JP2007277912A - Burial mould - Google Patents

Burial mould Download PDF

Info

Publication number
JP2007277912A
JP2007277912A JP2006105192A JP2006105192A JP2007277912A JP 2007277912 A JP2007277912 A JP 2007277912A JP 2006105192 A JP2006105192 A JP 2006105192A JP 2006105192 A JP2006105192 A JP 2006105192A JP 2007277912 A JP2007277912 A JP 2007277912A
Authority
JP
Japan
Prior art keywords
modified sulfur
powder
embedded
formwork
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006105192A
Other languages
Japanese (ja)
Inventor
Masaaki Chatani
正明 茶谷
Yoshitaka Ota
義高 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006105192A priority Critical patent/JP2007277912A/en
Publication of JP2007277912A publication Critical patent/JP2007277912A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a burial mould having flexural strength and compressive strength superior in durability against erosion and water pressure by water, superior in anti-corrosiveness, capable of thinning the cross-sectional thickness more than a cement concrete burial mould, and particularly effective in a marine or river civil engineering/construction structure. <P>SOLUTION: This burial mould has an inside surface on the side for placing concrete and an outside surface opposed to this inside surface. The burial mould is formed of a modified sulfur solid body on the outside including at least the outside surface, and is characterized in that the solid body includes fine powder having the particle size of 1 mm or less and metallic fiber. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、埋設型枠、特に、海洋又は河川土木・建設構造物用として有効な、水による侵食や水圧等に対する耐久性及び防食性等にも優れる高強度な埋設型枠に関する。   The present invention relates to an embedded formwork, and more particularly to a high-strength embedded formwork that is effective for marine or river civil engineering / construction structures and has excellent durability against water erosion and water pressure, and corrosion resistance.

埋設型枠は、壁、柱、梁等の構造物の施工において、コンクリート打設時には型枠として作用し、コンクリート打設後は型枠を解体することなく構造物の一部として使用する、通常、板状を組合せた形態の型枠として良く知られている。
このような埋設型枠においては、構造物として維持しうるように、優れた圧縮強度、曲げ強度等の機械的強度や、防食性等が望まれ、更には、コンクリートとの剥離を抑制しうる一体性も要求されている。
従来、埋設型枠を構成する材料としては、主に、セメントコンクリートが使用されてきた。しかし、その施工場所等によっては、セメントコンクリートの防食性が問題になることがあるため、塗布型ライニング法やシートライニング法等により樹脂層が設けられることも行われている。また、防食性に優れる樹脂製の埋設型枠も知られている。
更に、特許文献1には、硫黄固化体パネルを用いた埋設型枠が提案されている。
しかし、該文献においては、硫黄固化体パネルとして、具体的な材料等についての検討はなされていない。
特開2005−90016号公報
The embedded formwork works as a formwork when placing concrete in the construction of structures such as walls, columns, and beams, and is used as a part of the structure without dismantling the formwork after concrete placement. It is well known as a formwork that combines plate shapes.
In such an embedded formwork, excellent mechanical strength such as compressive strength and bending strength, anticorrosion properties, etc. are desired so that it can be maintained as a structure, and further, peeling from concrete can be suppressed. Unity is also required.
Conventionally, cement concrete has been mainly used as a material constituting the embedded formwork. However, since the anticorrosion property of cement concrete may become a problem depending on the construction site or the like, a resin layer is also provided by a coating lining method, a sheet lining method, or the like. In addition, a resin-made buried form having excellent corrosion resistance is also known.
Furthermore, Patent Document 1 proposes a buried form using a sulfur solidified body panel.
However, in this document, a specific material or the like is not studied as the sulfur solidified panel.
Japanese Patent Laying-Open No. 2005-90016

本発明の課題は、水による侵食や水圧等に対する耐久性に優れた曲げ強度や圧縮強度等を有し、且つ防食性等にも優れ、セメントコンクリート製に比べて断面厚さを薄くすることもでき、特に、海洋又は河川土木・建設構造物用として有効な埋設型枠を提供することにある。   The problem of the present invention is that it has bending strength, compressive strength, etc. excellent in durability against water erosion, water pressure, etc., and also has excellent corrosion resistance, etc. In particular, it is an object of the present invention to provide a buried formwork effective for use in ocean or river civil engineering / construction structures.

本発明によれば、コンクリートが打設される側の内表面と、それに対向する外表面とを有する埋設型枠であって、少なくとも外表面を含む外側が改質硫黄固化体により形成され、該固化体が、改質硫黄と、粒径1mm以下の微粉末と、金属製繊維とを含むことを特徴とする埋設型枠が提供される。   According to the present invention, an embedded form having an inner surface on which concrete is placed and an outer surface opposite to the inner surface, the outer side including at least the outer surface is formed by the modified sulfur solidified body, An embedded form is provided in which the solidified body includes modified sulfur, fine powder having a particle diameter of 1 mm or less, and metal fibers.

本発明の埋設型枠は、改質硫黄と、粒径1mm以下の微粉末と、金属製繊維とを含む改質硫黄固化体により少なくとも外表面を含む外側が形成されているので、水による侵食や水圧等に対する耐久性に優れた曲げ強度や圧縮強度等を有し、且つ改質硫黄による優れた遮水性及び耐酸性により、塩害が防止でき、防食性等にも優れ、更には、セメントコンクリート製の埋設型枠に比べて断面厚さを薄くすることもできる。従って、特に、海洋又は河川土木・建設構造物用の埋設型枠として有用である。   In the embedded form of the present invention, the outer side including at least the outer surface is formed by the modified sulfur solidified body including modified sulfur, fine powder having a particle diameter of 1 mm or less, and metal fiber. It has excellent bending strength and compressive strength against durability and water pressure, etc., and it can prevent salt damage, corrosion resistance, etc. due to its excellent water and acid resistance by modified sulfur. The cross-sectional thickness can be reduced as compared with a buried mold. Therefore, it is particularly useful as a buried form for an ocean or river civil engineering / construction structure.

以下、本発明を更に詳細に説明する。
本発明の埋設型枠は、コンクリートが打設される側の内表面と、それに対向する外表面とを有する板状、ボックス状、該ボックス状の内部が仕切られた形態等の公知の埋設型枠の形態を有し、少なくとも外表面を含む外側が改質硫黄固化体により形成されている。好ましくは、実質的に型枠全体が改質硫黄固化体により形成され、内表面側に、後述するコンクリートとの接着性を向上させる部材等が設けられていても良い。埋設型枠の断面厚さは、通常、30〜200mm、好ましくは50〜100mmとすることができる。
Hereinafter, the present invention will be described in more detail.
The embedded form of the present invention is a well-known embedded mold having a plate shape, a box shape, or a shape in which the inside of the box shape is partitioned, having an inner surface on which concrete is placed and an outer surface opposite to the inner surface. It has the form of a frame, and the outer side including at least the outer surface is formed of the modified sulfur solidified body. Preferably, substantially the entire formwork is formed of the modified sulfur solidified body, and a member or the like for improving adhesiveness with concrete described later may be provided on the inner surface side. The cross-sectional thickness of the embedded mold is usually 30 to 200 mm, preferably 50 to 100 mm.

本発明の埋設型枠が備える改質硫黄固化体は、改質硫黄、特定の微粉末及び金属製繊維を必須成分として含む。
前記改質硫黄は、例えば、天然産又は、石油や天然ガスの脱硫によって生成した硫黄等を硫黄改質剤により重合したものであって、硫黄と硫黄改質剤との反応物である。
The modified sulfur solidified body provided in the embedded form of the present invention contains modified sulfur, specific fine powder, and metal fibers as essential components.
The modified sulfur is, for example, a natural product, or sulfur produced by desulfurization of petroleum or natural gas, polymerized with a sulfur modifier, and is a reaction product of sulfur and the sulfur modifier.

