JP2007277513A - Solution of binuclear metal complex pigment, photoelectric conversion device using the solution and photochemical cell - Google Patents

Solution of binuclear metal complex pigment, photoelectric conversion device using the solution and photochemical cell Download PDF

Info

Publication number
JP2007277513A
JP2007277513A JP2006247931A JP2006247931A JP2007277513A JP 2007277513 A JP2007277513 A JP 2007277513A JP 2006247931 A JP2006247931 A JP 2006247931A JP 2006247931 A JP2006247931 A JP 2006247931A JP 2007277513 A JP2007277513 A JP 2007277513A
Authority
JP
Japan
Prior art keywords
metal complex
group
dye solution
dye
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006247931A
Other languages
Japanese (ja)
Other versions
JP5003865B2 (en
Inventor
Takehisa Tsunoda
剛久 角田
Takafumi Iwasa
貴文 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006247931A priority Critical patent/JP5003865B2/en
Publication of JP2007277513A publication Critical patent/JP2007277513A/en
Application granted granted Critical
Publication of JP5003865B2 publication Critical patent/JP5003865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion device prepared by using a light-resistant and oxidation and reduction-resistant solution of a metal complex pigment having a high light absorption coefficient and excellent electron mobility and a photochemical cell using the device. <P>SOLUTION: The binuclear metal complex pigment solution is stable against light and electrically and contains a metal complex pigment solution prepared by dissolving an asymmetric binuclear metal complex having a gas generating temperature of 280°C or higher and expressed by general formula: (L<SP>1</SP>)<SB>2</SB>M<SP>1</SP>(BL)M<SP>2</SP>(L<SP>2</SP>)<SB>2</SB>(X)<SB>n</SB>and semiconductor particles prepared. M<SP>1</SP>and M<SP>2</SP>are each a transition metal; L<SP>1</SP>and L<SP>2</SP>are each a polydentate chelate-type ligand, L<SP>1</SP>and L<SP>2</SP>are different, two L<SP>1</SP>'s may be different from each other and so are two L<SP>2</SP>'s ; BL is a crosslinked ligand having at least two ring structures containing heteroatoms; coordination atoms coordinated with M<SP>1</SP>and M<SP>2</SP>are included in these ring structures; X is a paired ion; n is the number of paired ions necessary to neutralize the charge of the complex. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高い吸光係数を有する、電子移動に優れた耐熱性に優れた金属錯体色素を溶解した耐光性、耐酸化還元性に優れた金属錯体色素溶液を用いることによって作製された、光増感された酸化物半導体を用いた光電変換素子、ならびにそれを用いた光化学電池に関する。   The present invention is a photosensitizer produced by using a metal complex dye solution having a high extinction coefficient, an excellent metal complex dye having excellent electron transfer, and excellent light resistance and redox resistance. The present invention relates to a photoelectric conversion element using a sensed oxide semiconductor, and a photochemical battery using the photoelectric conversion element.

太陽電池はクリーンな再生型エネルギー源として大きく期待されており、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系の太陽電池やテルル化カドミウム、セレン化インジウム銅などの化合物からなる太陽電池の実用化をめざした研究がなされている。しかし、家庭用電源として普及させるためには、いずれの電池も製造コストが高いことや原材料の確保が困難なことやリサイクルの問題、また大面積化が困難であるなど克服しなければならない多くの問題を抱えている。そこで、大面積化や低価格化を目指し有機材料を用いた太陽電池が提案されてきたが、いずれも変換効率が1%程度と実用化にはほど遠いものであった。   Solar cells are highly expected as a clean renewable energy source. Practical use of single-crystal silicon-based, polycrystalline silicon-based, amorphous silicon-based solar cells and solar cells composed of compounds such as cadmium telluride and indium copper selenide Research has been conducted with the aim of making it easier. However, in order to disseminate it as a household power source, many of the batteries that must be overcome, such as high manufacturing costs, difficulty in securing raw materials, recycling problems, and difficulty in increasing the area. I have a problem. Thus, solar cells using organic materials have been proposed with the aim of increasing the area and reducing the price, but all have a conversion efficiency of about 1%, which is far from practical use.

こうした状況の中、1991年にグレッツェルらによりNatureに色素によって増感された半導体微粒子を用いた光電変換素子および太陽電池、ならびにこの太陽電池の作製に必要な材料および製造技術が開示された。(例えば、Nature、第353巻、737頁、1991年(非特許文献1)、特開平1−220380号公報(特許文献1)など)。この電池はルテニウム色素によって増感された多孔質チタニア薄膜を作用電極とする湿式太陽電池である。この太陽電池の利点は、安価な材料を高純度に精製する必要がなく用いられるため、安価な光電変換素子として提供できること、さらに用いられる色素の吸収がブロードであり、広い可視光の波長域にわたって太陽光を電気に変換できることである。しかしながら実用化のためにはさらなる変換効率の向上が必要であり、より高い吸光係数を有し、より高波長域まで光を吸収する色素の開発が望まれている。   Under such circumstances, in 1991, Gretzel et al. Disclosed a photoelectric conversion element and a solar cell using semiconductor fine particles sensitized with a dye in Nature, and materials and manufacturing techniques necessary for the production of the solar cell. (For example, Nature, Volume 353, page 737, 1991 (Non-Patent Document 1), JP-A-1-220380 (Patent Document 1), etc.). This battery is a wet solar cell using a porous titania thin film sensitized with a ruthenium dye as a working electrode. The advantage of this solar cell is that it can be used as an inexpensive photoelectric conversion element because it is not necessary to purify an inexpensive material with high purity, and further, the absorption of the dye used is broad, and over a wide visible light wavelength range. It can convert sunlight into electricity. However, further improvement in conversion efficiency is necessary for practical use, and development of a dye having a higher extinction coefficient and absorbing light up to a higher wavelength region is desired.

本出願人による特開2003−261536号公報(特許文献2)には、光電変換素子として有用な金属錯体色素であるジピリジル配位子含有金属単核錯体が開示されている。
また、色素増感太陽電池の最新技術(株式会社シーエムシー、2001年5月25日発行、117頁)(非特許文献2)には、多核β−ジケトナート錯体色素が開示されている。
また、特開2004−359677号公報(特許文献3)には、光などの活性光線のエネルギーを受けて電子を取り出す光電変換機能の優れた新規な複核錯体として、複数の金属と複数の配位子を有し、その複数の金属に配位する橋かけ配位子(BL)が複素共役環を有する配位構造と複素共役環を有しない配位構造を有する複核錯体が開示されている。また、特開2000−323191にはアシルオキシ基、アシルチオオキシ基等を有する対称な複核錯体が開示されている。(特許文献4)
また、1999年にグレッツェルらによりInorg. Chem.1999、38、6298−6305(非特許文献3)に色素によって増感された半導体微粒子を用いた太陽電池に関して、溶液の調整法が開示された。
JP 2003-261536 (Patent Document 2) by the present applicant discloses a dipyridyl ligand-containing metal mononuclear complex which is a metal complex dye useful as a photoelectric conversion element.
In addition, the latest technology of dye-sensitized solar cells (CMC Co., Ltd., issued on May 25, 2001, page 117) (Non-Patent Document 2) discloses polynuclear β-diketonate complex dyes.
In addition, Japanese Patent Application Laid-Open No. 2004-359677 (Patent Document 3) describes a plurality of metals and a plurality of coordinations as a novel multinuclear complex having an excellent photoelectric conversion function for extracting electrons by receiving the energy of actinic rays such as light. A binuclear complex having a coordination structure in which a bridging ligand (BL) having a conjugated group and a metal coordinated to a plurality of metals has a heteroconjugated ring and a coordination structure not having a heteroconjugated ring is disclosed. JP 2000-323191 discloses a symmetric binuclear complex having an acyloxy group, an acylthiooxy group and the like. (Patent Document 4)
In 1999, Gretzel et al., Inorg. Chem. 1999, 38, 6298-6305 (Non-patent Document 3) disclosed a method for preparing a solution for a solar cell using semiconductor fine particles sensitized with a dye.

光電変換素子として、有用かつ新規な金属錯体色素が望まれている。
特開平1−220380号公報 特開2003−261536号公報 特開2004−359677号公報 特開2000−323191号公報 Nature、第353巻、737頁、1991年 色素増感太陽電池の最新技術(株式会社シーエムシー、2001年5月25日発行、117頁) Inorg. Chem.1999、38、6298−6305
A useful and novel metal complex dye is desired as a photoelectric conversion element.
Japanese Patent Laid-Open No. 1-220380 JP 2003-261536 A Japanese Patent Application Laid-Open No. 2004-359677 JP 2000-323191 A Nature, 353, 737, 1991 The latest technology of dye-sensitized solar cells (CMC Corporation, issued on May 25, 2001, page 117) Inorg. Chem. 1999, 38, 6298-6305

本発明の目的は、金属錯体色素の多核化により吸光係数の向上を目指し、電子遷移の方向を電解液側から多孔質半導体へ調整することでスムーズな電子移動を実現させ、効率良く半導体微粒子を光増感し得る耐熱性に優れた色素を溶解した耐光性、耐酸化還元性に優れた金属錯体色素溶液とこの溶液を用いることにより作製した半導体微粒子を含むことを特徴とする耐光性の高い光電変換素子ならびこの光電変換素子からなる光化学電池を提供することである。   The purpose of the present invention is to improve the light absorption coefficient by making the metal complex dye multinuclear, and by adjusting the direction of electron transition from the electrolyte side to the porous semiconductor, it realizes smooth electron transfer, and efficiently produces semiconductor fine particles. High light resistance characterized by including a light- and dye-dissolved metal complex dye solution in which a dye having excellent heat resistance capable of photosensitization is dissolved and semiconductor fine particles prepared by using this solution It is to provide a photoelectric conversion element and a photochemical battery comprising the photoelectric conversion element.

本発明は、一般式:(L(BL)M(L(X)で示される非対称な二核金属錯体を溶解した金属錯体色素溶液に関する。(但し、M及びMは、遷移金属であって、同一でも異なっていてもよく、L及びLは、多座配位可能なキレート型配位子であって、LとLは異なるものであり、二つのLは異なるものであってもよく、二つのLも異なるものであってもよく、BLはヘテロ原子を含む環状構造を少なくとも二つ有する架橋配位子であって、M及びMに配位する配位原子がこの環状構造に含まれるヘテロ原子である。Xは対イオンである。nは錯体の電荷を中和するのに必要な対イオンの数を表す。) The present invention relates to a metal complex dye solution in which an asymmetric binuclear metal complex represented by the general formula: (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) n is dissolved. (However, M 1 and M 2 are transition metals and may be the same or different, and L 1 and L 2 are multidentate chelate-type ligands, and L 1 and L 2 2 is different, two L 1 may be different, two L 2 may be different, and BL is a bridging ligand having at least two cyclic structures containing heteroatoms Wherein the coordinating atoms coordinated to M 1 and M 2 are heteroatoms contained in this cyclic structure, X is a counter ion, and n is a counter ion necessary to neutralize the charge of the complex. Represents the number of

また、本発明は、L及びLが二座もしくは三座もしくは四座配位可能なキレート型配位子であることを特徴とする上記の二核金属錯体を溶解した金属錯体色素溶液に関する。 The present invention also relates to a metal complex dye solution in which the above binuclear metal complex is dissolved, wherein L 1 and L 2 are chelate type ligands capable of bidentate, tridentate or tetradentate coordination.

本発明は分解に起因するガス発生温度が280℃以上であることを特徴とした二核金属錯体色素を含む、光及びかつ電気的に安定な二核金属錯体色素溶液に関する。     The present invention relates to an optically and electrically stable binuclear metal complex dye solution containing a binuclear metal complex dye characterized in that the gas generation temperature resulting from decomposition is 280 ° C. or higher.

また、本発明は、L及びLが窒素を含む共役系を有する環状構造を有していることを特徴とする上記の二核金属錯体を溶解した金属錯体色素溶液に関する。 The present invention also relates to a metal complex dye solution in which the above binuclear metal complex is dissolved, wherein L 1 and L 2 have a cyclic structure having a conjugated system containing nitrogen.

また、本発明は、L及びLが、ビピリジル、ピリジルキノリン、ビキノリン、またはフェナントロリンの誘導体である二座配位子であることを特徴とする上記の二核金属錯体を溶解した金属錯体色素溶液に関する。 The present invention also provides a metal complex dye having the above binuclear metal complex dissolved therein, wherein L 1 and L 2 are bidentate ligands that are bipyridyl, pyridylquinoline, biquinoline, or a derivative of phenanthroline Regarding the solution.

また、本発明は、Lが、カルボキシル基(−COOH)または−COOで少なくとも一つ置換された配位子であることを特徴とする上記の二核金属錯体を溶解した金属錯体色素溶液に関する。 The present invention also provides a metal complex dye solution in which the above binuclear metal complex is dissolved, wherein L 1 is a ligand substituted with at least one carboxyl group (—COOH) or —COO —. About.

また、本発明は、BLが、四座配位子であることを特徴とする上記の二核金属錯体を溶解した金属錯体色素溶液に関する。   The present invention also relates to a metal complex dye solution in which the above binuclear metal complex is dissolved, wherein BL is a tetradentate ligand.

また、本発明は、M及びMが、第VIII族〜第XI族の遷移金属であることを特徴とする上記の二核金属錯体を溶解した金属錯体色素溶液に関する。 The present invention also relates to a metal complex dye solution in which the above binuclear metal complex is dissolved, wherein M 1 and M 2 are Group VIII to Group XI transition metals.

また、本発明は、M及びMが、ルテニウム(Ru)、オスミウム(Os)、コバルト(Co)、ニッケル(Ni)、銅(Cu)または鉄(Fe)であることを特徴とする上記の二核金属錯体を溶解した金属錯体色素溶液に関する。 In the present invention, M 1 and M 2 are ruthenium (Ru), osmium (Os), cobalt (Co), nickel (Ni), copper (Cu), or iron (Fe). The present invention relates to a metal complex dye solution in which the binuclear metal complex is dissolved.

さらに、本発明は、一般式:(L(BL)M(L(X)nで示される非対称な二核金属錯体(但し、M及びMは、遷移金属であって、同一でも異なっていてもよく、L及びLは、多座配位可能なキレート型配位子であって、LとLは異なるものであり、二つのLは異なるものであってもよく、二つのLも異なるものであってもよく、Xは対イオンであり、nは錯体の電荷を中和するのに必要な対イオンの数を表し、BLはヘテロ原子を含む環状構造を少なくとも二つ有する架橋配位子であって、M及びMに配位する配位原子がこの環状構造に含まれるヘテロ原子であり、Lが半導体微粒子に固定され得る置換基を有し、かつ主に(LにLUMOが分布する構造である。)からなることを特徴とする金属錯体色素を溶解した金属錯体色素溶液に関する。 Further, the present invention provides an asymmetric binuclear metal complex represented by the general formula: (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) n (where M 1 and M 2 are transitions) It is a metal and may be the same or different, L 1 and L 2 are multidentate chelate-type ligands, L 1 and L 2 are different, and two L 1 May be different, and the two L 2 may be different, X is a counter ion, n represents the number of counter ions required to neutralize the charge of the complex, and BL Is a bridging ligand having at least two cyclic structures containing heteroatoms, the coordinating atoms coordinated to M 1 and M 2 are heteroatoms contained in the cyclic structure, and L 1 is a semiconductor fine particle It has a fixed may substituent, and is mainly (L 1) LUMO in 2 M 1 are distributed structure ) Relates to a metal complex dye solution of a metal complex dye, characterized in that it consists of.

また、本発明は、上記の金属錯体色素溶液により増感された半導体微粒子を含むことを特徴とする光電変換素子に関する。   The present invention also relates to a photoelectric conversion element comprising semiconductor fine particles sensitized with the metal complex dye solution.

また、本発明は、上記の半導体微粒子が、酸化チタン、酸化亜鉛、または酸化錫であることを特徴とする光電変換素子に関する。   The present invention also relates to a photoelectric conversion element, wherein the semiconductor fine particles are titanium oxide, zinc oxide, or tin oxide.

また、本発明は、上記の光電変換素子を用いることを特徴とする光化学電池に関する。
The present invention also relates to a photochemical battery using the above-described photoelectric conversion element.

本発明により得られた耐熱性に優れた二核金属錯体色素は、既存色素を溶解させて得られた色素溶液に比べ高い吸光係数を有している。また光、電気に対する安定性が高く、安定した光化学電池を作製することに極めて優れている。また、かかる溶液により作製された光電変換素子は既存色素溶液により得られた光電変換素子に比べ光に対する安定性が極めて高く、高耐久性の光化学電池を提供するに極めて有効である。
本発明の金属錯体色素溶液を用いて作製した光化学電池は、比較色素である光電変換効率を示す色素に比べ、光電変換効率の向上が見られた。かかる二核金属錯体色素溶液から作製される光化学電池は太陽電池として極めて有効である。しかも、本発明の二核金属金属錯体色素は、現行で高い光電変換効率を示す色素とは違い、分子内に分解しやすい−NCS基を有しておらず、本発明の二核錯体色素を溶解した溶液は光に対する安定性にも優れる。

The binuclear metal complex dye excellent in heat resistance obtained by the present invention has a higher extinction coefficient than a dye solution obtained by dissolving an existing dye. In addition, it has high stability to light and electricity, and is extremely excellent in producing a stable photochemical battery. Moreover, the photoelectric conversion element produced by such a solution has extremely high light stability compared to the photoelectric conversion element obtained from the existing dye solution, and is extremely effective for providing a highly durable photochemical battery.
In the photochemical battery produced using the metal complex dye solution of the present invention, the photoelectric conversion efficiency was improved as compared with the dye showing the photoelectric conversion efficiency as a comparative dye. A photochemical cell produced from such a binuclear metal complex dye solution is extremely effective as a solar cell. In addition, the binuclear metal complex dye of the present invention does not have a -NCS group that is easily decomposed in the molecule, unlike the dye that exhibits high photoelectric conversion efficiency at present. The dissolved solution is also excellent in light stability.

本発明の色素溶液に含まれる一般式:(L(BL)M(L(X)で示される非対称な二核金属錯体において、M及びMは、遷移金属であり、好ましくは第VIII族〜第XI族の遷移金属であり、具体的には、ルテニウム(Ru)、オスミウム(Os)、コバルト(Co)、ニッケル(Ni)、銅(Cu)または鉄(Fe)が好ましい。中でも、ルテニウム(Ru)、オスミウム(Os)が好ましく、ルテニウム(Ru)が特に好ましい。 In the asymmetric binuclear metal complex represented by the general formula: (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) n contained in the dye solution of the present invention, M 1 and M 2 are: A transition metal, preferably a Group VIII to XI transition metal, specifically ruthenium (Ru), osmium (Os), cobalt (Co), nickel (Ni), copper (Cu) or Iron (Fe) is preferred. Among these, ruthenium (Ru) and osmium (Os) are preferable, and ruthenium (Ru) is particularly preferable.

本発明は分解に起因するガス発生温度が280℃以上であることを特徴とした二核金属錯体を含む、光及びかつ電気的に安定な二核金属錯体色素溶液である。   The present invention is an optically and electrically stable binuclear metal complex dye solution containing a binuclear metal complex characterized in that the gas generation temperature resulting from decomposition is 280 ° C. or higher.

本発明の色素溶液において、溶液を構成する溶媒はアルコールを含むことが好ましい。さらに好ましくはアルコールの炭素数が3以上であることが望ましい。さらに好ましくはイソプロピルアルコールが望ましい。さらに、この溶液を構成する溶媒は単独または2種類以上組み合わせて使用することが出来る。   In the dye solution of the present invention, the solvent constituting the solution preferably contains an alcohol. More preferably, the alcohol has 3 or more carbon atoms. More preferably, isopropyl alcohol is desirable. Furthermore, the solvent which comprises this solution can be used individually or in combination of 2 or more types.

及びMは、同一金属でも異なった金属であってもよい。 M 1 and M 2 may be the same metal or different metals.

及びLは、多座配位可能なキレート型配位子であり、好ましくは二座もしくは三座もしくは四座配位可能なキレート型配位子、さらに好ましくは二座配位可能なキレート型配位子である。さらにキレート配位子が環状構造を有していることが望ましく、さらに好ましくは窒素を含む環状構造を有していることが望ましく、さらに好ましくは窒素を含む共役系を有する環状構造を有していることが望ましい。具体的には、2,2’−ビピリジン、1,10−フェナントロリン、2−(2−ピリジニル)キノリンまたは2,2’−ビキノリンなどの誘導体などが挙げられる。LとLは、異なるものである。また、二つのLは異なるものであってもよく、二つのLも異なるものであってもよい。 L 1 and L 2 are chelate type ligands capable of multidentate coordination, preferably chelate type ligands capable of bidentate, tridentate or tetradentate coordination, more preferably chelate capable of bidentate coordination. Type ligand. Further, it is desirable that the chelate ligand has a cyclic structure, more preferably a nitrogen-containing cyclic structure, more preferably a nitrogen-containing conjugated system having a cyclic structure. It is desirable. Specific examples include derivatives such as 2,2′-bipyridine, 1,10-phenanthroline, 2- (2-pyridinyl) quinoline, or 2,2′-biquinoline. L 1 and L 2 are different. Further, the two L 1 may be different, and the two L 2 may be different.

本発明の二核金属錯体が光電変換素子に用いる金属錯体色素である場合、Lは、半導体微粒子に固定され得る置換基を少なくとも一つ有している。 When the binuclear metal complex of the present invention is a metal complex dye used for a photoelectric conversion element, L 1 has at least one substituent that can be fixed to semiconductor fine particles.

の半導体微粒子に固定され得る置換基としては、カルボキシル基(−COOH)、アミノ基(−NH)、水酸基(−OH)、硫酸基(−SOH)、燐酸基(−PO)、ニトロ基(−NO)などが挙げられる。中でも、カルボキシル基(−COOH)が好ましい。カルボキシル基の水素は、テトラブチルアンモニウムなどの4級アンモニウム、ナトリウムイオンなどのアルカリ金属イオンなどのカチオンで交換されていてもよい。また、水素は脱離していてもよい。 Examples of the substituent that can be fixed to the semiconductor fine particles of L 1 include a carboxyl group (—COOH), an amino group (—NH 2 ), a hydroxyl group (—OH), a sulfate group (—SO 3 H), and a phosphate group (—PO 3 H 2 ), nitro group (—NO 2 ) and the like. Among these, a carboxyl group (—COOH) is preferable. The hydrogen of the carboxyl group may be exchanged with a cation such as quaternary ammonium such as tetrabutylammonium or an alkali metal ion such as sodium ion. Further, hydrogen may be eliminated.

さらに、Lは、半導体微粒子に固定され得る置換基以外の置換基を有しても、有してなくてもよい。このような置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。 Further, L 1 may or may not have a substituent other than the substituent that can be fixed to the semiconductor fine particles. Examples of such a substituent include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).

また、本発明の二核金属錯体が光電変換素子に用いる金属錯体色素である場合、Lは、主に(L部分にLUMOが分布するような配位子であることが好ましい。「主に(L部分にLUMOが分布する」とは、(L部分よりも(L部分にLUMOが多く分布していることを意味する。主に(Lが太陽光などの光照射により電子が励起するLUMOを有する構造であることによって、この二核金属錯体を溶解した金属錯体色素溶液およびこの溶液を用いて作製した半導体微粒子を含む光電変換素子を用いて光化学電池を製造したときに、電解質から光電変換素子(負極)へのスムーズな電子移動を起こすことができ、効率のよい光化学電池を構成することができる。 When the binuclear metal complex of the present invention is a metal complex dye used for a photoelectric conversion element, L 1 may be a ligand in which LUMO is distributed mainly in the (L 1 ) 2 M 1 portion. preferable. “Mainly, LUMO is distributed in the (L 1 ) 2 M 1 portion” means that more LUMO is distributed in the (L 1 ) 2 M 1 portion than in the (L 2 ) 2 M 2 portion. . Mainly (L 1 ) 2 M 1 has a LUMO structure in which electrons are excited by light irradiation such as sunlight, so that a metal complex dye solution in which this binuclear metal complex is dissolved and a solution prepared using this solution When a photochemical battery is manufactured using a photoelectric conversion element containing semiconductor fine particles, smooth electron transfer from the electrolyte to the photoelectric conversion element (negative electrode) can occur, and an efficient photochemical battery can be configured.

LUMOの算出は、ソフトウェアはCeriusあるいはMaterial Studioを用いた。その方法は、DMolモジュールを用いてDFT(密度汎関数法)によって金属錯体の構造最適化を行った。そのときの交換相関関数は特に限定はしないがVWN法またはBLYP法が好適に用いられる。基底関数は特に限定はしないがDNPが好適に用いられる。
エネルギー状態計算は得られた構造を用い、交換相関関数としては特に限定はしないがBLYP,PBEが用いられ、基底関数系としては特に限定はしないがDNPが好適に用いられる。
For the calculation of LUMO, the software used was Cerius 2 or Material Studio. In this method, the structure of the metal complex was optimized by DFT (density functional method) using a DMol 3 module. The exchange correlation function at that time is not particularly limited, but the VWN method or the BLYP method is preferably used. The basis function is not particularly limited, but DNP is preferably used.
The energy state calculation uses the obtained structure, and although there is no particular limitation on the exchange correlation function, BLYP and PBE are used, and the basis function system is not particularly limited, but DNP is preferably used.

としては、下式(L−A)で表される配位子が挙げられる。 L 1 includes a ligand represented by the following formula (L 1 -A).

Figure 2007277513
(L−A)
式中、−COOHのHは脱離していてもよく、R、R、R、R、R及びRは水素原子、アルコキシ基または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
〜Rは好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アルキル基であることがより好ましい。アルキル基としては、炭素数6以下のものが好ましく、メチル基、エチル基がより好ましい。また、アルコキシ基としては、炭素数6以下のものが好ましく、メトキシ基、エトキシ基がより好ましい。
また、RとR、RとR、RとRが一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。
〜Rは水素原子であることが特に好ましい。
Figure 2007277513
(L 1 -A)
In the formula, H of —COOH may be eliminated, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent a hydrogen atom, an alkoxy group or a substituted or unsubstituted hydrocarbon group. Or two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached.
R 1 to R 6 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group. As an alkyl group, a C6 or less thing is preferable and a methyl group and an ethyl group are more preferable. Moreover, as an alkoxy group, a C6 or less thing is preferable and a methoxy group and an ethoxy group are more preferable.
In addition, R 2 and R 3 , R 4 and R 5 , R 1 and R 6 are combined together and a carbon atom to which they are bonded together with a 6-membered aromatic hydrocarbon ring (which may have a substituent) It is also preferable to form. Examples of the substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).
R 1 to R 6 are particularly preferably a hydrogen atom.

の具体例としては、下式(L−1)〜(L−4)で表される配位子が挙げられるが、本発明はこれらに限定されるものではない。 Specific examples of L 1 include ligands represented by the following formulas (L 1 -1) to (L 1 -4), but the present invention is not limited to these.

Figure 2007277513

(L−1)
2,2’−ビピリジン−4,4’−ジカルボン酸(Hdcbpy)
Figure 2007277513

(L 1 -1)
2,2′-bipyridine-4,4′-dicarboxylic acid (H 2 dcbpy)

Figure 2007277513

(L−2)
1,10−フェナントロリン−4,7−ジカルボン酸(Hdcphen)
Figure 2007277513

(L 1 -2)
1,10-phenanthroline-4,7-dicarboxylic acid (H 2 dcphen)

Figure 2007277513
(L−3)
2−(2−(4−カルボキシピリジル))−4−カルボキシキノリン(Hdcpq)
Figure 2007277513
(L 1 -3)
2- (2- (4-carboxy-pyridyl)) - 4-carboxy quinoline (H 2 dcpq)

Figure 2007277513

(L−4)
2,2’−ビキノリン−4,4’−ジカルボン酸(Hdcbiq)

但し、式(L−1)〜(L−4)中の複素環およびベンゼン環は置換基を有していてもよく、また、−COOHのHは脱離していてもよい。置換基としては、メチル基、エチル基などの炭素数6以下のアルキル基、メトキシ基、エトキシ基などの炭素数6以下のアルコキシ基などが挙げられる。
Figure 2007277513

(L 1 -4)
2,2′-biquinoline-4,4′-dicarboxylic acid (H 2 dcbiq)

However, the heterocyclic ring and the benzene ring in the formulas (L 1 -1) to (L 1 -4) may have a substituent, and H of —COOH may be eliminated. Examples of the substituent include an alkyl group having 6 or less carbon atoms such as a methyl group and an ethyl group, and an alkoxy group having 6 or less carbon atoms such as a methoxy group and an ethoxy group.

前述の通り、Lは、多座配位可能なキレート型配位子であり、好ましくは二座もしくは三座もしくは四座配位可能なキレート型配位子、さらに好ましくは二座配位可能なキレート型配位子である。具体的には、2,2’−ビピリジン、1,10−フェナントロリン、2−(2−ピリジニル)キノリンまたは2,2’−ビキノリンなどの誘導体などが挙げられる。 As described above, L 2 is a chelate ligand capable of multidentate coordination, preferably a chelate ligand capable of bidentate, tridentate or tetradentate coordination, more preferably bidentate coordination. It is a chelate type ligand. Specific examples include derivatives such as 2,2′-bipyridine, 1,10-phenanthroline, 2- (2-pyridinyl) quinoline, or 2,2′-biquinoline.

は、置換基を有しても、有してなくてもよい。Lの置換基としては、アルキル基(メチル基、エチル基など)、アリール基(フェニル基、トリル基など)、アルコキシ基(メトキシ基、エトキシ基など)、および水酸基(−OH)などが挙げられる。特に、電子供与性を示す基が好ましい。 L 2 may or may not have a substituent. Examples of the substituent for L 2 include an alkyl group (such as a methyl group and an ethyl group), an aryl group (such as a phenyl group and a tolyl group), an alkoxy group (such as a methoxy group and an ethoxy group), and a hydroxyl group (—OH). It is done. In particular, a group showing an electron donating property is preferable.

としては、下式(L−A)で表される配位子が挙げられる。 L 2 includes a ligand represented by the following formula (L 2 -A).

Figure 2007277513

(L−A)
式中、R11、R12、R13、R14、R15、R16、R17及びR18は水素原子、アルコキシ基、水酸基または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
Figure 2007277513

(L 2 -A)
In the formula, R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 represent a hydrogen atom, an alkoxy group, a hydroxyl group or a substituted or unsubstituted hydrocarbon group, or these Two or more together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached.

11〜R18は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アルキル基であることがより好ましい。アルキル基としては、炭素数6以下のものが好ましく、メチル基、エチル基がより好ましい。また、アルコキシ基としては、炭素数6以下のものが好ましく、メトキシ基、エトキシ基がより好ましい。 R 11 to R 18 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group. As an alkyl group, a C6 or less thing is preferable and a methyl group and an ethyl group are more preferable. Moreover, as an alkoxy group, a C6 or less thing is preferable and a methoxy group and an ethoxy group are more preferable.

また、R11〜R18の隣接する二つ、またはR11とR18が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。 Further, (which may have a substituent) two adjacent, or R 11 and R 18 together aromatic 6-membered together with the carbon atoms to which they are bonded hydrocarbon ring R 11 to R 18 It is also preferable to form. Examples of the substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).

11〜R18は水素原子またはメチル基であることが特に好ましい。また、R11とR18が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(メチル基などの置換基を有していてもよい)を形成しており、R12〜R17は水素原子またはメチル基、より好ましくは水素原子であることも特に好ましい。 R 11 to R 18 are particularly preferably a hydrogen atom or a methyl group. R 11 and R 18 are combined to form a 6-membered aromatic hydrocarbon ring (which may have a substituent such as a methyl group) together with the carbon atom to which they are bonded, and R 12 It is particularly preferred that R 17 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.

の具体例としては、下式(L−1)〜(L−4)で表される配位子が挙げられるが、本発明はこれらに限定されるものではない。 Specific examples of L 2 include ligands represented by the following formulas (L 2 -1) to (L 2 -4), but the present invention is not limited to these.

Figure 2007277513

(L−1)
2,2’−ビピリジン(bpy)
Figure 2007277513

(L 2 -1)
2,2'-bipyridine (bpy)

Figure 2007277513

(L−2)
1,10−フェナントロリン(phen)
Figure 2007277513

(L 2 -2)
1,10-phenanthroline (phen)

Figure 2007277513

(L−3)
2−(2−ピリジニル)キノリン(pq)
Figure 2007277513

(L 2 -3)
2- (2-Pyridinyl) quinoline (pq)

Figure 2007277513

(L−4)
2,2’−ビキノリン(biq)
但し、式(L−1)〜(L−4)中の複素環およびベンゼン環は置換基を有していてもよい。置換基としては、炭素数6以下のアルキル基、炭素数6以下のアルコキシ基、メチル基などの置換基を有していてもよいフェニル基、水酸基などが挙げられる。
Figure 2007277513

(L 2 -4)
2,2'-biquinoline (biq)
However, the heterocyclic ring and the benzene ring in the formulas (L 2 -1) to (L 2 -4) may have a substituent. Examples of the substituent include an alkyl group having 6 or less carbon atoms, an alkoxy group having 6 or less carbon atoms, a phenyl group which may have a substituent such as a methyl group, and a hydroxyl group.

BLは架橋配位子であって、ヘテロ原子を含む環状構造を有するものである。そして、この環状構造(複素共役環)に含まれるヘテロ原子がM及びMに配位する配位原子である。ヘテロ原子としては、窒素、酸素、硫黄、燐などが挙げられる。 BL is a bridging ligand and has a cyclic structure containing a hetero atom. And the hetero atom contained in this cyclic structure (heteroconjugate ring) is a coordination atom coordinated to M 1 and M 2 . Heteroatoms include nitrogen, oxygen, sulfur, phosphorus and the like.

BLは、四座配位子であることが好ましく、さらに好ましくはアニオン性である。また、BLは、環状構造(複素共役環)上に置換基を有しても、有しなくてもよい。   BL is preferably a tetradentate ligand, more preferably anionic. Further, BL may or may not have a substituent on the cyclic structure (heteroconjugate ring).

BLとしては、下式(BL−A)で表されるものが挙げられる。   Examples of BL include those represented by the following formula (BL-A).

Figure 2007277513

(BL−A)
式中、R31、R32及びR33は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成しており、R34、R35及びR36は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
Figure 2007277513

(BL-A)
In the formula, R 31 , R 32 and R 33 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or two or more of these together are substituted or unsubstituted with the carbon atom to which they are bonded. An aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring, and R 34 , R 35 and R 36 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or Two or more together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached.

31〜R36は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アルキル基であることがより好ましい。アルキル基としては、炭素数6以下のものが好ましく、メチル基、エチル基がより好ましい。また、アルコキシ基としては、炭素数6以下のものが好ましく、メトキシ基、エトキシ基がより好ましい。 R 31 to R 36 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group. As an alkyl group, a C6 or less thing is preferable and a methyl group and an ethyl group are more preferable. Moreover, as an alkoxy group, a C6 or less thing is preferable and a methoxy group and an ethoxy group are more preferable.

また、R31〜R36の隣接する二つが一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。 It is also preferable that two adjacent R 31 to R 36 are joined together to form a 6-membered aromatic hydrocarbon ring (which may have a substituent) together with the carbon atom to which they are bonded. . Examples of the substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).

31〜R36は水素原子またはメチル基であることが特に好ましく、R31〜R36は水素原子であることがさらに好ましい。 R 31 to R 36 are particularly preferably a hydrogen atom or a methyl group, and R 31 to R 36 are more preferably a hydrogen atom.

また、BLとしては、下式(BL−B)で表されるものも挙げられる。   Moreover, as BL, what is represented by the following Formula (BL-B) is also mentioned.

Figure 2007277513
(BL−B)
式中、R41及びR42は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらが一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成しており、R43及びR44は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらが一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
Figure 2007277513
(BL-B)
In the formula, R 41 and R 42 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or a substituted or unsubstituted aromatic hydrocarbon ring together with a carbon atom to which they are bonded together, or Forming a substituted or unsubstituted aliphatic hydrocarbon ring, wherein R 43 and R 44 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or the carbon to which they are bonded together; A substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring is formed together with the atoms.

41〜R44は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アルキル基であることがより好ましい。アルキル基としては、炭素数6以下のものが好ましく、メチル基、エチル基がより好ましい。また、アルコキシ基としては、炭素数6以下のものが好ましく、メトキシ基、エトキシ基がより好ましい。 R 41 to R 44 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group. As an alkyl group, a C6 or less thing is preferable and a methyl group and an ethyl group are more preferable. Moreover, as an alkoxy group, a C6 or less thing is preferable and a methoxy group and an ethoxy group are more preferable.

また、R41とR42、R43とR44が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。 R 41 and R 42 , R 43 and R 44 together form a 6-membered aromatic hydrocarbon ring (which may have a substituent) together with the carbon atom to which they are bonded. Is also preferable. Examples of the substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).

41〜R44は水素原子またはメチル基であることが特に好ましく、R41〜R44は水素原子であることがさらに好ましい。また、R41とR42、R43とR44が一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(メチル基などの置換基を有していてもよい)を形成していることも特に好ましい。 R 41 to R 44 are particularly preferably a hydrogen atom or a methyl group, and R 41 to R 44 are more preferably a hydrogen atom. R 41 and R 42 , R 43 and R 44 together form a 6-membered aromatic hydrocarbon ring (which may have a substituent such as a methyl group) together with the carbon atom to which they are bonded. It is also particularly preferable.

上式(BL−B)で表されるもの中では、下式(BL−C)で表されるものが好ましい。   Among those represented by the above formula (BL-B), those represented by the following formula (BL-C) are preferred.

Figure 2007277513
(BL−C)
式中、R51、R52、R53及びR54は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成しており、R55、R56、R57及びR58は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。
Figure 2007277513
(BL-C)
In the formula, R 51 , R 52 , R 53 and R 54 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or two or more of these together are substituted with a carbon atom to which they are bonded. Or an unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring, and R 55 , R 56 , R 57 and R 58 are each a hydrogen atom or a substituted or unsubstituted hydrocarbon group. Or two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached.

51〜R58は好ましくは水素原子、アルキル基、アルコキシ基であり、水素原子、アルキル基であることがより好ましい。アルキル基としては、炭素数6以下のものが好ましく、メチル基、エチル基がより好ましい。また、アルコキシ基としては、炭素数6以下のものが好ましく、メトキシ基、エトキシ基がより好ましい。 R 51 to R 58 are preferably a hydrogen atom, an alkyl group, or an alkoxy group, and more preferably a hydrogen atom or an alkyl group. As an alkyl group, a C6 or less thing is preferable and a methyl group and an ethyl group are more preferable. Moreover, as an alkoxy group, a C6 or less thing is preferable and a methoxy group and an ethoxy group are more preferable.

また、R51〜R58の隣接する二つが一緒になってそれらが結合する炭素原子と共に6員の芳香族炭化水素環(置換基を有していてもよい)を形成していることも好ましい。芳香族炭化水素環の置換基としては、アルキル基(メチル基、エチル基など)、アルコキシ基(メトキシ基、エトキシ基など)などが挙げられる。 It is also preferable that two adjacent R 51 to R 58 are joined together to form a 6-membered aromatic hydrocarbon ring (which may have a substituent) together with the carbon atom to which they are bonded. . Examples of the substituent of the aromatic hydrocarbon ring include an alkyl group (such as a methyl group and an ethyl group) and an alkoxy group (such as a methoxy group and an ethoxy group).

51〜R58は水素原子またはメチル基であることが特に好ましく、R51〜R58は水素原子であることがさらに好ましい。 R 51 to R 58 are particularly preferably a hydrogen atom or a methyl group, and R 51 to R 58 are more preferably a hydrogen atom.

BLの具体例としては、下式(BL−1)〜(BL−4)で表されるものが挙げられるが、本発明はこれらに限定されるものではない。   Specific examples of BL include those represented by the following formulas (BL-1) to (BL-4), but the present invention is not limited to these.

Figure 2007277513

(BL−1)
2,2’−ビピリミジン(bpm)
Figure 2007277513

(BL-1)
2,2'-bipyrimidine (bpm)

Figure 2007277513

(BL−2)
テトラチアフルバレン(TTF)
Figure 2007277513

(BL-2)
Tetrathiafulvalene (TTF)

Figure 2007277513

(BL−3)
2,2’−ビイミダゾラト(BiIm)
Figure 2007277513

(BL-3)
2,2'-biimidazolate (BiIm)

Figure 2007277513

(BL−4)
2,2’−ビベンズイミダゾラト(BiBzIm)

但し、式(BL−1)〜(BL−4)中の複素環およびベンゼン環は置換基を有していてもよい。置換基としては、炭素数6以下のアルキル基、炭素数6以下のアルコキシ基などが挙げられ、また、式(BL−4)中のベンゼン環上の隣接する二つの炭素原子が一緒になって新たなベンゼン環(置換基を有していてもよい)を形成していてもよい。
Figure 2007277513

(BL-4)
2,2'-bibenzimidazolate (BiBzIm)

However, the heterocyclic ring and the benzene ring in formulas (BL-1) to (BL-4) may have a substituent. Examples of the substituent include an alkyl group having 6 or less carbon atoms and an alkoxy group having 6 or less carbon atoms, and two adjacent carbon atoms on the benzene ring in the formula (BL-4) are joined together. A new benzene ring (which may have a substituent) may be formed.

光電変換素子に用いる金属錯体色素である場合、BLが上式(BL−3)、または(BL−4)で表される配位子であることが好ましい。   In the case of a metal complex dye used for a photoelectric conversion element, BL is preferably a ligand represented by the above formula (BL-3) or (BL-4).

また、(L(BL)M(L(X)は、水または有機溶媒を結晶溶媒として含んでいてもよい。有機溶媒としては、DMSO、アセトニトリル、DMF、DMAC、メタノールなどが挙げられる。尚、結晶溶媒の数は特に規定されない。 Further, (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) n may contain water or an organic solvent as a crystal solvent. Examples of the organic solvent include DMSO, acetonitrile, DMF, DMAC, methanol and the like. The number of crystal solvents is not particularly specified.

Xは対イオンであり、錯体[(L(BL)M(L]がカチオンであれば対イオンはアニオン、錯体[(L(BL)M(L]がアニオンであれば対イオンはカチオンである。ここにnは、錯体の電荷を中和するのに必要な対イオンの数を表す。 X is a counter ion, and if the complex [(L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 ] is a cation, the counter ion is an anion, and the complex [(L 1 ) 2 M 1 (BL) M If 2 (L 2 ) 2 ] is an anion, the counter ion is a cation. Here, n represents the number of counter ions necessary to neutralize the charge of the complex.

Xの具体例として、対イオンがアニオンの場合、ヘキサフルオロリン酸イオン、過塩素酸イオン、テトラフェニルホウ酸イオン、テトラフルオロホウ酸イオン、トリフルオロメタンスルホン酸イオン、チオシアン酸イオン、硫酸イオン、硝酸イオン、および塩化物イオン、ヨウ化物イオンなどのハロゲン化物イオンなどが挙げられる。   As specific examples of X, when the counter ion is an anion, hexafluorophosphate ion, perchlorate ion, tetraphenylborate ion, tetrafluoroborate ion, trifluoromethanesulfonate ion, thiocyanate ion, sulfate ion, nitric acid Ions, and halide ions such as chloride ions and iodide ions.

Xの具体例として、対イオンがカチオンの場合、アンモニウムイオン、テトラブチルアンモニウムイオン、ナトリウムイオンなどのアルカリ金属イオン、およびプロトンなどが挙げられる。   Specific examples of X include, when the counter ion is a cation, ammonium metal, tetrabutylammonium ion, alkali metal ions such as sodium ion, and proton.

金属錯体色素としては、特に、Lが上式(L−1)で表される配位子(−COOHのHが脱離しているもの、複素環およびベンゼン環がさらに置換基を有しているものも含む)であり、Lが上式(L−1)または(L−2)で表される配位子(複素環およびベンゼン環が置換基を有しているものも含む)であり、BLが上式(BL−3)または(BL−4)で表される配位子(複素環およびベンゼン環が置換基を有しているものも含む)であり、M及びMがルテニウム(Ru)、オスミウム(Os)、コバルト(Co)、ニッケル(Ni)、銅(Cu)または鉄(Fe)であるものが好ましい。 As the metal complex dye, in particular, L 1 is a ligand represented by the above formula (L 1 -1) ( one from which H of —COOH is eliminated, a heterocyclic ring and a benzene ring further having a substituent. And L 2 is a ligand represented by the above formula (L 2 -1) or (L 2 -2) (a heterocycle and a benzene ring having a substituent) BL is a ligand represented by the above formula (BL-3) or (BL-4) (including those having a heterocyclic ring and a benzene ring having a substituent), and M 1 And M 2 is preferably ruthenium (Ru), osmium (Os), cobalt (Co), nickel (Ni), copper (Cu) or iron (Fe).

本発明の(L(BL)M(L(X)で示される非対称な二核金属錯体の具体例としては、下式(D−1)〜(D−16)で表されるものが挙げられるが、本発明はこれらに限定されるものではない。 Specific examples of the asymmetric binuclear metal complex represented by (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) n of the present invention include the following formulas (D-1) to (D- Although what is represented by 16) is mentioned, this invention is not limited to these.

Figure 2007277513
(D−1)
[(Hdcbpy)Ru(BiIm)Ru(bpy)](ClO
Figure 2007277513
(D-1)
[(H 2 dcbpy) 2 Ru (BiIm) Ru (bpy) 2 ] (ClO 4 ) 2

Figure 2007277513
(D−2)
[(Hdcbpy)(Hdcbpy)Ru(BiIm)Ru(bpy)](PF
Figure 2007277513
(D-2)
[(H 2 dcbpy) (Hdcbpy) Ru (BiIm) Ru (bpy) 2 ] (PF 6 )

Figure 2007277513
(D−3)
[(Hdcbiq)(Hdcbiq)Ru(BiIm)Ru(bpy)](PF
Figure 2007277513
(D-3)
[(H 2 dcbiq) (Hdcbiq) Ru (BiIm) Ru (bpy) 2 ] (PF 6 )

Figure 2007277513

(D−4)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(bpy)](PF
Figure 2007277513

(D-4)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) 2 ] (PF 6 )

Figure 2007277513

(D−5)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(bpy)](BF
Figure 2007277513

(D-5)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) 2 ] (BF 4 )

Figure 2007277513

(D−6)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(bpy)](BPh
Figure 2007277513

(D-6)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) 2 ] (BPh 4 )

Figure 2007277513

(D−7)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(bpy)](OSOCF
Figure 2007277513

(D-7)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) 2 ] (OSO 2 CF 3 )

Figure 2007277513

(D−8)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(bpy)](ClO
Figure 2007277513

(D-8)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) 2 ] (ClO 4 )

Figure 2007277513

(D−9)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(bpy)](NO
Figure 2007277513

(D-9)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) 2 ] (NO 3 )

Figure 2007277513

(D−10)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(bpy)](I)
Figure 2007277513

(D-10)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (bpy) 2 ] (I)

Figure 2007277513

(D−11)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(phen)](PF
Figure 2007277513

(D-11)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (phen) 2 ] (PF 6 )

Figure 2007277513

(D−12)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(biq)](PF
Figure 2007277513

(D-12)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (biq) 2 ] (PF 6 )

Figure 2007277513

(D−13)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Ru(dmbpy)](PF
Figure 2007277513

(D-13)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Ru (dmbpy) 2 ] (PF 6 )

Figure 2007277513

(D−14)
[(Hdcbpy)(Hdcbpy)Ru(TMBiBzIm)Ru(bpy)](PF
Figure 2007277513

(D-14)
[(H 2 dcbpy) (Hdcbpy) Ru (TMBiBzIm) Ru (bpy) 2 ] (PF 6 )

Figure 2007277513

(D−15)
[(Hdcbpy)(Hdcbpy)Ru(BiBzIm)Os(bpy)](PF
Figure 2007277513

(D-15)
[(H 2 dcbpy) (Hdcbpy) Ru (BiBzIm) Os (bpy) 2 ] (PF 6 )

Figure 2007277513

(D−16)
[(Hdcbpy)Ru(bpm)Ru(bpy)](PF6
Figure 2007277513

(D-16)
[(Hdcbpy) 2 Ru (bpm) Ru (bpy) 2 ] (PF 6 ) 2

本発明の溶液に溶解している金属錯体は、Inorganic Chemistry、第17巻、第9号、第2660〜2666頁、1978年、Journal of the American Chemical Society、第115巻、第6382〜6390頁、1993年等の文献中に引用された方法を参考にして製造することができる。   The metal complex dissolved in the solution of the present invention includes Inorganic Chemistry, Vol. 17, No. 9, 2660-2666, 1978, Journal of the American Chemical Society, 115, 6382-6390, It can be produced by referring to a method cited in a literature such as 1993.

本発明の金属錯体(L(BL)M(L(X)は、例えば、次のようにして二つの単核金属錯体(LClと(BL)M(Lを合成し、これらを反応させることにより合成することができる。 The metal complex (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) n of the present invention is, for example, two mononuclear metal complexes (L 1 ) 2 M 1 Cl 2 as follows. And (BL) M 2 (L 2 ) 2 can be synthesized and reacted.

が上式(L−1)であり、MがRuである単核金属錯体(LCl(MC−1)は次の合成スキームに従って合成することができる。 A mononuclear metal complex (L 1 ) 2 M 1 Cl 2 (M 1 C-1) in which L 1 is the above formula (L 1 -1) and M 1 is Ru can be synthesized according to the following synthesis scheme. it can.

Figure 2007277513

上式において、Lがカルボキシル基以外の置換基を有するもの、MがRu以外の遷移金属であるものも同様にして合成することができる。
Figure 2007277513

In the above formula, those in which L 1 has a substituent other than a carboxyl group and those in which M 1 is a transition metal other than Ru can be synthesized in the same manner.

また、Lが上式(L−4)であり、MがRuである単核金属錯体(LCl(MC−2)は次の合成スキームに従って合成することができる。 A mononuclear metal complex (L 1 ) 2 M 1 Cl 2 (M 1 C-2) in which L 1 is the above formula (L 1 -4) and M 1 is Ru is synthesized according to the following synthesis scheme. be able to.

Figure 2007277513

上式において、Lがカルボキシル基以外の置換基を有するもの、MがRu以外の遷移金属であるものも同様にして合成することができる。
Figure 2007277513

In the above formula, those in which L 1 has a substituent other than a carboxyl group and those in which M 1 is a transition metal other than Ru can be synthesized in the same manner.

一方、単核金属錯体(BL)M(Lは次の合成スキームに従って合成することができる。 On the other hand, the mononuclear metal complex (BL) M 2 (L 2 ) 2 can be synthesized according to the following synthesis scheme.

Figure 2007277513

スキーム中のHBLはBL中の二つのヘテロ原子(窒素原子など)がプロトン化された状態を示す。
Figure 2007277513

H 2 BL in the scheme indicates a state in which two heteroatoms (such as a nitrogen atom) in BL are protonated.

尚、BLが上式(BL−1)〜(BL−4)で表されるもの(置換基を有しているものも含む)、Lが上式(L−1)〜(L−4)で表されるもの(置換基を有しているものも含む)は何れも、この合成スキームに従って合成することができる。但し、BLが上式(BL−1)で表されるもの(置換基を有しているものも含む)については、後段のNaOMeによる反応工程は不要で、M(LClとHBLを反応させると(BL)M(Lが得られる。 Incidentally, BL (also including those having a substituent) represented by those in the above formula (BL-1) ~ (BL -4), L 2 is the above formula (L 2 -1) ~ (L 2 -4) (including those having a substituent) can be synthesized according to this synthesis scheme. However, for those in which BL is represented by the above formula (BL-1) (including those having a substituent), the subsequent reaction step with NaOMe is unnecessary, and M 2 (L 2 ) 2 Cl 2 And H 2 BL are reacted to give (BL) M 2 (L 2 ) 2 .

このようにして合成した(LCl(MC)と(BL)M(L(MC)を次の合成スキームに従って反応させ、(L(BL)M(L(X)を合成することができる。 The (L 1 ) 2 M 1 Cl 2 (M 1 C) synthesized in this way and (BL) M 2 (L 2 ) 2 (M 2 C) are reacted according to the following synthetic scheme, and (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) n can be synthesized.

Figure 2007277513

上記の金属錯体は、金属錯体色素として用いることができ、金属錯体色素により増感された半導体微粒子を用いて、光化学電池を製造することができる。
Figure 2007277513

The above metal complex can be used as a metal complex dye, and a photochemical battery can be produced using semiconductor fine particles sensitized with the metal complex dye.

本発明の光電変換素子は、上記の金属錯体色素により増感された半導体微粒子を含むものである。より具体的には、上記の金属錯体色素により増感された半導体微粒子を電極上に固定したものである。   The photoelectric conversion element of this invention contains the semiconductor fine particle sensitized with said metal complex pigment | dye. More specifically, the semiconductor fine particles sensitized with the metal complex dye are fixed on the electrode.

導電性電極は、透明基板上に形成された透明電極であることが好ましい。導電剤としては、金、銀、銅、白金、パラジウムなどの金属、錫をドープした酸化インジウム(ITO)に代表される酸化インジウム系化合物、フッ素をドープした酸化錫(FTO)に代表される酸化錫系化合物、酸化亜鉛系化合物などが挙げられる。   The conductive electrode is preferably a transparent electrode formed on a transparent substrate. Examples of the conductive agent include metals such as gold, silver, copper, platinum, and palladium, indium oxide compounds typified by tin-doped indium oxide (ITO), and oxidation typified by fluorine-doped tin oxide (FTO). Examples thereof include tin compounds and zinc oxide compounds.

半導体微粒子としては、酸化チタン、酸化亜鉛、または酸化錫などが挙げられる。また、酸化インジウム、酸化ニオブ、酸化タングステン、酸化バナジウムや、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、ニオブ酸カリウムなどの複合酸化物半導体、カドミウムまたはビスマスの硫化物、カドミウムのセレン化物またはテルル化物、ガリウムのリン化物またはヒ素化物なども挙げられる。半導体微粒子としては、酸化物が好ましく、酸化チタン、酸化亜鉛、または酸化錫、およびこれらのいずれか1種以上を含む混合物が特に好ましい。   Examples of the semiconductor fine particles include titanium oxide, zinc oxide, and tin oxide. Also, indium oxide, niobium oxide, tungsten oxide, vanadium oxide, composite oxide semiconductors such as strontium titanate, calcium titanate, barium titanate, potassium niobate, cadmium or bismuth sulfide, cadmium selenide or tellurium And gallium phosphide or arsenide. As the semiconductor fine particles, oxides are preferable, and titanium oxide, zinc oxide, or tin oxide, and a mixture containing any one or more of these are particularly preferable.

半導体微粒子の一次粒子径は特に限定されないが、通常、1〜5000nm、好ましくは2〜500nm、特に好ましくは5〜300nmである。   The primary particle diameter of the semiconductor fine particles is not particularly limited, but is usually 1 to 5000 nm, preferably 2 to 500 nm, and particularly preferably 5 to 300 nm.

本発明の光化学電池は、上記の光電変換素子を用いたものである。より具体的には、電極として上記の本発明の光電変換素子と対極とを有し、その間に電解質層を有するものである。本発明の光電変換素子に用いた電極と対極の少なくとも片方は透明電極である。   The photochemical cell of the present invention uses the above photoelectric conversion element. More specifically, the photoelectric conversion element of the present invention and a counter electrode are provided as electrodes, and an electrolyte layer is provided therebetween. At least one of the electrode and the counter electrode used in the photoelectric conversion element of the present invention is a transparent electrode.

対極は光電変換素子と組み合わせて光化学電池としたときに正極として作用するものである。対極としては、上記導電性電極と同様に導電層を有する基板を用いることもできるが、金属板そのものを使用すれば、基板は必ずしも必要ではない。対極に用いる導電剤としては、白金や炭素などの金属、フッ素をドープした酸化錫などの導電性金属酸化物が挙げられる。   The counter electrode functions as a positive electrode when combined with a photoelectric conversion element to form a photochemical battery. As the counter electrode, a substrate having a conductive layer can be used as in the case of the conductive electrode. However, if the metal plate itself is used, the substrate is not necessarily required. Examples of the conductive agent used for the counter electrode include metals such as platinum and carbon, and conductive metal oxides such as tin oxide doped with fluorine.

電解質(酸化還元対)としては特に限定されず、公知のものをいずれも用いることができる。例えば、ヨウ素とヨウ化物(例えば、ヨウ化リチウム、ヨウ化カリウム等の金属ヨウ化物、またはヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム、ヨウ化ピリジニウム、ヨウ化イミダゾリウム等の4級アンモニウム化合物のヨウ化物)の組み合わせ、臭素と臭化物の組み合わせ、塩素と塩化物の組み合わせ、アルキルビオローゲンとその還元体の組み合わせ、キノン/ハイドロキノン、鉄(II)イオン/鉄(III)イオン、銅(I)イオン/銅(II)イオン、マンガン(II)イオン/マンガン(III)イオン、コバルトイオン(II)/コバルトイオン(III)等の遷移金属イオン対、フェロシアン/フェリシアン、四塩化コバルト(II)/四塩化コバルト(III)、四臭化コバルト(II)/四臭化コバルト(III)、六塩化イリジウム(II)/六塩化イリジウム(III)、六シアノ化ルテニウム(II)/六シアノ化ルテニウム(III)、六塩化ロジウム(II)/六塩化ロジウム(III)、六塩化レニウム(III)/六塩化レニウム(IV)、六塩化レニウム(IV)/六塩化レニウム(V)、六塩化オスミウム(III)/六塩化オスミウム(IV)、六塩化オスミウム(IV)/六塩化オスミウム(V)等の錯イオンの組み合わせ、コバルト、鉄、ルテニウム、マンガン、ニッケル、レニウムといった遷移金属とビピリジンやその誘導体、ターピリジンやその誘導体、フェナントロリンやその誘導体といった複素共役環及びその誘導体で形成されているような錯体類、フェロセン/フェロセニウムイオン、コバルトセン/コバルトセニウムイオン、ルテノセン/ルテノセウムイオンといったシクロペンタジエン及びその誘導体と金属の錯体類、ポルフィリン系化合物類等が使用できる。好ましい電解質は、ヨウ素とヨウ化リチウムや4級アンモニウム化合物のヨウ化物とを組み合わせた電解質である。電解質の状態は、有機溶媒に溶解した液体であっても、溶融塩、ポリマーマトリックスに含浸漬したいわゆるゲル電解質や、固体電解質であってもよい。   The electrolyte (redox couple) is not particularly limited, and any known one can be used. For example, iodine and iodide (for example, metal iodides such as lithium iodide and potassium iodide, or quaternary ammonium compounds such as tetrabutylammonium iodide, tetrapropylammonium iodide, pyridinium iodide, imidazolium iodide) Iodide), bromine and bromide, chlorine and chloride, alkyl viologen and its reduced form, quinone / hydroquinone, iron (II) ion / iron (III) ion, copper (I) ion / Transition metal ion pairs such as copper (II) ion, manganese (II) ion / manganese (III) ion, cobalt ion (II) / cobalt ion (III), ferrocyan / ferricyan, cobalt tetrachloride (II) / four Cobalt (III) chloride, cobalt (II) tetrabromide / four odors Cobalt (III), iridium hexachloride (II) / iridium hexachloride (III), ruthenium hexacyanide (II) / ruthenium hexacyanide (III), rhodium hexachloride (II) / rhodium hexachloride (III), six Rhenium chloride (III) / rhenium chloride (IV), rhenium hexachloride (IV) / rhenium hexachloride (V), osmium hexachloride (III) / osmium hexachloride (IV), osmium hexachloride (IV) / hexachloride It is composed of a combination of complex ions such as osmium (V), transition metals such as cobalt, iron, ruthenium, manganese, nickel, rhenium and biconjugated and derivatives thereof, terpyridine and derivatives thereof, heteroconjugated rings such as phenanthroline and derivatives thereof, and derivatives thereof. Complexes, ferrocene / ferrocenium ions, cobalt On / cobalt-ion-, ruthenocene / lutein placed um cyclopentadiene and its derivatives and metal complexes such as an ion, porphyrin compounds and the like can be used. A preferable electrolyte is an electrolyte in which iodine and lithium iodide or iodide of a quaternary ammonium compound are combined. The state of the electrolyte may be a liquid dissolved in an organic solvent, a molten salt, a so-called gel electrolyte immersed in a polymer matrix, or a solid electrolyte.

本発明の光化学電池は、従来から適用されている方法によって製造することができる。
例えば、透明電極上に酸化物等の半導体微粒子のペーストを塗布し、加熱焼成し半導体微粒子の薄膜を作製する。半導体微粒子の薄膜がチタニアの場合、温度450℃、反応時間30分で焼成する。この薄膜の付いた透明電極を色素溶液に浸漬し、色素を担持して光電変換素子を作製する。さらにこの光電変換素子と対極として白金あるいは炭素を蒸着した透明電極を合わせ、その間に電解質溶液を入れることにより本発明の光化学電池を製造することが出来る。
The photochemical cell of the present invention can be produced by a conventionally applied method.
For example, a semiconductor fine particle paste such as an oxide is applied on a transparent electrode and heated and fired to produce a thin film of semiconductor fine particles. When the thin film of semiconductor fine particles is titania, it is fired at a temperature of 450 ° C. and a reaction time of 30 minutes. The transparent electrode with the thin film is immersed in a dye solution, and the photoelectric conversion element is manufactured by supporting the dye. Furthermore, the photochemical cell of the present invention can be manufactured by combining this photoelectric conversion element with a transparent electrode on which platinum or carbon is deposited as a counter electrode, and inserting an electrolyte solution therebetween.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
)。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
).

(実施例1)色素の熱安定性評価
D−4,D−11,D−13および比較色素A、Bについて、TG−MS測定により擬似Air(He:80%+O:20%)下における各色素の熱安定性を分解ガス成分の発生温度によって評価した。尚、TGは、株式会社リガク製のThermo plus TG8120を用い、昇温速度10℃/min、擬似Air流量100ml/minの条件で測定し、トランスファーライン温度200℃でMS装置に導入した。MSは、株式会社島津製作所製の質量分析装置QP−5000複合システムを用い、注入口温度250℃、インターフェイス温度300℃、イオン化法EI(70eV)、走査質量範囲10〜300の条件で測定した。
(Example 1) The thermal stability of dye Evaluation D-4, D-11, D-13 and Comparative Dye A, the B, pseudo Air by TG-MS measurement (He: 80% + O 2 : 20%) under The thermal stability of each dye was evaluated by the generation temperature of the decomposition gas component. The TG was measured using a Thermo plus TG8120 manufactured by Rigaku Corporation under the conditions of a temperature rising rate of 10 ° C./min and a pseudo Air flow rate of 100 ml / min, and introduced into the MS apparatus at a transfer line temperature of 200 ° C. MS was measured using a mass spectrometer QP-5000 combined system manufactured by Shimadzu Corporation under conditions of an inlet temperature of 250 ° C., an interface temperature of 300 ° C., an ionization method EI (70 eV), and a scanning mass range of 10 to 300.

表1にそれぞれの色素を熱分解した際に発生する配位子由来のガス成分の発生開始温度を示す。
Table 1 shows the generation start temperatures of the ligand-derived gas components generated when each dye is thermally decomposed.

Figure 2007277513

表1より、本発明の二核金属錯体はいずれもカルボキシル基(−COOH)由来のガス成分と考えられるCOの発生開始温度が比較色素Aよりも30℃以上高いことがわかる。さらに、比較色素Aの場合はカルボキシル基の分解温度よりも低温でイソチオシアナート基(−NCS)由来のガス成分であると考えられるSOの発生が観測されたが、本発明の二核金属錯体では、カルボキシル基の分解温度よりも低温側では他のガス成分は観測されなかった。したがって、本発明の二核金属錯体は、分解部位が少ないことからも熱安定性に優れているため、大変好ましい。

Figure 2007277513

From Table 1, it can be seen that the binuclear metal complex of the present invention has a CO 2 generation start temperature that is considered to be a gas component derived from a carboxyl group (—COOH) higher by 30 ° C. or more than that of the comparative dye A. Further, in the case of the comparative dye A, generation of SO 2 considered to be a gas component derived from an isothiocyanate group (—NCS) was observed at a temperature lower than the decomposition temperature of the carboxyl group, but the binuclear metal of the present invention was observed. In the complex, no other gas component was observed at a temperature lower than the decomposition temperature of the carboxyl group. Therefore, the binuclear metal complex of the present invention is very preferable because it has excellent thermal stability because it has few decomposition sites.

(実施例2)
1.多孔質チタニア電極の作製
(多孔質チタニア電極の作製)
チタニア微粒子3.0gをpH0.7の硝酸7gに分散させた。このペーストにアセチルアセトン0.2mlと界面活性剤である10%トリトンXを0.2ml添加した。次に分子量20000のポリエチレングリコール1.2gを添加し、最後にこのペーストにエタノール1mlを添加、そしてこのペーストに超音波を照射しながら、15分間攪拌、分散化させた。この超音波攪拌作業を4回繰り返しペーストを得た。得られたペーストを旭硝子株式会社製透明導電性ガラス電極上に、電極の一部をマスクして、100μmのドクターブレードで塗布した。得られた膜を25℃、60%の雰囲気下で10分間エージングし、このエージングした膜を450℃で30分間焼成した。冷却した膜に対し、同じ作業を再度行い二層化し、1cmの多孔質チタニア電極を作製した。
(Example 2)
1. Production of porous titania electrode (Production of porous titania electrode)
3.0 g of titania fine particles were dispersed in 7 g of nitric acid having a pH of 0.7. To this paste, 0.2 ml of acetylacetone and 0.2 ml of 10% Triton X as a surfactant were added. Next, 1.2 g of polyethylene glycol having a molecular weight of 20000 was added. Finally, 1 ml of ethanol was added to the paste, and the paste was stirred and dispersed for 15 minutes while being irradiated with ultrasonic waves. This ultrasonic stirring operation was repeated 4 times to obtain a paste. The obtained paste was applied on a transparent conductive glass electrode manufactured by Asahi Glass Co., Ltd. with a part of the electrode masked, and a 100 μm doctor blade. The obtained film was aged for 10 minutes in an atmosphere of 25 ° C. and 60%, and the aged film was baked at 450 ° C. for 30 minutes. The same operation was again performed on the cooled membrane to form a double layer, and a 1 cm 2 porous titania electrode was produced.

2.色素を吸着した多孔質チタニア電極の作製
D−4のIPAを用いた飽和色素溶液に多孔質チタニア電極を30℃で20時間浸漬した。次に、エタノールで洗浄し乾燥後、色素吸着多孔質チタニア電極を得た。各溶液の飽和溶液濃度を表2〜4に示す。
2. Production of Porous Titania Electrode Adsorbed with Dye A porous titania electrode was immersed in a saturated dye solution using IPA of D-4 at 30 ° C. for 20 hours. Next, after washing with ethanol and drying, a dye-adsorbing porous titania electrode was obtained. The saturated solution concentration of each solution is shown in Tables 2-4.

3.光化学電池の作製
以上のようにして得られた色素吸着多孔質チタニア電極と白金板(対極)を重ね合わせた。次に、電解質溶液として3−メトキシプロピオニトリルにヨウ化リチウム、ヨウ素、4−t−ブチルピリジン、および1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドをそれぞれ0.1、0.05、0.5、および0.6mol/lとなるように溶解、調整したものを用い、両電極の隙間に毛細管現象を利用して染み込ませることにより光化学電池を作製した。
3. Production of Photochemical Battery The dye-adsorbed porous titania electrode obtained as described above and a platinum plate (counter electrode) were superposed. Next, as an electrolyte solution, 3-iodopropionitrile was mixed with lithium iodide, iodine, 4-t-butylpyridine, and 1,2-dimethyl-3-propylimidazolium iodide at 0.1, 0.05, respectively. A photochemical battery was prepared by using a solution that was dissolved and adjusted to 0.5 and 0.6 mol / l, and soaking the gap between both electrodes by utilizing capillary action.

4.光電変換効率の測定
得られた光化学電池の光電変換効率を英弘精機株式会社製のソーラーシュミレーターを用い、100mW/cmの擬似太陽光を照射し測定した。表2に光電変換効率を示す。
4). Measurement of photoelectric conversion efficiency The photoelectric conversion efficiency of the obtained photochemical battery was measured by irradiating 100 mW / cm 2 of pseudo-sunlight using a solar simulator manufactured by Eihiro Seiki Co., Ltd. Table 2 shows the photoelectric conversion efficiency.

Figure 2007277513
Figure 2007277513

(実施例3)
色素溶液を作製する溶媒を混合溶媒を用いた以外は実施例1記載の手法により光化学電池を作製し、光電変換効率の測定を行った。各色素溶液の飽和溶液濃度と光電変換効率の結果を表3に示す。
(Example 3)
A photochemical battery was prepared by the method described in Example 1 except that a mixed solvent was used as the solvent for preparing the dye solution, and the photoelectric conversion efficiency was measured. Table 3 shows the results of the saturated solution concentration and photoelectric conversion efficiency of each dye solution.

Figure 2007277513
Figure 2007277513

(比較例1)
色素作製用の溶媒を非アルコール溶媒を用いた以外は実施例1記載の手法を用い、光化学電池を作製し、光電変換効率の測定を行った。各色素溶液の飽和溶液濃度と光電変換効率の結果を表4に示す。
(Comparative Example 1)
A photochemical battery was prepared using the method described in Example 1 except that a non-alcohol solvent was used as the solvent for preparing the dye, and the photoelectric conversion efficiency was measured. Table 4 shows the results of the saturated solution concentration and photoelectric conversion efficiency of each dye solution.

Figure 2007277513
Figure 2007277513

Figure 2007277513

比較色素A
Figure 2007277513

Comparative dye A

Figure 2007277513
比較色素B
Figure 2007277513
Comparative dye B

(比較例2)
比較色素Aを用い非特許文献3の手法により溶液を調整した以外は実施例1記載の手法を用い、光化学電池を作製し、光電変換効率の測定を行った。光電変換効率の結果を表5に示す。
(Comparative Example 2)
A photochemical battery was prepared and the photoelectric conversion efficiency was measured using the method described in Example 1 except that the solution was prepared by the method of Non-Patent Document 3 using Comparative Dye A. The results of photoelectric conversion efficiency are shown in Table 5.

Figure 2007277513
Figure 2007277513

表2および表3と表4、5の比較より、本発明のアルコールを含む金属錯体色素色素は飽和溶液濃度の高い非アルコール溶液に比べ高い光電変換効率が得られた。
From the comparison between Table 2 and Table 3, and Tables 4 and 5, the metal complex dye containing the alcohol of the present invention has a higher photoelectric conversion efficiency than a non-alcohol solution having a high saturated solution concentration.

(実施例4)
D-4をエタノールに溶解し、5×10−5mol/lの溶液を調整した。この溶液を石英製の紫外可視吸収スペクトル測定用セルに入れ屋外放置し、吸収スペクトルの変化の測定を行った。測定条件は波長が250nmから800nmで紫外可視吸収スペクトル(日本分光株式会社製V−570)を用いて測定した。
測定回数は調整直後、1、5、7、12日後の5回行った。この結果を図1に示す。また、吸光度の変化を図4に示す。
また照射前後写真を図5に示す。
Example 4
D-4 was dissolved in ethanol to prepare a 5 × 10 −5 mol / l solution. This solution was placed in a quartz ultraviolet-visible absorption spectrum measurement cell and allowed to stand outdoors, and the change in absorption spectrum was measured. The measurement conditions were a wavelength of 250 nm to 800 nm and an ultraviolet-visible absorption spectrum (V-570 manufactured by JASCO Corporation).
The measurement was performed five times immediately after adjustment, 1, 5, 7, and 12 days later. The result is shown in FIG. Further, the change in absorbance is shown in FIG.
Moreover, the photographs before and after irradiation are shown in FIG.

(比較例3)
色素を既存色素A(N3dye,小島化学薬品社製ルテニウム有機錯体)に変えた以外は実施例3と同様の方法で紫外可視吸収巣ペクトトルの測定を行った。この結果を図2に示す。また、吸光度の変化を図4に示す。また照射前後写真を図5に示す。
(Comparative Example 3)
The UV-visible absorption spectrum was measured in the same manner as in Example 3 except that the dye was changed to the existing dye A (N3dye, a ruthenium organic complex manufactured by Kojima Chemical Co., Ltd.). The result is shown in FIG. Further, the change in absorbance is shown in FIG. Moreover, the photographs before and after irradiation are shown in FIG.

(比較例4)
色素を既存色素B(N719dye,小島化学薬品社製ルテニウム有機錯体)に変えた以外は実施例3と同様の方法で紫外可視吸収巣ペクトトルの測定を行った。この結果を図3に示す。また、吸光度の変化を図4に示す。また照射前後写真を図5に示す。

図1〜5の結果から、二核金属錯体色素溶液は既存色素溶液に比べ光に対する耐久能力が高いことが明らかとなった。
(Comparative Example 4)
The UV-visible absorption spectrum was measured in the same manner as in Example 3 except that the dye was changed to the existing dye B (N719dye, a ruthenium organic complex manufactured by Kojima Chemical Co., Ltd.). The result is shown in FIG. Further, the change in absorbance is shown in FIG. Moreover, the photographs before and after irradiation are shown in FIG.

From the results of FIGS. 1 to 5, it became clear that the binuclear metal complex dye solution has higher durability against light than the existing dye solution.

(実施例5)
D-4をDMFに溶解し、0.2mol/lの溶液を調整した。この溶液に0.1molの過塩素酸テトラ−n−ブチルアンモニウムを加え、20mV/secで電位送引を100サイクル行い、1サイクル目と100サイクル目のサイクリックボルタンメトリーのデータから電気化学的安定性の測定を行った。この結果を図6に示す。
(Example 5)
D-4 was dissolved in DMF to prepare a 0.2 mol / l solution. To this solution, 0.1 mol of tetra-n-butylammonium perchlorate was added, and potential feeding was performed for 100 cycles at 20 mV / sec, and electrochemical stability was determined from cyclic voltammetry data at the first and 100th cycles. Was measured. The result is shown in FIG.

(比較例5)
色素を既存色素B(N719dye,小島化学薬品社製ルテニウム有機錯体)に変えた以外は実施例4と同様の方法で電気化学的安定性の測定を行った。この結果を図7に示す。

図6,7の結果から既存色素溶液に比べ二核金属錯体色素溶液は電気的に安定であることが明らかとなった。
(Comparative Example 5)
Electrochemical stability was measured in the same manner as in Example 4 except that the dye was changed to the existing dye B (N719dye, a ruthenium organic complex manufactured by Kojima Chemical Co., Ltd.). The result is shown in FIG.

From the results of FIGS. 6 and 7, it was revealed that the binuclear metal complex dye solution is electrically stable compared to the existing dye solution.

(実施例6)
実施例1記載の方法で得られた光電変換素子356nmの光を24時間照射し退色の様子を観察した。結果を図8に示す。
(Example 6)
The light of 356 nm photoelectric conversion element obtained by the method described in Example 1 was irradiated for 24 hours, and the state of fading was observed. The results are shown in FIG.

(比較例6)
比較色素A、Bを用い非特許文献3の手法により溶液を調整した以外は実施例1記載の手法を用いて得られた光電変換素子356nmの光を24時間照射し退色の様子を観察した。結果を図8に示す。

図8の結果から、比較色素溶液から得られた光電変換素子に比べ、二核金属錯体色素溶液から得られた光電変換素子は光に対し安定であることが明らかとなった。
(Comparative Example 6)
Except that the solution was prepared by the method described in Non-Patent Document 3 using comparative dyes A and B, the photoelectric conversion element 356 nm light obtained using the method described in Example 1 was irradiated for 24 hours, and the state of fading was observed. The results are shown in FIG.

From the results in FIG. 8, it was revealed that the photoelectric conversion element obtained from the binuclear metal complex dye solution was more stable to light than the photoelectric conversion element obtained from the comparative dye solution.

(実施例7)吸収スペクトルの測定
D−4,D−11,D−12,D−13および既存の単核金属錯体色素である下記の比較色素A(N3dye,小島化学薬品社製ルテニウム有機錯体)について、濃度3×10−5mol/lのエタノール溶液を調製し、波長が250nmから800nmの紫外可視吸収スペクトル(日本分光株式会社製V−570)を用いて測定した。結果を図9,図10,図11および図12に示す。
(Example 7) Measurement of absorption spectrum D-4, D-11, D-12, D-13 and the following comparative dye A which is an existing mononuclear metal complex dye (N3dye, a ruthenium organic complex manufactured by Kojima Chemical Co., Ltd.) ), An ethanol solution having a concentration of 3 × 10 −5 mol / l was prepared and measured using an ultraviolet-visible absorption spectrum (V-570 manufactured by JASCO Corporation) having a wavelength of 250 nm to 800 nm. The results are shown in FIGS. 9, 10, 11 and 12.

(実施例8)
1.多孔質チタニア電極の作製
(多孔質チタニア電極の作製)
触媒化成製のチタニアペーストPST−18NRとPST−400Cを用い、旭硝子株式会社製透明導電性ガラス電極上に、スクリーン印刷機を用いて塗布した。得られた膜を25℃、60%の雰囲気下で5分間エージングし、このエージングした膜を450℃で30分間焼成した。冷却した膜に対し、同じ作業を所定の厚みになるまで繰り返し、16mmの多孔質チタニア電極を作製した。
(Example 8)
1. Production of porous titania electrode (Production of porous titania electrode)
A catalytic printing titania paste PST-18NR and PST-400C were used and applied on a transparent conductive glass electrode manufactured by Asahi Glass Co., Ltd. using a screen printer. The obtained film was aged at 25 ° C. in an atmosphere of 60% for 5 minutes, and the aged film was baked at 450 ° C. for 30 minutes. The same operation was repeated on the cooled membrane until a predetermined thickness was obtained, and a 16 mm 2 porous titania electrode was produced.

2.色素を吸着した多孔質チタニア電極の作製
D−4のIPAを用いた飽和色素溶液に多孔質チタニア電極を30℃で所定の時間浸漬し、色素吸着多孔質チタニア電極を得た。
2. Production of Porous Titania Electrode Adsorbing Dye A porous titania electrode was immersed in a saturated dye solution using IPA of D-4 at 30 ° C. for a predetermined time to obtain a dye adsorbing porous titania electrode.

3.光化学電池の作製
以上のようにして得られた色素吸着多孔質チタニア電極と白金板(対極)を重ね合わせた。次に、電解質溶液として3−メトキシプロピオニトリルにヨウ化リチウム、ヨウ素、4−t−ブチルピリジン、および1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドをそれぞれ0.1、0.05、0.5、および0.6mol/lとなるように溶解、調整したものを用い、両電極の隙間に毛細管現象を利用して染み込ませることにより光化学電池を作製した。
3. Production of Photochemical Battery The dye-adsorbed porous titania electrode obtained as described above and a platinum plate (counter electrode) were superposed. Next, as an electrolyte solution, 3-iodopropionitrile was mixed with lithium iodide, iodine, 4-t-butylpyridine, and 1,2-dimethyl-3-propylimidazolium iodide at 0.1, 0.05, respectively. A photochemical battery was prepared by using a solution that was dissolved and adjusted to 0.5 and 0.6 mol / l, and soaking the gap between both electrodes by utilizing capillary action.

4.光電変換効率の測定
得られた光化学電池の光電変換効率を英弘精機株式会社製のソーラーシュミレーターを用い、100mW/cmの擬似太陽光を照射し測定した。表6に膜厚、浸漬時間と光電変換効率を示す。
4). Measurement of photoelectric conversion efficiency The photoelectric conversion efficiency of the obtained photochemical battery was measured by irradiating 100 mW / cm 2 of pseudo-sunlight using a solar simulator manufactured by Eihiro Seiki Co., Ltd. Table 6 shows the film thickness, immersion time and photoelectric conversion efficiency.

Figure 2007277513
Figure 2007277513


二核金属錯体色素溶液のスペクトル変化Spectral changes in dinuclear metal complex dye solutions. 比較色素Aの溶液のスペクトル変化Spectral change of solution of comparative dye A 比較色素Bの溶液のスペクトル変化Spectral change of solution of comparative dye B 色素溶液の吸光度の変化Change in absorbance of dye solution 色素溶液の変化Changes in dye solution 二核金属錯体色素溶液の電気的安定性試験Electrical stability test of binuclear metal complex dye solution 比較色素Bの溶液の電気的安定性試験Electrical stability test of solution of comparative dye B 光電変換素子の色調変化Change in color tone of photoelectric conversion element D-4色素と比較色素Aの吸光度の比較Comparison of absorbance between D-4 dye and comparative dye A D-11色素と比較色素Aの吸光度の比較Comparison of absorbance of D-11 dye and comparative dye A D-12色素と比較色素Aの吸光度の比較Comparison of absorbance of D-12 dye and comparative dye A D-13色素と比較色素Aの吸光度の比較Comparison of absorbance of D-13 dye and comparative dye A

Claims (13)

一般式:(L(BL)M(L(X)で示される非対称な二核金属錯体を溶解した色素溶液。(但し、M及びMは、遷移金属であって、同一でも異なっていてもよく、L及びLは、多座配位可能なキレート型配位子であって、LとLは異なるものであり、二つのLは異なるものであってもよく、二つのLも異なるものであってもよく、BLはヘテロ原子を含む環状構造を少なくとも二つ有する架橋配位子であって、M及びMに配位する配位原子がこの環状構造に含まれるヘテロ原子である。Xは対イオンである。nは錯体の電荷を中和するのに必要な対イオンの数を表す。)
General formula: (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) A dye solution in which an asymmetric binuclear metal complex represented by n is dissolved. (However, M 1 and M 2 are transition metals and may be the same or different, and L 1 and L 2 are multidentate chelate-type ligands, and L 1 and L 2 2 is different, two L 1 may be different, two L 2 may be different, and BL is a bridging ligand having at least two cyclic structures containing heteroatoms Wherein the coordinating atoms coordinated to M 1 and M 2 are heteroatoms contained in this cyclic structure, X is a counter ion, and n is a counter ion necessary to neutralize the charge of the complex. Represents the number of
及びLが二座もしくは三座もしくは四座配位可能なキレート型配位子であることを特徴とする請求項1記載の二核金属錯体を溶解した色素溶液。
The dye solution having a binuclear metal complex dissolved therein according to claim 1, wherein L 1 and L 2 are chelate type ligands capable of bidentate, tridentate or tetradentate coordination.
分解に起因するガス発生温度が280℃以上であることを特徴とした請求項2記載の二核金属錯体を含む、光及びかつ電気的に安定な二核金属錯体色素溶液。
3. A light and electrically stable binuclear metal complex dye solution comprising the binuclear metal complex according to claim 2, wherein a gas generation temperature resulting from decomposition is 280 ° C. or higher.
及びLが環状構造を有することを特徴とする請求項3記載の色素溶液。 The dye solution according to claim 3, wherein L 1 and L 2 have a cyclic structure. が、カルボキシル基(−COOH)または−COOで少なくとも一つ置換された

配位子であることを特徴とする請求項3記載の色素溶液。
L 1 is substituted with at least one carboxyl group (—COOH) or —COO .

The dye solution according to claim 3, wherein the dye solution is a ligand.
が、下式(L−A)で表される配位子であることを特徴とする請求項3記載の色素溶液。
Figure 2007277513

(L−A)
(式中、R11、R12、R13、R14、R15、R16、R17及びR18は水素原子、アルコキシ基、水酸基または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。)
L 2 is a dye solution according to claim 3, characterized in that the ligand represented by the following formula (L 2 -A).
Figure 2007277513

(L 2 -A)
(Wherein R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 represent a hydrogen atom, an alkoxy group, a hydroxyl group or a substituted or unsubstituted hydrocarbon group, or Two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached.)
BLが、四座配位子であることを特徴とする請求項3記載の色素溶液。   4. The dye solution according to claim 3, wherein BL is a tetradentate ligand. BLが、下式(BL−C)で表される配位子であることを特徴とする請求項3記載の色素溶液。
Figure 2007277513
(BL−C)
(式中、R51、R52、R53及びR54は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成しており、R55、R56、R57及びR58は水素原子または置換もしくは無置換の炭化水素基を表すか、または、これらの二つ以上が一緒になってそれらが結合する炭素原子と共に置換もしくは無置換の芳香族炭化水素環または置換もしくは無置換の脂肪族炭化水素環を形成している。)
The dye solution according to claim 3, wherein BL is a ligand represented by the following formula (BL-C).
Figure 2007277513
(BL-C)
(Wherein R 51 , R 52 , R 53 and R 54 represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group, or two or more of these together together with a carbon atom to which they are bonded) A substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring is formed, and R 55 , R 56 , R 57 and R 58 are a hydrogen atom or a substituted or unsubstituted hydrocarbon group Or two or more of these together form a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted aliphatic hydrocarbon ring with the carbon atom to which they are attached. )
及びMが、第VIII族〜第XI族の遷移金属であることを特徴とする請求項3記載の二核金属錯体を溶解した色素溶液。
4. The dye solution in which the binuclear metal complex is dissolved according to claim 3, wherein M 1 and M 2 are Group VIII to Group XI transition metals.
が、式(L−1)、または(L−4)で表される配位子であり、
が、式(L−1)、(L−2)、または(L−4)のいずれかで表される配位子であり、
BLが、式(BL−1)、(BL−3)、または(BL−4)で表される配位子であり、
及びMが、ルテニウム(Ru)、オスミウム(Os)、コバルト(Co)、ニッケル(Ni)、銅(Cu)または鉄(Fe)であることを特徴とする請求項3記載の色素溶液。

Figure 2007277513

(L−1)
Figure 2007277513

(L−4)

Figure 2007277513

(L−1)
Figure 2007277513

(L−2)
Figure 2007277513

(L−4)

Figure 2007277513

(BL−1)
Figure 2007277513

(BL−3)
Figure 2007277513

(BL−4)
L 1 is a ligand represented by the formula (L 1 -1) or (L 1 -4);
L 2 is a ligand represented by any of the formulas (L 2 -1), (L 2 -2), or (L 2 -4),
BL is a ligand represented by the formula (BL-1), (BL-3), or (BL-4);
4. The dye solution according to claim 3, wherein M 1 and M 2 are ruthenium (Ru), osmium (Os), cobalt (Co), nickel (Ni), copper (Cu) or iron (Fe). .

Figure 2007277513

(L 1 -1)
Figure 2007277513

(L 1 -4)

Figure 2007277513

(L 2 -1)
Figure 2007277513

(L 2 -2)
Figure 2007277513

(L 2 -4)

Figure 2007277513

(BL-1)
Figure 2007277513

(BL-3)
Figure 2007277513

(BL-4)
一般式:(L(BL)M(L(X)で示される非対称な二核金属錯体(但し、M及びMは、遷移金属であって、同一でも異なっていてもよく、L及びLは、多座配位可能なキレート型配位子であって、LとLは異なるものであり、二つのLは異なるものであってもよく、二つのLも異なるものであってもよく、Xは対イオンであり、nは錯体の電荷を中和するのに必要な対イオンの数を表し、BLはヘテロ原子を含む環状構造を少なくとも二つ有する架橋配位子であって、M及びMに配位する配位原子がこの環状構造に含まれるヘテロ原子であり、Lが半導体微粒子に固定され得る置換基を有し、かつ主に(LにLUMOが分布する構造である。)からなることを特徴とする金属錯体色素を溶解した色素溶液。
General formula: (L 1 ) 2 M 1 (BL) M 2 (L 2 ) 2 (X) An asymmetric binuclear metal complex represented by n (provided that M 1 and M 2 are transition metals and are the same But may be different, L 1 and L 2 is a capable of multidentate coordination chelate ligand, L 1 and L 2 are different, the two L 1 is be different And two L 2 may be different, X is a counter ion, n represents the number of counter ions necessary to neutralize the charge of the complex, and BL represents a ring containing a hetero atom. A bridging ligand having at least two structures, wherein the coordinating atoms coordinated to M 1 and M 2 are heteroatoms contained in the cyclic structure, and L 1 is a substituent capable of being fixed to the semiconductor fine particles a, and a structure mainly (L 1) LUMO in 2 M 1 are distributed.) made possible the Dye solution obtained by dissolving a metal complex dye, characterized.
請求項3記載の金属錯体色素を溶解した色素溶液を用いることにより増感された半導体微粒子を含むことを特徴とする光電変換素子。
A photoelectric conversion element comprising semiconductor fine particles sensitized by using a dye solution in which the metal complex dye according to claim 3 is dissolved.
請求項12記載の光電変換素子を用いることを特徴とする光化学電池。
A photochemical cell using the photoelectric conversion device according to claim 12.
JP2006247931A 2006-03-17 2006-09-13 Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery Expired - Fee Related JP5003865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247931A JP5003865B2 (en) 2006-03-17 2006-09-13 Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006074128 2006-03-17
JP2006074128 2006-03-17
JP2006247931A JP5003865B2 (en) 2006-03-17 2006-09-13 Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery

Publications (2)

Publication Number Publication Date
JP2007277513A true JP2007277513A (en) 2007-10-25
JP5003865B2 JP5003865B2 (en) 2012-08-15

Family

ID=38679289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247931A Expired - Fee Related JP5003865B2 (en) 2006-03-17 2006-09-13 Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery

Country Status (1)

Country Link
JP (1) JP5003865B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067838A (en) * 2007-09-11 2009-04-02 Ube Ind Ltd Binuclear ruthenium complex pigment and manufacturing method for the same
WO2009102068A1 (en) * 2008-02-14 2009-08-20 Ube Industries, Ltd. Binuclear ruthenium complex dye solution, photoelectric conversion device using photosensitized semiconductor particle obtained by using the complex dye solution, and photochemical cell using the photoelectric conversion device
WO2009130562A1 (en) * 2008-04-21 2009-10-29 Universite De Strasbourg Method and device for producing and storing energy
JP2010097896A (en) * 2008-10-20 2010-04-30 Ube Ind Ltd Photoelectric conversion element and photochemical battery
WO2010055856A1 (en) * 2008-11-12 2010-05-20 宇部興産株式会社 Photochemical cell comprising semiconductor microparticles sensitized with binuclear metal complex dye and electrolysis solution mainly composed of ionic liquid
JP2011060589A (en) * 2009-09-10 2011-03-24 Ube Industries Ltd Photochemical battery including semiconductor fine particle sensitized by binuclear ruthenium complex dye and electrolyte solution containing arylamine compound
EP2311916A1 (en) * 2008-06-19 2011-04-20 Ube Industries, Ltd. Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
CN102884137A (en) * 2010-03-16 2013-01-16 宇部兴产株式会社 Photoelectric conversion element that contains dye consisting of binuclear ruthenium complex having substituted bipyridyl groups, and photochemical cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (en) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd Photoelectric transfer element, photoelectrochemical battery and metal complex pigment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323191A (en) * 1999-05-14 2000-11-24 Fuji Photo Film Co Ltd Photoelectric transfer element, photoelectrochemical battery and metal complex pigment

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067838A (en) * 2007-09-11 2009-04-02 Ube Ind Ltd Binuclear ruthenium complex pigment and manufacturing method for the same
JPWO2009102068A1 (en) * 2008-02-14 2011-06-16 宇部興産株式会社 Binuclear ruthenium complex dye solution, photoelectric conversion element using photosensitized semiconductor fine particles obtained using the complex dye solution, and photochemical battery using the same
WO2009102068A1 (en) * 2008-02-14 2009-08-20 Ube Industries, Ltd. Binuclear ruthenium complex dye solution, photoelectric conversion device using photosensitized semiconductor particle obtained by using the complex dye solution, and photochemical cell using the photoelectric conversion device
WO2009130562A1 (en) * 2008-04-21 2009-10-29 Universite De Strasbourg Method and device for producing and storing energy
US8496788B2 (en) 2008-04-21 2013-07-30 Is2 S.A.S. Method and device for producing and storing energy
CN102124060A (en) * 2008-06-19 2011-07-13 宇部兴产株式会社 Dinuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
EP2311916A1 (en) * 2008-06-19 2011-04-20 Ube Industries, Ltd. Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
EP2311916A4 (en) * 2008-06-19 2012-06-06 Ube Industries Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
US8859894B2 (en) 2008-06-19 2014-10-14 Ube Industries, Ltd. Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
JP2010097896A (en) * 2008-10-20 2010-04-30 Ube Ind Ltd Photoelectric conversion element and photochemical battery
WO2010055856A1 (en) * 2008-11-12 2010-05-20 宇部興産株式会社 Photochemical cell comprising semiconductor microparticles sensitized with binuclear metal complex dye and electrolysis solution mainly composed of ionic liquid
CN102257669A (en) * 2008-11-12 2011-11-23 宇部兴产株式会社 Photochemical cell comprising semiconductor microparticles sensitized with binuclear metal complex dye and electrolysis solution mainly composed of ionic liquid
JP5494490B2 (en) * 2008-11-12 2014-05-14 宇部興産株式会社 A photochemical battery comprising semiconductor fine particles sensitized with a binuclear metal complex dye and an electrolyte solution mainly composed of an ionic liquid
JP2011060589A (en) * 2009-09-10 2011-03-24 Ube Industries Ltd Photochemical battery including semiconductor fine particle sensitized by binuclear ruthenium complex dye and electrolyte solution containing arylamine compound
CN102884137A (en) * 2010-03-16 2013-01-16 宇部兴产株式会社 Photoelectric conversion element that contains dye consisting of binuclear ruthenium complex having substituted bipyridyl groups, and photochemical cell
CN102884137B (en) * 2010-03-16 2015-07-29 宇部兴产株式会社 Comprise photo-electric conversion element and the photogalvanic cell of the dinuclear ruthenium complex dyestuff with the dipyridyl group be substituted

Also Published As

Publication number Publication date
JP5003865B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5003871B2 (en) Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery
JP5633370B2 (en) Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element having the complex dye, and photochemical battery
JP5003865B2 (en) Binuclear metal complex dye solution, photoelectric conversion element using this solution, and photochemical battery
JP5494490B2 (en) A photochemical battery comprising semiconductor fine particles sensitized with a binuclear metal complex dye and an electrolyte solution mainly composed of an ionic liquid
JP5894372B2 (en) OPTOELECTRIC ELEMENT AND METHOD FOR PRODUCING OPTOELECTRIC ELEMENT
JP5170357B2 (en) Photoelectric conversion element and photochemical battery
JP5293190B2 (en) Method for producing binuclear metal complex
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
Brugnati et al. Electron transfer mediators for photoelectrochemical cells based on Cu (I) metal complexes
JP5061626B2 (en) Method for producing binuclear metal complex
WO2009102068A1 (en) Binuclear ruthenium complex dye solution, photoelectric conversion device using photosensitized semiconductor particle obtained by using the complex dye solution, and photochemical cell using the photoelectric conversion device
JP5682574B2 (en) A photochemical battery comprising semiconductor fine particles sensitized with a dinuclear ruthenium complex dye and an electrolyte solution containing an ammonium salt compound or a phosphonium salt compound
JP2011195745A (en) Dye and dye-sensitized solar cell using the same
JP5493857B2 (en) Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same
JP2009129652A (en) Photoelectric conversion element and photochemical battery
JP5446207B2 (en) Photoelectric conversion element and photochemical battery
JP5838820B2 (en) Binuclear ruthenium complex dye, photoelectric conversion element having the dye, and photochemical battery
WO2013089194A1 (en) Diruthenium complex dye, photoelectric conversion element including said dye, and photochemical cell
JP5573056B2 (en) A photochemical battery comprising semiconductor fine particles sensitized by a dinuclear ruthenium complex dye and an electrolyte solution containing an arylamine compound
JP5239269B2 (en) Dinuclear ruthenium complex dye and method for producing the same
TWI503320B (en) Photosensitizer dyes and application of the same
JP2011146276A (en) Photoelectric conversion element using photosensitized semiconductor fine particle obtained using binuclear ruthenium complex dye solution, and photochemical battery using the same
JP2011057858A (en) Photoelectric conversion element including dinuclear ruthenium complex dye having linking molecule having electron withdrawing group as substituent, and photochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees