JP2007278098A - Combustion noise calculation device and combustion noise control system for internal combustion engine - Google Patents
Combustion noise calculation device and combustion noise control system for internal combustion engine Download PDFInfo
- Publication number
- JP2007278098A JP2007278098A JP2006102494A JP2006102494A JP2007278098A JP 2007278098 A JP2007278098 A JP 2007278098A JP 2006102494 A JP2006102494 A JP 2006102494A JP 2006102494 A JP2006102494 A JP 2006102494A JP 2007278098 A JP2007278098 A JP 2007278098A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder pressure
- internal combustion
- combustion engine
- combustion noise
- log
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 338
- 238000004364 calculation method Methods 0.000 title claims description 19
- 239000000446 fuel Substances 0.000 claims abstract description 241
- 230000006835 compression Effects 0.000 claims abstract description 12
- 238000007906 compression Methods 0.000 claims abstract description 12
- 238000002347 injection Methods 0.000 claims description 136
- 239000007924 injection Substances 0.000 claims description 136
- 238000001514 detection method Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 6
- 230000002596 correlated effect Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、内燃機関における燃焼騒音を算出する内燃機関の燃焼騒音算出装置および該燃焼騒音を制御する燃焼騒音制御システムに関する。 The present invention relates to a combustion noise calculation device for an internal combustion engine that calculates combustion noise in the internal combustion engine, and a combustion noise control system that controls the combustion noise.
内燃機関においては、燃料噴射弁からの燃料噴射量や燃料噴射時期のばらつきに起因して燃焼騒音が発生する場合がある。また、内燃機関の運転状態の変化に伴って該内燃機関での燃焼パターンを変化させる過渡時においても、燃料噴射量や燃料噴射時期が最適値からずれることにより燃焼騒音が発生する場合がある。 In an internal combustion engine, combustion noise may occur due to variations in the fuel injection amount and fuel injection timing from the fuel injection valve. Further, even in a transient state in which the combustion pattern in the internal combustion engine is changed with a change in the operating state of the internal combustion engine, combustion noise may be generated due to the fuel injection amount or the fuel injection timing deviating from the optimum values.
特許文献1には、この内燃機関における燃焼騒音を筒内圧力の二階時間微分値から検知する技術が開示されている。また、特許文献2には、主燃料噴射よりも前の時期に副燃料噴射を実行する内燃機関において、燃料が燃焼したときの筒内圧力の二階時間微分値が目標値と一致しないときは、該二階時間微分値が小さくなる側に副燃料噴射量を補正する技術が開示されている。
本発明は、内燃機関における燃焼騒音をより精度良く算出することが可能な技術を提供することを課題とする。 An object of the present invention is to provide a technique capable of calculating combustion noise in an internal combustion engine with higher accuracy.
本発明は、内燃機関の筒内圧から得ることが可能な、燃焼騒音と相関がある複数のパラメータに基づいて燃焼騒音を算出するものである。 The present invention calculates combustion noise based on a plurality of parameters that can be obtained from the in-cylinder pressure of an internal combustion engine and have correlation with combustion noise.
より詳しくは、第一の発明に係る内燃機関の燃焼騒音算出装置は、
内燃機関の筒内圧を検出または推定する筒内圧検出手段を備え、
少なくとも、
圧縮行程および排気行程中における筒内圧の最大値と、
燃料の燃焼による筒内圧の上昇量の最大値と、
燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の最大値と、
燃料が燃焼したときの筒内圧の上昇量の二階時間微分値の最大値と、
圧縮行程および排気行程に要する時間と、
に基づいて前記内燃機関における燃焼騒音を算出することを特徴とする。
More specifically, the internal combustion engine combustion noise calculation apparatus according to the first invention is
In-cylinder pressure detecting means for detecting or estimating the in-cylinder pressure of the internal combustion engine,
at least,
The maximum value of the in-cylinder pressure during the compression stroke and the exhaust stroke;
The maximum amount of cylinder pressure rise due to fuel combustion,
The maximum value of the first-order time differential value of the amount of increase in the in-cylinder pressure when the fuel burns,
The maximum value of the second-order time differential value of the increase in the in-cylinder pressure when the fuel burns,
The time required for the compression and exhaust strokes;
Based on the above, combustion noise in the internal combustion engine is calculated.
内燃機関における燃焼騒音は筒内圧の変動に起因して発生する。そのため、上記のような筒内圧の変動に関わる複数のパラメータの全てが燃焼騒音と相関がある。 Combustion noise in an internal combustion engine is generated due to fluctuations in in-cylinder pressure. Therefore, all of the plurality of parameters related to the fluctuation of the in-cylinder pressure as described above are correlated with the combustion noise.
しかしながら、内燃機関の運転状態に応じて、燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の最大値(以下、一階時間微分最大値と称する)の方が、燃料が燃焼したときの筒内圧の上昇量の二階時間微分値の最大値(以下、二階時間微分最大値と称する)よりも燃焼騒音に対する相関度合いが高くなる場合や、二階時間微分最大値の方が一階時間微分最大値よりも燃焼騒音に対する相関度合いが高くなる場合がある。 However, depending on the operating state of the internal combustion engine, the maximum value of the first-order time differential value of the amount of increase in the in-cylinder pressure when the fuel combusts (hereinafter referred to as the first-order time differential maximum value) is combusted. If the degree of correlation with combustion noise is higher than the maximum value of the second-order time differential value of the increase in the in-cylinder pressure (hereinafter referred to as the second-order time differential maximum value), or the second-order time differential maximum value is the first order The degree of correlation with combustion noise may be higher than the time differential maximum value.
また、一階時間微分最大値または二階時間微分最大値が同様の値であっても、内燃機関の運転状態に応じて、圧縮行程および排気行程中における筒内圧の最大値(以下、筒内圧最大値と称する)や、燃料の燃焼による筒内圧の上昇量の最大値(以下、上昇量最大値と称する)が異なる値となる場合がある。 Further, even if the first-order time differential maximum value or the second-order time differential maximum value is the same value, the maximum value of the in-cylinder pressure during the compression stroke and the exhaust stroke (hereinafter referred to as the maximum in-cylinder pressure) depending on the operating state of the internal combustion engine. The maximum amount of increase in the in-cylinder pressure due to fuel combustion (hereinafter referred to as the maximum amount of increase) may be different values.
従って、上記のような複数のパラメータ全てに基づいて内燃機関における燃焼騒音を算出することで、内燃機関の運転状態に関わらず該燃焼騒音をより精度良く算出することが出来る。また、内燃機関の運転状態の変化に伴って該内燃機関での燃焼パターンを変化させる過渡時においても、燃焼騒音をより精度良く算出することが出来る。 Therefore, by calculating the combustion noise in the internal combustion engine based on all of the plurality of parameters as described above, the combustion noise can be calculated with higher accuracy regardless of the operating state of the internal combustion engine. In addition, combustion noise can be calculated with higher accuracy even during a transition in which the combustion pattern in the internal combustion engine changes as the operating state of the internal combustion engine changes.
本発明においては、内燃機関おける燃焼騒音をCNとし、さらに、筒内圧最大値をPmaxとし、上昇量最大値をΔPmaxとし、一階時間微分最大値をdΔP/dtとし、二階時間微分最大値をd2ΔP/dt2とし、内燃機関の機関回転数をNeとして、下記式(1)から内燃機関における燃焼騒音を算出しても良い。
CN=A×log10(Pmax)n1+B×log10(ΔPmax)n2+C×log10(dΔP/dt)n3+D×log10(d2ΔP/dt2)n4+E×log10(1/Ne)+F・・・式(1)
(ただし、AおよびB、C、D、E、F、n1、n2、n3、n4は係数)
In the present invention, the combustion noise in the internal combustion engine is CN, the maximum in-cylinder pressure is Pmax, the maximum increase amount is ΔPmax, the first-order time differential maximum value is dΔP / dt, and the second-order time differential maximum value is Combustion noise in the internal combustion engine may be calculated from the following equation (1), where d 2 ΔP / dt 2 and the engine speed of the internal combustion engine are Ne.
CN = A × log 10 (Pmax) n1 + B × log 10 (ΔPmax) n2 + C × log 10 (dΔP / dt) n3 + D × log 10 (d 2 ΔP / dt 2 ) n4 + E × log 10 (1 / Ne) + F Formula (1)
(However, A and B, C, D, E, F, n1, n2, n3, and n4 are coefficients)
人間の聴覚が感じる音の大きさを表す音圧レベル(単位:dB)はWeber−Fechnerの法則から下記式(2)で表される。
音圧レベル=20log10(P/P0)・・・式(2)
(P:音圧、P0:基準音圧)
The sound pressure level (unit: dB) representing the level of sound felt by human hearing is expressed by the following equation (2) from the Weber-Fechner law.
Sound pressure level = 20 log 10 (P / P 0 ) (2)
(P: Sound pressure, P 0 : Reference sound pressure)
ここで、式(1)における1/Neは、機関回転数の逆数であり、即ち圧縮行程および排気行程に要する時間となる。つまり、式(1)は、筒内圧の変動に関わる前記各パラメータに起因する燃焼騒音の成分を式(2)に基づいて導出し、これらを合成することで燃焼騒音を算出するものである。尚、式(1)における各係数は実験等によって予め定められた値である。また、式(1)における各係数を、燃焼騒音算出の対象となる内燃機関に応じて最適な値に設定しても良い。 Here, 1 / Ne in the equation (1) is the reciprocal of the engine speed, that is, the time required for the compression stroke and the exhaust stroke. That is, Expression (1) derives the combustion noise component caused by each parameter related to the variation in the in-cylinder pressure based on Expression (2), and calculates the combustion noise by synthesizing them. In addition, each coefficient in Formula (1) is a value predetermined by experiment etc. Further, each coefficient in the equation (1) may be set to an optimum value according to the internal combustion engine that is the target of the combustion noise calculation.
式(1)によれば、燃焼騒音CNを、相対的な値ではなく、単位をdBとした音圧レベルとして算出することが出来る。従って、内燃機関の運転状態に関わらず燃焼騒音をより精度良く算出することが出来る。 According to Equation (1), the combustion noise CN can be calculated as a sound pressure level with a unit of dB, not a relative value. Therefore, the combustion noise can be calculated with higher accuracy regardless of the operating state of the internal combustion engine.
また、本発明では、内燃機関において一燃焼サイクル中に燃料噴射を複数回実行しても良い。この場合、各燃料噴射によって噴射された燃料が燃焼する毎に筒内圧が上昇する。 In the present invention, the fuel injection may be executed a plurality of times during one combustion cycle in the internal combustion engine. In this case, the in-cylinder pressure increases every time the fuel injected by each fuel injection burns.
そこで、上記の場合、各燃料噴射によって噴射された燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の各最大値および筒内圧の上昇量の二階時間微分値の各最大値に基づいて、内燃機関における燃焼騒音を算出しても良い。 Therefore, in the above case, the maximum value of the first-order time differential value of the increase amount of the in-cylinder pressure when the fuel injected by each fuel injection burns and the maximum value of the second-order time differential value of the increase amount of the in-cylinder pressure are set. Based on this, combustion noise in the internal combustion engine may be calculated.
これにより、一燃焼サイクル中に燃料噴射が複数回実行される場合であっても、内燃機関の運転状態に関わらず燃焼騒音をより精度良く算出することが出来る。 As a result, even when fuel injection is performed a plurality of times during one combustion cycle, the combustion noise can be calculated more accurately regardless of the operating state of the internal combustion engine.
また、本発明では、内燃機関における燃料噴射を主燃料噴射および副燃料噴射によって行っても良い。ここで、副燃料噴射は、主燃料噴射より前の時期であって噴射された燃料が燃焼に供される時期に実行される。この場合、上記のように、副燃料噴射によって噴射された燃料が燃焼したとき、および、主燃料噴射によって噴射された燃料が燃焼したときに筒内圧が上昇する。 In the present invention, the fuel injection in the internal combustion engine may be performed by main fuel injection and sub fuel injection. Here, the auxiliary fuel injection is executed at a time before the main fuel injection and when the injected fuel is used for combustion. In this case, as described above, the in-cylinder pressure rises when the fuel injected by the auxiliary fuel injection burns and when the fuel injected by the main fuel injection burns.
そこで、上記の場合においては、内燃機関おける燃焼騒音をCNとし、副燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値をPsubとし、主燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値をPmainとし、副燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値をΔPsubとし、主燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値をΔPmainとし、副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値をdΔP/dtsubとし、主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値をdΔP/dtmainとし、副燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最大値をd2ΔP/dt2subとし、主燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最大値をd2ΔP/dt2mainとし、前記内燃機関の機関回転数をNeとして、下記式(3)から内燃機関における燃焼騒音を算出しても良い。
CN=A×log10[(Psub) n1+(Pmain) n1]+B×log10[(ΔPsub)n2+(ΔPmain)n2]+C×log10[(dΔP/dtsub)n3+(dΔP/dt
main)n3]+D×log10[(d2ΔP/dt2sub)n4+(d2ΔP/dt2main)n4]+E×log10(1/Ne)+F・・・(3)
(ただし、AおよびB、C、D、E、F、n1、n2、n3、n4は係数)
Therefore, in the above case, the combustion noise in the internal combustion engine is CN, the maximum value of the in-cylinder pressure when the fuel injected by the auxiliary fuel injection burns is Psub, and the fuel injected by the main fuel injection burns The maximum value of the in-cylinder pressure at this time is Pmain, the maximum value of the increase in the in-cylinder pressure due to the combustion of the fuel injected by the auxiliary fuel injection is ΔPsub, and the increase in the in-cylinder pressure due to the combustion of the fuel injected by the main fuel injection Is the maximum first-order time differential when the fuel injected by the secondary fuel injection is burned, and is the first-order time differential maximum when the fuel injected by the main fuel injection is burned. The value is dΔP / dtmain, and the second-order time differential maximum value when the fuel injected by the sub fuel injection burns is d 2 ΔP / dt 2 sub. Then, the second-order time differential maximum value when the fuel injected by the main fuel injection is burned is d 2 ΔP / dt 2 main, the engine speed of the internal combustion engine is Ne, and the following equation (3) Combustion noise may be calculated.
CN = A × log 10 [(Psub) n1 + (Pmain) n1 ] + B × log 10 [(ΔPsub) n2 + (ΔPmain) n2 ] + C × log 10 [(dΔP / dtsub) n3 + (dΔP / dt
main) n3 ] + D × log 10 [(d 2 ΔP / dt 2 sub) n4 + (d 2 ΔP / dt 2 main) n4 ] + E × log 10 (1 / Ne) + F (3)
(However, A and B, C, D, E, F, n1, n2, n3, and n4 are coefficients)
尚、式(1)と同様、式(3)における各係数は実験等によって予め定められた値であり、各係数を燃焼騒音算出の対象となる内燃機関に応じて最適な値に設定しても良い。 As in equation (1), each coefficient in equation (3) is a value determined in advance by experiment or the like, and each coefficient is set to an optimum value according to the internal combustion engine for which combustion noise is calculated. Also good.
式(3)により、燃料噴射が主燃料噴射および副燃料噴射によって行われる場合であっても、燃焼騒音CNを、単位をdBとした音圧レベルとして算出することが出来る。従って、内燃機関の運転状態に関わらず燃焼騒音をより精度良く算出することが出来る。 Even if the fuel injection is performed by the main fuel injection and the sub fuel injection, the combustion noise CN can be calculated as a sound pressure level with the unit dB. Therefore, the combustion noise can be calculated with higher accuracy regardless of the operating state of the internal combustion engine.
また、本発明においては、前記各パラメータに加え、さらに、燃料が燃焼したときの筒内圧の上昇量の三階以上の高階時間微分値の最大値に基づいて内燃機関における燃焼騒音を算出しても良い。 In the present invention, in addition to the above parameters, the combustion noise in the internal combustion engine is calculated based on the maximum value of the higher-order time differential value of the third or higher floor of the increase in the in-cylinder pressure when the fuel burns. Also good.
燃料が燃焼したときの筒内圧の上昇量の三階以上の高階時間微分値の最大値も、前記各パラメータと同様、燃焼騒音と相関がある。従って、該高階時間微分値の最大値をも用いて燃焼騒音を算出することで、該燃焼騒音の算出精度を向上させることが出来る。 The maximum value of the third-order or higher-order time differential value of the amount of increase in the in-cylinder pressure when the fuel is combusted is also correlated with the combustion noise, like the above-described parameters. Therefore, the calculation accuracy of the combustion noise can be improved by calculating the combustion noise also using the maximum value of the higher order time differential value.
第二の発明に係る内燃機関の燃焼騒音制御システムは、前記式(1)から内燃機関における燃焼騒音を算出する内燃機関の燃焼騒音算出装置を備えており、さらに、前記式(1)における、A×log10(Pmax)n1+B×log10(ΔPmax)n2を圧力成分とし、C×log10(dΔP/dt)n3を筒内圧の上昇量の一階時間微分成分とし、D×log10(d2ΔP/dt2)n4を筒内圧の上昇量の二階時間微分成分とし、E×log10(1/Ne)を時間成分とし、各成分の内燃機関における燃焼騒音に対する相関度合いを算出する相関度合い算出手段を備えている。そして、圧力成分および筒内圧の上昇量の一階時間微分成分、筒内圧の上昇量の二階時間微分成分、時間成分のうち内燃機関における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させることで前記燃焼騒音検出装置によって算出される燃焼騒音を所定値以下に制御することを特徴とする。 A combustion noise control system for an internal combustion engine according to a second aspect of the invention includes a combustion noise calculation device for an internal combustion engine that calculates combustion noise in the internal combustion engine from the equation (1). Further, in the equation (1), A × log 10 (Pmax) n1 + B × log 10 (ΔPmax) n2 is a pressure component, C × log 10 (dΔP / dt) n3 is a first-order time differential component of the increase in in-cylinder pressure, and D × log 10 ( d 2 ΔP / dt 2 ) n4 is a second-order time differential component of the increase in in-cylinder pressure, E × log 10 (1 / Ne) is a time component, and a correlation for calculating the degree of correlation of each component with combustion noise in the internal combustion engine A degree calculation means is provided. The first-order time derivative component of the pressure component and the increase amount of the in-cylinder pressure, the second-order time derivative component of the increase amount of the in-cylinder pressure, and the component having a higher degree of correlation with the combustion noise in the internal combustion engine are preferentially reduced. Thus, the combustion noise calculated by the combustion noise detection device is controlled to a predetermined value or less.
ここで、所定値は、燃焼騒音の許容範囲の上限値以下の値であって、予め定められた値である。 Here, the predetermined value is a value not more than the upper limit value of the allowable range of combustion noise, and is a predetermined value.
式(1)における上記各成分の燃焼騒音に対する相関度合いは、燃焼騒音制御の対象となる内燃機関に応じて異なる場合がある。そこで、式(1)における上記各成分のうち内燃機関における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させる。これ
により、燃焼騒音を効率的に所定値以下に低減させることが出来る。
The degree of correlation of the above components in equation (1) with respect to combustion noise may vary depending on the internal combustion engine that is the subject of combustion noise control. Therefore, among the above components in Equation (1), components having a higher degree of correlation with combustion noise in the internal combustion engine are preferentially reduced. Thereby, combustion noise can be efficiently reduced below a predetermined value.
また、第三の発明に係る内燃機関の燃焼騒音制御システムは、前記式(3)から内燃機関における燃焼騒音を算出する内燃機関の燃焼騒音算出装置を備えており、さらに、前記式(3)における、A×log10[(Psub) n1+(Pmain) n1]+B×log10[(ΔPsub)n2+(ΔPmain)n2]を圧力成分とし、C×log10[(dΔP/dts
ub)n3+(dΔP/dtmain)n3]を筒内圧の上昇量の一階時間微分成分としD×log10[(d2ΔP/dt2sub)n4+(d2ΔP/dt2main)n4]を筒内圧の上昇量の二階時間微分成分とし、E×log10(1/Ne)を時間成分とし、各成分の内燃機関における燃焼騒音に対する相関度合いを算出する相関度合い算出手段を備えている。そして、圧力成分および筒内圧の上昇量の一階時間微分成分、筒内圧の上昇量の二階時間微分成分、時間成分のうち内燃機関における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させることで前記燃焼騒音検出装置によって算出される燃焼騒音を所定値以下に制御することを特徴とする。
A combustion noise control system for an internal combustion engine according to a third aspect of the invention includes a combustion noise calculation device for an internal combustion engine that calculates combustion noise in the internal combustion engine from the equation (3), and further includes the equation (3). A × log 10 [(Psub) n1 + (Pmain) n1 ] + B × log 10 [(ΔPsub) n2 + (ΔPmain) n2 ] is used as a pressure component, and C × log 10 [(dΔP / dts
ub) n3 + (dΔP / dtmain) n3 ] as a first-order time differential component of the increase in the in-cylinder pressure, D × log 10 [(d 2 ΔP / dt 2 sub) n4 + (d 2 ΔP / dt 2 main) n4 ] Is a second-order time differential component of the amount of increase in the in-cylinder pressure, E × log 10 (1 / Ne) is a time component, and correlation degree calculating means for calculating the degree of correlation of each component with combustion noise in the internal combustion engine is provided. . The first-order time derivative component of the pressure component and the increase amount of the in-cylinder pressure, the second-order time derivative component of the increase amount of the in-cylinder pressure, and the component having a higher degree of correlation with the combustion noise in the internal combustion engine are preferentially reduced. Thus, the combustion noise calculated by the combustion noise detection device is controlled to a predetermined value or less.
ここで、所定値は、第二の発明と同様、燃焼騒音の許容範囲の上限値以下の値であって、予め定められた値である。 Here, like the second invention, the predetermined value is a value equal to or lower than the upper limit value of the allowable range of combustion noise, and is a predetermined value.
第二の発明と同様、式(3)における上記各成分の燃焼騒音に対する相関度合いは、燃焼騒音制御の対象となる内燃機関に応じて異なる場合がある。そこで、式(3)における上記各成分のうち内燃機関における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させる。これにより、第二の発明と同様、燃焼騒音を効率的に所定値以下に低減させることが出来る。 Similar to the second invention, the degree of correlation of each component in equation (3) with respect to combustion noise may vary depending on the internal combustion engine that is subject to combustion noise control. In view of this, among the above components in Equation (3), components having a higher degree of correlation with combustion noise in the internal combustion engine are preferentially reduced. Thereby, like the second invention, the combustion noise can be efficiently reduced to a predetermined value or less.
尚、第二および第三の発明において、燃焼騒音を低減すべく時間成分を低減させた場合、内燃機関の機関回転数が変化することになる。これにより、内燃機関を搭載した車両の運転状態に影響を与える場合がある。 In the second and third inventions, when the time component is reduced to reduce the combustion noise, the engine speed of the internal combustion engine changes. This may affect the driving state of the vehicle equipped with the internal combustion engine.
そこで、第二および第三の発明においては、時間成分を除いた前記各成分のうち内燃機関における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させることで該燃焼騒音を所定値以下に制御しても良い。 Therefore, in the second and third inventions, the combustion noise is reduced to a predetermined value or less by preferentially reducing, among the components excluding the time component, components having a higher degree of correlation with the combustion noise in the internal combustion engine. You may control.
これにより、内燃機関を搭載した車両の運転状態への影響を抑制しつつ、燃焼騒音を効率的に所定値以下に低減させることが出来る。 Thereby, the combustion noise can be efficiently reduced to a predetermined value or less while suppressing the influence on the driving state of the vehicle equipped with the internal combustion engine.
本発明に係る内燃機関の燃焼騒音算出装置によれば、内燃機関における燃焼騒音をより精度良く算出することが出来る。また、本発明に係る内燃機関の燃焼騒音制御システムによれば、燃焼騒音を効率的に低減させることが出来る。 According to the combustion noise calculation apparatus for an internal combustion engine according to the present invention, the combustion noise in the internal combustion engine can be calculated with higher accuracy. Further, according to the combustion noise control system for an internal combustion engine according to the present invention, the combustion noise can be efficiently reduced.
以下、本発明に係る内燃機関の燃焼騒音算出装置および燃焼騒音制御システムの具体的な実施の形態について図面に基づいて説明する。 Hereinafter, specific embodiments of a combustion noise calculation device and a combustion noise control system for an internal combustion engine according to the present invention will be described with reference to the drawings.
<内燃機関及びその燃料系の概略構成>
図1は、本実施例に係る内燃機関及びその燃料系の概略構成を示す図である。内燃機関1は4つの気筒2を有する車両駆動用のディーゼル機関である。内燃機関1の気筒2内にはピストン3が摺動自在に設けられている。
<Schematic configuration of internal combustion engine and its fuel system>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine and its fuel system according to this embodiment. The
気筒2内上部の燃焼室には、吸気ポート4と排気ポート5とが接続されている。吸気ポート4および排気ポート5の燃焼室への開口部は、それぞれ吸気弁6および排気弁7によって開閉される。吸気ポート4および排気ポート5は、それぞれ吸気通路8および排気通路9に接続されている。また、気筒2には、該気筒2内に燃料を直接噴射する燃料噴射弁10が設けられている。
An
内燃機関1には、燃料タンク14が併設されている。燃料タンク14内には燃料供給管13の一端が挿入されており、この燃料供給管13の他端がコモンレール12に接続されている。燃料供給管13には燃料タンク14からコモンレール12に燃料を圧送する燃料ポンプ15が設けられている。また、コモンレール12には、4つの燃料供給枝管11の一端が接続されている。各燃料供給枝管11の他端は各気筒2の燃料噴射弁10に接続されている。コモンレール12において昇圧された燃料が燃料供給枝管11を介して燃料噴射弁10に送り込まれ該燃料噴射弁10から噴射される。
The
また、内燃機関1には、気筒2内の圧力を検出する圧力センサ21、および、該内燃機関1に設けられたウォータージャケット内の冷却水の温度を検出する水温センサ22が設けられている。
Further, the
以上述べたように構成された内燃機関1には、この内燃機関1を制御するためのECU20が併設されている。ECU20には、圧力センサ21や水温センサ22、内燃機関1のクランク角を検出するクランクポジションセンサ23、内燃機関1を搭載した車両のアクセル開度を検出するアクセル開度センサ24等の各種センサが電気配線を介して接続されている。これらの出力信号がECU20に入力される。
The
また、ECU20には、燃料噴射弁10や燃料ポンプ15が電気的に接続されている。これらがECU20によって制御される。尚、本実施例においては、燃料噴射弁10からの燃料噴射は、1燃焼サイクル中に主燃料噴射と副燃料噴射との二回行われる。主燃料噴射は圧縮行程上死点近傍の時期に実行される。また、副燃料噴射は、主燃料噴射より前の時期であって、噴射された燃料が燃焼に供される時期に実行される。
Further, the
<燃焼騒音算出方法>
次に、本実施例に係る内燃機関1における燃焼騒音の算出方法について説明する。本実施例では、圧力センサ21によって検出される筒内圧に基づいて、図2に示すような燃焼騒音CNと相関のある複数のパラメータが導出される。
<Combustion noise calculation method>
Next, a method for calculating combustion noise in the
図2は、筒内圧および筒内圧に基づいて算出される複数のパラメータの圧縮行程および膨張行程における変化を示す図である。図2(a)の縦軸は筒内圧を表している。また、図(a)における実線L1は、燃焼室において燃料が燃焼した場合の筒内圧の変化を表している。また、図(a)における破線L2は、燃焼室において燃料が燃焼せずにピストン3が移動するのみの場合の筒内圧の変化を表している。
FIG. 2 is a diagram illustrating changes in the compression stroke and the expansion stroke of a plurality of parameters calculated based on the in-cylinder pressure and the in-cylinder pressure. The vertical axis in FIG. 2A represents the in-cylinder pressure. Moreover, the solid line L1 in FIG. (A) represents the change of the in-cylinder pressure when the fuel burns in the combustion chamber. Moreover, the broken line L2 in FIG. (A) represents the change in the in-cylinder pressure when the
図2(b)の縦軸は燃料の燃焼による筒内圧の上昇量(即ち、図2(a)におけるL1からL2を減算した値)を表している。図2(c)の縦軸は筒内圧の上昇量の一階時間微分値を表している。図2(d)の縦軸は筒内圧の上昇量の二階時間微分値を表している。図2(a)および(b)、(c)、(d)の横軸はクランク角を表している。 The vertical axis in FIG. 2B represents the amount of increase in the in-cylinder pressure due to fuel combustion (that is, the value obtained by subtracting L2 from L1 in FIG. 2A). The vertical axis in FIG. 2C represents the first-order time differential value of the increase amount of the in-cylinder pressure. The vertical axis in FIG. 2D represents the second-order time differential value of the amount of increase in the in-cylinder pressure. 2 (a), (b), (c), and (d), the horizontal axis represents the crank angle.
また、図2(a)におけるPsubが副燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値を表しており、図2(a)におけるPmainが主燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値を表している。図2(b)におけるΔPsubが副燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値を表し
ており、図2(b)におけるΔPmainが主燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値を表している。図2(c)におけるdΔP/dtsubが副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値を表しており、図2(c)におけるdΔP/dtmainが主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値を表している。図2(d)におけるd2ΔP/dt2subが副燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最大値を表しており、図2(d)におけるd2ΔP/dt2mainが主燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最大値を表している。
Further, Psub in FIG. 2 (a) represents the maximum value of the in-cylinder pressure when the fuel injected by the sub fuel injection is combusted, and Pmain in FIG. 2 (a) is the fuel injected by the main fuel injection. It represents the maximum value of the in-cylinder pressure when burning. ΔPsub in FIG. 2B represents the maximum value of the increase in the in-cylinder pressure due to the combustion of the fuel injected by the sub fuel injection, and ΔPmain in FIG. 2B represents the combustion of the fuel injected by the main fuel injection. Represents the maximum value of the increase in the in-cylinder pressure. DΔP / dtsub in FIG. 2 (c) represents the first-order time differential maximum value when the fuel injected by the sub fuel injection burns, and dΔP / dtmain in FIG. 2 (c) is injected by the main fuel injection. Represents the first-order time differential maximum value when the fuel burned. D 2 ΔP / dt 2 sub in FIG. 2D represents the second-order time differential maximum value when the fuel injected by the sub fuel injection burns, and d 2 ΔP / dt 2 main in FIG. Represents the second-order time differential maximum value when the fuel injected by the main fuel injection burns.
副燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値Psub、および、主燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値Pmain、副燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値ΔPsub、主燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値ΔPmain、副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値dΔP/dtsub、主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値dΔP/dtmain、副燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最大値d2Δ
P/dt2sub、主燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最
大値d2ΔP/dt2mainの全てが内燃機関1における燃焼騒音CNと相関がある。また、内燃機関1において圧縮行程および排気行程に要する時間も燃焼騒音CNと相関がある。この圧縮行程および排気行程に要する時間は、内燃機関1の機関回転数をNeとすると1/Neで表される。
The maximum value Psub of the in-cylinder pressure when the fuel injected by the auxiliary fuel injection burns, the maximum value Pmain of the in-cylinder pressure when the fuel injected by the main fuel injection burns, and the fuel injected by the auxiliary fuel injection The maximum value ΔPsub of the increase in the in-cylinder pressure due to the combustion of the fuel, the maximum value ΔPmain of the increase in the in-cylinder pressure due to the combustion of the fuel injected by the main fuel injection, and the first floor time when the fuel injected by the sub fuel injection burns Differential maximum value dΔP / dtsub, first-order time differential maximum value dΔP / dtmain when the fuel injected by the main fuel injection burns, second-order time differential maximum value d 2 when the fuel injected by the auxiliary fuel injection burns Δ
All of P / dt 2 sub and the second-order time differential maximum value d 2 ΔP / dt 2 main when the fuel injected by the main fuel injection burns are correlated with the combustion noise CN in the
そこで、本実施例では、PsubおよびPmain、ΔPsub、ΔPmain、dΔP/dtsub、dΔP/dtmain、d2ΔP/dt2sub、d2ΔP/dt2main、1/Neに基づき、下記式(3)´から内燃機関1における燃焼騒音CNを算出する。
CN=A´×log10[(Psub) n1´+(Pmain) n1´]+B´×log10[(ΔPsub)n2´+(ΔPmain)n2´]+C´×log10[(dΔP/dtsub)n3´
+(dΔP/dtmain)n3´]+D´×log10[(d2ΔP/dt2sub)n4´+(d2ΔP/dt2main)n4´]+E´×log10(1/Ne)+F´・・・(3)´
Therefore, in this embodiment, the following formula (3) is used based on Psub and Pmain, ΔPsub, ΔPmain, dΔP / dtsub, dΔP / dtmain, d 2 ΔP / dt 2 sub, d 2 ΔP / dt 2 main, 1 / Ne. The combustion noise CN in the
CN = A ′ × log 10 [(Psub) n1 ′ + (Pmain) n1 ′] + B ′ × log 10 [(ΔPsub) n2 ′ + (ΔPmain) n2 ′] + C ′ × log 10 [(dΔP / dtsub) n3 ´
+ (DΔP / dtmain) n3 ′] + D ′ × log 10 [(d 2 ΔP / dt 2 sub) n4 ′ + (d 2 ΔP / dt 2 main) n4 ′] + E ′ × log 10 (1 / Ne) + F '... (3)'
式(3)´におけるA´およびB´、C´、D´、E´、F´、n1´、n2´、n3´、n4´は係数である。本実施例においては、各係数が内燃機関1に関して最適な値となるように実験等によって予め定められている。この式(3)´はECU20に予め記憶されている。
A ′ and B ′, C ′, D ′, E ′, F ′, n1 ′, n2 ′, n3 ′, and n4 ′ in Equation (3) ′ are coefficients. In the present embodiment, each coefficient is determined in advance by experiments or the like so as to be an optimum value for the
式(3)´によれば、単位をdBとする音圧レベルとして燃焼騒音CNが算出される。ここで、式(3)´によって算出された燃焼騒音の算出値と燃焼騒音の実測値との関係を図3に示す。図3において、縦軸は実測値を表し、横軸は式(3)´による算出値を表している。この図3に示すように、式(3)´によって算出された値は実測値とほぼ同様の値となっている。 According to equation (3) ′, the combustion noise CN is calculated as a sound pressure level with the unit dB. Here, the relationship between the calculated value of the combustion noise calculated by the equation (3) ′ and the measured value of the combustion noise is shown in FIG. In FIG. 3, the vertical axis represents the actual measurement value, and the horizontal axis represents the calculated value according to Expression (3) ′. As shown in FIG. 3, the value calculated by equation (3) ′ is almost the same as the actually measured value.
このように、燃焼騒音と相関のある上記複数のパラメータ全てに基づいて内燃機関1における燃焼騒音を算出することで、内燃機関1の運転状態に関わらず該燃焼騒音をより精度良く算出することが出来る。また、内燃機関1の運転状態の変化に伴って該内燃機関1での燃焼パターンを変化させる過渡時においても、燃焼騒音をより精度良く算出することが出来る。
In this way, by calculating the combustion noise in the
また、式(3)´によって燃焼騒音を算出することで、燃焼騒音CNを、相対的な値ではなく、単位をdBとする音圧レベルとして算出することが出来る。 Further, by calculating the combustion noise by the expression (3) ′, the combustion noise CN can be calculated not as a relative value but as a sound pressure level with a unit of dB.
<変形例>
尚、上記においては、一燃焼サイクル中における副燃料噴射が一回の場合について説明したが、副燃料噴射は二回以上実行されても良い。この場合も、副燃料噴射が一回の場合と同様、各燃料噴射によって噴射された燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の各最大値および筒内圧の上昇量の二階時間微分値の各最大値をパラメータとして燃焼騒音を算出する。これにより、一燃焼サイクル中に副燃料噴射が複数回実行される場合においても、内燃機関1の運転状態に関わらず該燃焼騒音をより精度良く算出することが出来る。
<Modification>
In the above description, the case where the auxiliary fuel injection is performed once in one combustion cycle has been described. However, the auxiliary fuel injection may be executed twice or more. Also in this case, as in the case where the sub fuel injection is performed once, the maximum value of the first-order time differential value of the increase amount of the in-cylinder pressure and the increase amount of the in-cylinder pressure when the fuel injected by each fuel injection burns. Combustion noise is calculated using each maximum value of the second-order time differential value as a parameter. As a result, even when the auxiliary fuel injection is executed a plurality of times during one combustion cycle, the combustion noise can be calculated more accurately regardless of the operating state of the
また、内燃機関1での燃料噴射が主燃料噴射のみによって実行されても良い。この場合、内燃機関1における燃焼騒音CNは下記式(1)´に基づいて算出される。
CN=A´´×log10(Pmain)n1´´+B´´×log10(ΔPmain)n2´´+C´´×log10(dΔP/dtmain)n3´´+D´´×log10[(d2Δ
P/dt2main)n4´´+E´´×log10(1/Ne)+F´´・・・(1)´
Further, the fuel injection in the
CN = A'' × log 10 (Pmain ) n1'' + B'' × log 10 (ΔPmain) n2'' + C'' × log 10 (dΔP / dtmain) n3'' + D'' × log 10 [(
P / dt 2 main) n4 ″ + E ″ × log 10 (1 / Ne) + F ″ (1) ′
式(1)´におけるA´´およびB´´、C´´、D´´、E´´、F´´、n1´´、n2´´、n3´´、n4´´は係数である。また、各係数は、上記式(3)´の場合と同様、内燃機関1に関して最適な値となるように実験等によって予め定められている。変形例においては、この式(1)´がECU20に予め記憶されている。
In Formula (1) ′, A ″ and B ″, C ″, D ″, E ″, F ″, n1 ″, n2 ″, n3 ″, and n4 ″ are coefficients. Further, each coefficient is determined in advance by experiments or the like so as to be an optimum value for the
このように、燃料噴射が主燃料噴射のみの場合であっても、燃焼騒音と相関のある上記複数のパラメータ全てに基づいて内燃機関1における燃焼騒音を算出することで、内燃機関1の運転状態に関わらず該燃焼騒音をより精度良く算出することが出来る。また、式(1)´によって燃焼騒音を算出することで、燃焼騒音を、単位をdBとする音圧レベルとして算出することが出来る。
As described above, even when the fuel injection is only the main fuel injection, the operation state of the
また、本実施例においては、一階時間微分最大値および二階時間微分最大値に加え、燃料が燃焼したときの筒内圧の上昇量の三階以上の高階時間微分の最大値をもパラメータとして内燃機関1における燃焼騒音を算出しても良い。
In this embodiment, in addition to the first-order time differential maximum value and the second-order time differential maximum value, the maximum value of the third-order or higher higher-order time differential of the amount of increase in the in-cylinder pressure when the fuel burns is used as an internal combustion parameter. Combustion noise in the
例えば、上記のように、燃料噴射が主燃料噴射と一回の副燃料噴射とによって行われる場合において、燃料が燃焼したときの筒内圧の上昇量の三階時間微分の最大値(以下、三階時間微分最大値と称する)をもパラメータとする場合、副燃料噴射によって噴射された燃料が燃焼したときの三階時間微分最大値をdΔ3P/dt3subとし、主燃料噴射によって噴射された燃料が燃焼したときの三階時間微分最大値をdΔ3P/dt3mainとする。このとき、下記式(4)から内燃機関1における燃焼騒音CNを算出する。
CN=A´´´×log10[(Psub) n1´´´+(Pmain) n1´´´]+B´´´
×log10[(ΔPsub)n2´´´+(ΔPmain)n2´´´]+C´´´×log10[(dΔP/dtsub)n3´´´+(dΔP/dtmain)n3´´´]+D´´´×log10[(d2ΔP/dt2sub)n4´´´+(d2ΔP/dt2main)n4´´´]+G×log10[(d3ΔP/dt3sub)n5+(d3ΔP/dt3main)n5]+E´´´×log10(1/Ne)+F´´´・・・(4)
For example, as described above, in the case where fuel injection is performed by main fuel injection and one sub fuel injection, the maximum value of the third-order time derivative (hereinafter, three times) of the amount of increase in in-cylinder pressure when the fuel burns Is also used as a parameter, the third-order time differential maximum value when the fuel injected by the secondary fuel injection burns is dΔ 3 P / dt 3 sub, and is injected by the main fuel injection. Let dΔ 3 P / dt 3 main be the third-order time differential maximum when the fuel burns. At this time, the combustion noise CN in the
CN = A ″ ″ × log 10 [(Psub) n1 ″ ″ + (Pmain) n1 ″ ″] + B ′ ″
× log 10 [(ΔPsub) n2 ″ ″ + (ΔPmain) n2 ″ ″] + C ″ ″ × log 10 [(dΔP / dtsub) n3 ″ ″ + (dΔP / dtmain) n3 ″ ″] + D ′ ″ ″ Log 10 [(d 2 ΔP / dt 2 sub) n4 ″ ″ + (d 2 ΔP / dt 2 main) n4 ″ ″] + G × log 10 [(d 3 ΔP / dt 3 sub) n5 + (D 3 ΔP / dt 3 main) n5 ] + E ″ ″ × log 10 (1 / Ne) + F ″ ″ (4)
式(4)におけるA´´´およびB´´´、C´´´、D´´´、E´´´、F´´´、G、n1´´´、n2´´´、n3´´´、n4´´´、n5は係数である。この場合も、各係数は内燃機関1に関して最適な値となるように実験等によって予め定められている。
A ″ ″ and B ″ ″, C ″ ″, D ″ ″, F ″ ″, G, n1 ″ ″, n2 ″ ″, n3 ″ in the formula (4). ', N4 "', n5 are coefficients. Also in this case, each coefficient is determined in advance by experiments or the like so as to be an optimum value for the
燃料が燃焼したときの筒内圧の上昇量の三階以上の高階時間微分値の最大値も、前記各
パラメータと同様、燃焼騒音と相関がある。従って、該高階時間微分値の最大値をも用いて燃焼騒音を算出することで、該燃焼騒音の算出精度を向上させることが出来る。
The maximum value of the third-order or higher-order time differential value of the amount of increase in the in-cylinder pressure when the fuel is combusted is also correlated with the combustion noise, like the above-described parameters. Therefore, the calculation accuracy of the combustion noise can be improved by calculating the combustion noise also using the maximum value of the higher order time differential value.
本実施例に係る内燃機関およびその燃料系の概略構成は実施例1と同様である。また、本実施例においては、実施例1と同様の方法で内燃機関1における燃焼騒音が算出される。
The schematic configuration of the internal combustion engine and its fuel system according to this embodiment is the same as that of the first embodiment. In this embodiment, the combustion noise in the
<燃焼騒音低減制御>
本実施例では、燃焼騒音を許容範囲の上限値以下に抑えるべく燃焼騒音低減制御が行われる。本実施例に係る燃焼騒音低減制御が実行される場合、上記式(3)´における、
A´×log10[(Psub) n1´+(Pmain) n1´]+B´×log10[(ΔPsub)n2´+(ΔPmain)n2´]を圧力成分とし、
C´×log10[(dΔP/dtsub)n3´+(dΔP/dtmain)n3´]を筒内圧の上昇量の一階時間微分成分とし、
D´×log10[(d2ΔP/dt2sub)n4´+(d2ΔP/dt2main)n4´]を筒内圧の上昇量の二階時間微分成分とし、
E´×log10(1/Ne)を時間成分として、
各成分の燃焼騒音に対する相関度合いが算出される。
<Combustion noise reduction control>
In the present embodiment, the combustion noise reduction control is performed in order to suppress the combustion noise below the upper limit value of the allowable range. When the combustion noise reduction control according to the present embodiment is executed, in the above equation (3) ′,
A ′ × log 10 [(Psub) n1 ′ + (Pmain) n1 ′] + B ′ × log 10 [(ΔPsub) n2 ′ + (ΔPmain) n2 ′] is a pressure component,
C ′ × log 10 [(dΔP / dtsub) n3 ′ + (dΔP / dtmain) n3 ′] as a first-order time derivative component of the increase in the in-cylinder pressure,
D ′ × log 10 [(d 2 ΔP / dt 2 sub) n4 ′ + (d 2 ΔP / dt 2 main) n4 ′] is a second-order time derivative component of the increase in the cylinder pressure,
E ′ × log 10 (1 / Ne) as a time component,
The degree of correlation of each component with combustion noise is calculated.
上記各成分の燃焼騒音に対する相関度合いは、燃焼騒音制御の対象となる内燃機関に応じて異なる場合がある。そこで、本実施例に係る燃焼騒音低減制御においては、上記各成分のうち燃焼騒音に対する相関度合いがより高い成分を優先的に低減させるべく、燃料噴射弁10による燃料噴射パターンを制御する。
The degree of correlation of the above components with respect to combustion noise may vary depending on the internal combustion engine that is subject to combustion noise control. Therefore, in the combustion noise reduction control according to the present embodiment, the fuel injection pattern by the
例えば、圧力成分の燃焼騒音に対する相関度合いが13.7%、筒内圧の上昇量の一階時間微分成分の燃焼騒音に対する相関度合いが37%、筒内圧の上昇量の二階時間微分成分の燃焼騒音に対する相関度合いが21.8%、時間成分の燃焼騒音に対する相関度合いが27.5%である場合、筒内圧の上昇量の一階時間微分成分を優先的に低減させるように燃料噴射弁10による燃料噴射パターンを制御する。
For example, the correlation degree of the pressure component with respect to the combustion noise is 13.7%, the correlation degree with respect to the combustion noise of the first-order differential component of the increase in the in-cylinder pressure is 37%, and the combustion noise of the second-order time derivative component of the increase in the in-cylinder pressure. When the correlation degree with respect to is 21.8% and the correlation degree with respect to the combustion noise of the time component is 27.5%, the
本実施例において、筒内圧の上昇量の一階時間微分成分を低減させるための燃料噴射パターンの制御としては、副燃料噴射時期を遅角させる、即ち、副燃料噴射と主燃料噴射との実行間隔を短くする制御や、副燃料噴射量を減らす制御を例示することが出来る。 In this embodiment, as the control of the fuel injection pattern for reducing the first-order time differential component of the increase amount of the in-cylinder pressure, the sub fuel injection timing is retarded, that is, the sub fuel injection and the main fuel injection are executed. Examples thereof include control for shortening the interval and control for reducing the sub fuel injection amount.
図4は、副燃料噴射時期と筒内圧の上昇量の一階時間微分値との関係を示す図である。図4において、縦軸は筒内圧の上昇量の一階時間微分値を表しており、横軸はクランク角を表している。また、図4における曲線(1)から(3)のうち、曲線(1)(実線)は副燃料噴射時期が最も遅い場合を示しており、曲線(3)(破線)は燃料噴射時期が最も早い場合を表している。尚、各曲線において、最初のピークは副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値を示しており、次のピークは主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値を示している。 FIG. 4 is a diagram showing the relationship between the auxiliary fuel injection timing and the first-order time differential value of the increase amount of the in-cylinder pressure. In FIG. 4, the vertical axis represents the first-order time differential value of the increase amount of the in-cylinder pressure, and the horizontal axis represents the crank angle. Also, among the curves (1) to (3) in FIG. 4, the curve (1) (solid line) shows the case where the sub fuel injection timing is the latest, and the curve (3) (dashed line) shows the fuel injection timing the most. It represents an early case. In each curve, the first peak shows the first-order time differential maximum value when the fuel injected by the sub fuel injection burns, and the next peak shows when the fuel injected by the main fuel injection burns The first-order time differential maximum is shown.
図4に示すように、副燃料噴射時期が遅いほど、即ち、副燃料噴射と主燃料噴射との実行間隔が短いほど、副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値と主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値との和が小さくなる。つまり、副燃料噴射時期を遅角するほど上記筒内圧の上昇量の一階時間微分成分が低減される。 As shown in FIG. 4, as the sub fuel injection timing is later, that is, the execution interval between the sub fuel injection and the main fuel injection is shorter, the first-order time differential maximum when the fuel injected by the sub fuel injection is combusted. The sum of the value and the first-order time differential maximum value when the fuel injected by the main fuel injection burns becomes small. That is, as the auxiliary fuel injection timing is retarded, the first-order time derivative component of the increase amount of the in-cylinder pressure is reduced.
また、図5は、副燃料噴射量と筒内圧の上昇量の一階時間微分値との関係を示す図であ
る。図4と同様、図5において、縦軸は筒内圧の上昇量の一階時間微分値を表しており、横軸はクランク角を表している。また、図5における曲線(1)から(3)のうち、曲線(1)(実線)は副燃料噴射量が最も少ない場合を示しており、曲線(3)(破線)は燃料噴射量が最も多い場合を表している。尚、図4と同様、各曲線において、最初のピークは副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値を示しており、次のピークは主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値を示している。
FIG. 5 is a diagram showing the relationship between the auxiliary fuel injection amount and the first-order time differential value of the increase amount of the in-cylinder pressure. As in FIG. 4, in FIG. 5, the vertical axis represents the first-order time differential value of the increase amount of the in-cylinder pressure, and the horizontal axis represents the crank angle. Further, among the curves (1) to (3) in FIG. 5, the curve (1) (solid line) shows the case where the sub fuel injection amount is the smallest, and the curve (3) (dashed line) shows the fuel injection amount being the smallest. It represents a large number of cases. As in FIG. 4, in each curve, the first peak shows the first-order time differential maximum value when the fuel injected by the sub fuel injection burns, and the next peak is injected by the main fuel injection. The first-order time differential maximum value when the fuel burns is shown.
図5に示すように、副燃料噴射量が少ないほど、副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値と主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値との和が小さくなる。つまり、副燃料噴射量を少なくするほど上記筒内圧の上昇量の一階時間微分成分が低減される。 As shown in FIG. 5, the smaller the sub fuel injection amount, the first time time differential maximum when the fuel injected by the sub fuel injection burns and the first floor when the fuel injected by the main fuel injection burns. The sum with the time differential maximum value becomes smaller. That is, as the sub fuel injection amount is decreased, the first-order time differential component of the increase amount of the in-cylinder pressure is reduced.
上記のように、圧力成分および筒内圧の上昇量の一階時間微分成分、筒内圧の上昇量の二階時間微分成分、時間成分のうち燃焼騒音に対する相関度合いがより高い成分を優先的に低減させることで、燃焼騒音を効率的に低減させることが出来る。 As described above, the first-order time derivative component of the pressure component and the increase amount of the in-cylinder pressure, the second-order time derivative component of the increase amount of the in-cylinder pressure, and the component having a higher degree of correlation with the combustion noise are preferentially reduced. Thus, combustion noise can be reduced efficiently.
<燃焼騒音低減制御の制御ルーチン>
次に、本実施例に係る燃焼騒低減制御の制御ルーチンについて図6に示すフローチャートに基づいて説明する。本ルーチンはECU20に予め記憶されており、内燃機関1の運転中、所定間隔で繰り返されるルーチンである。
<Control routine for combustion noise reduction control>
Next, the control routine of the combustion noise reduction control according to this embodiment will be described based on the flowchart shown in FIG. This routine is stored in advance in the
本ルーチンでは、先ずS101において、ECU20は、機関回転数Neおよびクランク角CA、アクセル開度Da、冷却水温Twを読み込む。
In this routine, first, in S101, the
次に、ECU20は、S102に進み、機関回転数Ne、クランク角CA、アクセル開度Da、冷却水温Twに基づき、燃焼騒音の上限値CNlimitを設定する。機関回転数Neおよびクランク角CA、アクセル開度Da、冷却水温Twと、燃焼騒音の上限値CNlimitとの関係は予めマップとしてECU20に記憶されている。
Next, the
次に、ECU20は、S103に進み、内燃機関1の筒内圧Pcを読み込む。
Next, the
次に、ECU20は、S104に進み、筒内圧Pcに基づいて、副燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値Psub、および、主燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値Pmain、副燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値ΔPsub、主燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値ΔPmain、副燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値dΔP/dtsub、主燃料噴射によって噴射された燃料が燃焼したときの一階時間微分最大値dΔP/dtmain、副燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最大値d2ΔP/dt2sub、主燃料噴射によって噴射された燃料が燃焼したときの二階時間微分最大値d2ΔP/dt2mainを導出する。
Next, the
次に、ECU20は、S105に進み、上記式(3)´から燃焼騒音CNを算出する。
Next, the
次に、ECU20は、S106に進み、燃焼騒音CNが上限値CNlimitより大きいか否かを判別する。このS106において、肯定判定された場合、ECU20はS107に進み、否定判定された場合、ECU20は本ルーチンの実行を一旦終了する。
Next, the
S107に進んだECU20は、圧力成分、および、筒内圧の上昇量の一階時間微分成
分、筒内圧の上昇量の二階時間微分成分、時間成分それぞれの燃焼騒音CNに対する相関度合いを算出する。
The
次に、ECU20は、S108に進み、上記各成分のうち燃焼騒音CNに対する相関度合いのより高い成分を優先的に低減させるように、燃料噴射弁10による燃料噴射パターンを変更する。その後、ECU20はS103に戻る。
Next, the
以上説明した制御ルーチンによれば、燃焼騒音CNを上限値CNlimit以下に効率的に低減させることが出来る。 According to the control routine described above, the combustion noise CN can be efficiently reduced below the upper limit value CNlimit.
<変形例>
尚、内燃機関1での燃料噴射が主燃料噴射のみよって実行される場合、上記式(1)´における、
A´´×log10(Pmain)n1´´+B´´×log10(ΔPmain)n2´´を圧力成分とし、
C´´×log10(dP/dtmain)n3´´を筒内圧の上昇量の一階時間微分成分とし、
D´´×log10[(dP2/dt2main)n4´´を筒内圧の上昇量の二階時間微分成分とし、
E´´×log10(1/Ne)を時間成分として、
各成分の燃焼騒音に対する相関度合いが算出される。
<Modification>
In addition, when the fuel injection in the
A ″ × log 10 (Pmain) n1 ″ + B ″ × log 10 (ΔPmain) n2 ″ as a pressure component,
C ″ × log 10 (dP / dtmain) n3 ″ is a first-order time differential component of the increase in the in-cylinder pressure,
D ″ × log 10 [(dP 2 / dt 2 main) n4 ″ is a second-order time differential component of the increase in the in-cylinder pressure,
Let E ″ × log 10 (1 / Ne) be a time component,
The degree of correlation of each component with combustion noise is calculated.
そして、この場合も、前記と同様、燃焼騒音低減制御においては、各成分のうち燃焼騒音に対する相関度合いがより高い成分を優先的に低減させるように、燃料噴射弁10による燃料噴射パターンが制御される。
Also in this case, in the same manner as described above, in the combustion noise reduction control, the fuel injection pattern by the
また、筒内圧の上昇量の一階時間微分最大値および二階時間微分最大値に加え、燃料が燃焼したときの筒内圧の上昇量の三階以上の高階時間微分の最大値をもパラメータとして内燃機関1における燃焼騒音を算出する場合、筒内圧の上昇量の高階時間微分成分をも含めて各成分の燃焼騒音に対する相関度合いを算出する。
In addition to the first-order time differential maximum value and the second-order time differential maximum value of the increase amount of the in-cylinder pressure, the maximum value of the third-order or higher higher-order time derivative of the increase amount of the in-cylinder pressure when the fuel burns is also used as an internal combustion parameter. When calculating the combustion noise in the
例えば、上記のように、燃料噴射が主燃料噴射と一回の副燃料噴射とによって行われる場合において、筒内圧の上昇量の三階時間微分最大値をも燃焼騒音算出のためのパラメータとする場合、上記式(4)における、
G×log10[(d3ΔP/dt3sub)n5+(d3ΔP/dt3main)n5]を筒内圧の上昇量の三階時間微分成分とする。そして、この三階時間微分成分をも含めて各成分の燃焼騒音に対する相関度合いを算出する。
For example, as described above, when the fuel injection is performed by the main fuel injection and one sub fuel injection, the third-order time differential maximum value of the increase amount of the in-cylinder pressure is also used as the parameter for calculating the combustion noise. In the case of the above formula (4),
G × log 10 [(d 3 ΔP / dt 3 sub) n5 + (d 3 ΔP / dt 3 main) n5 ] is defined as the third-order time differential component of the increase in the in-cylinder pressure. And the correlation degree with respect to the combustion noise of each component including this third-order time differential component is calculated.
本実施例に係る燃焼騒音低減制御において、時間成分を低減させた場合、内燃機関1の機関回転数Neが変化することになる。これにより、内燃機関1を搭載した車両の運転状態に影響を与える場合がある。
In the combustion noise reduction control according to the present embodiment, when the time component is reduced, the engine speed Ne of the
そこで、燃焼騒音低減制御においては、上記各成分から時間成分を除き、内燃機関1における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させても良い。これにより、内燃機関1を搭載した車両の運転状態への影響を抑制しつつ、燃焼騒音を効率的に低減させることが出来る。
Therefore, in the combustion noise reduction control, the time component may be removed from the above components, and the component having a higher degree of correlation with the combustion noise in the
1・・・内燃機関
2・・・気筒
10・・燃料噴射弁
11・・燃料供給枝管
12・・コモンレール
13・・燃料供給管
14・・燃料タンク
15・・燃料ポンプ
20・・ECU
21・・圧力センサ
23・・クランクポジションセンサ
DESCRIPTION OF
21. ・
Claims (8)
少なくとも、
圧縮行程および排気行程中における筒内圧の最大値と、
燃料の燃焼による筒内圧の上昇量の最大値と、
燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の最大値と、
燃料が燃焼したときの筒内圧の上昇量の二階時間微分値の最大値と、
圧縮行程および排気行程に要する時間と、
に基づいて前記内燃機関における燃焼騒音を算出することを特徴とする内燃機関の燃焼騒音算出装置。 In-cylinder pressure detecting means for detecting or estimating the in-cylinder pressure of the internal combustion engine,
at least,
The maximum value of the in-cylinder pressure during the compression stroke and the exhaust stroke;
The maximum amount of cylinder pressure rise due to fuel combustion,
The maximum value of the first-order time differential value of the amount of increase in the in-cylinder pressure when the fuel burns,
The maximum value of the second-order time differential value of the increase in the in-cylinder pressure when the fuel burns,
The time required for the compression and exhaust strokes;
A combustion noise calculation device for an internal combustion engine that calculates combustion noise in the internal combustion engine based on
圧縮行程および排気行程中における筒内圧の最大値をPmaxとし、
燃料の燃焼による筒内圧の上昇量の最大値をΔPmaxとし、
燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の最大値をdΔP/dtとし、
燃料が燃焼したときの筒内圧の上昇量の二階時間微分値の最大値をd2ΔP/dt2とし、
前記内燃機関の機関回転数をNeとしたときに、
CN=A×log10(Pmax)n1+B×log10(ΔPmax)n2+C×log10(dΔP/dt)n3+D×log10(d2ΔP/dt2)n4+E×log10(1/Ne)+F
(ただし、AおよびB、C、D、E、F、n1、n2、n3、n4は係数)
で表される式から前記内燃機関における燃焼騒音を算出することを特徴とする請求項1記載の内燃機関の燃焼騒音算出装置。 Let CN be the combustion noise in the internal combustion engine,
The maximum value of the in-cylinder pressure during the compression stroke and the exhaust stroke is Pmax,
ΔPmax is the maximum value of the cylinder pressure increase due to fuel combustion,
The maximum value of the first-order time differential value of the increase in the in-cylinder pressure when the fuel burns is defined as dΔP / dt,
D 2 ΔP / dt 2 is the maximum value of the second-order time differential value of the amount of increase in the in-cylinder pressure when the fuel burns,
When the engine speed of the internal combustion engine is Ne,
CN = A × log 10 (Pmax) n1 + B × log 10 (ΔPmax) n2 + C × log 10 (dΔP / dt) n3 + D × log 10 (d 2 ΔP / dt 2 ) n4 + E × log 10 (1 / Ne) + F
(However, A and B, C, D, E, F, n1, n2, n3, and n4 are coefficients)
The combustion noise calculation apparatus for an internal combustion engine according to claim 1, wherein the combustion noise in the internal combustion engine is calculated from an expression expressed by:
前記内燃機関おける燃焼騒音をCNとし、
副燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値をPsubとし、
主燃料噴射によって噴射された燃料が燃焼したときの筒内圧の最大値をPmainとし、
副燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値をΔPsubとし、
主燃料噴射によって噴射された燃料の燃焼による筒内圧の上昇量の最大値をΔPmainとし、
副燃料噴射によって噴射された燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の最大値をdΔP/dtsubとし、
主燃料噴射によって噴射された燃料が燃焼したときの筒内圧の上昇量の一階時間微分値の最大値をdΔP/dtmainとし、
副燃料噴射によって噴射された燃料が燃焼したときの筒内圧の上昇量の二階時間微分値の最大値をd2ΔP/dt2subとし、
主燃料噴射によって噴射された燃料が燃焼したときの筒内圧の上昇量の二階時間微分値の最大値をd2ΔP/dt2mainとし、
前記内燃機関の機関回転数をNeとしたときに、
CN=A×log10[(Psub) n1+(Pmain) n1]+B×log10[(ΔPsub)
n2+(ΔPmain)n2]+C×log10[(dΔP/dtsub)n3+(dΔP/dt
main)n3]+D×log10[(d2ΔP/dt2sub)n4+(d2ΔP/dt2main)n4]+E×log10(1/Ne)+F
(ただし、AおよびB、C、D、E、F、n1、n2、n3、n4は係数)
で表される式から前記内燃機関における燃焼騒音を算出することを特徴とする請求項3記載の内燃機関の燃焼騒音算出装置。 In the internal combustion engine, fuel injection is performed by main fuel injection and sub fuel injection that is executed at a time before the main fuel injection and the injected fuel is used for combustion,
Let CN be the combustion noise in the internal combustion engine,
Psub is the maximum value of the in-cylinder pressure when the fuel injected by the sub fuel injection burns,
Pmain is the maximum value of the in-cylinder pressure when the fuel injected by the main fuel injection burns,
ΔPsub is the maximum value of the increase in the in-cylinder pressure due to the combustion of the fuel injected by the auxiliary fuel injection,
ΔPmain is the maximum value of the cylinder pressure increase due to the combustion of the fuel injected by the main fuel injection,
DΔP / dtsub is the maximum value of the first-order time differential value of the amount of increase in the in-cylinder pressure when the fuel injected by the auxiliary fuel injection burns,
DΔP / dtmain is the maximum value of the first-order time differential value of the amount of increase in the in-cylinder pressure when the fuel injected by the main fuel injection burns,
D 2 ΔP / dt 2 sub is the maximum value of the second-order time differential value of the amount of increase in the in-cylinder pressure when the fuel injected by the auxiliary fuel injection burns,
D 2 ΔP / dt 2 main is the maximum second-order time differential value of the amount of increase in the in-cylinder pressure when the fuel injected by the main fuel injection burns,
When the engine speed of the internal combustion engine is Ne,
CN = A × log 10 [(Psub) n1 + (Pmain) n1 ] + B × log 10 [(ΔPsub)
n2 + (ΔPmain) n2] + C × log 10 [(dΔP / dtsub) n3 + (dΔP / dt
main) n3 ] + D × log 10 [(d 2 ΔP / dt 2 sub) n4 + (d 2 ΔP / dt 2 main) n4 ] + E × log 10 (1 / Ne) + F
(However, A and B, C, D, E, F, n1, n2, n3, and n4 are coefficients)
4. The combustion noise calculation device for an internal combustion engine according to claim 3, wherein the combustion noise in the internal combustion engine is calculated from an expression expressed by:
A×log10(Pmax)n1+B×log10(ΔPmax)n2を圧力成分とし、
C×log10(dΔP/dt)n3を筒内圧の上昇量の一階時間微分成分とし、
D×log10(d2ΔP/dt2)n4を筒内圧の上昇量の二階時間微分成分とし、
E×log10(1/Ne)を時間成分とし、
各成分の前記内燃機関における燃焼騒音に対する相関度合いを算出する相関度合い算出手段と、を備え、
前記圧力成分および前記筒内圧の上昇量の一階時間微分成分、前記筒内圧の上昇量の二階時間微分成分、前記時間成分のうち前記内燃機関における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させることで、前記燃焼騒音検出装置によって算出される燃焼騒音を所定値以下に制御することを特徴とする内燃機関の燃焼騒音制御システム。 A combustion noise calculation device for an internal combustion engine according to claim 2,
A × log 10 (Pmax) n1 + B × log 10 (ΔPmax) n2 is a pressure component,
C × log 10 (dΔP / dt) n3 is a first-order time derivative component of the increase in the in-cylinder pressure,
D × log 10 (d 2 ΔP / dt 2 ) n4 is a second-order time derivative component of the increase in the in-cylinder pressure,
E × log 10 (1 / Ne) is a time component,
Correlation degree calculating means for calculating a degree of correlation of each component with combustion noise in the internal combustion engine,
The first-order time derivative component of the pressure component and the increase amount of the in-cylinder pressure, the second-order time derivative component of the increase amount of the in-cylinder pressure, and the component having a higher degree of correlation with the combustion noise in the internal combustion engine are given priority. A combustion noise control system for an internal combustion engine, wherein the combustion noise calculated by the combustion noise detection device is controlled to a predetermined value or less by reducing the combustion noise to a predetermined value.
A×log10[(Psub) n1+(Pmain) n1]+B×log10[(ΔPsub)n2+(ΔPmain)n2]を圧力成分とし、
C×log10[(dΔP/dtsub)n3+(dΔP/dtmain)n3]を筒内圧の上昇量の一階時間微分成分とし、
D×log10[(d2ΔP/dt2sub)n4+(d2ΔP/dt2main)n4]を筒内圧の上昇量の二階時間微分成分とし、
E×log10(1/Ne)を時間成分とし、
各成分の前記内燃機関における燃焼騒音に対する相関度合いを算出する相関度合い算出手段と、を備え、
前記圧力成分および前記筒内圧の上昇量の一階時間微分成分、前記筒内圧の上昇量の二階時間微分成分、前記時間成分のうち前記内燃機関における燃焼騒音に対する相関度合いがより高い成分を優先的に低減させることで前記燃焼騒音検出装置によって算出される燃焼騒音を所定値以下に制御することを特徴とする内燃機関の燃焼騒音制御システム。 A combustion noise calculation device for an internal combustion engine according to claim 4,
A × log 10 [(Psub) n1 + (Pmain) n1 ] + B × log 10 [(ΔPsub) n2 + (ΔPmain) n2 ] is a pressure component,
C × log 10 [(dΔP / dtsub) n3 + (dΔP / dtmain) n3 ] as a first-order time derivative component of the increase in the in-cylinder pressure,
D × log 10 [(d 2 ΔP / dt 2 sub) n4 + (d 2 ΔP / dt 2 main) n4 ] is a second-order time derivative component of the increase in the cylinder pressure,
E × log 10 (1 / Ne) is a time component,
Correlation degree calculating means for calculating a correlation degree of each component with respect to combustion noise in the internal combustion engine,
The first-order time differential component of the pressure component and the increase amount of the in-cylinder pressure, the second-order time differential component of the increase amount of the in-cylinder pressure, and the component having a higher degree of correlation with the combustion noise in the internal combustion engine are given priority. A combustion noise control system for an internal combustion engine, wherein the combustion noise calculated by the combustion noise detection device is controlled to a predetermined value or less by reducing the noise to a minimum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006102494A JP4672588B2 (en) | 2006-04-03 | 2006-04-03 | Combustion noise calculation device and combustion noise control system for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006102494A JP4672588B2 (en) | 2006-04-03 | 2006-04-03 | Combustion noise calculation device and combustion noise control system for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007278098A true JP2007278098A (en) | 2007-10-25 |
JP4672588B2 JP4672588B2 (en) | 2011-04-20 |
Family
ID=38679802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006102494A Expired - Fee Related JP4672588B2 (en) | 2006-04-03 | 2006-04-03 | Combustion noise calculation device and combustion noise control system for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4672588B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7904231B2 (en) * | 2008-07-22 | 2011-03-08 | GM Global Technology Operations LLC | Method for controlling combustion noise in a compression-ignition engine |
GB2474498A (en) * | 2009-10-16 | 2011-04-20 | Gm Global Tech Operations Inc | Determining an in-cylinder pressure curve representative of the evolution of the pressure within a cylinder |
JP2015068194A (en) * | 2013-09-27 | 2015-04-13 | 三菱自動車工業株式会社 | Control device for engine |
EP2884080A2 (en) | 2013-12-02 | 2015-06-17 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
JP2016166587A (en) * | 2015-03-10 | 2016-09-15 | 株式会社豊田自動織機 | Combustion control device |
JP2021050731A (en) * | 2019-09-24 | 2021-04-01 | サイック・モーター・コーポレーション・リミテッド | Method and device for determining combustion noise parameter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109014A (en) * | 1996-06-24 | 1998-01-13 | Nissan Motor Co Ltd | Combustion control device for internal combustion engine |
JPH11247703A (en) * | 1998-03-03 | 1999-09-14 | Nissan Motor Co Ltd | Controller for diesel engine |
JP2005282441A (en) * | 2004-03-29 | 2005-10-13 | Nippon Soken Inc | Fuel injection control device for internal combustion engine |
JP2006046217A (en) * | 2004-08-05 | 2006-02-16 | Toyota Motor Corp | Fuel injection control device for internal combustion engine |
-
2006
- 2006-04-03 JP JP2006102494A patent/JP4672588B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH109014A (en) * | 1996-06-24 | 1998-01-13 | Nissan Motor Co Ltd | Combustion control device for internal combustion engine |
JPH11247703A (en) * | 1998-03-03 | 1999-09-14 | Nissan Motor Co Ltd | Controller for diesel engine |
JP2005282441A (en) * | 2004-03-29 | 2005-10-13 | Nippon Soken Inc | Fuel injection control device for internal combustion engine |
JP2006046217A (en) * | 2004-08-05 | 2006-02-16 | Toyota Motor Corp | Fuel injection control device for internal combustion engine |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7904231B2 (en) * | 2008-07-22 | 2011-03-08 | GM Global Technology Operations LLC | Method for controlling combustion noise in a compression-ignition engine |
GB2474498A (en) * | 2009-10-16 | 2011-04-20 | Gm Global Tech Operations Inc | Determining an in-cylinder pressure curve representative of the evolution of the pressure within a cylinder |
US8375776B2 (en) | 2009-10-16 | 2013-02-19 | GM Global Technology Operations LLC | Method for determining an in-cylinder pressure curve of a multi-cylinder engine |
GB2474498B (en) * | 2009-10-16 | 2013-11-06 | Gm Global Tech Operations Inc | Method for determining an in-cylinder pressure curve of a multi-cylinder engine |
JP2015068194A (en) * | 2013-09-27 | 2015-04-13 | 三菱自動車工業株式会社 | Control device for engine |
EP2884080A2 (en) | 2013-12-02 | 2015-06-17 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
EP2884080A3 (en) * | 2013-12-02 | 2016-01-20 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
JP2016166587A (en) * | 2015-03-10 | 2016-09-15 | 株式会社豊田自動織機 | Combustion control device |
JP2021050731A (en) * | 2019-09-24 | 2021-04-01 | サイック・モーター・コーポレーション・リミテッド | Method and device for determining combustion noise parameter |
JP7516113B2 (en) | 2019-09-24 | 2024-07-16 | サイック・モーター・コーポレーション・リミテッド | Method and device for determining combustion noise parameters - Patents.com |
Also Published As
Publication number | Publication date |
---|---|
JP4672588B2 (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003172197A (en) | Control method and controller for internal combustion engine | |
JP4672588B2 (en) | Combustion noise calculation device and combustion noise control system for internal combustion engine | |
JP2008202460A (en) | Control device for internal combustion engine | |
JP2008101591A (en) | Ignition timing control device of internal combustion engine | |
JP6493269B2 (en) | Control device for internal combustion engine | |
JP4784467B2 (en) | Premixed compression ignition internal combustion engine | |
JP2015137572A (en) | Control device of compression ignition type internal combustion engine | |
JP5152164B2 (en) | Diesel engine control device | |
JP4962464B2 (en) | Fuel injection parameter adaptation method and fuel injection control system for compression ignition internal combustion engine | |
JP2017002831A (en) | Abnormality detection device for internal combustion engine | |
JP2008184915A (en) | Fuel injection control device of internal combustion engine | |
JP2007285195A (en) | Ignition timing control system for internal combustion engine | |
JP2014101863A (en) | Abnormal combustion determination device for internal combustion engine | |
JP2008025374A (en) | Ignition timing control device for internal combustion engine | |
JP2007040273A (en) | Fuel injection control system of compression ignition internal combustion engine | |
JP2005054753A (en) | Fuel injection control device for internal combustion engine | |
JP4830986B2 (en) | Control device for internal combustion engine | |
JP4615501B2 (en) | Control device for internal combustion engine | |
JP2006046217A (en) | Fuel injection control device for internal combustion engine | |
JP2006009600A (en) | Fuel injection control device for internal combustion engine | |
JP2007270816A (en) | Control device for internal combustion engine | |
JP2007113496A (en) | Combustion control device of internal combustion engine | |
JP4196897B2 (en) | Control device for hydrogenated internal combustion engine | |
JP2010112225A (en) | Combustion control device of diesel engine | |
JP2013194554A (en) | Internal combustion engine control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081022 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110119 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4672588 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |