JP2007277029A - Oxygen enrichment device - Google Patents

Oxygen enrichment device Download PDF

Info

Publication number
JP2007277029A
JP2007277029A JP2006103196A JP2006103196A JP2007277029A JP 2007277029 A JP2007277029 A JP 2007277029A JP 2006103196 A JP2006103196 A JP 2006103196A JP 2006103196 A JP2006103196 A JP 2006103196A JP 2007277029 A JP2007277029 A JP 2007277029A
Authority
JP
Japan
Prior art keywords
oxygen
magnetic
air
enriched air
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006103196A
Other languages
Japanese (ja)
Inventor
Shunji Nishi
舜司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006103196A priority Critical patent/JP2007277029A/en
Publication of JP2007277029A publication Critical patent/JP2007277029A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce oxygen-enriched air by effectively utilizing a difference in physical properties between nitrogen and oxygen occupying the greater part of components included in the air, especially, magnetic properties, a difference in mass and fluidic properties. <P>SOLUTION: Utilizing the phenomenon that, to a magnetic pole, an oxygen molecule as a paramagnetic substance is magnetized to an opposite pole and is attracted to the magnetic pole, and a nitrogen molecule as a diamagnetic substance is magnetized to the same pole and is excluded from the magnetic pole, and the phenomenon that, when the distance from a single bar magnet and the distance from the magnet pole when a magnetic path gap is formed while making different magnetic poles face each other, are the same, the magnetic flux density in the magnetic path gap is remarkably higher, oxygen-enriched air inflow air port and a nitrogen-enriched air inflow port are arranged directly behind the magnetic path gap placed at a straight advance flow passage, the oxygen-enriched air is sucked with a blower or the like, and the nitrogen-enriched air is discharged with an exhauster. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁界を利用した酸素富化空気を作る酸素富化装置に関する。   The present invention relates to an oxygen enrichment apparatus that creates oxygen enriched air using a magnetic field.

標準大気圧における空気中に含まれる酸素ガスの重量百分率濃度は、約21パーセントであってヘンリーの法則に従った酸素ガスの分圧に比例して水中に溶解することは広く知られており、有機性廃水の活性汚泥法その他の好気性生物処理法における曝気処理には大量の空気を必要とするので、従来多大な曝気用動力費を必要としていた。さらに、高濃度有機性廃水を活性汚泥法その他の好気性生物処理法により処理する上で、酸素の溶解度及び溶解速度に限界があるために処理可能な有機質濃度にもおのずと限界があった。高濃度有機性廃水を好気性生物酸化処理を可能とすると共に多大な電力消費を低減する方法として超深層曝気方式が考案されたが、空気中には約79%の窒素を含むため活性汚泥等の浮遊粒子に窒素ガス微粒子が付着することによる生物処理液輸送及び固液分離操作への障害の原因となっていた。そこで、液体酸素による酸素ガスを曝気に使用することが行われていたが、空気から液体酸素を製造するためには空気を約200気圧程度での数段回の圧縮と放熱を繰り返し行うことが必要であると共に製造工場立地から消費地への輸送を必要としており、多大の動力費と輸送費を必要としている。又、燃焼装置及び内燃機関の技術分野においては、空気中の含有酸素濃度が21%よりも上昇すれば、送風機の大きさもより小型化すると共に動力費も低減すると共に二酸化炭素排出量も低減出来る。又、液体酸素及び液体窒素製造においても同様である。そこで、燃焼用空気供給手段で超電動コイルにより酸素と窒素の磁化率の違いを利用して酸素富化空気が作られることを開示している(例えば、特許文献1参照。)。又、ローターを内蔵したケーシングの内部空間に磁界を発生する磁界発生手段を設けていることが開示されている(例えば、特許文献2参照。)。又、燃焼機器の空気取り入れ部に電磁コイルを設けた酸素富化装置を接続していることが開示されている (例えば、特許文献3参照。)。又、リング状磁石の同軸中心位置に導磁材を配設して酸素富化空気を作る方法が開示されている(例えば、特許文献4参照。)。又、酸素富化膜で形成した箱状体又は袋状体に電磁石を収納して酸素富化空気を作る方法が開示されている(例えば、特許文献5参照。)。そして又、有機性廃水を好気性生物酸化処理する技術分野において、」電磁石又は永久磁石を用いて、酸素及び窒素分子の物理的特性を利用した装置が出願されている(例えば、特許文献6)。   It is widely known that the weight percentage concentration of oxygen gas contained in air at standard atmospheric pressure is about 21 percent and dissolves in water in proportion to the partial pressure of oxygen gas according to Henry's law, Since a large amount of air is required for the aeration treatment in the activated sludge method of organic wastewater and other aerobic biological treatment methods, a large amount of power for aeration has been conventionally required. Furthermore, when treating high-concentration organic wastewater by the activated sludge method or other aerobic biological treatment methods, there is a limit to the organic concentration that can be treated due to the limited solubility and dissolution rate of oxygen. An ultra-deep aeration system has been devised as a method to enable aerobic bio-oxidation treatment of high-concentration organic wastewater and to reduce a large amount of power consumption, but activated sludge and the like because it contains about 79% nitrogen in the air Nitrogen gas fine particles adhered to the suspended particles of the water caused obstacles to biological treatment liquid transport and solid-liquid separation operations. Therefore, oxygen gas from liquid oxygen has been used for aeration, but in order to produce liquid oxygen from air, it is possible to repeatedly compress and release heat several times at about 200 atm. It is necessary and requires transportation from the manufacturing plant location to the consumption area, which requires a large amount of power and transportation costs. Also, in the technical field of combustion devices and internal combustion engines, if the oxygen concentration in the air rises above 21%, the size of the blower can be further reduced, the power cost can be reduced, and the carbon dioxide emissions can be reduced. . The same applies to the production of liquid oxygen and liquid nitrogen. Therefore, it is disclosed that oxygen-enriched air is produced by utilizing a difference in magnetic susceptibility between oxygen and nitrogen by a super electric coil in a combustion air supply means (see, for example, Patent Document 1). Further, it is disclosed that magnetic field generating means for generating a magnetic field is provided in the internal space of the casing in which the rotor is built (see, for example, Patent Document 2). Further, it is disclosed that an oxygen enricher provided with an electromagnetic coil is connected to an air intake portion of a combustion device (see, for example, Patent Document 3). Further, a method is disclosed in which oxygen-enriched air is produced by arranging a magnetic conducting material at the coaxial center position of a ring-shaped magnet (see, for example, Patent Document 4). Also disclosed is a method for producing oxygen-enriched air by storing an electromagnet in a box-shaped body or bag-shaped body formed of an oxygen-enriched film (see, for example, Patent Document 5). In addition, in the technical field of aerobic biooxidation treatment of organic wastewater, an apparatus using the physical characteristics of oxygen and nitrogen molecules using an electromagnet or a permanent magnet has been filed (for example, Patent Document 6). .