硫黄改質剤としては、例えば、炭素数4〜20のオレフィン系炭化水素又はジオレフィン系炭化水素、具体的には、リモネン、ピネン等の環状オレフィン系炭化水素、スチレン、ビニルトルエン、メチルスチレン等の芳香族炭化水素、ジシクロペンタジエン及びそのオリゴマー、シクロペンタジエン、テトラヒドロインデン、ビニルシクロヘキセン、ビニルノルボルネン、エチリデンノルボルネン、シクロオクタジエン等のジエン系炭化水素等の1種又は2種以上の混合物が挙げられる。
改質硫黄は、硫黄と硫黄改質剤とを溶融混合することにより得ることができる。この際、硫黄改質剤の使用割合は、硫黄と硫黄改質剤との合計量に対して、通常0.1〜20質量%、特に、1.0〜10質量%の割合が好ましい。
硫黄改質材の割合が、0.1質量%未満では、充分に硫黄を改質することができず、所望の機械的強度や防食性が発揮されない恐れがある。
Examples of the sulfur modifier include olefinic hydrocarbons or diolefinic hydrocarbons having 4 to 20 carbon atoms, specifically, cyclic olefinic hydrocarbons such as limonene and pinene, styrene, vinyltoluene, methylstyrene, and the like. Aromatic hydrocarbons, dicyclopentadiene and oligomers thereof, cyclopentadiene, tetrahydroindene, vinylcyclohexene, vinyl norbornene, ethylidene norbornene, and diene hydrocarbons such as cyclooctadiene, or a mixture of two or more thereof. .
The modified sulfur can be obtained by melt-mixing sulfur and a sulfur modifier. Under the present circumstances, the usage-amount of a sulfur modifier is 0.1-20 mass% normally with respect to the total amount of sulfur and a sulfur modifier, and the ratio of 1.0-10 mass% is especially preferable.
If the ratio of the sulfur modifier is less than 0.1% by mass, sulfur cannot be sufficiently modified, and desired mechanical strength and corrosion resistance may not be exhibited.

前記特定の微粉末は、粒径1mm以下、好ましくは100μm以下の微粉末であって、例えば、天然石粉、砂、珪砂、フェロニッケルスラグ、石炭灰、燃料焼却灰、電気集塵灰、シリカヒューム、アルミナ粉、石英粉、活性炭、貝殻粉末及びガラス粉末等からなる群より選択される1種又は2種以上の微粉末が挙げられる。
前記微粉末の他に、粒径25mm以下の骨材を混合しても良いが、その場合の粒径は、埋設型枠の断面厚さの1/3以下であることが望ましい。このような骨材としては、例えば、天然石、砂、砂利、れき、珪砂、フェロニッケルスラグ、高炉スラグ、溶融スラグ及び貝殻等からなる群より選択される1種又は2種以上が挙げられる。
微粉末や骨材としては、埋設型枠の防食性を更に向上させるために、少なくともCa及びSiを含み、微粉末中のCa、Si、Alを酸化物換算したCaO/(SiO2+Al2O3)の割合が、質量比で0.2以下の無機微粉末の使用が好ましい。前記微粉末中のCaO/(SiO2+Al2O3)の割合は、Ca量をCaOに換算し、Si量をSiO2に換算して、Al量をAl2O3に換算してそれぞれ質量比により決定できる。この際、Alは必ずしも含まれなくて良い。
このような微粉末としては、例えば、石炭灰、珪砂、シリカヒューム、石英粉、砂、ガラス粉末、電気集塵灰等のシリカ成分を主体とする微粉末の1種又は2種以上が挙げられる。
The specific fine powder is a fine powder having a particle size of 1 mm or less, preferably 100 μm or less. For example, natural stone powder, sand, silica sand, ferronickel slag, coal ash, fuel incineration ash, electrostatic dust ash, silica fume , One or more fine powders selected from the group consisting of alumina powder, quartz powder, activated carbon, shell powder, glass powder and the like.
In addition to the fine powder, an aggregate having a particle size of 25 mm or less may be mixed. In this case, the particle size is preferably 1/3 or less of the cross-sectional thickness of the embedded mold. Examples of such aggregates include one or more selected from the group consisting of natural stone, sand, gravel, rubble, silica sand, ferronickel slag, blast furnace slag, molten slag, shells, and the like.
As fine powder and aggregate, in order to further improve the corrosion resistance of the embedded formwork, at least Ca and Si are contained, and Ca, Si, and Al in the fine powder are converted into oxides of CaO / (SiO 2 + Al 2 O 3 ) It is preferable to use inorganic fine powder having a mass ratio of 0.2 or less. The ratio of CaO / (SiO 2 + Al 2 O 3 ) in the fine powder is as follows: the Ca amount is converted to CaO, the Si amount is converted to SiO 2 , and the Al amount is converted to Al 2 O 3. It can be determined by the ratio. At this time, Al is not necessarily included.
Examples of such fine powder include one or more fine powders mainly composed of silica components such as coal ash, silica sand, silica fume, quartz powder, sand, glass powder, and electrostatic dust collection ash. .

前記微粉末の含有割合は、改質硫黄100質量部に対して、通常、10〜500質量部、特に30〜100質量部が好ましい。また、骨材を混合する場合は改質硫黄と微粉末の混合物100質量部に対して、通常、10〜500質量部、特に、100〜200質量部が望ましい。   The content ratio of the fine powder is usually 10 to 500 parts by mass, particularly 30 to 100 parts by mass with respect to 100 parts by mass of the modified sulfur. Moreover, when mixing aggregate, it is 10-500 mass parts normally with respect to 100 mass parts of mixture of modified sulfur and a fine powder, Especially 100-200 mass parts is desirable.

前記金属製繊維は、改質硫黄固化体の曲げ強度等を高め、特に、海洋又は河川等における水による侵食や水圧等に対する耐久性を向上させることができる成分として重要である。
金属製繊維としては、例えば、鋼繊維、ステンレス繊維、アモルファス繊維等が挙げられ、形態としては、直線状、曲線状、網目状もしくはドックボーン型等が挙げられるが、中でもその形態が、両端にフック又は径が太い部分を有する骨型、いわゆるドックボーン型形状の金属製繊維の使用が好ましい。
金属製繊維の径は、通常0.1〜3.0mm、長さは、通常、5〜50mm程度であることが好ましい。但し、ドックボーン型形状の金属製繊維のように、径が一定である必要はない。
前記金属製繊維の含有割合は、改質硫黄100質量部に対して、通常0.1〜20質量部、更には0.1〜10質量部、特に1〜5質量部が好ましい。該金属製繊維の含有割合が0.1質量部未満では、所望の機械的強度の向上が望めない恐れがあり、20質量部を超えると、型枠の経済性が低下する。
The metal fiber is important as a component capable of increasing the bending strength of the modified sulfur solidified body, and in particular, improving the durability against water erosion or water pressure in the ocean or rivers.
Examples of the metal fiber include steel fiber, stainless steel fiber, and amorphous fiber, and examples of the shape include a straight shape, a curved shape, a mesh shape, a dock bone shape, and the like. It is preferable to use a metal fiber having a hook shape or a bone shape having a portion having a large diameter, that is, a so-called dock bone shape.
The diameter of the metal fiber is preferably about 0.1 to 3.0 mm, and the length is usually preferably about 5 to 50 mm. However, the diameter does not need to be constant as in the case of a metal fiber having a dockbone shape.
The content of the metal fiber is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and particularly preferably 1 to 5 parts by mass with respect to 100 parts by mass of the modified sulfur. If the metal fiber content is less than 0.1 parts by mass, the desired mechanical strength may not be improved, and if it exceeds 20 parts by mass, the economics of the mold will be reduced.

前記改質硫黄固化体には、上記改質硫黄、微粉末、金属製繊維、骨材の他に、本発明の所望の目的を損なわない範囲で、例えば、有機質繊維、薄片状粒子等や各種添加剤を適量含有させることもできる。
有機質繊維としては、例えば、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、カーボンファイバー又はこれらの混合物等が挙げられる。
In the modified sulfur solidified body, in addition to the modified sulfur, fine powder, metal fiber, and aggregate, within a range that does not impair the desired object of the present invention, for example, organic fibers, flaky particles, and the like An appropriate amount of additives can also be contained.
Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, carbon fiber, and a mixture thereof.

本発明の埋設型枠は、上記改質硫黄固化体により実質的に形成することができるが、例えば、公知のスレートボード、繊維強化石膏板、珪酸カルシウム板、繊維強化セメントボード、耐熱性プラスチック板、FRP板等であって、許容曲げ応力度135kgf/cm2cm以上、ヤング率70000kgf/cm2以上、前記改質硫黄固化体との付着力1.0kgf/cm2以上を有する基体の外層に、上記改質硫黄固化体の層を設けた型枠であっても良い。 The embedded form of the present invention can be substantially formed of the above-described modified sulfur solidified body. For example, a known slate board, fiber reinforced gypsum board, calcium silicate board, fiber reinforced cement board, heat resistant plastic board , an FRP plate, allowable bending stress of 135 kgf / cm 2 cm or more, a Young's modulus 70000kgf / cm 2 or more, the outer layer of the substrate having the adhesion 1.0 kgf / cm 2 or more and the modified sulfur concrete substance A mold having a layer of the modified sulfur solidified body may be used.

本発明の埋設型枠において、上記改質硫黄固化体の製造は、例えば、改質硫黄溶融物と、前記特定の微粉末及び金属製繊維とを含む原材料を120〜160℃で混合し、所望の形態の型枠に導入し、振動等を与えながら冷却固化することにより得ることができる。
改質硫黄溶融物は、硫黄と硫黄改質剤とを公知の各種加温可能なミキサー等を用いて、120〜160℃の範囲で溶融混合し、例えば、硫黄を充分に改質させるために、140℃における粘度が通常0.05〜1.0Pa・s、好ましくは0.05〜0.5Pa・s程度となるように混合することにより得ることができる。
改質硫黄溶融物、微粉末及び金属製繊維を含む原材料の混合は、微粉末及び金属製繊維を予め120〜155℃程度に加熱し、必要により骨材等の他の材料とともに改質硫黄溶融物と溶融状態を維持する所望温度で混合することにより行うことができる。
In the embedded form of the present invention, the production of the modified sulfur solidified product is performed by, for example, mixing the modified sulfur melt with the raw material containing the specific fine powder and the metal fiber at 120 to 160 ° C. It can be obtained by introducing into a form of the form and solidifying by cooling while giving vibration or the like.
The modified sulfur melt is obtained by melting and mixing sulfur and a sulfur modifier in a range of 120 to 160 ° C. using various known warmable mixers, for example, to sufficiently reform sulfur. The viscosity at 140 ° C. is usually 0.05 to 1.0 Pa · s, preferably 0.05 to 0.5 Pa · s.
Mixing of raw materials including modified sulfur melt, fine powder and metal fiber, heat the fine powder and metal fiber to about 120-155 ° C in advance, and if necessary, modify sulfur melt together with other materials such as aggregate It can be carried out by mixing the product at a desired temperature that maintains a molten state.

本発明の埋設型枠において、コンクリートが打設される側の内表面には、打設されるコンクリートと埋設型枠との接着性を向上させるために、該内表面に、凹凸形状及び/又は不織布を設けることができる他、複数のアンカー材を一体的に突設されて設けることもできる。
内表面への凹凸形状の形成は、例えば、内表面を含む内側も改質硫黄固化体により形成されている場合には、該内表面を研磨剤等により物理的に荒らす方法、改質硫黄固化体の冷却固化時に、砕石等を、該内表面に固定する方法、該冷却固化時に、金網等を内表面に押し当てる方法、改質硫黄固化体を成形固化する際の型枠の表面に凹凸を設ける方法等が挙げられる。
In the embedded form of the present invention, the inner surface on the side on which the concrete is placed is provided with an uneven shape and / or on the inner surface in order to improve the adhesion between the placed concrete and the embedded form. In addition to providing a non-woven fabric, a plurality of anchor materials can be provided so as to project integrally.
For example, when the inner side including the inner surface is also formed of a modified sulfur solidified body, the inner surface including the inner surface is formed with a modified sulfur solidified body. A method of fixing crushed stone or the like to the inner surface during cooling and solidification of the body, a method of pressing a metal mesh or the like against the inner surface during the cooling and solidification, and unevenness on the surface of the mold when molding and solidifying the modified sulfur solidified body. And the like.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されない。
実施例1
密閉型撹拌混練機に固体硫黄50kgを入れ、120℃で溶融後、130℃に保持した。この際の粘度をB型粘度計で測定したところ0.018Pa・sであった。続いて、テトラハイドロインデン2kgをゆっくり添加し、撹拌した。反応が始まり発熱反応により系の温度が約145℃となった。その後、温度上昇が終了したことを確認し、その際の反応系の粘度を測定したところ約0.1Pa・s程度であった。
次に上記状態において、粒径1mm以下の石炭灰25kg、粒径0.3〜5.0mmのフェロニッケルスラグ225kg及びステンレススチール製のドックボーン型金属繊維(長さ3.5cm、中心繊維径1mm、両端の太い部分の径2mm)15kgからなる140℃に予熱した材料を投入し混合を開始した。混合物の温度を150℃に制御し20分間混合した。混合終了後、得られた溶融状態の改質硫黄含有物を、予め140℃に加熱した、縦1200mm、横2000mm、厚さ50mmの埋設型枠用の、ジャケット式加熱器を備える金属製型枠に導入した。導入前、型枠のジャケットはスチームにて約140℃に保持した。導入中、型枠には振動を与えた。
改質硫黄含有物の導入後、型枠ジャケットのスチームを抜き徐冷した後、脱型して埋設型枠用板を製造した。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these.
Example 1
50 kg of solid sulfur was put in a closed stirring kneader, melted at 120 ° C., and maintained at 130 ° C. The viscosity at this time was measured with a B-type viscometer and found to be 0.018 Pa · s. Subsequently, 2 kg of tetrahydroindene was slowly added and stirred. The reaction started and the temperature of the system reached about 145 ° C. due to the exothermic reaction. Thereafter, it was confirmed that the temperature increase was completed, and the viscosity of the reaction system at that time was measured and found to be about 0.1 Pa · s.
Next, in the above state, 25 kg of coal ash having a particle diameter of 1 mm or less, 225 kg of ferronickel slag having a particle diameter of 0.3 to 5.0 mm, and a stainless steel dock bone type metal fiber (length 3.5 cm, center fiber diameter 1 mm) The material preheated to 140 ° C. consisting of 15 kg) was started by mixing. The temperature of the mixture was controlled at 150 ° C. and mixed for 20 minutes. After completion of mixing, the metal formwork provided with a jacket-type heater for a buried formwork having a length of 1200 mm, a width of 2000 mm, and a thickness of 50 mm, in which the obtained modified sulfur-containing material in a molten state was previously heated to 140 ° C. Introduced. Before the introduction, the formwork jacket was kept at about 140 ° C. with steam. During the introduction, the formwork was vibrated.
After introducing the modified sulfur-containing material, the steam of the mold jacket was removed, and after cooling, the mold was removed to produce an embedded mold plate.

得られた埋設型枠用板の圧縮強度及び曲げ強度をJIS A1108により測定したところ、圧縮強度80N/mm2であり、曲げ強度14N/mm2であった。
また、比較のため、同一形態の金属製型枠を用いて、該型枠に、水24kg、セメント80kg、細骨材160kg、混和材0.8kg及びドッグボーン型金属繊維22.5kgの、水/セメント比が30%程度のコンクリート組成物を導入し、28日間養生して、セメントコンクリート製の埋設型枠用板を製造した。得られた型枠板の圧縮強度は20N/mm2であり、曲げ強度12N/mm2であった。
上記実施例で製造した型枠板及び比較のために製造した型枠板の耐摩耗性をASTMC779−82Aによる測定した。その結果、実施例1の型枠板は、比較のためのセメントコンクリート製の型枠板よりも約30%高い耐摩耗性を示した。
When the compressive strength and bending strength of the resulting embedded formwork plate were measured according to JIS A1108, the compressive strength was 80 N / mm 2 and the bending strength was 14 N / mm 2 .
For comparison, using a metal mold of the same form, water of 24 kg of water, 80 kg of cement, 160 kg of fine aggregate, 0.8 kg of admixture, and 22.5 kg of dog bone type metal fiber is added to the mold. A concrete composition having a cement ratio of about 30% was introduced and cured for 28 days to produce an embedded formwork plate made of cement concrete. Compressive strength of the resulting mold plate is 20 N / mm 2, was flexural strength 12N / mm 2.
The wear resistance of the mold plate produced in the above example and the mold plate produced for comparison was measured by ASTM C779-82A. As a result, the form plate of Example 1 showed about 30% higher abrasion resistance than the cement concrete form plate for comparison.

Claims (7)

コンクリートが打設される側の内表面と、それに対向する外表面とを有する埋設型枠であって、
少なくとも外表面を含む外側が改質硫黄固化体により形成され、該固化体が、改質硫黄と、粒径1mm以下の微粉末と、金属製繊維とを含むことを特徴とする埋設型枠。
An embedded formwork having an inner surface on which concrete is placed and an outer surface facing the inner surface;
An embedded form, wherein an outer side including at least an outer surface is formed of a modified sulfur solidified body, and the solidified body includes modified sulfur, fine powder having a particle diameter of 1 mm or less, and metal fibers.
前記改質硫黄固化体が、改質硫黄100質量部に対して、粒径1mm以下の微粉末100〜500質量部及び金属製繊維0.1〜20質量部を含む請求項1記載の埋設型枠。   The embedding mold according to claim 1, wherein the modified sulfur solidified body contains 100 to 500 parts by mass of fine powder having a particle diameter of 1 mm or less and 0.1 to 20 parts by mass of metal fibers with respect to 100 parts by mass of the modified sulfur. frame. 微粉末が、天然石粉、砂、珪砂、フェロニッケルスラグ、石炭灰、燃料焼却灰、電気集塵灰、シリカヒューム、アルミナ粉、石英粉、活性炭、貝殻粉末及びガラス粉末からなる群より選択される1種又は2種以上からなる請求項1又は2記載の埋設型枠。   The fine powder is selected from the group consisting of natural stone powder, sand, quartz sand, ferronickel slag, coal ash, fuel incineration ash, electrostatic dust ash, silica fume, alumina powder, quartz powder, activated carbon, shell powder and glass powder. The embedded form according to claim 1 or 2, comprising at least one kind. 金属製繊維が、直線状、曲線状、網目状もしくはドックボーン型であり、且つ長さが5〜50mmである請求項1〜3のいずれか1項記載の埋設型枠。   The embedded form according to any one of claims 1 to 3, wherein the metal fiber has a linear shape, a curved shape, a mesh shape, or a dock bone shape, and has a length of 5 to 50 mm. コンクリートが打設される側の内表面に、凹凸形状及び/又は不織布を有する請求項1〜4のいずれか1項記載の埋設型枠。   The embedding formwork according to any one of claims 1 to 4, which has an uneven shape and / or a non-woven fabric on the inner surface on which concrete is placed. コンクリートが打設される側の内表面に、複数のアンカー材が一体に突設されている請求項1〜4のいずれか1項記載の埋設型枠。   The embedded form according to any one of claims 1 to 4, wherein a plurality of anchor members are integrally projected on the inner surface on the side where the concrete is placed. 海洋又は河川土木・建設構造物用であることを特徴とする請求項1〜6のいずれか1項記載の埋設型枠。   The embedded formwork according to any one of claims 1 to 6, wherein the formwork is used for a marine or river civil engineering / construction structure.
JP2006105192A 2006-04-06 2006-04-06 Burial mould Pending JP2007277912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105192A JP2007277912A (en) 2006-04-06 2006-04-06 Burial mould

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105192A JP2007277912A (en) 2006-04-06 2006-04-06 Burial mould

Publications (1)

Publication Number Publication Date
JP2007277912A true JP2007277912A (en) 2007-10-25

Family

ID=38679622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105192A Pending JP2007277912A (en) 2006-04-06 2006-04-06 Burial mould

Country Status (1)

Country Link
JP (1) JP2007277912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046572A (en) * 2009-08-27 2011-03-10 Jx Nippon Oil & Energy Corp Solidified modified-sulfur panel and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046572A (en) * 2009-08-27 2011-03-10 Jx Nippon Oil & Energy Corp Solidified modified-sulfur panel and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US9322491B2 (en) Economical heavy concrete weight coating for submarine pipelines
JP2005263614A (en) Mortar composition, mortar and mortar hardened body using the same
JP4040000B2 (en) Sulfur intermediate material, sulfur material and manufacturing method thereof
KR100772638B1 (en) Composition for solidifying of slurry backfill material to apply to underground cable duct and structure
JP2011246300A (en) Method of reusing municipal refuse molten slag
KR20050026021A (en) Acid-resistant sulfur material and method for application of acid-resistant sulfur material
JP2007290925A (en) Civil engineering/construction material or structure
KR100772637B1 (en) Composition for solidifying of slurry backfill material to apply to underground cable duct and structure
JP2004160693A (en) Bonding method for obtaining sulfur solidified molded product and manufacturing method for the molded product
JP2007277912A (en) Burial mould
JP2003277108A (en) Method for producing modified sulfur-containing binder, and method for producing modified sulfur-containing material
JP4575577B2 (en) Curable composition and cured product
KR101042702B1 (en) Polymer Concrete Manhole Composition Using Copper Slag Fine Aggregate
JP2007262797A (en) Paved guiding footpath and its manufacturing process
JP3777295B2 (en) Manufacturing methods for civil engineering and construction materials
JP2002097060A (en) Method for manufacturing sulfur material
JP4166702B2 (en) Method for producing modified sulfur-containing binder and method for producing modified sulfur-containing material
JP2004315333A (en) Draining type precast pavement plate
JP4553244B2 (en) Method for producing sulfur-containing material moldings
JP4431765B2 (en) Manufacturing method of concrete and concrete products mainly using industrial waste
JP2007204933A (en) Composite structure for waterway facility and its manufacturing method
JP2004160694A (en) Bonding method for sulfur solidified molded product, manufacturing method for sulfur solidified molded product, and sulfur solidified molded product
Guades et al. Hybrid fibre-reinforced geopolymer (HFRG) composites as an emerging material in retrofitting aging and seismically-deficient concrete and masonry structures
Xu High-strength engineered cementitious composites incorporating artificial geopolymer fine aggregates
JP4732234B2 (en) Anticorrosion coated steel