JP2007277730A - Sputtering apparatus - Google Patents

Sputtering apparatus Download PDF

Info

Publication number
JP2007277730A
JP2007277730A JP2007184880A JP2007184880A JP2007277730A JP 2007277730 A JP2007277730 A JP 2007277730A JP 2007184880 A JP2007184880 A JP 2007184880A JP 2007184880 A JP2007184880 A JP 2007184880A JP 2007277730 A JP2007277730 A JP 2007277730A
Authority
JP
Japan
Prior art keywords
film
target
sputtering
coil
sputtering apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007184880A
Other languages
Japanese (ja)
Inventor
Tadashi Morita
正 森田
Masamichi Matsuura
正道 松浦
Naoshi Yamamoto
直志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007184880A priority Critical patent/JP2007277730A/en
Publication of JP2007277730A publication Critical patent/JP2007277730A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering apparatus which forms a compound insulator film convenient for a gap layer of a magnetic head and a tunnel junction type GMR at an extremely thin thickness of several tens to several hundreds Å which are heretofore difficult with the conventional sputtering apparatus. <P>SOLUTION: A target 6 connected to a DC current 5 and a magnetron cathode 9 equipped with a magnet 7 behind the same and an RF coil 8 to enhance ionization efficiency in front of the same are disposed within a vacuum chamber 1 into which sputtering gas and reactive gas are respectively introduced. The target is connected to the DC current via an abnormal discharge prevention circuit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハードディスク磁気ヘッド等に適用される極薄の絶縁膜の形成するためのスパッタリング装置に関する。   The present invention relates to a sputtering apparatus for forming an extremely thin insulating film applied to a hard disk magnetic head or the like.

従来、ハードディスク読み取り用磁気ヘッドとして、薄膜ヘッドや磁気抵抗(MR:Magneto-Resistance)ヘッドが用いられており、これらのヘッドには1000〜2000Å程度の厚さのAl膜がギャップ用絶縁膜として設けられている。このAl膜を形成するには、ターゲットとしてAlを使用したRFマグネトロンスパッタ法が一般に採用されているが、その生産性を重視する場合には、ターゲットにAlを用い、スパッタ中の雰囲気にOガスを導入し、Alをスパッタしながらプラズマ酸化を利用してAl膜を形成する反応性スパッタ法を採用することも行われている。 Conventionally, thin-film heads and magnetoresistive (MR) heads have been used as magnetic heads for reading hard disks. Al 2 O 3 films with a thickness of about 1000 to 2000 mm are used as gap insulation for these heads. It is provided as a film. In order to form this Al 2 O 3 film, an RF magnetron sputtering method using Al 2 O 3 as a target is generally employed. However, when importance is placed on the productivity, Al is used as a target, and sputtering is performed. A reactive sputtering method is also employed in which an O 2 gas is introduced into the inside atmosphere and an Al 2 O 3 film is formed using plasma oxidation while sputtering Al.

また、スパッタカソードとして、ターゲットの背後に磁石を設けると共に該ターゲットの前方にRFコイルを設けた誘導結合RFプラズマ支援マグネトロンカソードが出願人により提案されている。
特開平6−41739号公報
In addition, as a sputter cathode, an inductively coupled RF plasma assisted magnetron cathode in which a magnet is provided behind the target and an RF coil is provided in front of the target has been proposed by the applicant.
JP-A-6-41739

上記特許文献1に記載のカソードは高真空中でプラズマの発生を持続でき、不純物や2次生成物の発生が少ない利点を持っている。 The cathode described in Patent Document 1 has the advantage that it can sustain the generation of plasma in a high vacuum and generates less impurities and secondary products.

ハードディスクに関して記録密度を向上させることの要求があり、これに伴い読み取り用磁気ヘッドもスピンバルブ膜、多層膜やトンネル効果を用いた巨大磁気抵抗(GMR)ヘッドに置き換わると考えられており、そこに用いられる絶縁膜も数十〜数百Åの極めて薄いAlやAlNなどの化合物絶縁膜が必要になると予想されている。しかし、この程度の極めて薄い例えばAl膜を、従来のAlターゲットを用いたRFマグネトロンスパッタ法や反応性スパッタ法で作製すると、リーク電流が10−6A/mm以下で絶縁耐圧が5MV/cm以上の電気特性を有する良質な絶縁膜は形成出来ない。これは以下の理由に基づくと考えられている。即ち、下地のメタル膜とAlは“濡れ”が悪いため、メタル膜に接する領域のAl層は欠陥が入り易いが、Al膜が堆積していくにつれこの欠陥が少なくなり、健全なAl層となっていき、1000Å程度の厚い膜ではその電気特性も満足なものになると考えられ、そのため、数十〜数百Åの極めて薄いAl膜を形成した場合、界面層近傍の欠陥が多い部分の影響が顕著に現れ、上記電気特性の良好な絶縁膜を形成出来ない、と考えられている。 There is a demand for improving the recording density of hard disks, and it is considered that the magnetic head for reading is also replaced with a giant magnetoresistive (GMR) head using a spin valve film, a multilayer film, and a tunnel effect. It is expected that an insulating film to be used also requires a compound insulating film such as Al 2 O 3 or AlN of several tens to several hundreds of liters. However, when such an extremely thin Al 2 O 3 film, for example, is produced by an RF magnetron sputtering method or a reactive sputtering method using a conventional Al 2 O 3 target, the leakage current is 10 −6 A / mm 2 or less. A high-quality insulating film having electrical characteristics with a dielectric strength of 5 MV / cm or more cannot be formed. This is believed to be based on the following reasons. That is, since the underlying metal film and Al 2 O 3 are not “wetting”, the Al 2 O 3 layer in the region in contact with the metal film is likely to have defects, but as the Al 2 O 3 film is deposited, this defect is likely to occur. It is considered that a thin Al 2 O 3 layer becomes a healthy Al 2 O 3 layer, and that a thick film of about 1000 mm has satisfactory electrical characteristics. Therefore, an extremely thin Al 2 O 3 film of several tens to several hundreds of mm In the case of forming the insulating layer, it is considered that the influence of the portion having many defects in the vicinity of the interface layer appears remarkably, and the insulating film having the above-mentioned electrical characteristics cannot be formed.

本発明は、従来のスパッタリング装置では困難であった数十〜数百Åの極薄で磁気ヘッドのギャップ層やトンネル接合型GMRに好都合な化合物絶縁膜を形成するためのスパッタリング装置を提案することを目的とするものである。   The present invention proposes a sputtering apparatus for forming a compound insulating film that is convenient for a gap layer of a magnetic head or a tunnel junction type GMR with an ultrathin thickness of several tens to several hundreds of millimeters, which was difficult with a conventional sputtering apparatus. It is intended.

本発明のスパッタリング装置は、スッパタ用ガスと反応ガスとがそれぞれ導入される真空室内に、直流電流に接続されたターゲットとその背後に磁石および前記ターゲット前方のイオン化効率を高めるRFコイルとを備えたマグネトロンカソードを設けたスパッタリング装置で、前記ターゲットを異常放電力防止回路を介して前記直流電流に接続したことを特徴としている。   The sputtering apparatus of the present invention includes a target connected to a direct current and a magnet behind the target and a RF coil for increasing ionization efficiency in front of the target in a vacuum chamber into which a sputtering gas and a reactive gas are respectively introduced. A sputtering apparatus provided with a magnetron cathode is characterized in that the target is connected to the direct current via an abnormal discharge force prevention circuit.

本発明によれば、イオン化率を高めるRFコイルを備えたマグネトロンカソードを設け、ターゲット及びRFコイルへの投入電力と、真空室内へ導入するスパッタ用不活性ガス及び反応性ガスの流量とを制御し、基板にメタル膜の成膜と該メタル膜の絶縁化合物化を交互に行うようにしたので、基板に数十〜数百Å程度の従来のスパッタリング装置では困難であった電気特性の良好な極薄絶縁膜を形成することができ、高密度化されたハードディスク磁気ヘッドの製造に好都合に適用できる等の効果がある。   According to the present invention, a magnetron cathode provided with an RF coil for increasing the ionization rate is provided, and the input power to the target and the RF coil and the flow rates of the inert gas and the reactive gas for sputtering introduced into the vacuum chamber are controlled. Since the metal film is formed on the substrate and the metal film is made into an insulating compound alternately, the substrate has excellent electrical characteristics, which is difficult with a conventional sputtering apparatus of several tens to several hundreds of liters. A thin insulating film can be formed, and it is advantageous in that it can be advantageously applied to the manufacture of a high-density hard disk magnetic head.

本発明の実施の形態を図面に基づき説明すると、図1は本発明の実施に使用したスパッタリング装置で、同図の符号1は真空ポンプに連なる排気口2と、アルゴンガス等のスパッタ用ガスの導入口3及びOやN等の反応性ガスを導入する反応性ガス導入口4を設けた真空室を示す。該真空室1内には、直流電源5に異常放電防止回路10を介して接続されたAl製等のメタルターゲット6とその背後の磁石7及び該ターゲット6の前方のイオン化率を高めるRFコイル8を備えたマグネトロンカソード9が設けられる。このカソード9は、上記した誘導結合RFプラズマ支援マグネトロンカソードとして公知のもので、RFコイル8はメタルターゲット6の前方周囲を囲繞して設けられ、これにマッチングボックス11を介してRF電源12から電力が供給される。13は、表面に極薄の化合物の絶縁膜を形成すべく該ターゲット6と対向して設けられた例えば直径2インチの基板で、薄膜ヘッドやMRヘッド用の場合はその表面にメタル膜が下地膜として予め形成される。該RFコイル8は該メタルターゲット6と同材質の例えばAlにて形成され、必要な場合は、その内部に冷却水を循環させる。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described. FIG. 1 shows a sputtering apparatus used for carrying out the present invention. Reference numeral 1 in FIG. 1 shows a vacuum chamber provided with an inlet 3 and a reactive gas inlet 4 for introducing a reactive gas such as O 2 or N 2 . In the vacuum chamber 1, a metal target 6 made of Al or the like connected to a DC power source 5 through an abnormal discharge prevention circuit 10, a magnet 7 behind it, and an RF coil 8 that increases the ionization rate in front of the target 6. A magnetron cathode 9 is provided. The cathode 9 is known as the above-described inductively coupled RF plasma assisted magnetron cathode, and the RF coil 8 is provided so as to surround the front periphery of the metal target 6. Is supplied. Reference numeral 13 denotes a substrate having a diameter of, for example, 2 inches provided to face the target 6 so as to form an extremely thin insulating film of a compound on the surface. It is formed in advance as a base film. The RF coil 8 is made of, for example, Al made of the same material as that of the metal target 6. If necessary, cooling water is circulated inside the RF coil 8.

図1の装置を使用して反応性スパッタにより基板13に極薄の化合物絶縁膜を形成するには、まず真空室1内を排気し、スパッタ用アルゴンガスをカソード9の近傍の導入口3から適量導入して圧力を調整したのち、メタルターゲット6に直流電力と、RFコイル8に高周波電力を夫々投入する。これによりターゲット6の前方にプラズマが発生し、イオンによりターゲット6がスパッタされ、スパッタされたメタル粒子が基板13に堆積する。メタルが例えば数十Å程度の極薄く堆積したところで、ターゲット6への投入電力を零にし、RFコイル8への高周波電力のみを投入した状態で反応ガス導入口4から反応ガスを導入する。これによりターゲット6は殆どスパッタされず、導入された反応性ガスはRFコイル8のプラズマで励起・イオン化されるので堆積したメタル膜と速やかに反応し、化合物絶縁膜となる。堆積した該メタル膜は極めて薄いので、薄膜内部までほぼ完全に化合した化合物膜になる。   In order to form an extremely thin compound insulating film on the substrate 13 by reactive sputtering using the apparatus of FIG. 1, first, the inside of the vacuum chamber 1 is evacuated, and argon gas for sputtering is introduced from the inlet 3 near the cathode 9. After an appropriate amount is introduced and the pressure is adjusted, DC power is supplied to the metal target 6 and high-frequency power is supplied to the RF coil 8. As a result, plasma is generated in front of the target 6, the target 6 is sputtered by the ions, and the sputtered metal particles are deposited on the substrate 13. When the metal is deposited extremely thin, for example, about several tens of millimeters, the reaction gas is introduced from the reaction gas introduction port 4 in a state where the input power to the target 6 is set to zero and only the high-frequency power is applied to the RF coil 8. As a result, the target 6 is hardly sputtered, and the introduced reactive gas is excited and ionized by the plasma of the RF coil 8, so that it reacts quickly with the deposited metal film and becomes a compound insulating film. Since the deposited metal film is extremely thin, it becomes a compound film that is almost completely combined up to the inside of the thin film.

このあと、前記したターゲット6のスパッタ工程と反応ガスの導入による化合物化工程を繰り返し、基板13上に例えば100Å程度の極薄の化合物絶縁膜を形成する。これにより得られた化合物絶縁膜は、極薄でありながらリーク電流が小さく絶縁破壊電圧が高い良好な耐絶縁性をもち、絶縁性にバラつきのない化合物絶縁膜を形成でき、高密度記録を読み取る磁気ヘッドに好都合に適用できる。ターゲット6には化合して絶縁膜を形成する各種のメタルの使用が可能であり、例えばSiを使用すれば、SiOの極薄絶縁膜を形成でき、ターゲットをAl、反応性ガスにNを使用してAlNの極薄絶縁膜でき、ターゲットの材料と反応性ガスを適当に選択することで種々の極薄絶縁膜を形成できる。 Thereafter, the sputtering process of the target 6 and the compounding process by introduction of the reaction gas are repeated, and an ultrathin compound insulating film of about 100 mm, for example, is formed on the substrate 13. The resulting compound insulation film is extremely thin, has a low leakage current and a high dielectric breakdown voltage, has a good insulation resistance, can form a compound insulation film with no variation in insulation, and reads high-density recording It can be conveniently applied to magnetic heads. Various metals that form an insulating film by combining with the target 6 can be used. For example, if Si is used, a very thin insulating film of SiO 2 can be formed, and the target is made of Al and N 2 is used as a reactive gas. Can be used to form an ultra-thin insulating film of AlN, and various ultra-thin insulating films can be formed by appropriately selecting a target material and a reactive gas.

該基板13へのメタルの堆積速度は主にターゲット6へ投入する直流電力に依存し、スパッタされたメタル粒子や反応ガスのイオン化や励起の程度は主にRFコイル8に投入する高周波電力に依存する。これはスパッタされた中性メタル粒子がRFコイル8のつくるプラズマゾーンを通過するときにイオン化されるというイオンプレーティングと同様なポストイオン化機構によるためと考えられる。この傾向は2×10−3Torr以下の低い圧力下でより顕著になる。該メタルターゲット6を堆積させる際には、該ターゲット6への直流電力のみならずRFコイル8に高周波電力を同時に投入することにより、イオン化効率が高まり、基板13の下地の上に被覆性良く緻密で結晶性の良い数十Å程度の極薄いメタル膜を堆積させ得る。そして、ターゲット6への直流電力を零とし、RFコイル8への高周波電力のみとした状態で反応性ガスを導入すると、スパッタされるメタルはほとんどなく、RFコイル8によるプラズマで励起・イオン化され、堆積した極薄いメタル膜を迅速に反応させほぼ完全に化合物絶縁膜にする。 The deposition rate of the metal on the substrate 13 mainly depends on the DC power supplied to the target 6, and the degree of ionization and excitation of the sputtered metal particles and reactive gas mainly depends on the high frequency power supplied to the RF coil 8. To do. This is considered to be due to a post ionization mechanism similar to ion plating in which the sputtered neutral metal particles are ionized when passing through the plasma zone formed by the RF coil 8. This tendency becomes more remarkable under a low pressure of 2 × 10 −3 Torr or less. When depositing the metal target 6, not only direct current power to the target 6 but also high frequency power is simultaneously applied to the RF coil 8, so that the ionization efficiency is improved and the substrate 13 is densely coated with good coverage. Thus, an extremely thin metal film having a good crystallinity of about several tens of millimeters can be deposited. When the reactive gas is introduced in a state where the direct current power to the target 6 is zero and only the high frequency power to the RF coil 8 is introduced, there is almost no metal to be sputtered, and it is excited and ionized by the plasma from the RF coil 8. The deposited ultra-thin metal film reacts quickly to almost completely form a compound insulating film.

尚、RFコイル8による化合物化工程においては、ターゲット6からのスパッタ粒子によりRFコイル8の表面へメタル膜のコーティングが行われないため、むき出しになったRFコイル8の表面が誘導結合プラズマ放電によりスパッタされ、そのコイル材のスパッタ粒子が基板13の表面に付着するという汚染が考えられるが、このような汚染はRFコイル8をターゲット6と同材質で作製しておくことで防げる。   In the compounding process using the RF coil 8, since the metal film is not coated on the surface of the RF coil 8 by the sputtered particles from the target 6, the exposed surface of the RF coil 8 is subjected to inductively coupled plasma discharge. Contamination is considered that the sputtered particles of the coil material adhere to the surface of the substrate 13. Such contamination can be prevented by preparing the RF coil 8 with the same material as the target 6.

また、この反応性ガスのプラズマ励起・イオン化の際、ターゲット6の表面も反応してそこに化合物層が形成され、次のスパッタ工程に於ける直流放電が不安定になる場合がある。これは電気伝導度の小さい化合物や絶縁物がターゲット表面に形成されると、直流放電ではその表面に正電荷が帯電し、カソード(ターゲット)とアノード(基板)との間の電位差を消失する方向に働くことが原因で、放電が不安定になったり、放電が停止する結果になる。この状態を解消するには、ターゲット表面にたまった正電荷をプラズマからの電子で中和すればよく、そのため該ターゲット6の直流電源5に異常放電防止回路10を介在させ、図2に示したように、一定の割合で正電位を発生させるようにし、この正電位となったときにターゲット表面にプラズマからの電子を引き込んでターゲット表面にたまった正電荷を中和するようにした。
(実施例)
図1に示した誘導結合RFプラズマ支援マグネトロンカソードを備えた装置を使用して、低抵抗シリコンの基板13上の約100Åの極めて薄いAlの化合物絶縁膜を形成した。RFコイル8は水冷したAl製で、Al製のターゲット6に異常放電防止回路10を介して直流電源5を接続した。また、スパッタガスとしてアルゴンガスを導入口3から導入できるようにし、反応性ガスとしてOガスを反応性ガス導入口4から導入できるようにした。カソード6の直径は2インチである。
In addition, when the reactive gas is excited and ionized by plasma, the surface of the target 6 also reacts to form a compound layer there, and the DC discharge in the next sputtering process may become unstable. This is because when a compound or insulator with low electrical conductivity is formed on the target surface, a positive charge is charged on the surface in DC discharge, and the potential difference between the cathode (target) and the anode (substrate) disappears. As a result, the discharge becomes unstable or the discharge stops. In order to eliminate this state, the positive charges accumulated on the surface of the target may be neutralized with electrons from the plasma. Therefore, an abnormal discharge prevention circuit 10 is interposed in the DC power source 5 of the target 6 as shown in FIG. Thus, a positive potential is generated at a constant rate, and when this positive potential is reached, electrons from the plasma are drawn into the target surface to neutralize the positive charges accumulated on the target surface.
(Example)
Using the apparatus with the inductively coupled RF plasma assisted magnetron cathode shown in FIG. 1, an extremely thin Al 2 O 3 compound insulating film of about 100 mm was formed on a low resistance silicon substrate 13. The RF coil 8 is made of water-cooled Al, and the DC power source 5 is connected to the Al target 6 via the abnormal discharge prevention circuit 10. Further, argon gas as a sputtering gas can be introduced from the inlet 3, and O 2 gas as a reactive gas can be introduced from the reactive gas inlet 4. The diameter of the cathode 6 is 2 inches.

該化合物絶縁膜の形成に先立ち、真空室1内のアルゴンスパッタガス圧力を8×10−4Torr、ターゲット投入電力をDC40W一定にし、RFコイル8への投入電力を変化させて、Si基板13上へのAl膜堆積速度と基板へ流入するイオン電流の変化を測定した。なお、基板13には基板へ流入するイオン電流を測定できるようにするため、−50Vを印加した。その結果は図3の如くであり、Al膜堆積速度は、RFコイル8への投入電力にあまり依存していないことが分かる。Al膜堆積速度は、通常のマグネトロンスパッタと同様にターゲット6へ投入する電力に比例している。一方、基板13に流入するイオン電流は、RFコイル8への投入電力とともに急激に増加しており、この誘導結合RFプラズマ支援マグネトロンスパッタ法がスパッタ粒子のイオン化促進に極めて有効であること示している。この基板へ流入するイオンは、AlイオンとArイオンである。 Prior to the formation of the compound insulating film, the argon sputtering gas pressure in the vacuum chamber 1 is 8 × 10 −4 Torr, the target input power is kept constant at 40 W DC, the input power to the RF coil 8 is changed, and The changes in the Al film deposition rate and the ionic current flowing into the substrate were measured. Note that −50 V was applied to the substrate 13 so that the ion current flowing into the substrate could be measured. The result is as shown in FIG. 3, and it can be seen that the deposition rate of the Al film does not depend much on the input power to the RF coil 8. The Al film deposition rate is proportional to the electric power applied to the target 6 as in the normal magnetron sputtering. On the other hand, the ion current flowing into the substrate 13 increases rapidly with the input power to the RF coil 8, indicating that this inductively coupled RF plasma assisted magnetron sputtering method is extremely effective in promoting ionization of sputtered particles. . The ions flowing into the substrate are Al ions and Ar ions.

この結果を基に、図1の装置により、Alメタル膜を堆積するスパッタ工程と、その膜をプラズマ酸化により化合物化する化合物化工程とを図4に示した手順に従って繰り返し、約100Åの極めて薄い電気特性の優れたAlの化合物絶縁膜を形成した。スパッタアルゴンガス圧力は8×10−4Torr、Si基板の温度は室温とした。 Based on this result, the sputtering process for depositing the Al metal film and the compounding process for compounding the film by plasma oxidation are repeated according to the procedure shown in FIG. An Al 2 O 3 compound insulating film having excellent electrical characteristics was formed. The sputtering argon gas pressure was 8 × 10 −4 Torr, and the temperature of the Si substrate was room temperature.

詳細には、ターゲット6への直流電力を130W、RFコイル8への高周波電力を50W、Arガスを15sccm、Oガスを0sccmとし、この条件で18秒スパッタし、まず厚さ約30Å程度のAlメタル膜を基板に堆積させた。続いてターゲットへの直流電力を0V、RFコイル8への高周波電力をそのまま50Wを維持し、スパッタアルゴンガスの流量もそのまま15sccmに維持し、Oガスを30sccm真空室内へ導入して、RFコイル8による誘導結合プラズマのみを60秒間発生させて堆積した該Alメタル膜をプラズマ酸化させAl膜とした。更にこのAl膜の上に次のメタル膜を約30Åの厚さで前記Alメタル膜のスパッタ条件で堆積させ、この次のメタル膜を前記化合物化条件と同条件で堆積させた。このようにしてスパッタ工程と化合物化工程を3回繰り返し約100ÅのAl膜を基板に形成した。 Specifically, DC power to the target 6 is 130 W, high-frequency power to the RF coil 8 is 50 W, Ar gas is 15 sccm, O 2 gas is 0 sccm, and sputtering is performed for 18 seconds under these conditions. First, the thickness is about 30 mm. An Al metal film was deposited on the substrate. Subsequently, the DC power to the target is maintained at 0 V, the high frequency power to the RF coil 8 is maintained at 50 W, the flow rate of the sputter argon gas is maintained at 15 sccm, and O 2 gas is introduced into the 30 sccm vacuum chamber. The Al metal film deposited by generating only inductively coupled plasma by No. 8 for 60 seconds was plasma oxidized to obtain an Al 2 O 3 film. Further, the next metal film was deposited on the Al 2 O 3 film at a thickness of about 30 mm under the sputtering conditions of the Al metal film, and the next metal film was deposited under the same conditions as the compounding conditions. In this way, the sputtering process and the compounding process were repeated three times to form an Al 2 O 3 film of about 100 mm on the substrate.

ここで作製した膜の深さ方向組成分析をオージェ電子分光法を用いて評価したところ、膜組成は膜の深さ方向に対して安定しており、検出されたAlの分光ピークはすべて酸素と結合した状態において得られるエネルギー値であった。その分析結果を図5に示す。比較のためメタル膜を約45Åの厚さで同様に前記Alメタル膜のスパッタ条件で堆積させ、同様にプラズマ酸化させて作製した試料を評価すると、膜は、深さ方向に対して酸素の含有量にばらつきがあり、検出されたAlのピークは酸素と結合した状態において得られるエネルギー値に加え、金属状態のAlからのエネルギー値においてもピークが検出されていた(図6)。これは、メタル膜として堆積させたAlの膜厚が厚過ぎたため、プラズマ酸化時にメタルAl膜のすべてが酸化されずに、次のメタルAl層が堆積されたためと考えられる。   When the composition analysis in the depth direction of the film produced here was evaluated using Auger electron spectroscopy, the film composition was stable in the depth direction of the film, and the detected Al spectral peak was all oxygen and It was the energy value obtained in the combined state. The analysis result is shown in FIG. For comparison, a metal film having a thickness of about 45 mm was similarly deposited under the sputtering conditions of the Al metal film, and a sample produced by plasma oxidation was evaluated. The film contained oxygen in the depth direction. There was variation in the amount, and the detected peak of Al was detected not only in the energy value obtained in the state of binding to oxygen but also in the energy value from Al in the metallic state (FIG. 6). This is presumably because the film thickness of Al deposited as a metal film was too thick, and the entire metal Al film was not oxidized during plasma oxidation, and the next metal Al layer was deposited.

そして、得られたAl膜の電気特性を測定するため、特別にこの膜の上に500μm□のCu電極をスパッタ法により堆積させた。このようにして得た膜のV−I特性を図7に示した。このAl膜は、膜厚が約100Åと極めて薄いにもかかわらず、絶縁物特有のV−I特性になっていることがわかる。また、図8には、測定された絶縁膜のリーク電流と絶縁破壊電圧をプロットした、ここでの絶縁破壊電圧とリーク電流とは、先のV−I測定で膜の絶縁が破れたときの電圧と電流と定義した。また、比較のため、反応性スパッタリングで作成した同じ膜厚のAl膜の測定結果も併記した。この反応性スパッタリングの条件は、本発明のスパッタリング装置での化合物化条件にAlをスパッタするための条件の1つであるターゲットに直流電力を130W加えたものである。 Then, in order to measure the electrical characteristics of the obtained Al 2 O 3 film, a Cu electrode of 500 μm □ was specifically deposited on the film by a sputtering method. The VI characteristics of the film thus obtained are shown in FIG. It can be seen that the Al 2 O 3 film has a VI characteristic peculiar to an insulator, although the film thickness is as extremely thin as about 100 mm. Further, FIG. 8 plots the measured leakage current and dielectric breakdown voltage of the insulating film. The dielectric breakdown voltage and leakage current here are obtained when the insulation of the film was broken in the previous VI measurement. Defined as voltage and current. For comparison, the measurement results of the Al 2 O 3 film having the same film thickness prepared by reactive sputtering are also shown. This reactive sputtering condition is obtained by adding 130 W of DC power to a target that is one of the conditions for sputtering Al in the compounding condition in the sputtering apparatus of the present invention.

本発明のスパッタリング装置と従来の反応性スパッタ法のスパッタリング装置で得られた膜の特性を比較すると、反応性スパッタ膜の方がバラツキが大きく、小さな電圧で膜の絶縁破壊を起こしている。これは反応性スパッタではじめからAl膜を堆積すると、下地のSiとAl膜は“濡れ”が悪く、Siに接するAl膜には欠陥が入り易いためと考えられる。他方、本発明のスパッタリング装置(メタル堆積/プラズマ酸化積層法)では、最初にSiと“濡れ”が良いAl膜がSi下地全面に緻密に形成され、その後プラズマ酸化によりAl化されるので、形成されたAl膜は界面近傍でも欠陥の少ない良質な膜が形成されたものと推定される。尚、本発明のスパッタリング装置で約1000Å程度の厚い膜を堆積させ、その屈折率を測定したところ、バルクのAlと同じ1.71〜1.72の値が得られており、屈折率の値からも本発明の装置により得られた膜がバルクのAl並の優れた膜であることが裏付けられている。 When the characteristics of the film obtained by the sputtering apparatus of the present invention and the sputtering apparatus of the conventional reactive sputtering method are compared, the reactive sputtering film has a larger variation, and the dielectric breakdown of the film is caused by a small voltage. When this is depositing Al 2 O 3 film from the beginning by reactive sputtering, Si and the Al 2 O 3 film of underlying "wet" poor, the the Al 2 O 3 film in contact with the Si considered liable contains the defect It is done. On the other hand, in the sputtering apparatus of the present invention (metal deposition / plasma oxidation lamination method), first, an Al film having good wettability with Si is formed densely on the entire surface of the Si base, and thereafter Al 2 O 3 is formed by plasma oxidation. Therefore, it is presumed that the formed Al 2 O 3 film has a good quality film with few defects even in the vicinity of the interface. When a film having a thickness of about 1000 mm was deposited with the sputtering apparatus of the present invention and its refractive index was measured, the same value of 1.71 to 1.72 as that of bulk Al 2 O 3 was obtained. The rate value also confirms that the film obtained by the apparatus of the present invention is an excellent film comparable to bulk Al 2 O 3 .

尚、本発明のスパッタリング装置と同様に、最初スパッタリングで所要の膜厚、例えば100ÅのAl膜を形成し、その後別のプラズマ酸化装置で該Al膜を酸化させてみたが、Al膜の表層30Å程度のみが酸化されるだけで、膜内部まで酸化されないため、絶縁物特有のV−I特性を得ることは出来なかった。   As with the sputtering apparatus of the present invention, an Al film having a required film thickness, for example, 100 mm, was first formed by sputtering, and then the Al film was oxidized by another plasma oxidation apparatus. Since only the degree is oxidized and not the inside of the film, the VI characteristic peculiar to the insulator could not be obtained.

実施例では、Al膜の例を示したが、SiO、AlNなどの種々の絶縁膜や化合物材料への適用が可能である。本発明の方法は、同一チャンバー内に、メタルをスパッタする機構と雰囲気ガスをプラズマで励起できる機構の両方を備えており、且つそれらがほぼ独立に制御出来るようになっていれば、原理的に実施可能である。従って図1に例示した装置以外でも、例えば図9(a)のようにRFコイルがターゲットと基板の中間に設置してあるスパッタ装置、図9(b)のように熱フィラメントにより熱電子を発生させてプラズマを形成できる3極ないし4極型スパッタ装置、図9(c)のようにECR(電子サイクロトロン共鳴)ないしはマイクロ波でプラズマを発生できるECRないしはマイクロ波スパッタ装置などで実施できる。また、実施例ではハードディスク磁気ヘッドの絶縁膜スパッタプロセスについて述べたが、その他、フラットパネルディスプレーはじめ種々の電子機器デバイス薄膜作製プロセスへの適用が可能である。更に、ここでは化合物の厚膜を得るのに、スパッタ工程と化合物化工程を交互に繰り返したが、下地との“濡れ”の悪い第1層の化合物層のみをこの方法により作成し、第2層以降はいわゆる反応性スパッタにより一挙に化合物層を形成してもよい。 In the embodiment, the example of the Al 2 O 3 film is shown, but the present invention can be applied to various insulating films such as SiO 2 and AlN and compound materials. In principle, the method of the present invention has both a mechanism for sputtering metal and a mechanism for exciting atmospheric gas with plasma in the same chamber, and these can be controlled almost independently. It can be implemented. Therefore, in addition to the apparatus illustrated in FIG. 1, for example, a sputtering apparatus in which an RF coil is installed between the target and the substrate as shown in FIG. 9A, and thermoelectrons are generated by a hot filament as shown in FIG. It can be implemented by a tripolar or quadrupole type sputtering apparatus capable of forming plasma by an ECR (electron cyclotron resonance) or an ECR or microwave sputtering apparatus capable of generating plasma by a microwave as shown in FIG. 9C. In the embodiments, the insulating film sputtering process of the hard disk magnetic head has been described. However, the present invention can be applied to various electronic device device thin film manufacturing processes such as flat panel displays. Further, in this case, in order to obtain a thick film of the compound, the sputtering process and the compounding process were alternately repeated. However, only the first compound layer having poor “wetting” with the base was prepared by this method, After the layers, compound layers may be formed all at once by so-called reactive sputtering.

本発明に使用したスパッタリング装置の切断側面図、A cut side view of the sputtering apparatus used in the present invention, 図1のスパッタリング装置のカソードに印加される電圧の特性図、FIG. 1 is a characteristic diagram of a voltage applied to the cathode of the sputtering apparatus of FIG. RFコイル電力と膜堆積速度の関係図、Relationship diagram between RF coil power and film deposition rate, 本発明のスパッタリング装置における実施手順の線図、The diagram of the implementation procedure in the sputtering apparatus of the present invention, 本発明のスッパタリング装置で得られた膜のオージェ電子分光法による化学組成分析図(30Å)、Chemical composition analysis chart (30 cm) by Auger electron spectroscopy of the film obtained by the sputtering apparatus of the present invention, 本発明のスパッタリング装置で得られた膜のオージェ電子分光法による化学組成分析図(45Å)、Chemical composition analysis diagram (45 mm) by Auger electron spectroscopy of the film obtained by the sputtering apparatus of the present invention, 本発明のスパッタリング装置で得られた膜のリーク電流と電圧の関係図、Relationship diagram between leakage current and voltage of the film obtained by the sputtering apparatus of the present invention, 本発明のスパッタリング装置で得られた膜のリーク電流と絶縁破壊電圧の関係図、Relationship between the leakage current and breakdown voltage of the film obtained by the sputtering apparatus of the present invention, 本発明のスパッタリング装置の変形実施例でのスパッタリング装置の説明図である。It is explanatory drawing of the sputtering device in the modification of the sputtering device of this invention.

符号の説明Explanation of symbols

1 真空室
3 スパッタガス導入口
4 反応性ガス導入口
5 直流電源
6 メタルターゲット
7 磁石
8 RFコイル
9 マグネトロンカソード
10 異常放電防止回路
13 基板
1 Vacuum chamber 3 Sputtering gas introduction port 4 Reactive gas introduction port 5 DC power source 6 Metal target 7 Magnet 8 RF coil 9 Magnetron cathode 10 Abnormal discharge prevention circuit 13 Substrate

Claims (1)

スッパタ用ガスと反応ガスとがそれぞれ導入される真空室内に、直流電流に接続されたターゲットとその背後に磁石および前記ターゲット前方のイオン化効率を高めるRFコイルとを備えたマグネトロンカソードを設けたスパッタリング装置で、前記ターゲットを異常放電力防止回路を介して前記直流電流に接続したことを特徴とするスパッタリング装置。   Sputtering apparatus provided with a magnetron cathode provided with a target connected to a direct current and a magnet and an RF coil for increasing ionization efficiency in front of the target in a vacuum chamber into which a sputtering gas and a reactive gas are respectively introduced In the sputtering apparatus, the target is connected to the direct current through an abnormal discharge force prevention circuit.
JP2007184880A 2007-07-13 2007-07-13 Sputtering apparatus Withdrawn JP2007277730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007184880A JP2007277730A (en) 2007-07-13 2007-07-13 Sputtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007184880A JP2007277730A (en) 2007-07-13 2007-07-13 Sputtering apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13704497A Division JP4531145B2 (en) 1997-05-27 1997-05-27 Ultra-thin insulating film formation method

Publications (1)

Publication Number Publication Date
JP2007277730A true JP2007277730A (en) 2007-10-25

Family

ID=38679456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184880A Withdrawn JP2007277730A (en) 2007-07-13 2007-07-13 Sputtering apparatus

Country Status (1)

Country Link
JP (1) JP2007277730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659758B2 (en) 2005-03-22 2017-05-23 Honeywell International Inc. Coils utilized in vapor deposition applications and methods of production
JP2017193770A (en) * 2016-04-22 2017-10-26 国立大学法人茨城大学 Ru DEPOSITION METHOD, Ru DEPOSITION APPARATUS, METAL DEPOSITION APPARATUS, Ru BARRIER METAL LAYER, AND WIRING STRUCTURE
US11183373B2 (en) 2017-10-11 2021-11-23 Honeywell International Inc. Multi-patterned sputter traps and methods of making

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9659758B2 (en) 2005-03-22 2017-05-23 Honeywell International Inc. Coils utilized in vapor deposition applications and methods of production
JP2017193770A (en) * 2016-04-22 2017-10-26 国立大学法人茨城大学 Ru DEPOSITION METHOD, Ru DEPOSITION APPARATUS, METAL DEPOSITION APPARATUS, Ru BARRIER METAL LAYER, AND WIRING STRUCTURE
US11183373B2 (en) 2017-10-11 2021-11-23 Honeywell International Inc. Multi-patterned sputter traps and methods of making

Similar Documents

Publication Publication Date Title
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
JP4531145B2 (en) Ultra-thin insulating film formation method
WO2011007834A1 (en) Film-forming apparatus and film-forming method
Takahashi et al. An electron cyclotron resonance plasma deposition technique employing magnetron mode sputtering
JP3774353B2 (en) Method and apparatus for forming metal compound thin film
JP2015018885A (en) Plasma etching method
WO2006013968A1 (en) Thin-film forming apparatus
JP2007277730A (en) Sputtering apparatus
TWI284361B (en) Titanium nitride thin film formation on metal substrate by chemical vapor deposition in a magnetized sheet plasma source
US20170069472A1 (en) Method for cleaning a process chamber
JP4859104B2 (en) Monoclinic vanadium dioxide thin film manufacturing apparatus, monoclinic vanadium dioxide thin film manufacturing method, switching element manufacturing method, and switching element
JP4557315B2 (en) Method of forming compound barrier film in silicon semiconductor
JPH11200032A (en) Sputtering film forming method of insulated film
JP2007314887A (en) Method for forming extra-thin insulation film
JP3478561B2 (en) Sputter deposition method
JPH07110912A (en) Magnetic head and manufacture thereof
JP6799843B2 (en) Ru film forming method, Ru film forming apparatus
KR102430700B1 (en) Preparation method of ferromagnetic film and apparatus for ferromagnetic film
Shandrikov et al. Deposition of tungsten disilicide films by DC magnetron sputtering at ultra-low operating pressure
JP4610595B2 (en) Method of forming compound barrier film in silicon semiconductor
JP4506382B2 (en) ECR sputtering equipment
JP2002030432A (en) System and method for sputtering
JP3026447B2 (en) Bias sputter deposition method and apparatus
JPS59139616A (en) Manufacture of magnetic thin film
JPH06325312A (en) Ferhgasi soft magnetic material for induction magnetic head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106