特開平1−228563JP-A-1-228563 特開平9−194201JP-A-9-194201 特開2000−054922JP 2000-054922 A 特開2001−348208JP 2001-348208 A 特開2003−112908JP2003-112908A 特開2005−118731JP 2005-118731 A

標準大気圧における空気中に含まれる酸素ガスの重量百分率濃度は約21パーセントであるが、好気性生物処理における曝気操作又は各種燃焼における給気操作において空気中の酸素ガスの含有割合を大きくすることが出来れば、前記曝気操作においては消費電力費の低減、酸素溶解度の向上および処理効率の向上と、前記給気操作においては消費電力費の低減、燃焼効率の向上が期待できる。そこで、空気中の含有成分の大部分を占める窒素と酸素の物理的性質の差異、中でも磁気的性質及び質量の差と流体的性質を有効に利用することが課題である。 The percentage by weight of oxygen gas contained in air at standard atmospheric pressure is approximately 21%, but the oxygen gas content in the air should be increased in aeration operations in aerobic biological treatment or in air supply operations in various combustion. If it is possible, it can be expected that the power consumption cost is reduced, the oxygen solubility is improved and the processing efficiency is improved in the aeration operation, and the power consumption cost is reduced and the combustion efficiency is improved in the air supply operation. Therefore, it is a problem to effectively utilize the difference in physical properties between nitrogen and oxygen, which occupy most of the components contained in the air, and in particular, the magnetic property and the difference in mass and fluid properties.

又、酸素富化装置の空気流路の大部分を酸素富化操作に有効に利用することも課題である。   It is also a problem to effectively utilize most of the air flow path of the oxygen enrichment apparatus for the oxygen enrichment operation.

又、磁力によって空気中の酸素と窒素を効率良く分離することも課題である。 It is also a problem to efficiently separate oxygen and nitrogen in the air by magnetic force.

そして又、酸素富化装置製造作業を容易にすると共に製造費を低減することも課題である。 It is also a problem to make the oxygen enrichment device manufacturing work easy and reduce the manufacturing cost.

本発明は、上記目的を達成するため、以下に記載されるような技術構成とする。本発明に係る第一の態様は、ブロワ−等の曝気用空気供給装置又はボイラ等の燃焼装置に連通接続して設けられている磁界式の酸素富化装置である。当該酸素富化装置は空気流路部の先端部が空気取入口であって途中に酸素富化空気と窒素富化空気を分配する酸素富化空気分流部及び窒素富化空気分流部を空気流下流側に有する空気分流ダクト部を途中に配設していて、前記酸素富化空気分流部に続いて終端部を酸素富化空気送出口とした酸素富化空気流路部を配設すると共に前記窒素富化空気分流部に続いて終端部を窒素富化空気送出口とした窒素富化空気流路部を配設した非磁性体の空気供給ダクトを有しており、少なくとも空気取入口から空気分流ダクト部までは真直ぐな空気流路を形成しており、又、前記空気分流ダクト部の上流側直前には磁界発生手段の異種磁極を対向して磁路ギャップを形成すると共に空気流路を形成しており、そして又、前記酸素富化空気送出口にはブロワ−又は送風機を連通接続すると共に前記窒素富化空気送出口には排風機を連通接続して構成した酸素富化装置である。   In order to achieve the above object, the present invention has a technical configuration as described below. A first aspect according to the present invention is a magnetic field type oxygen enricher provided in communication connection with an aeration air supply device such as a blower or a combustion device such as a boiler. In the oxygen enrichment apparatus, the front end of the air flow path portion is an air intake, and the oxygen-enriched air diverter and the nitrogen-enriched air diverter that distribute oxygen-enriched air and nitrogen-enriched air along the way An air diverting duct portion provided on the downstream side is disposed in the middle, and an oxygen-enriched air flow path portion having an end portion as an oxygen-enriched air outlet is disposed following the oxygen-enriched air diverting portion. It has a non-magnetic air supply duct in which a nitrogen-enriched air flow path portion having a nitrogen-enriched air delivery port as a terminal portion following the nitrogen-enriched air diverting portion is disposed, and at least from the air intake port A straight air flow path is formed up to the air shunt duct portion, and a magnetic path gap is formed immediately opposite to the upstream side of the air shunt duct portion by opposing the different magnetic poles of the magnetic field generating means. And the oxygen-enriched air outlet has a blower. Or oxygen-enriched apparatus constructed by connecting communicating exhaust fan in the nitrogen-enriched air outlet as well as communicated with an air blower.

そして、対向する異種磁極の組合せ数としては一組でも良く、空気流路の大きさと磁極の大きさにより二組、三組-----のいずれの組数も選択出来る。   The number of combinations of opposing different types of magnetic poles may be one, and either two or three sets can be selected depending on the size of the air flow path and the size of the magnetic poles.

又、磁界発生手段としては永久磁石、電磁石又は超電導コイル電磁石の何れでも選択は要求される性能により選択すべきものである。   As the magnetic field generating means, any of permanent magnets, electromagnets and superconducting coil electromagnets should be selected according to the required performance.

又、空気分岐ダクト部における酸素富化空気分流部及び窒素富化空気分流部の数量の選択は性能及び経済性において、前記窒素富化空気分流部の数量は一つが好ましく前記酸素富化空気分流部の組合せ数は一つ又は二つが選択出来る。但し、上記各数量を超えることを排除しない。 In addition, the selection of the quantity of the oxygen-enriched air diversion part and the nitrogen-enriched air diversion part in the air branch duct part is preferably in terms of performance and economy, and the number of the nitrogen-enriched air diversion part is preferably one. One or two parts can be selected. However, it does not exclude exceeding the above quantities.

又、本発明に係る第二の態様は、前記空気分流ダクト部の上流側直前に配設する異種磁極を対向して形成した磁路ギャップの二組以上を所要の間隔で直列配置することにより、相隣り合う磁極対の同種磁極によりスリットを形成する。   In the second aspect of the present invention, two or more sets of magnetic path gaps formed by facing different magnetic poles disposed immediately before the upstream side of the air shunt duct portion are arranged in series at a required interval. The slit is formed by the same kind of magnetic poles of adjacent magnetic pole pairs.

又、本発明に係る第三の態様は、上記相隣り合う磁極対の同種磁極により形成されたスリットの代替として格子状又はメッシュ状磁極とすることも出来る。   Moreover, the 3rd aspect which concerns on this invention can also be made into a grid | lattice form or a mesh-shaped magnetic pole instead of the slit formed of the same kind magnetic pole of the said adjacent magnetic pole pair.

そして本発明に関わる第四の態様は、複数の永久磁石で磁極対の同種磁極の群を形成する手段として、所要の形状をした同一導磁体に前記永久磁石を吸引固着して構成することが出来る。
(作用)
In a fourth aspect of the present invention, as a means for forming a group of magnetic poles of the same kind of magnetic pole pairs with a plurality of permanent magnets, the permanent magnets may be configured to be attracted and fixed to the same magnetic conductor having a required shape. I can do it.
(Function)

上記第一の課題解決手段による作用は次のようである。即ち、酸素富化装置において、常磁性体の酸素分子は磁界発生手段の磁極と対向した側が磁極と反対の磁極に磁化して前記磁界発生手段の磁極方向に吸引力を受けると共に反磁性体である窒素分子は前記磁界発生手段の磁極と対向した側が磁極と同じ磁極に磁化して前記磁界発生手段の磁極の反対方向に反発力を受ける。そして、磁極の直近に来た酸素分子は強力に吸引され酸素富化空気分流部へ移行すると共に窒素分子は逆に強力に反発されて窒素富化空気分流部へ移行する。尚、一つの酸素富化装置においては磁界発生手段の磁極対の磁極種を配設する方向の選択は、同一方向にすることが好ましいが、同一方向とする限りにおいて、磁極対の磁極種を配設する方向の選択は任意である。但し、一つの酸素富化装置においては磁界発生手段の磁極対の磁極種を配設する方向の選択は、異方向とすることも不可能ではない。   The operation of the first problem solving means is as follows. That is, in the oxygen enrichment apparatus, the oxygen molecules of the paramagnetic material are magnetized on the magnetic pole opposite to the magnetic pole of the magnetic field generating means and receive an attractive force in the direction of the magnetic pole of the magnetic field generating means. A certain nitrogen molecule is magnetized to the same magnetic pole as the magnetic pole on the side facing the magnetic pole of the magnetic field generating means, and receives a repulsive force in the opposite direction of the magnetic pole of the magnetic field generating means. Oxygen molecules that come in the immediate vicinity of the magnetic pole are strongly attracted and move to the oxygen-enriched air diverting portion, while nitrogen molecules are strongly repelled and move to the nitrogen-enriched air diverting portion. In one oxygen-enriching device, it is preferable to select the direction in which the magnetic pole type of the magnetic pole pair of the magnetic field generating means is arranged in the same direction. The direction of arrangement is arbitrary. However, in one oxygen enricher, it is not impossible to select the direction in which the magnetic pole type of the magnetic pole pair of the magnetic field generating means is arranged in a different direction.

磁界発生手段としては、永久磁石、電磁石又は超伝導型電磁石の何れでも使用出来、経済性と維持管理以外に何ら選択の支障になることはない。   As the magnetic field generating means, any of permanent magnets, electromagnets or superconducting electromagnets can be used, and there is no obstacle to selection other than economy and maintenance.

磁界発生手段の磁極と対象空気流とは直接に接触することが、磁極との距離が小さくなるために磁力の作用は大きい。   When the magnetic pole of the magnetic field generating means and the target air flow are in direct contact with each other, the magnetic force acts greatly because the distance from the magnetic pole is reduced.

又、折角分離した酸素と窒素の再混合を阻止するためには、流れは乱流よりも層流の方がこのましいので、酸素分子が酸素富化空気分流部に到達するまで又窒素分子が窒素富化空気分流部に到達するまで真直ぐな流路にすることが好ましい。   In order to prevent re-mixing of the oxygen and nitrogen that are separated at different angles, the flow is preferably a laminar flow rather than a turbulent flow. Therefore, until the oxygen molecules reach the oxygen-enriched air branch, It is preferable that the flow path be straight until the nitrogen reaches the nitrogen-enriched air branch.

又、真直ぐな空気流路において、磁極面磁束密度が同じでも、棒磁石からの垂直距離と同じ距離におけるN極とS極を対向させたときの磁束密度ははるかに大きくなるので、空気分流ダクト部に開口した酸素富化空気流入口の空気流上流側直前に異種磁極を対向して磁路ギャップを形成すると酸素分子を酸素富化空気分流部へ強力に吸引導入すると共に窒素分子を窒素富化空気分流部へ強力に吸引導入する。   Also, in a straight air flow path, even if the magnetic pole surface magnetic flux density is the same, the magnetic flux density when the N pole and S pole are opposed to each other at the same distance as the vertical distance from the bar magnet is much larger. When a magnetic path gap is formed by facing different magnetic poles just before the air flow upstream of the oxygen-enriched air inlet opening at the opening, oxygen molecules are strongly attracted and introduced into the oxygen-enriched air branch and nitrogen molecules are enriched with nitrogen Strong suction is introduced into the chemical air splitting section.

又、上記第二の課題解決手段による作用は次のようである。即ち、前記空気分流ダクト部の上流側直前に配設する異種磁極を対向して形成した磁路ギャップの二組以上を所要の間隔で直列配置することにより、相隣り合う磁極対の同種磁極により形成されたスリットを通って酸素分子は容易に酸素富化空気分流部へ移行すると共に窒素分子は窒素富化空気分流部へ容易に移行する流路を確保出来る。   The operation of the second problem solving means is as follows. That is, by arranging two or more sets of magnetic path gaps formed opposite to each other so as to face different types of magnetic poles disposed immediately upstream of the air shunt duct portion in series at a predetermined interval, the same kind of magnetic poles of adjacent magnetic pole pairs can be used. Through the formed slit, oxygen molecules can easily move to the oxygen-enriched air diverting portion, and a flow path for easily transferring nitrogen molecules to the nitrogen-enriched air diverting portion can be secured.

又、上記第三の課題解決手段による作用は次のようである。即ち、前記酸素分子は酸素富化空気分流部へ移行すると共に窒素分子は窒素富化空気分流部へ移行する流路を確保する方策としては上記相隣り合う磁極対の同種磁極により形成されたスリットの代替として格子状又はメッシュ状磁極とすることにより酸素分子は酸素富化空気分流部へ容易に移行すると共に窒素分子は窒素富化空気分流部へ容易に移行する流路を確保出来る。   The operation of the third problem solving means is as follows. That is, as a measure for ensuring a flow path for the oxygen molecules to move to the oxygen-enriched air diverting portion and for the nitrogen molecules to move to the nitrogen-enriched air diverting portion, a slit formed by the same kind of magnetic poles of the adjacent magnetic pole pairs. As an alternative to this, a lattice or mesh-shaped magnetic pole can be used to secure a flow path in which oxygen molecules easily move to the oxygen-enriched air diversion part and nitrogen molecules easily move to the nitrogen-enriched air diversion part.

又、第四の課題解決手段による作用は、複数の永久磁石で磁極対の同種磁極の群を形成する手段として、所要の形状をした同一導磁体に吸引固着して構成することにより、製作が容易な複数の棒状永久磁石で容易に位置決めして構成作業が進められる。   The fourth problem solving means can be manufactured by forming a group of the same kind of magnetic poles of a magnetic pole pair with a plurality of permanent magnets by attracting and fixing to the same magnetic conductor having a required shape. Positioning can be easily performed by a plurality of easy rod-like permanent magnets, and the configuration work can be advanced.

本発明は、以上説明したように構成されているので、以下に記載されるような効果を発揮する。   Since the present invention is configured as described above, the following effects are exhibited.

少なくとも空気取入口から空気分流ダクト部までは真直ぐな空気流路を形成し、又、前記空気分流ダクト部の上流側直前には異種磁極を対向して磁路ギャップを形成すると共に空気流路を形成することにより酸素分子と窒素分子の質量の差による慣性力効果に加え前記磁路ギャップによる強力な磁力により酸素富化空気分岐部へ酸素分子を強力に且つ効率良く吸引導入する酸素富化装置を提供出来る効果を発揮する。   A straight air flow path is formed at least from the air intake port to the air shunt duct portion, and a magnetic path gap is formed opposite to the different magnetic poles immediately before the upstream side of the air shunt duct portion. Oxygen enrichment device that draws oxygen molecules powerfully and efficiently into the oxygen-enriched air branch by the strong magnetic force due to the magnetic path gap in addition to the inertial force effect due to the difference in mass between oxygen molecules and nitrogen molecules by forming Demonstrate the effect that can provide.

又、異種磁極を対向して形成した磁路ギャップの二組以上を所要の間隔で直列配置することにより、相隣り合う磁極対の同種磁極によりスリットを形成することにより酸素分子を酸素富化空気分流ダクト部へ吸引導入する確率がさらに高まると共に窒素分子を窒素富化空気分流ダクト部へ吸引導入する確率がさらに高まる効果を発揮する。   In addition, two or more pairs of magnetic path gaps formed with different magnetic poles facing each other are arranged in series at a required interval, so that slits are formed by the same kind of magnetic poles of adjacent magnetic pole pairs, thereby oxygen molecules are enriched with oxygen-enriched air. The probability of sucking and introducing into the diverting duct portion is further increased, and the probability of sucking and introducing nitrogen molecules into the nitrogen-enriched air diverting duct portion is further increased.

又、上記相隣り合う磁極対の同種磁極により形成されたスリットの代替として格子状又はメッシュ状磁極とすることにより酸素分子が酸素富化空気分流部へ容易に移行する流路が確保される共に窒素分子が窒素富化空気分流部へ容易に移行する流路が確保されるので、層流を維持し易くなり、酸素分子を酸素富化空気分流ダクト部へ吸引導入する確率がさらに高まると共に窒素分子を窒素富化空気分流ダクト部へ吸引導入する確率がさらに高まる効果を発揮する。そして、構造が単純化され製作が容易になる効果も発揮する。   In addition, by replacing the slit formed by the same kind of magnetic poles of the above-mentioned adjacent magnetic pole pairs with a lattice-like or mesh-like magnetic pole, a flow path for allowing oxygen molecules to easily migrate to the oxygen-enriched air branching portion is secured. Since a flow path for easily transferring nitrogen molecules to the nitrogen-enriched air diverting section is secured, laminar flow is easily maintained, and the probability of sucking and introducing oxygen molecules into the oxygen-enriched air diverting duct section is further increased and nitrogen is increased. This has the effect of further increasing the probability of sucking and introducing molecules into the nitrogen-enriched air diversion duct. In addition, the structure is simplified and the manufacturing is facilitated.

又、複数の永久磁石で磁極対の同種磁極の群を形成する手段として、所要の形状をした同一導磁体に吸引固着して構成することにより、製作が容易な複数の棒状永久磁石で容易に位置決めして組立て作業が進められるので製作費を低く押えられる効果を発揮する。   In addition, as a means for forming a group of magnetic poles of the same kind of magnetic pole pairs with a plurality of permanent magnets, it can be easily constructed with a plurality of rod-like permanent magnets that are easy to manufacture by being constructed by attracting and fixing to the same magnetic conductor having a required shape. Since the assembly work is performed after positioning, the production cost can be kept low.

以下、本発明の実施の形態を図1〜図16に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

第一の実施例を示す図1、図2、図3及び図4において、酸素富化装置1の構成を説明する。2は酸素富化空気を吸引するブロワー、3は窒素富化空気を排出する排風機で、非磁性体のダクトは空気流部ダクト4、空気分流部ダクト5、窒素富化空気流部ダクト6、酸素富化空気流部ダクト7で構成され、前記空気流部ダクト4には空気取入口8を有して大気に開放され、前記窒素富化空気流部ダクト6には窒素富化空気排出口9を有して排風機3に連通接続され、前記酸素富化空気流部ダクト7には酸素富化空気排出口10を有してブロワー2に連通接続し、前記空気分流部ダクト5の空気流上流側には前記空気流部ダクト4を又空気流下流側には前記窒素富化空気流部ダクト6を連通接続しており、又前記酸素富化空気流部ダクト7の前記酸素富化空気排出口10の空気流上流側他端である酸素富化空気流入口11を前記空気分流部ダクト5に開口している共に前記空気分流部ダクト5と前記酸素富化空気流部ダクト7で形成する窒素富化空気流入口12を前記空気分流部ダクト5に開口している。そして、前記酸素富化空気流入口11の空気流上流側直前に2個の棒状永久磁石13の異種磁極を対向して磁路ギャップ14を形成している。又、前記2個の棒状永久磁石13は該棒状永久磁石13の磁極面を前記酸素富化空気流部ダクト7の内面位置と同位置にすると共に前記空気分流部ダクト5を貫通して該空気分流部ダクト5に支持固着されている。ここで前記棒状永久磁石13が前記空気分流部ダクト5を貫通する部分には該空気分流部ダクト5の内外の空気漏れを遮断するシールをしている。   The structure of the oxygen enricher 1 will be described with reference to FIGS. 1, 2, 3 and 4 showing the first embodiment. 2 is a blower that sucks in oxygen-enriched air, 3 is an exhauster that discharges nitrogen-enriched air, and the non-magnetic ducts are an air flow duct 4, an air diverter duct 5, and a nitrogen-enriched air duct 6 The oxygen-enriched airflow duct 7, the airflow duct 4 has an air intake 8 and is open to the atmosphere, and the nitrogen-enriched airflow duct 6 has a nitrogen-enriched air exhaust. An outlet 9 is connected to the exhaust fan 3, an oxygen-enriched air flow duct 7 has an oxygen-enriched air outlet 10, is connected to the blower 2, and is connected to the air distributor duct 5. The air flow duct 4 is connected to the upstream side of the air flow, and the nitrogen-enriched air flow duct 6 is connected to the downstream side of the air flow. The oxygen-enriched air inlet 11, which is the other end on the upstream side of the air flow of the liquefied air outlet 10, is connected to the air shunt. It is opened the nitrogen-enriched air inlet 12 to form the both open into the duct 5 and the air diverter duct 5 in the oxygen-enriched air stream section duct 7 to the air diverter duct 5. A magnetic path gap 14 is formed by facing the different magnetic poles of the two rod-shaped permanent magnets 13 immediately before the oxygen-enriched air inlet 11 on the upstream side of the air flow. The two rod-shaped permanent magnets 13 have the magnetic pole surfaces of the rod-shaped permanent magnets 13 positioned at the same position as the inner surface of the oxygen-enriched air flow duct 7 and penetrate the air diverter duct 5 to form the air. The shunting duct 5 is supported and fixed. Here, the portion where the rod-like permanent magnet 13 penetrates the air diverting part duct 5 is sealed to block air leakage inside and outside the air diverting part duct 5.

以下、上記構成の動作を説明する。排風機3から排出される窒素富化空気量とブロワー2から排出される酸素富化空気量を合計した量が空気取入口8から吸引された空気は空気分流部ダクトに達すると、酸素富化空気流入口11正面の酸素分子と2個の棒状永久磁石13の異種磁極を対向して形成した磁路ギャップ14による強力な磁力により吸引された酸素分子は酸素富化空気流入口11に流入すると共に窒素富化空気流入口12正面の窒素分子と2個の棒状永久磁石13の異種磁極を対向して形成した磁路ギャップ14による強力な磁力により排斥された窒素分子は窒素富化空気流入口12に流入する。そして、酸素富化空気は前記ブロワー2で送出され窒素富化空気は排風機3排出されている。   The operation of the above configuration will be described below. When the total amount of nitrogen-enriched air discharged from the exhaust fan 3 and oxygen-enriched air discharged from the blower 2 is sucked from the air intake 8, the oxygen-enriched air is exhausted. The oxygen molecules attracted by the strong magnetic force by the magnetic path gap 14 formed by opposing the oxygen molecules in front of the air inlet 11 and the different magnetic poles of the two rod-shaped permanent magnets 13 flow into the oxygen-enriched air inlet 11. At the same time, nitrogen molecules excreted by a strong magnetic force generated by the magnetic path gap 14 formed by opposing the nitrogen molecules in front of the nitrogen-enriched air inlet 12 and the different magnetic poles of the two rod-shaped permanent magnets 13 are nitrogen-enriched air inlets. 12 flows in. The oxygen-enriched air is sent out by the blower 2 and the nitrogen-enriched air is discharged from the exhaust fan 3.

図5においては、図3における2個の棒状永久磁石13の代替として1個の馬蹄形永久磁石15を配設したものである。   In FIG. 5, one horseshoe-shaped permanent magnet 15 is disposed as an alternative to the two rod-shaped permanent magnets 13 in FIG.

図6においては、図3における2個の棒状永久磁石13の代替として1個の馬蹄形電磁石16を配設したものである。   In FIG. 6, one horseshoe-shaped electromagnet 16 is provided as an alternative to the two rod-like permanent magnets 13 in FIG.

図7及び図8においては、図1及び図3における2個の棒状永久磁石13の代替として2個の板状永久磁石17を配設したもので、支持具18で酸素富化空気部ダクト7に固着している。   7 and 8, two plate-like permanent magnets 17 are arranged in place of the two rod-like permanent magnets 13 in FIGS. 1 and 3, and the oxygen-enriched air section duct 7 is supported by a support 18. It is stuck to.

第二の実施例を示す図9においては、図3における2個の棒状永久磁石13の代替として6個の棒状永久磁石19を片側に3個ずつ所要の間隔で配設することによりスリット20を形成したものである。   In FIG. 9 showing the second embodiment, as an alternative to the two rod-like permanent magnets 13 in FIG. 3, three rod-like permanent magnets 19 are arranged on the one side at a required interval to form slits 20. Formed.

図10においては、図9における6個の棒状永久磁石19の代替として6個の板状永久磁石21を片側に3個ずつ所要の間隔で配設することによりスリット22を形成したものである。   In FIG. 10, as an alternative to the six rod-shaped permanent magnets 19 in FIG. 9, three plate-like permanent magnets 21 are arranged on one side at a required interval to form slits 22.

図11、図12、図13及び図14において、図1、図2、図3及び図4における外側配設の窒素富化空気ダクト6を内側配設とし、又内側配設の酸素富化空気ダクト7を外側配設とすると共に酸素富化空気流入口11から新たに配設するマニホールドチャンバ23まで2列とし、該マニホールドチャンバ23からブロワーまでは1列としている。そして、2列の前記酸素富化空気流入口11の空気流上流側直前に1列当たり6個の板状永久磁石21を片側に3個づつスリット22を形成すると共に異種磁極を対向して磁路ギャップ14を形成している。又、1列当たり6個の前記板状永久磁石21は該板状永久磁石21の磁極面を前記酸素富化空気流部ダクト7の内面位置と同位置にすると共に6個の内3個は前記空気分流部ダクト5を貫通して該空気分流部ダクト5に支持固着され他の3個は支持具18で支持固着されている。ここで前記板状永久磁石21が前記空気分流部ダクト5を貫通する部分には該空気分流部ダクト5の内外の空気漏れを遮断するシールをしている。
非磁性体のダクトは空気流部ダクト4、空気分流部ダクト24、窒素富化空気流部ダクト25、酸素富化空気流部ダクト26で構成され、前記空気流部ダクト4には空気取入口8を有して大気に開放され、前記窒素富化空気流部ダクト25には窒素富化空気排出口9を有して排風機3に連通接続され、前記酸素富化空気流部ダクト26Bには酸素富化空気排出口10を有してブロワー2に連通接続し、前記空気分流部ダクト24の空気流上流側には前記空気流部ダクト4を又空気流下流側には前記酸素富化空気流部ダクト26Aを連通接続しており、又前記窒素富化空気流部ダクト25の前記窒素富化空気排出口9の空気流上流側他端である窒素富化空気流入口27を前記空気分流部ダクト24に開口している共に前記空気分流部ダクト24と前記窒素富化空気流部ダクト25で形成する2箇所の酸素富化空気流入口28を前記空気分流部ダクト5に開口している。そして、2箇所にある前記酸素富化空気流入口28の空気流上流側直前に1箇所に付各6個の板状永久磁石21の異種磁極を対向して磁路ギャップ14を形成している。又、前記6個の板状永久磁石21は該板状永久磁石21の磁極面を前記酸素富化空気流部ダクト26及び又前記窒素富化空気流部ダクト25の内面位置と同位置にすると共に前記空気分流部ダクト24を貫通して該空気分流部ダクト24に支持固着されている。ここで前記板状永久磁石21が前記空気分流部ダクト24を貫通する部分には該空気分流部ダクト24の内外の空気漏れを遮断するシールをしている。
11, 12, 13, and 14, the nitrogen-enriched air duct 6 disposed outside in FIGS. 1, 2, 3, and 4 is disposed inside, and oxygen-enriched air disposed inside. The duct 7 is arranged on the outside, and two rows are provided from the oxygen-enriched air inlet 11 to the newly arranged manifold chamber 23, and one row is arranged from the manifold chamber 23 to the blower. Then, six plate-like permanent magnets 21 per row are formed in front of the two rows of the oxygen-enriched air inlets 11 on the upstream side of the air flow, three slits 22 are formed on one side, and different magnetic poles are opposed to each other. A path gap 14 is formed. Further, the six plate-like permanent magnets 21 per one row make the magnetic pole surface of the plate-like permanent magnet 21 the same position as the inner surface position of the oxygen-enriched air flow portion duct 7 and three of the six are permanent magnets. The air diverting part duct 5 passes through the air diverting part duct 5 and is fixedly supported by the air diverting part duct 5. Here, the plate permanent magnet 21 has a seal that blocks air leakage inside and outside of the air diverting portion duct 5 at a portion through which the air diverting portion duct 5 passes.
The non-magnetic duct is composed of an air flow duct 4, an air diversion duct 24, a nitrogen-enriched air stream duct 25, and an oxygen-enriched air stream duct 26, and the air flow duct 4 has an air intake port. 8 is opened to the atmosphere, the nitrogen-enriched airflow duct 25 has a nitrogen-enriched air outlet 9 and is connected to the exhaust fan 3, and is connected to the oxygen-enriched airflow duct 26 B. Has an oxygen-enriched air discharge port 10 and is connected in communication with the blower 2, the air flow duct 4 on the upstream side of the air flow duct 24 and the oxygen enrichment on the downstream side of the air flow. An air flow part duct 26A is connected in communication, and the nitrogen-enriched air inlet 27, which is the other upstream side of the nitrogen-enriched air outlet 9 of the nitrogen-enriched air stream duct 25, is connected to the air. The air diverting part duct 24 is open to the diverting part duct 24 and It is opened the serial nitrogen-enriched air stream of the two positions formed by the duct 25 oxygen-enriched air inlet 28 to the air diverter duct 5. The magnetic path gap 14 is formed by attaching the different magnetic poles of the six plate-like permanent magnets 21 to one place just before the upstream side of the air flow of the oxygen-enriched air inlet 28 at two places. . The six plate-like permanent magnets 21 have the magnetic pole surfaces of the plate-like permanent magnets 21 at the same positions as the inner surface positions of the oxygen-enriched airflow portion duct 26 and the nitrogen-enriched airflow portion duct 25. At the same time, it passes through the air diverting part duct 24 and is fixedly supported to the air diverting part duct 24. Here, the portion where the plate-like permanent magnet 21 penetrates the air diverting part duct 24 is sealed to block air leakage inside and outside the air diverting part duct 24.

以下、上記構成の動作を説明する。排風機3から排出される窒素富化空気量とブロワー2から排出される酸素富化空気量を合計した量が空気取入口8から吸引された空気は空気分流部ダクト5に達すると、2箇所の酸素富化空気流入口28正面の酸素分子と酸素富化空気流入口28の1箇所あたり6個の板状永久磁石21の異種磁極を対向して形成した磁路ギャップ14による強力な磁力により吸引された酸素分子は酸素富化空気流入口28に流入すると共に窒素富化空気流入口27正面の窒素分子と酸素富化空気流入口28の1箇所あたり6個の板状永久磁石21の異種磁極を対向して形成した磁路ギャップ14による強力な磁力により排斥された窒素分子は窒素富化空気流入口27に流入する。そして、酸素富化空気は前記ブロワー2で送出され窒素富化空気は排風機3で排出されている。   The operation of the above configuration will be described below. When the total amount of the nitrogen-enriched air discharged from the exhaust fan 3 and the oxygen-enriched air discharged from the blower 2 is sucked from the air intake 8, the air drawn into the air diverting part duct 5 becomes two places. By the strong magnetic force by the magnetic path gap 14 formed by opposing the oxygen molecules in front of the oxygen-enriched air inlet 28 and the different magnetic poles of the six plate-like permanent magnets 21 at one location of the oxygen-enriched air inlet 28. The sucked oxygen molecules flow into the oxygen-enriched air inlet 28, and at the same time, the nitrogen molecules in front of the nitrogen-enriched air inlet 27 and the six plate-shaped permanent magnets 21 at different locations of the oxygen-enriched air inlet 28 are different. Nitrogen molecules excreted by a strong magnetic force by the magnetic path gap 14 formed so as to face the magnetic poles flow into the nitrogen-enriched air inlet 27. Oxygen-enriched air is sent out by the blower 2, and nitrogen-enriched air is discharged by the exhaust fan 3.

図15、図16及び図17においては、図10における6個の板状永久磁石21の代替として2個の格子板状永久磁石29A、29Bを配設したものである。   15, 16 and 17, two lattice plate-like permanent magnets 29 </ b> A and 29 </ b> B are arranged in place of the six plate-like permanent magnets 21 in FIG. 10.

第四の実施例を示す図18及び図19においては、2枚の格子板状導磁体30A,30Bにそれぞれ7枚の板状永久磁石31を吸引固着している。   In FIG. 18 and FIG. 19 showing the fourth embodiment, seven plate-like permanent magnets 31 are attracted and fixed to two lattice plate-like conductors 30A and 30B, respectively.

第一の実施例を示す酸素富化装置の縦断面図である。It is a longitudinal cross-sectional view of the oxygen enrichment apparatus which shows a 1st Example. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図1のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 図1のC−C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG. 図3の棒状永久磁石13の代替として馬蹄形永久磁石とした断面図である。FIG. 4 is a cross-sectional view showing a horseshoe-shaped permanent magnet as an alternative to the rod-shaped permanent magnet 13 of FIG. 3. 図3の棒状永久磁石13の代替として馬蹄形電磁石とした断面図である。FIG. 4 is a cross-sectional view showing a horseshoe electromagnet as an alternative to the rod-shaped permanent magnet 13 of FIG. 3. 図1の棒状永久磁石13の代替として板状永久磁石17とした酸素富化装置の縦断面図である。It is a longitudinal cross-sectional view of the oxygen enrichment apparatus made into the plate-shaped permanent magnet 17 instead of the rod-shaped permanent magnet 13 of FIG. 図3の棒状永久磁石13の代替として板状永久磁石17とした酸素富化装置の縦断面図である。It is a longitudinal cross-sectional view of the oxygen enrichment apparatus made into the plate-shaped permanent magnet 17 instead of the rod-shaped permanent magnet 13 of FIG. 第二の実施例を示す図3の2個の棒状永久磁石13の代替として6個の棒状永久磁石19とした酸素富化装置の縦断面図である。It is a longitudinal cross-sectional view of the oxygen enrichment apparatus made into the six rod-shaped permanent magnets 19 instead of the two rod-shaped permanent magnets 13 of FIG. 3 which shows a 2nd Example. 図9の6個の棒状永久磁石13の代替として6個の板状永久磁石21とした酸素富化装置の縦断面図である。FIG. 10 is a longitudinal cross-sectional view of an oxygen enrichment device including six plate-shaped permanent magnets 21 as an alternative to the six rod-shaped permanent magnets 13 of FIG. 9. 酸素富化空気流入口28を2箇所にした酸素富化装置の縦断面図である。It is a longitudinal cross-sectional view of the oxygen enrichment apparatus which made the oxygen enriched air inflow port 28 two places. 図11のD−D線に沿う断面図である。It is sectional drawing which follows the DD line | wire of FIG. 図11のE−E線に沿う断面図である。It is sectional drawing which follows the EE line of FIG. 図11のF−F線に沿う断面図である。It is sectional drawing which follows the FF line of FIG. 図10における6個の板状永久磁石21の代替として2個の格子板状永久磁石29を配設した横断面図である。FIG. 11 is a cross-sectional view in which two lattice plate-like permanent magnets 29 are arranged as an alternative to the six plate-like permanent magnets 21 in FIG. 10. 図15のG―G線に沿う断面図である。It is sectional drawing which follows the GG line of FIG. 図15のH―H線に沿う断面図である。It is sectional drawing which follows the HH line | wire of FIG. 第三の実施例を示す正面図である。It is a front view which shows a 3rd Example. 図18のI―I線に方向矢視図であるIt is a directional arrow line view on the II line of FIG.

符号の説明Explanation of symbols

1 酸素富化装置
2 ブロワ―
3 排風機
4 空気流部ダクト
5、24 空気分流部ダクト
6、25 窒素富化空気流部ダクト
7、26A、26B 酸素富化空気流部ダクト
8 空気取入口
9 窒素富化空気排出口
10 酸素富化空気送出口
11、28 酸素富化空気流入口
12、27 窒素富化空気流入口
13、19 棒状永久磁石
14 磁路ギャップ
15 馬蹄形永久磁石
16 馬蹄形電磁石
17、21、31 板状永久磁石
18 支持具
20、22 スリット
23 マニホールドチャンバ
29A、29B 格子板状永久磁石
30A、30B 格子板状導磁体格子板状導磁体
1 Oxygen enrichment device 2 Blower
DESCRIPTION OF SYMBOLS 3 Air exhauster 4 Air flow part duct 5, 24 Air diversion part duct 6, 25 Nitrogen-enriched air flow part duct 7, 26A, 26B Oxygen-enriched air flow part duct 8 Air intake 9 Nitrogen-enriched air exhaust 10 Oxygen Enriched air outlet 11, 28 Oxygen-enriched air inlet 12, 27 Nitrogen-enriched air inlet 13, 19 Rod-shaped permanent magnet 14 Magnetic path gap 15 Horseshoe-shaped permanent magnet 16 Horseshoe-shaped electromagnet 17, 21, 31 Plate-shaped permanent magnet 18 Support tool 20, 22 Slit 23 Manifold chamber 29A, 29B Lattice plate-like permanent magnet 30A, 30B Lattice plate-like magnetic conductor Lattice plate-like magnetic conductor

Claims (4)

空気取入口に連続一体状とした空気流通路部と、該空気流通路部の終端に空気分流ダクト部により分岐して連通接続した該空気分流ダクト部に後置した酸素富化空気流路及び窒素富化空気流路とで構成すると共に少なくとも前記空気取入口から空気分流ダクト部までを真直ぐとした非磁性体の本体ダクトと前記分流手段の空気流上流側に異種磁極を対向して磁路ギャップを形成すると共に空気流路を形成し、前記酸素富化空気流路の酸素富化空気送出口にブロワ又は送風機等の空気供給手段を後置して連通接続すると共に前記窒素富化空気流路の窒素富化空気送出口に排風手段を後置して連通接続することを特徴とする酸素富化装置。 An air flow passage portion that is continuously integrated with the air intake port, an oxygen-enriched air flow passage that is placed downstream of the air flow passage portion at the end of the air flow passage portion and is connected in communication with the air flow passage portion; A non-magnetic body duct that is composed of a nitrogen-enriched air flow path and at least straight from the air intake port to the air diversion duct portion, and a magnetic path with opposite magnetic poles facing the air flow upstream side of the diversion means Forming a gap, forming an air flow path, and connecting an air supply means such as a blower or a blower to the oxygen-enriched air flow outlet of the oxygen-enriched air flow path, and communicating the nitrogen-enriched air flow An oxygen-enriching apparatus characterized in that a ventilating means is disposed downstream of the nitrogen-enriched air outlet of the road and connected in communication. 空気分流ダクト部の上流側直前に配設する異種磁極を対向して形成した磁路ギャップの二組以上を所要の間隔で直列配置することにより、相隣り合う磁極対の同種磁極によりスリットを形成したことを特徴とする請求項1記載の酸素富化装置。 A slit is formed by the same kind of magnetic poles of adjacent magnetic pole pairs by serially arranging two or more pairs of magnetic path gaps formed by facing different magnetic poles arranged just before the upstream side of the air shunt duct part at the required intervals. The oxygen-enriching apparatus according to claim 1, wherein 分流手段の空気流上流側に格子状又はメッシュ状の異種磁極を対向して磁路ギャップを形成すると共に空気流路を形成することを特徴とする請求項1記載の酸素富化装置。 2. The oxygen enrichment apparatus according to claim 1, wherein a magnetic path gap and an air flow path are formed by facing different magnetic poles in a lattice shape or mesh shape on the upstream side of the air flow of the flow dividing means. スリット状又は格子状の所要の形状をした同一導磁体に複数の永久磁石を吸引固着して磁極対の同種磁極群を形成したことを
複数の永久磁石で磁極対の同種磁極の群を形成する手段として、所要の形状をした同一導磁体に吸引固着して構成する特徴とする請求項1記載の酸素富化装置。
A plurality of permanent magnets are attracted and fixed to the same magnetic conductor having a slit-like or lattice-like required shape to form the same kind of magnetic pole group of the magnetic pole pairs. The oxygen-enriching apparatus according to claim 1, wherein the oxygen-enriching device is constructed by attracting and fixing to a same magnetic conductor having a required shape.
JP2006103196A 2006-04-04 2006-04-04 Oxygen enrichment device Pending JP2007277029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103196A JP2007277029A (en) 2006-04-04 2006-04-04 Oxygen enrichment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103196A JP2007277029A (en) 2006-04-04 2006-04-04 Oxygen enrichment device

Publications (1)

Publication Number Publication Date
JP2007277029A true JP2007277029A (en) 2007-10-25

Family

ID=38678884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103196A Pending JP2007277029A (en) 2006-04-04 2006-04-04 Oxygen enrichment device

Country Status (1)

Country Link
JP (1) JP2007277029A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042378A (en) * 2008-08-18 2010-02-25 Shoichi Yamamoto Magnetizing equipment for fluid
WO2017207069A1 (en) * 2016-06-03 2017-12-07 Eaton Limited Fuel tank inerting
CN109737666A (en) * 2018-11-28 2019-05-10 青岛海尔股份有限公司 Refrigerating device
RU216674U1 (en) * 2022-12-23 2023-02-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный технический университет" DEVICE FOR REDUCING THE AMOUNT OF NITROGEN OXIDES IN EXHAUST GASES OF SHIP INTERNAL COMBUSTION ENGINES

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042378A (en) * 2008-08-18 2010-02-25 Shoichi Yamamoto Magnetizing equipment for fluid
WO2017207069A1 (en) * 2016-06-03 2017-12-07 Eaton Limited Fuel tank inerting
CN109737666A (en) * 2018-11-28 2019-05-10 青岛海尔股份有限公司 Refrigerating device
RU216674U1 (en) * 2022-12-23 2023-02-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный технический университет" DEVICE FOR REDUCING THE AMOUNT OF NITROGEN OXIDES IN EXHAUST GASES OF SHIP INTERNAL COMBUSTION ENGINES

Similar Documents

Publication Publication Date Title
JP5283013B2 (en) Gas-liquid mixing device
CN100465089C (en) Stacked magnet array structure device and method for enriching oxygen in air by magnetic force
CN204125231U (en) A kind of Magneto separate Orygen enriched aeration device
JP2007277029A (en) Oxygen enrichment device
JP3836828B2 (en) Oxygen enrichment equipment
JP5749408B2 (en) Water treatment apparatus and method
JP4454581B2 (en) Combustion gas preconditioning device
EP1726569A1 (en) A system for treating a fluid with ultrahigh magnetic fields
US10894728B2 (en) Device for treating water to reduce the size of the water clusters, increase dissolved oxygenation levels, produce free hydrogen atoms, produce
JP2006187755A (en) Oxygen enriching device
JP2008115029A (en) Oxygen enriching device
KR101215554B1 (en) oxygen magnetic separator in air
JP2011177693A (en) Gas-liquid mixing apparatus
JP2004049998A (en) Magnetic oxygen separator
KR101825466B1 (en) Apparatus for preventing of rust and scale of water pipe
US11084741B2 (en) Apparatus, system and method for magnetic fluid treatment
CN201614331U (en) Active water aerator
KR20100013496A (en) Water purifying device
CZ307921B6 (en) Equipment for decomposing air into oxygen and nitrogen
JP2013095658A (en) Oxygen concentration apparatus
JP2004154704A (en) Apparatus for manufacturing magnetic active water
KR101295984B1 (en) Water purifier and sterilizer apparatus using an electron and an ion activated
RU2005135056A (en) METHOD FOR ENRICHING THIN-DISPERSED MINERAL WEIGHT AND ELECTROMAGNETIC SEPARATOR FOR ITS IMPLEMENTATION
JP2520633Y2 (en) Underwater dissolved oxygen supply device and underwater dissolved oxygen increasing device using the underwater dissolved oxygen supply device
JP2010002168A (en) Air reformer, reformed air supply device, and combustion rate improving air supply machine