変曲点を定める噴射量の値は不変であり、変曲点を定める噴射期間がオフセット量ΔTQだけずれたものとなっている。   FIG. 10 shows the injection characteristics of the fuel injection valve 40 according to this embodiment. In the figure, a solid line indicates a characteristic that serves as a reference for the fuel injection valve 40. As shown in the figure, the injection characteristic of the fuel injection valve 40 is characterized by having an inflection point in which there is a proportional relationship between the injection period and the injection amount and the proportionality coefficient changes. In addition, an example in which the injection characteristic is deviated from the reference characteristic due to individual differences of the fuel injection valve 40 or a change with time is shown by a one-dot chain line. As shown in the figure, also in this case, the straight line relating the injection amount and the injection period is shifted in the injection period direction by the offset amount ΔTQ. For this reason, the value of the injection amount that defines the inflection point is unchanged, and the injection period that defines the inflection point is shifted by the offset amount ΔTQ.

そこで本実施形態では、オフセット量ΔTQだけ上記直線がずれるとの想定下、噴射回数と変曲点とに基づき、燃料噴射弁40の噴射特性のずれ量を算出する。詳しくは、変曲点よりも微小な噴射量におけるずれ量ΔQdと、変曲点よりも多量の噴射量におけるずれ量ΔQuとの間には、「ΔQu=α×ΔQd」の関係がある。この係数αは、基準となる特性における直線の傾きによって定めることができる。このため、本実施形態では、予めこの係数αを燃料噴射弁40に固有の値として取得しておき、これを用いて噴射特性のずれ量を算出する。   Therefore, in this embodiment, assuming that the straight line is shifted by the offset amount ΔTQ, the shift amount of the injection characteristic of the fuel injection valve 40 is calculated based on the number of injections and the inflection point. Specifically, there is a relationship of “ΔQu = α × ΔQd” between the deviation amount ΔQd at the injection amount smaller than the inflection point and the deviation amount ΔQu at the injection amount larger than the inflection point. The coefficient α can be determined by the slope of the straight line in the reference characteristics. For this reason, in this embodiment, this coefficient α is acquired in advance as a value unique to the fuel injection valve 40, and the deviation amount of the injection characteristic is calculated using this coefficient α.

すなわち、例えば指令噴射量がQ11〜Q14からなる4段の燃料噴射において、実際の噴射量がQ21〜Q24である場合、4段の噴射による合計の噴射量のずれ量は、
3×ΔQd+ΔQu=(3+α)×ΔQd
となる。
That is, for example, in the four-stage fuel injection in which the command injection amount is Q11 to Q14, when the actual injection amount is Q21 to Q24, the deviation amount of the total injection amount by the four-stage injection is
3 × ΔQd + ΔQu = (3 + α) × ΔQd
It becomes.

このため、噴射特性のずれ量として、ずれ量ΔQdを学習することができる。そして、これにより、ディーゼル機関10の出力制御の態様を補正することができる。以下、本実施形態にかかる学習値を、第1の実施形態及び第2の実施形態に適用する場合について説明する。   For this reason, the deviation amount ΔQd can be learned as the deviation amount of the injection characteristics. Thus, the output control mode of the diesel engine 10 can be corrected. Hereinafter, a case where the learning value according to the present embodiment is applied to the first embodiment and the second embodiment will be described.

<第1の実施形態に適用する場合>
この場合、先の図8のステップS44において酸素濃度の予測値を算出するに際し、要求噴射量を、各噴射段の指令噴射量、係数α、噴射回数に応じて補正すればよい。例えば先の図10に示したように指令噴射量がQ11〜Q14からなる場合、要求噴射量を「(3+α)×ΔQd」で補正すればよい。
<When applied to the first embodiment>
In this case, when calculating the predicted value of the oxygen concentration in step S44 of FIG. 8, the required injection amount may be corrected according to the command injection amount, the coefficient α, and the number of injections of each injection stage. For example, when the command injection amount is composed of Q11 to Q14 as shown in FIG. 10, the required injection amount may be corrected by “(3 + α) × ΔQd”.

<第2の実施形態に適用する場合>
この場合、先の図9のステップS62において、各指令噴射量を、係数αと、学習されたずれ量ΔQdとに基づき補正すればよい。例えば先の図10に示したように指令噴射量がQ11〜Q14からなる場合、指令噴射量Q1〜Q3については、ずれ量ΔQdだけ減少補正し、指令噴射量Q4については、「α×ΔQd」だけ減少補正する。
<When applied to the second embodiment>
In this case, in step S62 of FIG. 9, each command injection amount may be corrected based on the coefficient α and the learned deviation amount ΔQd. For example, when the command injection amount is composed of Q11 to Q14 as shown in FIG. 10, the command injection amount Q1 to Q3 is corrected to decrease by the deviation amount ΔQd, and the command injection amount Q4 is “α × ΔQd”. Only a decrease correction.

以上説明した本実施形態では、先の第1の実施形態の上記(1)、(2)、(4)〜(6)の効果、先の第2の実施形態の上記(7)の効果に加えて、更に以下の効果が得られるようになる。   In the present embodiment described above, the effects (1), (2), (4) to (6) of the previous first embodiment and the effect (7) of the previous second embodiment are achieved. In addition, the following effects can be obtained.

(8)変曲点よりも微小噴射側でのずれ量ΔQdと、係数αとに基づき、燃料噴射特性のずれを一義的に定めることができる。   (8) The deviation of the fuel injection characteristic can be uniquely determined based on the deviation amount ΔQd on the minute injection side from the inflection point and the coefficient α.

(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
The above embodiments may be implemented with the following modifications.

・上記各実施形態では、燃料噴射弁40の噴射特性のずれを、指令噴射開始時期に対する実際の噴射開始時期の遅れ量のずれ量分だけ実際の噴射期間がずれることによるものとしたがこれに限らない。図11(a)に指令噴射期間、図11(b)にノズルニードル44のリフト量、図11(c)に噴射率について、上記各実施形態とは別の特性におけるそれぞれの推移例を示す。図中、実線にて示されるように、指令噴射開始時期から所定量Δだけ遅延してノズルニードル44が変位を開始する(燃料噴射弁40が開弁する)ことで燃料噴射が開始される。この場合、一点鎖線にて示すように、燃料噴射弁40の実際の開弁開始時期がオフセット量ΔTQだけ変化すると、実際の噴射期間のずれは、オフセット量ΔTQとはならない。これは、指令噴射期間の経過時におけるノズルニードル44のリフト量に依存して、同経過時から実際の噴射終了までの時間が変化することによる。   In each of the above embodiments, the deviation of the injection characteristic of the fuel injection valve 40 is caused by the deviation of the actual injection period by the deviation amount of the actual injection start timing with respect to the command injection start timing. Not exclusively. FIG. 11 (a) shows a command injection period, FIG. 11 (b) shows the lift amount of the nozzle needle 44, and FIG. 11 (c) shows each transition example in characteristics different from the above embodiments. In the drawing, as shown by a solid line, fuel injection is started when the nozzle needle 44 starts to be displaced (the fuel injection valve 40 is opened) with a delay of a predetermined amount Δ from the command injection start timing. In this case, as indicated by the one-dot chain line, if the actual valve opening start timing of the fuel injection valve 40 changes by the offset amount ΔTQ, the actual injection period shift does not become the offset amount ΔTQ. This is because, depending on the lift amount of the nozzle needle 44 when the command injection period elapses, the time from the elapse of time to the actual injection end changes.

この場合であれ、噴射特性のずれを、噴射量と噴射期間とによって定義される直線を噴射期間方向にずらしたものによってよく近似することができる。ただし、例えば、実際の噴射量のずれを検出した後、この検出値と指令噴射量とから、噴射開始時期のずれ量であるオフセット量ΔTQを定量化することで、これを学習値としてもよい。また、これに代えて、噴射量と燃圧とによって分割される領域毎に噴射特性のずれ量を学習することで、上記噴射量のずれ量の指令噴射量への依存性を学習してもよい。   Even in this case, the deviation of the injection characteristic can be approximated by a straight line defined by the injection amount and the injection period shifted in the injection period direction. However, for example, after detecting the deviation of the actual injection amount, the offset amount ΔTQ, which is the deviation amount of the injection start timing, is quantified from the detected value and the command injection amount, and this may be used as the learning value. . Alternatively, the dependency of the injection amount deviation amount on the command injection amount may be learned by learning the deviation amount of the injection characteristic for each region divided by the injection amount and the fuel pressure. .

・更に、燃料噴射弁40の噴射特性のずれとしては、指令噴射開始時期に対する実際の噴射開始時期の遅れ量のずれに起因するものに限らない。いずれにせよ、多段噴射を行うに際し、酸素濃度の予測値と検出値との差を1回あたりの噴射による差に換算することで、噴射特性のずれ量を学習することは有効である。   Further, the deviation in the injection characteristic of the fuel injection valve 40 is not limited to that caused by the deviation in the delay amount of the actual injection start timing with respect to the command injection start timing. In any case, when performing multi-stage injection, it is effective to learn the amount of deviation in the injection characteristics by converting the difference between the predicted value and the detected value of the oxygen concentration into the difference due to the injection per time.

・センサの検出誤差を別途補正する処理をするなら、燃圧によって分割される1次元の領域において学習値を学習することで、燃料噴射弁40の噴射特性のずれを高精度に学習することができる。   -If processing for correcting the detection error of the sensor is performed separately, it is possible to learn the deviation of the injection characteristic of the fuel injection valve 40 with high accuracy by learning the learning value in a one-dimensional region divided by the fuel pressure. .

・上記第2の実施形態において、指令噴射量を学習値で補正する代わりに、指令噴射期間を学習値で補正してもよい。   In the second embodiment, instead of correcting the command injection amount with the learned value, the command injection period may be corrected with the learned value.

第1の実施形態にかかるエンジンシステムの全体構成を示す図。The figure which shows the whole structure of the engine system concerning 1st Embodiment. 同実施形態における燃料噴射制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of the fuel-injection control in the embodiment. 要求噴射量及び目標燃圧の算出マップを示す図。The figure which shows the calculation map of request | requirement injection amount and target fuel pressure. 燃料噴射弁の噴射特性のずれを示す図。The figure which shows the shift | offset | difference of the injection characteristic of a fuel injection valve. 燃料噴射弁の噴射特性のずれの要因を説明するためのタイムチャート。The time chart for demonstrating the factor of the shift | offset | difference of the injection characteristic of a fuel injection valve. 上記実施形態にかかる噴射特性のずれ量を学習する処理の手順を示すフローチャート。The flowchart which shows the procedure of the process which learns the deviation | shift amount of the injection characteristic concerning the said embodiment. 同実施形態における学習値を記憶するマップを示す図。The figure which shows the map which memorize | stores the learning value in the same embodiment. 同実施形態にかかる酸素濃度のフィードバック制御の処理手順を示すフローチャート。6 is a flowchart showing a processing procedure of oxygen concentration feedback control according to the embodiment; 第2の実施形態にかかる燃料噴射制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of the fuel-injection control concerning 2nd Embodiment. 第3の実施形態にかかる燃料噴射弁の噴射特性を示す図。The figure which shows the injection characteristic of the fuel injection valve concerning 3rd Embodiment. 上記各実施形態の変形例における噴射特性のずれの要因を説明するための図。The figure for demonstrating the factor of the shift | offset | difference of the injection characteristic in the modification of each said embodiment.

符号の説明Explanation of symbols

10…ディーゼル機関、40…燃料噴射弁、70…エアフロメータ、76…酸素センサ、90…ECU(燃料噴射制御装置の一実施形態)、92…常時記憶保持メモリ(記憶手段の一実施形態)。   DESCRIPTION OF SYMBOLS 10 ... Diesel engine, 40 ... Fuel injection valve, 70 ... Air flow meter, 76 ... Oxygen sensor, 90 ... ECU (one Embodiment of fuel-injection control apparatus), 92 ... Constant memory holding | maintenance memory (One embodiment of a memory | storage means).

Claims (9)

1燃焼サイクル内に複数回の燃料噴射を行う多段噴射により内燃機関の出力を制御する燃料噴射制御装置において、
前記燃料噴射制御に伴う前記内燃機関の排気中の酸素濃度の予測値を算出する手段と、
前記酸素濃度の検出値と前記予測値との差を前記多段噴射の1回当たりの噴射による差に換算することで、前記内燃機関の燃料噴射弁の噴射特性のずれ量を学習する学習手段とを備えることを特徴とする燃料噴射制御装置。
In a fuel injection control device for controlling the output of an internal combustion engine by multistage injection in which fuel injection is performed a plurality of times in one combustion cycle,
Means for calculating a predicted value of oxygen concentration in the exhaust gas of the internal combustion engine accompanying the fuel injection control;
Learning means for learning a deviation amount of a fuel injection valve of the internal combustion engine by converting a difference between the detected value of the oxygen concentration and the predicted value into a difference due to one injection of the multi-stage injection; A fuel injection control device comprising:
前記噴射特性のずれは、噴射開始時期の指令値に対する実際の噴射開始時期の遅れ量のずれに起因して噴射期間がずれることによるものであり、
前記学習手段は、前記噴射期間のずれを定量化したものを前記ずれ量として学習することを特徴とする請求項1記載の燃料噴射制御装置。
The deviation of the injection characteristic is due to the deviation of the injection period due to the deviation of the delay amount of the actual injection start timing with respect to the command value of the injection start timing.
2. The fuel injection control apparatus according to claim 1, wherein the learning means learns the amount of deviation as a quantified amount of deviation in the injection period.
前記学習手段は、前記検出値及び前記予測値の差と前記内燃機関において燃焼に供される空気量とに基づき前記多段噴射に伴う噴射量の合計のずれ量を算出する手段と、該合計のずれ量を前記多段噴射の噴射回数によって除算することで前記噴射特性のずれ量を算出する算出手段とを備えることを特徴とする請求項1又は2記載の燃料噴射制御装置。   The learning means calculates a total deviation amount of the injection amount accompanying the multistage injection based on a difference between the detected value and the predicted value and an air amount to be burned in the internal combustion engine; 3. The fuel injection control device according to claim 1, further comprising a calculation unit that calculates the deviation amount of the injection characteristic by dividing the deviation amount by the number of injections of the multistage injection. 4. 前記燃料噴射弁は、噴射期間と噴射量との間に比例関係があるものであって且つその比例係数が変化する変曲点を有するものであり、
前記学習手段は、前記検出値及び前記予測値の差と前記内燃機関において燃焼に供される空気量とに基づき前記多段噴射に伴う噴射量の合計のずれ量を算出する手段と、前記実際の噴射開始時期の遅れ量のずれ分だけ噴射期間がずれるとの想定の下で前記多段噴射の噴射回数及び前記変曲点に基づき前記合計のずれ量から前記噴射特性のずれ量を算出する算出手段とを備えることを特徴とする請求項2記載の燃料噴射制御装置。
The fuel injection valve has a proportional relationship between the injection period and the injection amount, and has an inflection point at which the proportionality coefficient changes.
The learning means calculates a total deviation amount of the injection amount accompanying the multi-stage injection based on a difference between the detected value and the predicted value and an air amount provided for combustion in the internal combustion engine; A calculation means for calculating a deviation amount of the injection characteristic from the total deviation amount based on the number of injections of the multistage injection and the inflection point on the assumption that the injection period is shifted by a deviation amount of the delay amount of the injection start timing. The fuel injection control device according to claim 2, further comprising:
前記学習手段は、前記噴射特性のずれ量を、前記燃料噴射弁に供給される燃料の圧力によって定義される複数の領域毎に学習するものであり、
前記複数の領域毎に学習される前記噴射特性のずれ量を記憶する記憶手段を更に備えることを特徴とする請求項1〜4のいずれかに記載の燃料噴射制御装置。
The learning means learns the deviation amount of the injection characteristic for each of a plurality of regions defined by the pressure of fuel supplied to the fuel injection valve,
The fuel injection control device according to claim 1, further comprising storage means for storing a deviation amount of the injection characteristic learned for each of the plurality of regions.
前記学習手段は、前記噴射特性のずれ量を、前記燃料噴射弁に供給される燃料の圧力と前記内燃機関の出力軸の回転速度とによって定義される複数の領域毎に学習するものであり、
前記複数の領域毎に学習される前記噴射特性のずれ量を記憶する記憶手段を更に備えることを特徴とする請求項1〜5のいずれかに記載の燃料噴射制御装置。
The learning means learns the amount of deviation in the injection characteristics for each of a plurality of regions defined by the pressure of the fuel supplied to the fuel injection valve and the rotational speed of the output shaft of the internal combustion engine,
The fuel injection control device according to claim 1, further comprising storage means for storing a deviation amount of the injection characteristic learned for each of the plurality of regions.
前記排気中の酸素濃度の目標値を算出する目標値算出手段と、
前記予測値を前記目標値にフィードバック制御すべく、前記排気中の酸素濃度を制御するためのアクチュエータを操作する操作手段とを更に備え、
前記操作手段は、前記フィードバック制御に用いる前記予測値として、前記学習手段によって学習されるずれ量を用いて算出された予測値を用いることを特徴とする請求項1〜6のいずれかに記載の燃料噴射制御装置。
Target value calculating means for calculating a target value of oxygen concentration in the exhaust;
Operation means for operating an actuator for controlling the oxygen concentration in the exhaust gas in order to feedback-control the predicted value to the target value;
The said operation means uses the predicted value calculated using the deviation | shift amount learned by the said learning means as the said predicted value used for the said feedback control, The Claim 1 characterized by the above-mentioned. Fuel injection control device.
前記内燃機関は、排気系に排出される排気を吸気系に還流させる排気還流通路と、該排気還流通路の流路面積を調節するEGRバルブとを備え、
前記操作手段は、前記予測値を前記目標値にフィードバック制御すべく、前記EGRバルブの開度を操作することを特徴とする請求項7記載の燃料噴射制御装置。
The internal combustion engine includes an exhaust gas recirculation passage for recirculating exhaust gas discharged to an exhaust system to an intake system, and an EGR valve for adjusting a flow area of the exhaust gas recirculation passage,
8. The fuel injection control apparatus according to claim 7, wherein the operating means operates an opening of the EGR valve so as to feedback control the predicted value to the target value.
前記燃料噴射弁に対する噴射量の指令値に基づき、前記燃料噴射弁を開閉操作する開閉操作手段を更に備え、
前記開閉操作手段は、前記指令値に応じて前記燃料噴射弁の操作量を設定するに際し、前記学習手段によって学習される前記ずれ量に応じて、その設定を補正することを特徴とする請求項1〜6のいずれかに記載の燃料噴射制御装置。
An opening / closing operation means for opening / closing the fuel injection valve based on a command value of an injection amount for the fuel injection valve;
The opening / closing operation means corrects the setting according to the deviation amount learned by the learning means when setting the operation amount of the fuel injection valve according to the command value. The fuel-injection control apparatus in any one of 1-6.
JP2006105207A 2006-04-06 2006-04-06 Fuel injection control device Expired - Fee Related JP4483823B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006105207A JP4483823B2 (en) 2006-04-06 2006-04-06 Fuel injection control device
DE102007000211.6A DE102007000211B4 (en) 2006-04-06 2007-04-05 Fuel injection control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105207A JP4483823B2 (en) 2006-04-06 2006-04-06 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2007278168A true JP2007278168A (en) 2007-10-25
JP4483823B2 JP4483823B2 (en) 2010-06-16

Family

ID=38514758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105207A Expired - Fee Related JP4483823B2 (en) 2006-04-06 2006-04-06 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP4483823B2 (en)
DE (1) DE102007000211B4 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929400A (en) * 2009-06-19 2010-12-29 株式会社电装 Learning device
JP2012021514A (en) * 2010-07-16 2012-02-02 Denso Corp Fuel injection control device
WO2012176269A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Device for controlling internal combustion engine
JP2013007341A (en) * 2011-06-24 2013-01-10 Denso Corp Fuel-injection-condition estimating apparatus
JP2014181672A (en) * 2013-03-21 2014-09-29 Denso Corp Injection-quantity learning device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452520B2 (en) * 2010-06-01 2013-05-28 GM Global Technology Operations LLC Control system and method for low quantity fuel injection
US10202945B2 (en) * 2015-08-24 2019-02-12 Ford Global Technologies, Llc Method and device for controlling a motor-vehicle internal combustion engine fitted with a fuel injection system and an exhaust gas recirculation system
DE102016215393B4 (en) 2015-08-24 2017-10-19 Ford Global Technologies, Llc Method and device for controlling an internal combustion engine equipped with fuel injection and exhaust gas recirculation
DE102017203849A1 (en) * 2017-03-08 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Control unit for adjusting the emission of a vehicle
DE102018218020A1 (en) * 2018-10-22 2020-04-23 Ford Global Technologies, Llc Method for regulating an injection by a fuel injection unit, regulating device and computer program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284906B2 (en) * 2001-02-28 2009-06-24 株式会社デンソー Control device for internal combustion engine
FR2857700B1 (en) * 2003-07-16 2005-09-30 Magneti Marelli Motopropulsion METHOD FOR REAL-TIME DETERMINATION OF FUEL INJECTOR FLOW CHARACTERISTICS
EP1526267A3 (en) * 2003-10-21 2010-07-28 Continental Automotive GmbH Method and device for compensating the drift of an injector for an internal combustion engine with direct injection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929400A (en) * 2009-06-19 2010-12-29 株式会社电装 Learning device
JP2011001916A (en) * 2009-06-19 2011-01-06 Denso Corp Learning device
US8423486B2 (en) 2009-06-19 2013-04-16 Denso Corporation Learning device
JP2012021514A (en) * 2010-07-16 2012-02-02 Denso Corp Fuel injection control device
WO2012176269A1 (en) * 2011-06-20 2012-12-27 トヨタ自動車株式会社 Device for controlling internal combustion engine
JP2013007341A (en) * 2011-06-24 2013-01-10 Denso Corp Fuel-injection-condition estimating apparatus
JP2014181672A (en) * 2013-03-21 2014-09-29 Denso Corp Injection-quantity learning device

Also Published As

Publication number Publication date
JP4483823B2 (en) 2010-06-16
DE102007000211B4 (en) 2014-09-11
DE102007000211A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4483823B2 (en) Fuel injection control device
US6742379B2 (en) Intake air oxygen concentration sensor calibration device and method
JP4929966B2 (en) Fuel injection control device
JP4251073B2 (en) Control device for internal combustion engine
JP5982062B2 (en) Control device for internal combustion engine
US7373918B2 (en) Diesel engine control system
JP4462018B2 (en) Engine control system
JP3833540B2 (en) Fuel supply device for internal combustion engine
JP2009162139A (en) Air-fuel ratio control device for internal combustion engine
JP2008309036A (en) Fuel estimation device
US6712053B2 (en) Control system for internal combustion engine
JP2008014152A (en) Learning method of injection characteristic and fuel injection control device
JP2002327643A (en) Control apparatus for diesel engine
JP4670771B2 (en) Fuel injection control device
JP2010096169A (en) Method and device for charging fuel to be injected in combustion chamber of internal combustion engine
JP4513757B2 (en) Fuel injection control device
JP2005320964A (en) Injection quantity control device of diesel engine
JP2008088837A (en) Fuel injection control device
JP2011064127A (en) Drive control device for fuel pump
JP2010031656A (en) Fuel pressure control device
JP3782399B2 (en) Fuel injection control device for internal combustion engine
JP2011140926A (en) Fuel injection control device of internal combustion engine
US7711470B2 (en) Control apparatus
JPH094520A (en) Exhaust gas recirculation device of internal combustion engine
WO2017098904A1 (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R151 Written notification of patent or utility model registration

Ref document number: 4483823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees