JP2007275863A - Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner - Google Patents

Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner Download PDF

Info

Publication number
JP2007275863A
JP2007275863A JP2006209635A JP2006209635A JP2007275863A JP 2007275863 A JP2007275863 A JP 2007275863A JP 2006209635 A JP2006209635 A JP 2006209635A JP 2006209635 A JP2006209635 A JP 2006209635A JP 2007275863 A JP2007275863 A JP 2007275863A
Authority
JP
Japan
Prior art keywords
cyclone
inner cylinder
cyclone classifier
outer cylinder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006209635A
Other languages
Japanese (ja)
Inventor
Takahiro Kadota
孝洋 門田
Masato Kobayashi
正人 小林
Noboru Kuroda
昇 黒田
Kenichi Uehara
賢一 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006209635A priority Critical patent/JP2007275863A/en
Priority to EP06023902.7A priority patent/EP1787729B1/en
Priority to US11/561,220 priority patent/US8403149B2/en
Priority to CN2006101494451A priority patent/CN1966156B/en
Publication of JP2007275863A publication Critical patent/JP2007275863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Cyclones (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cyclone classifier with simple equipment structure which can finely adjust classified particle size and can catch classified particles with high precision and to attain classification of particles with higher precision by reducing suction of excess particles of large particle size. <P>SOLUTION: The cyclone classifier 1-4 comprises an outer cylinder which has a waistless part and an inverted-cone part vertically connected to an underside of the waistless part and an inner cylinder one end of which is inserted into the outer cylinder. The top end of the inner cylinder which is an exhaust and aspirating opening inserted into the outer cylinder is arranged within height of the inverted-cone part. Further the inner cylinder may be constituted of multiple pipes. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、粒径分布幅の広い粉体より所望の分布幅の粉体を分級及び捕集する為のサイクロン分級器に関する。   The present invention relates to a cyclone classifier for classifying and collecting powder having a desired distribution width from powder having a wide particle size distribution width.

近年、粉体に対する高機能化の要望が高くなり、小粒径かつ粒径分布幅の狭い粒子からなる粉体が求められている。粉体における粒径が比較的広範囲に渡り分布していると、粉体粒子に付与させる様々な機能のバラツキの原因となることから、より均一な粒径範囲の粉体を捕集することが粉体の高機能化にとって好ましい。例えば、電子写真装置に用いられるトナー粉体において、粒径分布幅が広いということは、均一帯電、均一溶融等の必要性能に対し不利になる。   In recent years, there has been an increasing demand for higher functionality for powders, and there has been a demand for powders composed of particles having a small particle size and a narrow particle size distribution range. If the particle size in the powder is distributed over a relatively wide range, it will cause variations in the various functions imparted to the powder particles, so it is possible to collect powder in a more uniform particle size range. It is preferable for high functionality of the powder. For example, in a toner powder used in an electrophotographic apparatus, a wide particle size distribution width is disadvantageous for required performance such as uniform charging and uniform melting.

粉体を均一な粒径に揃える手段として、分級方法が多々公知となっている。その公知分級技術の一つとして、サイクロン捕集器を用いる手段が挙げられる。通常、サイクロン捕集器は固気分離の装置として用いられる。気流に乗ってサイクロン捕集器内に流入した粉体粒子は、サイクロン捕集器内での旋回流により遠心効果を受け、サイクロン捕集器外筒の内表面側に寄り集まり次第に落下し、サイクロン捕集器外筒下部に設置された容器などに捕集される。粒子に比べ重量が非常に小さい気体(大概は空気)はサイクロン捕集器内部中心にある内筒からの排気によりサイクロン捕集器外へ排出される。   Many classification methods are known as means for aligning powders with a uniform particle size. One of the known classification techniques is a means using a cyclone collector. Usually, cyclone collectors are used as solid-gas separation devices. The powder particles that flow into the cyclone collector in the air current are subjected to a centrifugal effect due to the swirling flow in the cyclone collector, and gather toward the inner surface of the outer cylinder of the cyclone collector and gradually fall. It is collected in a container installed at the lower part of the collector outer cylinder. A gas (mostly air) that is much lighter than particles is discharged out of the cyclone collector by exhaust from the inner cylinder in the center of the cyclone collector.

この固気分離用サイクロン捕集器に工夫を凝らすことにより気体と一緒に小粒径粒子をも排出して、分級装置として用いる手段が多々公知技術として存在する。サイクロン捕集機自体は、粉体搬送などに一般的に用いられており、この設備に捕集器としてだけではなく、分級器としての機能を持たせることにより、分級工程を別途組み込む必要が省け、設備投資、工数の削減が図れることが大きな利点である。
ここで取り扱う粉体とは粒径が1mm以下のレベル、さらに言及すると数μmから数百μmまでの範囲を対象としているが、本発明の適用範囲はこの範囲に限定されない。またトナーに限らずあらゆる粉体に対し適用される。
There are many well-known techniques for devising the cyclone collector for solid-gas separation so as to discharge small particles together with the gas and use it as a classifier. The cyclone collector itself is generally used for powder conveyance, etc. By making this equipment function not only as a collector but also as a classifier, there is no need to separately incorporate a classification process. It is a great advantage that capital investment and man-hours can be reduced.
The powder handled here is targeted at a particle size of 1 mm or less, more specifically, a range from several μm to several hundred μm, but the application range of the present invention is not limited to this range. Further, the present invention is applied to all powders, not limited to toner.

特許文献1には固気分離用サイクロン捕集器の内筒先端吸引口を通常位置より引き上げる事で、排気側へより大きな径の粒子を引き込む事が出来ると記載されている。サイクロン捕集器による分級は、サイクロン内旋回流が粉体粒子に与える遠心力によって、サイクロン分級器外筒中心軸から外周部に向けて粉体粒径の小さい順に分布させることによって達成される。特許文献1に記載されている技術のように内筒先端位置を引き上げる事は、即ちサイクロン導入口よりサイクロン本体へ流入した粉体へサイクロン内旋回流による遠心力が掛かる間もなく、導入口近辺位置から吸引されている状態であり、その分級効果は殆ど無いに等しく、歩留も悪化する。   Patent Document 1 describes that particles having a larger diameter can be drawn to the exhaust side by pulling up the inner cylinder tip suction port of the cyclone collector for solid-gas separation from the normal position. The classification by the cyclone collector is achieved by distributing the powder particles in order of increasing particle diameter from the central axis of the outer cylinder of the cyclone classifier toward the outer periphery by the centrifugal force applied to the powder particles by the swirling flow in the cyclone. Pulling up the inner cylinder tip position as in the technique described in Patent Document 1, that is, the centrifugal force due to the swirling flow in the cyclone is not applied to the powder flowing into the cyclone main body from the cyclone inlet, but from the position near the inlet. It is in a state of being sucked, its classification effect is almost the same, and the yield is also deteriorated.

特許文献2にはサイクロン内筒の径を変更する事により分級精度を可変にすることが記載されているが、この方法では、分級粒子粒径を微調整することは困難である。
特許文献3には外筒と同一軸心上の中央部に内筒の先端開口面積より小さい開口部を有するオリフィス形状の仕切り板を設置して、粉体含有気流を該仕切り板により筒部の中心部へ流速を高めて集合させるようにする技術が記載されている。この方法によれば、筒部中心部へ流速が高まる事により、粉体粒子の粒径による分離能力は高められるが、分級粒子粒径を微調整することは困難である。
Patent Document 2 describes that the classification accuracy can be made variable by changing the diameter of the cyclone inner cylinder. However, it is difficult to finely adjust the classification particle diameter by this method.
In Patent Document 3, an orifice-shaped partition plate having an opening smaller than the tip opening area of the inner tube is installed at the center on the same axis as the outer tube, and the powder-containing airflow is separated from the tube portion by the partition plate. A technique is described in which the flow rate is increased at the center to be assembled. According to this method, by increasing the flow velocity toward the center of the cylindrical portion, the separation ability based on the particle size of the powder particles is enhanced, but it is difficult to finely adjust the classified particle size.

特開平3−079906号公報Japanese Patent Application Laid-Open No. 3-079906 特開2003−275685号公報JP 2003-275658 A 特開2004−283720号公報JP 2004-283720 A

以上の技術的背景をもとに本発明が解決しようとする課題は、分級粒子粒径を微調整可能で、高精度で捕集できるサイクロン分級器を簡易な設備構造にて提供することである。
さらに余計な大粒径粒子の吸引を減らし、より精度の高い粉体の分級が可能となるサイクロン分級器を提供することである。
The problem to be solved by the present invention based on the above technical background is to provide a cyclone classifier that can finely adjust the classification particle size and can be collected with high accuracy with a simple equipment structure. .
Furthermore, it is to provide a cyclone classifier capable of reducing the suction of extra large particle diameter particles and enabling more accurate powder classification.

本発明者らは、高画質、高品位なトナーを得るため、少なくとも樹脂、着色剤からなるトナー組成物を有機溶剤に溶解または分散し、該溶解物または分散物を水系媒体中で乳化し、洗浄、固液分離した含水ケーキを、気流式乾燥機にて乾燥した後にサイクロン捕集器にて固気分離した着色重合体粒子を捕集する工程において、サイクロン分級器を活用して分級を行い、所望の狭い範囲で粒径分布を有する着色重合体粒子を高歩留で得る為の条件を鋭意検討した結果、本発明に至った。   In order to obtain a high-quality, high-quality toner, the inventors of the present invention dissolve or disperse a toner composition comprising at least a resin and a colorant in an organic solvent, and emulsify the dissolved or dispersed material in an aqueous medium. In the process of collecting colored polymer particles that have been solid-gas separated in a cyclone collector after drying the hydrous cake that has been washed and solid-liquid separated in an air-flow dryer, classification is performed using a cyclone classifier. As a result of intensive studies on conditions for obtaining colored polymer particles having a particle size distribution in a desired narrow range at a high yield, the present invention has been achieved.

通常、サイクロン捕集器内では旋回流により、粒子に遠心力が与えられ、粒子はサイクロン外筒の内表面近傍に密集して旋回し、最終的にサイクロンの逆円錐状コーン部下に設置された製品捕集タンクなどの回収部へ落下していく。この旋回流に乗った粒子の中でも粒径の大きさにより付与される遠心力が異なる為、粒径の大きな粒子はサイクロン外筒の内表面近傍に、粒径の小さな粒子はさらにその内側(サイクロン中心部寄り)に位置し、即ち粒径の大きな粒子ほど外筒の内表面近傍に位置して旋回落下していく。この密集しつつもその中では粒径順に分布している旋回流内粉体のうち、内側(サイクロン中心部寄り)に位置する粒径の小さな粒子のみを吸引することで、サイクロンへ投入した比較的粒度分布幅の広い粉体から小粒径粒子のみを除去する、即ち分級する事が可能となる。   Normally, centrifugal force is applied to the particles by the swirling flow in the cyclone collector, and the particles swirl close to the inner surface of the cyclone outer cylinder, and finally installed under the inverted cone cone part of the cyclone. It falls to the collection part such as a product collection tank. Among the particles on this swirl flow, the centrifugal force applied depends on the size of the particle size, so that the larger particle size is near the inner surface of the cyclone outer cylinder, and the smaller particle size is further inside (the cyclone). In other words, the larger the particle size, the closer to the inner surface of the outer cylinder, the more the particles fall. A comparison of the powders in the swirling flow that are densely distributed in the order of the particle size, but only the small particles located inside (near the center of the cyclone) are sucked into the cyclone. It is possible to remove, that is, classify, only small-sized particles from a powder having a wide target particle size distribution width.

しかしながら、この密集した旋回落下粉体から粒径の小さな粒子のみを選別吸引するのは、非常に精密な制御が必要となる。本発明では、内筒を精度良く上下動させることにより、密集した旋回落下粉体の存在するサイクロンの逆円錐状コーン部内表面と内筒先端の隙間を自由に変化させ、旋回落下粉体の内側(サイクロン中心部寄り)に存在する粒径の小さな粒子を随意に吸引させる。   However, the selection and suction of only small particles from this dense swirling falling powder requires very precise control. In the present invention, by accurately moving the inner cylinder up and down, the gap between the inner surface of the inverted cone cone portion of the cyclone where the dense swirling falling powder exists and the tip of the inner cylinder is freely changed, Particles having a small particle diameter existing near the cyclone center are optionally sucked.

すなわち、本発明によれば、下記(1)〜(10)が提供される。
(1)逆円錐状コーン部の上端に直胴部を接続した外筒と、外筒内に一端が挿入された内筒からなるサイクロン分級器において、排気吸引口である外筒内に挿入された内筒先端が、外筒における逆円錐状コーン部の存在する高さの範囲内に配置される事を特徴とするサイクロン分級器である。
That is, according to the present invention, the following (1) to (10) are provided.
(1) In a cyclone classifier consisting of an outer cylinder with a straight barrel connected to the upper end of an inverted conical cone and an inner cylinder with one end inserted into the outer cylinder, the cyclone classifier is inserted into the outer cylinder as an exhaust suction port. The cyclone classifier is characterized in that the tip of the inner cylinder is disposed within a height range where the inverted conical cone portion exists in the outer cylinder.

(2)前記内筒先端位置が少なくとも前記逆円錐状コーン部の存在する高さの範囲内で可変である(1)記載のサイクロン分級器である。
(3)前記逆円錐状のコーン部母線の垂線に対する傾斜角が45゜以下である(1)又は(2)に記載のサイクロン分級器である。
(4)前記内筒が多重管により多層構成される(1)から(3)のいずれかに記載のサイクロン分級器である。
(2) The cyclone classifier according to (1), wherein the tip position of the inner cylinder is variable at least within a height range where the inverted conical cone portion exists.
(3) The cyclone classifier according to (1) or (2), wherein an inclination angle of the inverted conical cone portion bus with respect to the perpendicular is 45 ° or less.
(4) The cyclone classifier according to any one of (1) to (3), in which the inner cylinder is formed of multiple tubes.

(5)前記多重管により多層構成される内筒の先端位置の少なくとも一つが前記逆円錐状コーン部の存在する高さの範囲内に配置される(4)に記載のサイクロン分級器である。
(6)前記多重管により多層構成される内筒が、各層先端位置が各々独立して可変である(4)又は(5)に記載のサイクロン分級器である。
(7)前記多重管により多層構成される内筒より吸引排出された粉体が、各々独立して設置される捕集容器に回収されることを特徴とする(4)から(6)のいずれかに記載のサイクロン分級器である。
(5) The cyclone classifier according to (4), wherein at least one of the tip positions of the inner cylinder constituted by the multiple pipes is disposed within a height range where the inverted conical cone portion exists.
(6) The cyclone classifier according to (4) or (5), wherein the inner cylinder constituted by the multiple pipes is variable in the position of each layer tip independently.
(7) Any one of (4) to (6), wherein the powder sucked and discharged from the inner cylinder constituted by the multiple tubes is collected in a collecting container installed independently. It is a cyclone classifier according to the above.

(8)前記サイクロン分級器において、気流乾燥機を備えたことを特徴とする(1)から(7)のいずれかに記載のサイクロン分級器である。
(9)上記(1)から(8)のいずれかに記載のサイクロン分級器を用いてトナー粉体を分級する工程と、分級されたトナー粉体を捕集する工程とを有するトナーの製造方法である。
(10)上記(1)から(8)のいずれかに記載のサイクロン分級器を用いて捕集されたトナーである。
(8) The cyclone classifier according to any one of (1) to (7), wherein the cyclone classifier includes an air dryer.
(9) A method for producing toner, comprising: a step of classifying toner powder using the cyclone classifier according to any one of (1) to (8) above; and a step of collecting the classified toner powder. It is.
(10) Toner collected using the cyclone classifier according to any one of (1) to (8) above.

本発明によると、簡易な設備構造にて分級精度の高いサイクロン分級器を提供できる。
更に、内筒を多重管とすることによって、粉体を数度に分けて少量ずつ吸引することができ、余計な大粒径粒子の吸引量が減少し、より分級精度の高いサイクロン分級器を提供できる。
According to the present invention, a cyclone classifier with high classification accuracy can be provided with a simple equipment structure.
Furthermore, by making the inner cylinder into a multiple tube, powder can be sucked in small portions in several degrees, the amount of extra large particle size suction is reduced, and a cyclone classifier with higher classification accuracy can be obtained. Can be provided.

以下に本発明の詳細を説明する。下記の説明では電子写真用重合法トナーを挙げているが、本発明は重合法トナーや粉砕法トナーに限らず、あらゆる粉体に対して有効な手段である。   Details of the present invention will be described below. In the following description, electrophotographic polymerization toner is mentioned, but the present invention is not limited to polymerization toner and pulverization toner, and is an effective means for all powders.

本発明においては、逆円錐状コーン部の上端に直胴部が接続された外筒と、外筒内に一端が挿入された内筒からなるサイクロン分級器において、外筒内に挿入された内筒先端である排気吸引口が、逆円錐状コーン部の存在する高さの範囲内に配置され、可変である事を特徴とする。その際、逆円錐状コーン部母線の垂線に対する傾斜角が重要になる。傾斜角が大きければ、仮に内筒の上下動が微量でも、内筒先端とコーン部内表面との隙間の変動が大きくなり、また旋回流の旋回径の変動も大きくなる。即ち分級粒径の微調整が困難になる。このため傾斜角としては45゜以下が好ましい。   In the present invention, in a cyclone classifier comprising an outer cylinder having a straight barrel connected to the upper end of an inverted conical cone and an inner cylinder having one end inserted into the outer cylinder, the inner cylinder inserted into the outer cylinder The exhaust suction port, which is the tip of the cylinder, is arranged within the range of the height where the inverted conical cone portion exists and is variable. At that time, the inclination angle of the inverted conical cone portion bus with respect to the perpendicular becomes important. If the inclination angle is large, even if the vertical movement of the inner cylinder is very small, the fluctuation of the gap between the tip of the inner cylinder and the inner surface of the cone portion increases, and the fluctuation of the swirling diameter of the swirling flow also increases. That is, fine adjustment of the classified particle size becomes difficult. Therefore, the inclination angle is preferably 45 ° or less.

また、内筒を多重管にし、各々独立して可変にすると、例えば二重管の場合では逆円錐状コーン部下の回収容器に回収される粉体と、内筒の外側管に吸引される粉体と、内筒の内側管に吸引される粉体の三分割分級が可能となる。この分割での分級粒径は内筒の多重管それぞれが独立して可変なことにより、随意に調整可能である。多重管での多重分割分級により、単重管内筒での分級より精度良く分級できるだけでは無く、外側の内筒で小粒径の粉体を回収し、内側の内筒で中粒径の粉体を回収し、下部の落下捕集器で大粒径の粉体を回収することや、またそれら別々に回収された粉体を各々製品として戻したり、所望粒径以下の小粒径粒子として廃棄したり随意にできる。   In addition, when the inner cylinder is made into a multiple pipe and can be made variable independently, for example, in the case of a double pipe, the powder collected in the collection container under the inverted conical cone portion and the powder sucked into the outer pipe of the inner cylinder It is possible to classify the body and the powder sucked into the inner tube of the inner cylinder into three parts. The classified particle diameter in this division can be arbitrarily adjusted by independently changing the multiple tubes of the inner cylinder. Multiple division classification with multiple pipes not only enables classification with higher accuracy than single cylinder inner cylinders, but also collects small particle size powder with the outer inner cylinder, and medium particle size powder with the inner inner cylinder. And collect the powder with large particle size with the drop collector at the bottom, or return the separately collected powder as a product or discard it as small particle size below desired particle size You can do it at will.

本発明のメリットとして、他の製造機器付帯の固気分離サイクロンをそのまま分級サイクロンとして転用でき、その際に新たに動力源を必要とせず、リーズナブルな事である。本発明では、気流乾燥後の粉体回収用サイクロンを転用し、分級能力をもたせることを想定し検討を行った。実際の気流乾燥機とサイクロンの配置概略図を図5に、気流乾燥機本体の概略図を図6に示す。図5に示すように、給気ファン(3−1)より出された気流は、ヒータ(3−2)により加熱され、乾燥風として気流乾燥機本体(3−3)へ供給される。同時に供給機(3−4)より含水ケーキが気流乾燥機本体へ供給される。解砕・乾燥が充分に行われた着色重合体粒子は排出口を通ってサイクロン(3−5)で捕集され、タ
ンク(3−6)へ回収される。図5において(3−7)はバグフィルターであり、(3−8)は排気ファンである。本発明は捕集用サイクロンに分級機能を持たせるため工夫をこらしたものである。
図6において、(4−1)は乾燥機本体、(4−2)は含水ケーキ投入口、(4−3)は乾燥風供給口、(4−4)は乾燥後着色重合体粒子と乾燥風の排出口である。この気流乾燥機において、加熱された乾燥風を乾送風供給口(4−3)より乾燥機本体内(4−1)へ供給する。乾燥風は含水ケーキ投入口(4−2)より連続的に投入される含水ケーキを乾かしつつ乾燥機本体内(4−1)を循環し、充分に乾燥した乾燥後着色重合体粒子と共に排出口(4−4)へ連続的に排出される。
As an advantage of the present invention, the solid-gas separation cyclone attached to other production equipment can be used as it is as a classification cyclone, and at that time, a new power source is not required and it is reasonable. In the present invention, the examination was performed on the assumption that the cyclone for powder recovery after airflow drying is diverted to have a classification ability. FIG. 5 shows a schematic arrangement of an actual air dryer and a cyclone, and FIG. 6 shows a schematic diagram of the main body of the air dryer. As shown in FIG. 5, the airflow emitted from the air supply fan (3-1) is heated by the heater (3-2) and supplied as dry air to the airflow dryer main body (3-3). At the same time, the water-containing cake is supplied from the feeder (3-4) to the main body of the air dryer. The colored polymer particles that have been sufficiently crushed and dried are collected by the cyclone (3-5) through the discharge port and collected in the tank (3-6). In FIG. 5, (3-7) is a bag filter, and (3-8) is an exhaust fan. The present invention has been devised to give the collection cyclone a classification function.
In FIG. 6, (4-1) is a dryer main body, (4-2) is a wet cake inlet, (4-3) is a dry air supply port, and (4-4) is a colored polymer particle and dried after drying. Wind outlet. In this air dryer, the heated drying air is supplied from the dry air supply port (4-3) into the dryer main body (4-1). The drying wind circulates in the dryer main body (4-1) while drying the hydrous cake continuously fed from the hydrous cake inlet (4-2), and discharges together with the colored polymer particles after drying. It is discharged continuously to (4-4).

以下、本発明および本発明に用いた着色重合体粒子の製造過程を説明するが、本発明は以下に述べられる着色重合体粒子のみに限定されるものではなく、他の様々な種類、粒径の粒子に対しても有効である。以下、部は重量部を示す。   Hereinafter, the production process of the present invention and colored polymer particles used in the present invention will be described. However, the present invention is not limited to the colored polymer particles described below, but various other types and particle sizes. It is also effective for other particles. Hereinafter, a part shows a weight part.

(原材料の調整)
撹拌棒および温度計をセットした反応容器に、水683部、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(エレミノールRS−30:三洋化成工業製)11部、スチレン138部、メタクリル酸138部、過硫酸アンモニウム1部を仕込み、400回転/分で15分間撹拌したところ、白色の乳濁液が得られた。加熱して、系内温度75℃まで昇温し5時間反応させた。さらに、1%過硫酸アンモニウム水溶液30部を加え、75℃で5時間熟成してビニル系樹脂(スチレン−メタクリル酸−メタクリル酸エテレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液[微粒子分散液]とする。
(Raw material adjustment)
In a reaction vessel equipped with a stir bar and a thermometer, 683 parts of water, 11 parts of sodium salt of ethylene oxide methacrylate adduct sulfate (Eleminol RS-30: manufactured by Sanyo Chemical Industries), 138 parts of styrene, 138 parts of methacrylic acid, When 1 part of ammonium persulfate was charged and stirred at 400 rpm for 15 minutes, a white emulsion was obtained. The system was heated to raise the system temperature to 75 ° C. and reacted for 5 hours. Further, 30 parts of a 1% ammonium persulfate aqueous solution was added, and the mixture was aged at 75 ° C. for 5 hours, and an aqueous dispersion of a vinyl resin (a copolymer of a sodium salt of a styrene-methacrylic acid-methacrylic acid etherene oxide adduct sulfate). This is referred to as “fine particle dispersion”.

さらに[微粒子分散液]83部に水990部、ドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(エレミノールMON−7:三洋化成工業製)37部、酢酸エチル90部を混合撹拌し、乳白色の液体を得た。
これを[水相]とする。
Further, 83 parts of [fine particle dispersion] were mixed with 990 parts of water, 37 parts of a 48.5% aqueous solution of sodium dodecyl diphenyl ether disulfonate (Eleminol MON-7: manufactured by Sanyo Chemical Industries), and 90 parts of ethyl acetate. Got.
This is referred to as [aqueous phase].

冷却管、撹拌機および窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物229部、ビスフェノールAプロピレンオキサイド3モル付加物529部、テレフタル酸208部、アジピン酸46部およびジブチルチンオキサイド2部を入れ、常圧230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応した後、反応容器に無水トリメリット酸44部を入れ、常圧180℃で2時間反応し、[低分子ポリエステル]を得た。
冷却管、撹拌機および窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物682部、ビスフェノールAプロピレンオキサイド2モル付加物81部、テレフタル酸283部、無水トリメリット酸22部およびジブチルチンオキサイド2部を入れ、常圧230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応させ[中間体ポリエステル]を得た。
次に、冷却管、撹拌機および窒素導入管の付いた反応容器中に、[中間体ポリエステル]410部、イソホロンジイソシアネート89部、酢酸エチル500部を入れ100℃で5時間反応し、[A油相]を得た。
In a reaction vessel equipped with a condenser, a stirrer and a nitrogen inlet tube, 229 parts of bisphenol A ethylene oxide 2-mole adduct, 529 parts of bisphenol A propylene oxide 3-mole adduct, 208 parts terephthalic acid, 46 parts adipic acid and dibutyl Add 2 parts of tin oxide, react for 8 hours at 230 ° C. under normal pressure, and further react for 5 hours under reduced pressure of 10-15 mmHg, then add 44 parts of trimellitic anhydride to the reaction vessel and react for 2 hours at 180 ° C. under normal pressure. As a result, [low molecular polyester] was obtained.
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 682 parts of bisphenol A ethylene oxide 2-mole adduct, 81 parts of bisphenol A propylene oxide 2-mole adduct, 283 parts of terephthalic acid, 22 parts of trimellitic anhydride Then, 2 parts of dibutyltin oxide was added, reacted at 230 ° C. under normal pressure for 8 hours, and further reacted at reduced pressure of 10 to 15 mmHg for 5 hours to obtain an [intermediate polyester].
Next, 410 parts of [intermediate polyester], 89 parts of isophorone diisocyanate, and 500 parts of ethyl acetate were placed in a reaction vessel equipped with a cooling pipe, a stirrer, and a nitrogen introduction pipe, and reacted at 100 ° C. for 5 hours. Phase].

撹拌棒および温度計をセットした反応容器に、イソホロンジアミン170部とメチルエチルケトン75部を仕込み、50℃で5時間反応を行い、[ケチミン化合物]を得た。   In a reaction vessel equipped with a stirrer and a thermometer, 170 parts of isophoronediamine and 75 parts of methyl ethyl ketone were charged and reacted at 50 ° C. for 5 hours to obtain [ketimine compound].

水1200部、カーボンブラック(Printex35 デクサ製)540部〔DBP吸油量=42ml/100mg、pH=9.5〕、ポリエステル樹脂1200部を加え、
ヘンシェルミキサー(三井鉱山社製)で混合し、混合物を2本ロールを用いて150℃で30分混練後、圧延冷却しパルペライザーで粉砕、[マスターバッチ]を得た。
1200 parts of water, 540 parts of carbon black (manufactured by Printex 35 Dexa) [DBP oil absorption = 42 ml / 100 mg, pH = 9.5], 1200 parts of polyester resin are added,
The mixture was mixed with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.), and the mixture was kneaded at 150 ° C. for 30 minutes using two rolls, then cooled by rolling and pulverized with a pulverizer to obtain a [masterbatch].

撹拌棒および温度計をセットした容器に、[低分子ポリエステル]378部、カルナバWAX110部、CCA(サリチル酸金属錯体E−84:オリエント化学工業)22部、酢酸エチル947部を仕込み、撹拌下80℃に昇温し、80℃のまま5時間保持した後、1時問で30℃に冷却した。次いで容器に[マスターバッチ]500部、酢酸エチル500部を仕込み、1時間混合し[原料溶解液]を得た。   A container equipped with a stir bar and a thermometer was charged with 378 parts of [low molecular polyester], 110 parts of Carnauba WAX, 22 parts of CCA (salicylic acid metal complex E-84: Orient Chemical Co., Ltd.), and 947 parts of ethyl acetate. The temperature was raised to 80 ° C. and maintained at 80 ° C. for 5 hours, and then cooled to 30 ° C. over 1 hour. Next, 500 parts of [Masterbatch] and 500 parts of ethyl acetate were charged in a container and mixed for 1 hour to obtain [Raw material solution].

[原料溶解液]1324部を容器に移し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒、0.5mmジルコニアビーズを80体積%充填、3パスの条件で、カーボンブラック、WAXの分散を行った。次いで、[低分子ポリエステル]の65%酢酸エチル溶液1324部加え、上記条件のビーズミルで1パスし、[顔料・WAX分散液]を得た。   [Raw material solution] Transfer 1324 parts to a container and use a bead mill (Ultra Visco Mill, manufactured by Imex Co., Ltd.) to fill a liquid feed speed of 1 kg / hr, a disk peripheral speed of 6 m / sec, and 80% by volume of 0.5 mm zirconia beads. Carbon black and WAX were dispersed under conditions of 3 passes. Next, 1324 parts of a 65% ethyl acetate solution of [low molecular weight polyester] was added, and one pass was performed with a bead mill under the above conditions to obtain [Pigment / WAX Dispersion].

[顔料・WAX分散液]664部、[ケチミン化合物]5.9部を容器に入れ、ディスパーにて充分に混合し[B油相]を得る。   [Pigment / WAX dispersion] 664 parts and [ketimine compound] 5.9 parts are put in a container and mixed well with a disper to obtain [B oil phase].

(乳化工程)
[A油相]と[B油相]を送液ポンプにて送液し、スタティックミキサー(ノリタケカンパニー製)を通し混合する。送液量は[A油相]7.4部に対し、[B油相]を60.4部となる様に調整する。ここで充分に混合され一様になったもの([油相]と呼ぶ)を別途送液ポンプにて送り出された[水相]101.6部と合流させ、連続乳化機パイプラインホモミキサー[特殊機化工業(株)製]にて8400rpmで多大なせん断力を与え乳化する。この時、[水相]媒体中に着色重合体粒子となる微小な[油相]液滴が存在する[スラリー液A]となる。
(Emulsification process)
[A oil phase] and [B oil phase] are fed with a feed pump and mixed through a static mixer (manufactured by Noritake Co.). The liquid feed amount is adjusted so that [B oil phase] becomes 60.4 parts with respect to [A oil phase] 7.4 parts. Here, the well-mixed and uniform mixture (referred to as [oil phase]) is combined with 101.6 parts of [aqueous phase] fed separately by a liquid feed pump, and the continuous emulsifier pipeline homomixer [ Giving a great shearing force at 8400 rpm and emulsifying with Special Machine Chemical Co., Ltd.]. At this time, it becomes [Slurry liquid A] in which minute [oil phase] droplets that become colored polymer particles are present in the [aqueous phase] medium.

(脱溶剤工程、熟成工程)
撹拌機および温度計をセットした容器に、有機溶剤を含有した[スラリー液A]を投入し、40℃で8時間脱溶剤した後、60℃で8時間熟成を行い[スラリー液B]を得た。
(Solvent removal process, aging process)
[Slurry liquid A] containing an organic solvent is put into a container in which a stirrer and a thermometer are set, and after removing the solvent at 40 ° C. for 8 hours, aging is performed at 60 ° C. for 8 hours to obtain [slurry liquid B]. It was.

(洗浄工程、固液分離工程)
[スラリー液B]100部を、フィルタープレスで固液分離し、圧搾圧力0.4MPaで脱水して[含水ケーキA]を得た。
この[含水ケーキA]100部にイオン交換水200部を加え、TKホモミキサーで均一に分散(回転数6,000rpmで30分間)し、[分散スラリー液A]を得た。
[分散スラリー液A]100部を、サイホンピラー型セントリフュージで、遠心効果1000Gで固液分離し、[含水ケーキB]を得た。
(Washing process, solid-liquid separation process)
[Slurry liquid B] 100 parts were solid-liquid separated with a filter press and dehydrated with a pressing pressure of 0.4 MPa to obtain [Hydrohydrate cake A].
To 100 parts of this [hydrated cake A], 200 parts of ion-exchanged water was added and dispersed uniformly with a TK homomixer (rotation speed: 6,000 rpm for 30 minutes) to obtain [Dispersed slurry liquid A].
100 parts of [dispersed slurry liquid A] was subjected to solid-liquid separation using a siphon pillar type centrefuge with a centrifugal effect of 1000 G to obtain [hydrous cake B].

(乾燥工程)
[含水ケーキB]を気流乾燥機にて乾燥した。[含水ケーキB]の含水率は25重量%であった。
今回、気流乾燥機はMODEL4−THERMAJET FLASH DRYER(FLUID ENERGY社製)を用いた。本発明においては、気流乾燥機から排出される着色重合体粒子を捕集する為のサイクロンに改造を加える事により、分級用サイクロンとすることも可能である。本発明では今回用いた気流乾燥機に限らず、分級される目的のあらゆる粉体とあらゆる気体が固気混合されて排出される様々な気流乾燥機に用いることが可能である。気流乾燥機の一例をあげると、フラッシュジェットドライヤー(セイシン企業社製)、フラッシュドライヤー(ホソカワミクロン社製)、クリーンフラッシュ(月島機械社製)、THERMA JET FLASH DRYER(FLUID ENERG
Y社製)等がある。
今回、気流乾燥機の乾燥条件は、風量10m/min、入口温度65℃、出口温度33℃に設定した。この条件で気流乾燥を行った結果、乾燥処理速度は0.5kg/minであった。また、気流乾燥後含水率は0.9重量%であった。
(Drying process)
[Water-containing cake B] was dried with a flash dryer. [Water-containing cake B] had a water content of 25% by weight.
This time, MODEL4-THERMAJET FLASH DRYER (manufactured by FLUID ENERGY) was used as the air dryer. In the present invention, a cyclone for classification can be obtained by modifying the cyclone for collecting the colored polymer particles discharged from the air dryer. The present invention is not limited to the air dryer used this time, but can be used for various air dryers in which any powder to be classified and any gas are mixed and discharged. Examples of airflow dryers include flash jet dryers (manufactured by Seishin Enterprise Co., Ltd.), flash dryers (manufactured by Hosokawa Micron Corp.), clean flashes (manufactured by Tsukishima Kikai Co., Ltd.), THERMA JET FLASH DRYER (FLUID ENERG
Y).
This time, the drying conditions of the air dryer were set to an air volume of 10 m 3 / min, an inlet temperature of 65 ° C., and an outlet temperature of 33 ° C. As a result of airflow drying under these conditions, the drying treatment speed was 0.5 kg / min. The moisture content after air-drying was 0.9% by weight.

<実施例1>
上記乾燥工程を経た着色重合体粒子を実験型サイクロン分級器にて分級した。使用したサイクロン分級器及びその付帯設備模式図を図1に示す。排気ファン(1−8)により空気が吸引される為、本発明を用いたサイクロン分級器(1−4)と、そのサイクロン分級機の内筒より排気と共に吸引される小粒径粒子を捕集する為のサイクロン捕集器(1−6)内に旋回流が発生する。まず、粉フィーダー(1−1)より着色重合体粒子が受皿(1−3)内へと定量連続排出される。受皿(1−3)内へ排出された着色重合体粒子は、排気ファン(1−8)の吸引及び送粉エアー(1−2)からの気流に乗り、サイクロン分級器(1−4)内に送られる。サイクロン分級器(1−4)内の旋回流により所望粒径、粒度分布幅に分級された着色重合体粒子は所望粒径粒子捕集容器(1−5)に落下捕集される。所望粒径より小さな粒径の着色重合体粒子はサイクロン分級器(1−4)内筒から排出され、サイクロン捕集器(1−6)に入る。サイクロン捕集器(1−6)の旋回流により所望粒径より小さな粒径の着色重合体粒子は全て捕集され、小粒径粒子捕集容器(1−7)内に落下する。
<Example 1>
The colored polymer particles that had undergone the drying step were classified using an experimental cyclone classifier. A schematic diagram of the cyclone classifier used and its associated facilities is shown in FIG. Since air is sucked by the exhaust fan (1-8), the small particle size particles sucked together with the exhaust from the cyclone classifier (1-4) using the present invention and the inner cylinder of the cyclone classifier are collected. A swirling flow is generated in the cyclone collector (1-6) for this purpose. First, the colored polymer particles are quantitatively discharged continuously from the powder feeder (1-1) into the tray (1-3). The colored polymer particles discharged into the tray (1-3) are taken by the suction of the exhaust fan (1-8) and the air flow from the powder feed air (1-2), and are then placed in the cyclone classifier (1-4). Sent to. The colored polymer particles classified into the desired particle size and the particle size distribution width by the swirling flow in the cyclone classifier (1-4) are dropped and collected in the desired particle size particle collecting container (1-5). Colored polymer particles having a particle size smaller than the desired particle size are discharged from the inner cylinder of the cyclone classifier (1-4) and enter the cyclone collector (1-6). All colored polymer particles having a particle size smaller than the desired particle size are collected by the swirling flow of the cyclone collector (1-6) and fall into the small particle size particle collecting container (1-7).

本実施例1にて使用したサイクロン分級器の概略図を図2に示す。サイクロン導入部(2−1)から流入した広い粒径分布幅を持った着色重合体粒子群はサイクロン内旋回流によって、サイクロン外筒直胴部(2−3)内で遠心力を受け次第にサイクロン外筒逆円錐状コーン部(2−4)に沿い降下する。サイクロン外筒直胴部(2−3)及びサイクロン外筒逆円錐状コーン部(2−4)にて受けた遠心力により、旋回流粉体内において、サイクロン中心(旋回中心)寄りに集まった小粒径粒子はサイクロン内筒(2−2)からの排気流とともに本発明を用いたサイクロン分級器から排出される。   A schematic diagram of the cyclone classifier used in Example 1 is shown in FIG. The colored polymer particle group having a wide particle size distribution width flowing from the cyclone introduction part (2-1) receives the centrifugal force in the cyclone outer cylinder straight part (2-3) by the swirling flow in the cyclone and gradually becomes a cyclone. It descends along the outer cylinder inverted conical cone part (2-4). Small particles gathered near the cyclone center (swivel center) in the swirling powder by the centrifugal force received by the cyclone outer cylinder straight body part (2-3) and the cyclone outer cylinder inverted conical cone part (2-4). The particle size particles are discharged from the cyclone classifier using the present invention together with the exhaust flow from the cyclone inner cylinder (2-2).

今回、各実施例及び比較例には同じ着色重合体粒子を用いた。
用いた着色重合体粒子は体積平均粒径Dv=5.8μm、体積平均粒径Dv[μm]を個数平均粒径Dn[μm]で除したDv/Dnは粉体の粒径分布幅を示し、Dv/Dnが1.00に近いほど粒度分布幅が狭く粒径の揃った粉体である。用いた着色重合体粒子はDv/Dn=1.18であった。また、今回の除去目的である小粒径粒子は粒径4μmであり、着色重合体粒子粉体中の粒径4μm以下含有率=14.6個数%のものであった。
This time, the same colored polymer particles were used in each of the examples and comparative examples.
The colored polymer particles used have a volume average particle diameter Dv = 5.8 μm, and Dv / Dn obtained by dividing the volume average particle diameter Dv [μm] by the number average particle diameter Dn [μm] indicates the particle size distribution width of the powder. , The closer the Dv / Dn is to 1.00, the narrower the particle size distribution width and the more uniform the particle size. The colored polymer particles used were Dv / Dn = 1.18. Further, the small particle size particles to be removed this time have a particle size of 4 μm, and the content of the particle size of 4 μm or less in the colored polymer particle powder was 14.6% by number.

実験を行ったサイクロンの諸条件は、排気ファン風量270m3/h、着色重合体粒子
フィード量8.7kg/hであり、サイクロン外筒内径155mm、サイクロン外筒直胴部長さ300mm、サイクロン外筒逆円錐状コーン部長さ(2−4:垂線方向長さ)200mm、サイクロン外筒逆円錐状コーン部の母線(2−α)と垂線(2−β)のなす傾斜角度(2−γ)15゜、内筒内径55mmであった。
本実施例1においては、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から350mmの位置とした。
The conditions of the cyclone in which the experiment was conducted were an exhaust fan air flow rate of 270 m 3 / h, a colored polymer particle feed rate of 8.7 kg / h, a cyclone outer cylinder inner diameter of 155 mm, a cyclone outer cylinder straight body length of 300 mm, a cyclone outer cylinder Reverse cone cone part length (2-4: perpendicular direction length) 200 mm, inclination angle (2-γ) 15 formed by the bus (2-α) and the perpendicular line (2-β) of the cyclone outer cylinder inverse cone cone part The inner cylinder inner diameter was 55 mm.
In Example 1, the length of the inner cylinder (2-2) in the cyclone was 350 mm from the uppermost surface (2-5) of the cyclone outer cylinder.

<実施例2>
本実施例2においては、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から400mmの位置とした。他の条件は実施例1と同じくした。
<Example 2>
In the present Example 2, the length of the inner cylinder (2-2) in the cyclone was 400 mm from the uppermost surface (2-5) of the cyclone outer cylinder. Other conditions were the same as in Example 1.

<実施例3>
本実施例3においては、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から450mmの位置とした。他の条件は実施例1と同じくした。
<Example 3>
In the present Example 3, the length of the inner cylinder (2-2) in the cyclone was 450 mm from the uppermost surface (2-5) of the cyclone outer cylinder. Other conditions were the same as in Example 1.

<実施例4>
本実施例4においては、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から460mmの位置とした。他の条件は実施例1と同じくした。
<Example 4>
In the present Example 4, the length of the inner cylinder (2-2) in the cyclone was 460 mm from the uppermost surface (2-5) of the cyclone outer cylinder. Other conditions were the same as in Example 1.

<実施例5>
本実施例5においては、サイクロン外筒逆円錐状コーン部(2−4)の母線(2−α)と垂線(2−β)のなす傾斜角度(2−γ)を45゜に、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から310mmの位置とした。他の条件は実施例1と同じくした。
<Example 5>
In the fifth embodiment, the inclination angle (2-γ) formed between the generatrix (2-α) and the perpendicular line (2-β) of the cyclone outer cylinder inverted conical cone portion (2-4) is 45 °, and the inner cylinder The internal length of the cyclone (2-2) was 310 mm from the uppermost surface (2-5) of the cyclone outer cylinder. Other conditions were the same as in Example 1.

<実施例6>
本実施例6においては、サイクロン外筒逆円錐状コーン部(2−4)の母線(2−α)と垂線(2−β)のなす傾斜角度(2−γ)を45゜に、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から320mmの位置とした。他の条件は実施例1と同じくした。
<Example 6>
In the sixth embodiment, the inclination angle (2-γ) formed by the bus (2-α) and the perpendicular (2-β) of the cyclone outer cylinder inverted conical cone portion (2-4) is 45 °, and the inner cylinder The length in the cyclone (2-2) was set to a position 320 mm from the uppermost surface (2-5) of the cyclone outer cylinder. Other conditions were the same as in Example 1.

<実施例7>
本実施例7においてはサイクロン内筒を二重管とした(図3)。次いで図4に示すように、内筒二重管のうち外側管から排気と共に排出される小粒径粒子はサイクロン捕集器(1−6a)により捕捉され、小粒径粒子捕集容器(1−7a)内に集められる。内筒二重管のうち内側管から排気と共に排出される小粒径粒子はサイクロン捕集器(1−6b)により捕捉され、小粒径粒子捕集容器(1−7b)内に集められる。
<Example 7>
In this Example 7, the cyclone inner cylinder was a double pipe (FIG. 3). Next, as shown in FIG. 4, the small particle size particles discharged together with the exhaust gas from the outer tube of the inner tube double tube are captured by the cyclone collector (1-6a), and the small particle size particle collection container (1 Collected in -7a). The small particle diameter particle | grains discharged | emitted with exhaust_gas | exhaustion from an inner side pipe | tube among inner cylinder double pipes are capture | acquired by the cyclone collector (1-6b), and are collected in a small particle diameter particle | grain collection container (1-7b).

本実施例7においては、図3に示すように内筒外側管(2−2a)のサイクロン内長さをサイクロン外筒の最上面(2−5)から420mm、内筒内側管(2−2b)のサイクロン内長さをサイクロン外筒の最上面(2−5)から460mmの位置とした。また二重管の内筒外側管(2−2a)の外側内筒内径は70mmであり、内筒内側管(2−2b)の内筒内径は55mm、さらにサイクロン捕集器(1−6a),(1−6b)における内筒内径は55mm、内筒長さ130mmである。他の条件は実施例1と同じとした。   In the seventh embodiment, as shown in FIG. 3, the inner length of the inner cylinder outer tube (2-2a) is set to 420 mm from the uppermost surface (2-5) of the cyclone outer tube, and the inner cylinder inner tube (2-2b). ) In the cyclone was set at a position of 460 mm from the uppermost surface (2-5) of the cyclone outer cylinder. Further, the inner diameter of the inner tube outer tube (2-2a) of the double tube is 70 mm, the inner tube inner diameter of the inner tube inner tube (2-2b) is 55 mm, and the cyclone collector (1-6a). , (1-6b) has an inner cylinder inner diameter of 55 mm and an inner cylinder length of 130 mm. Other conditions were the same as in Example 1.

<実施例8>
本実施例8においては実施例7と同じくサイクロン内筒を二重管とした。図4に示すように、内筒二重管のうち外側管から排気と共に排出される小粒径粒子はサイクロン捕集器(1−6a)により捕捉され、小粒径粒子捕集容器(1−7a)内に集められる。内筒二重管のうち内側管から排気と共に排出される小粒径粒子はサイクロン捕集器(1−6b)により捕捉され、小粒径粒子捕集容器(1−7b)内に集められる。
<Example 8>
In the present Example 8, the cyclone inner cylinder was made into a double pipe like Example 7. As shown in FIG. 4, the small particle diameter particle | grains discharged | emitted with exhaust_gas | exhaustion from an outer side pipe | tube among inner cylinder double pipes are capture | acquired by the cyclone collector (1-6a), and a small particle diameter particle collection container (1- 7a). The small particle diameter particle | grains discharged | emitted with exhaust_gas | exhaustion from an inner side pipe | tube among inner cylinder double pipes are capture | acquired by the cyclone collector (1-6b), and are collected in a small particle diameter particle | grain collection container (1-7b).

本実施例8においては、内筒外側管(2−2a)のサイクロン内長さをサイクロン外筒の最上面(2−5)から440mm、内筒内側管(2−2b)のサイクロン内長さをサイクロン外筒の最上面(2−5)から460mmの位置とした。他の条件は実施例1と同じくした。   In the eighth embodiment, the inner length of the inner cylinder outer tube (2-2a) is 440 mm from the uppermost surface (2-5) of the cyclone outer tube, and the inner length of the inner cylinder inner tube (2-2b) is cyclone. Was set at a position of 460 mm from the uppermost surface (2-5) of the cyclone outer cylinder. Other conditions were the same as in Example 1.

<比較例1>
本比較例1においては、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から150mmの位置とした。このとき、サイクロン内筒(2−2)の先端吸引口はサイクロン外筒直胴部(2−3)の存在範囲内高さに位置する。他の条件は実施例1と同じくした。
<Comparative Example 1>
In this comparative example 1, the length of the inner cylinder (2-2) in the cyclone was 150 mm from the uppermost surface (2-5) of the cyclone outer cylinder. At this time, the tip suction port of the cyclone inner cylinder (2-2) is positioned at the height within the existence range of the cyclone outer cylinder straight body (2-3). Other conditions were the same as in Example 1.

<比較例2>
本比較例2においては、内筒(2−2)のサイクロン内長さをサイクロン外筒の最上面(2−5)から250mmの位置とした。このとき、サイクロン内筒(2−2)の先端吸引口はサイクロン外筒直胴部(2−3)の存在範囲内高さに位置する。他の条件は実施例1と同じくした。
<Comparative example 2>
In Comparative Example 2, the inner length of the inner cylinder (2-2) was set to a position 250 mm from the uppermost surface (2-5) of the cyclone outer cylinder. At this time, the tip suction port of the cyclone inner cylinder (2-2) is positioned at the height within the existence range of the cyclone outer cylinder straight body (2-3). Other conditions were the same as in Example 1.

[評価方法]
<粒子粒径>
上記各実施例及び比較例における着色重合体粒子はコールターカウンター法を用いて粒径測定した。
コールターカウンター法によるトナー粒子の粒度分布の測定装置としては、コールターカウンターTA−IIやコールターマルチサイザーII(いずれもコールター社製)があげられる。以下に測定方法について述べる。
まず、電解水溶液100〜150ml中に分散剤として界面活性剤(好ましくはアルキルベンゼンスルフォン酸塩)を0.1〜5ml加える。ここで、電解液として1級塩化ナトリウムを用いて約1%NaCl水溶液を調製したもので、例えばISOTON−II(コールター社製)が使用できる。更に測定試料を2〜20mg加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行ない、前記測定装置により、アパーチャーとして100μmアパーチャーを用いて、トナー粒子又はトナーの体積、個数を測定して、体積分布と個数分布を算出する。得られた分布から、トナーの体積平均粒径(Dv)、個数平均粒径(Dn)を求めることができる。
チャンネルとしては、2.00〜2.52μm未満;2.52〜3.17μm未満;3.17〜4.00μm未満;4.00〜5.04μm未満;5.04〜6.35μm未満;6.35〜8.00μm未満;8.00〜10.08μm未満;10.08〜12.70μm未満;12.70〜16.00μm未満;16.00〜20.20μm未満;20.20〜25.40μm未満;25.40〜32.00μm未満;32.00〜40.30μm未満の13チャンネルを使用し、粒径2.00μm以上乃至40.30μm未満の粒子を対象とする。
表1における「歩留」は、サイクロン分級器に投入された着色重合体粒子粉体全重量値を用いて、サイクロン分級後に捕集容器(1−5)に捕集された着色重合体粒子粉体重量値を除した値であり、着色重合体粒子粉体全投入量のうち捕集容器(1−5)へ回収された粉体の重量割合と言い換えることもできる。
以上の評価方法を用いて実施例、比較例を評価した結果を表1に示す。
[Evaluation methods]
<Particle size>
The colored polymer particles in each of the above examples and comparative examples were measured for particle size using a Coulter counter method.
As an apparatus for measuring the particle size distribution of toner particles by the Coulter counter method, there are Coulter Counter TA-II and Coulter Multisizer II (both manufactured by Coulter). The measurement method is described below.
First, 0.1 to 5 ml of a surfactant (preferably alkylbenzene sulfonate) is added as a dispersant to 100 to 150 ml of an aqueous electrolytic solution. Here, an about 1% NaCl aqueous solution is prepared using first grade sodium chloride as an electrolytic solution. For example, ISOTON-II (manufactured by Coulter, Inc.) can be used. Further, 2 to 20 mg of a measurement sample is added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment with an ultrasonic disperser for about 1 to 3 minutes, and the measuring device is used to measure the volume and number of toner particles or toner using a 100 μm aperture as an aperture. Volume distribution and number distribution are calculated. From the obtained distribution, the volume average particle diameter (Dv) and the number average particle diameter (Dn) of the toner can be obtained.
As channels, 2.00 to less than 2.52 μm; 2.52 to less than 3.17 μm; 3.17 to less than 4.00 μm; 4.00 to less than 5.04 μm; 5.04 to less than 6.35 μm; 6 .35 to less than 8.00 μm; 8.00 to less than 10.08 μm; 10.08 to less than 12.70 μm; 12.70 to less than 16.00 μm; 16.00 to less than 20.20 μm; Uses 13 channels of less than 40 μm; 25.40 to less than 32.00 μm; 32.00 to less than 40.30 μm, and targets particles having a particle size of 2.00 μm to less than 40.30 μm.
“Yield” in Table 1 indicates the colored polymer particle powder collected in the collection container (1-5) after the cyclone classification using the total weight value of the colored polymer particle powder charged into the cyclone classifier. It is a value obtained by dividing the body weight value, and can be rephrased as the weight ratio of the powder recovered in the collection container (1-5) out of the total charged amount of the colored polymer particle powder.
Table 1 shows the results of evaluating examples and comparative examples using the above evaluation methods.

Figure 2007275863
Figure 2007275863

表1に示す様に、本発明を用いていない比較例1及び2ではサイクロン外筒直胴部に内筒先端の吸引口が存在するが、この外筒直胴部範囲内で内筒を上下させても分級効果は非常に小さい。本発明を用いた実施例1〜4では内筒先端位置を下げるに伴い4μm以下の微粉含有量が減少し、Dv/Dnが示す粒度分布幅も向上している。   As shown in Table 1, in Comparative Examples 1 and 2 in which the present invention is not used, a suction port at the tip of the inner cylinder exists in the cyclone outer cylinder straight body part, and the inner cylinder is moved up and down within the range of the outer cylinder straight cylinder part. Even if it makes it, the classification effect is very small. In Examples 1 to 4 using the present invention, as the inner cylinder tip position is lowered, the content of fine powder of 4 μm or less is reduced, and the particle size distribution range indicated by Dv / Dn is also improved.

サイクロン外筒逆円錐状コーン部(2−4)の母線と垂線のなす傾斜角度を45゜とした実施例6では、内筒先端が外筒逆円錐状コーン部の内表面に接触してしまう高さより約30mm上げた位置に内筒先端を位置させた。その10mm上に内筒先端を位置させた条件が実施例5である。同様にサイクロン外筒逆円錐状コーン部の母線と垂線のなす傾斜角度15゜で内筒先端が外筒逆円錐状コーン部の内表面に接触してしまう高さより約30mm上げた位置は実施例4、その10mm上に内筒先端を位置させた条件が実施例3である。実施例6では実施例5に比べ小粒径粒子とともに、所望の粒径の粒子まで吸引してしまい、分級精度が悪化している。外筒逆円錐状コーン部傾斜角度が15°の実施例3,4に比べ、実施例5,6では同じ内筒先端位置移動幅では精密制御の点で劣っている。このことより、サイクロン外筒逆円錐状コーン部の母線と垂線のなす傾斜角度が45゜より大きな状態は高精度分級のために必要な内筒先端位置精度が非常に厳しく、高精度分級のための条件として好ましくない。   In Example 6 in which the inclination angle formed between the generatrix of the cyclone outer cylinder inverted conical cone part (2-4) and the perpendicular is 45 °, the inner cylinder tip comes into contact with the inner surface of the outer cylinder inverted cone cone part. The tip of the inner cylinder was positioned at a position about 30 mm higher than the height. The condition in which the tip of the inner cylinder is positioned 10 mm above is Example 5. Similarly, the position where the tip of the inner cylinder is about 30 mm higher than the height at which the tip of the inner cylinder comes into contact with the inner surface of the outer cylinder inverted conical cone part at an inclination angle of 15 ° formed by the generatrix and the vertical line of the cyclone outer cylinder inverted cone cone part is shown in FIG. 4. The condition in which the tip of the inner cylinder is positioned 10 mm above is Example 3. In Example 6, compared to Example 5, particles having a desired particle diameter are sucked together with the small particle diameter particles, and the classification accuracy is deteriorated. Compared to Examples 3 and 4 in which the outer cylinder inverted conical cone portion inclination angle is 15 °, Examples 5 and 6 are inferior in precision control at the same inner cylinder tip position movement width. As a result, when the inclination angle between the generatrix and the vertical line of the cyclone outer cylinder inverted conical cone portion is greater than 45 °, the inner cylinder tip position accuracy required for high accuracy classification is very strict, and high accuracy classification is required. This is not preferable as the condition.

単重管では一段吸引で小粒径粒子を排除していたものを、実施例7では内筒を二重管にしたことにより、小粒径粒子の吸引機会を二度に分けることができ、より精度良く小粒径粒子のみを排除できている。更に実施例8では長さ可変である二重管内筒において、外側管(2−2a)のサイクロン内長さを変更した結果、実施例7よりも更に小粒径粒子を多く排出しており、多重管のサイクロン内長さを可変にする事で随意に分級粒径を制御できている。   In the single-pipe tube, the small particle size particles were excluded by one-stage suction, and in Example 7, the inner cylinder was made into a double tube, so that the opportunity for suction of the small particle size particles could be divided twice. Only small particle size particles can be eliminated with higher accuracy. Furthermore, in Example 8, in the double tube inner cylinder that is variable in length, as a result of changing the length of the outer tube (2-2a) in the cyclone, a larger amount of small particle size particles are discharged than in Example 7, The classification particle size can be controlled arbitrarily by changing the length of the multi-tube in the cyclone.

本発明に用いたサイクロン分級器及び付帯機器の配置概略図である。It is arrangement | positioning schematic of the cyclone classifier and incidental equipment which were used for this invention. 本発明に用いたサイクロン分級器の概略図である。It is the schematic of the cyclone classifier used for this invention. 本発明に用いたサイクロン分級器(内筒二重管式)の概略図である。It is the schematic of the cyclone classifier (inner cylinder double pipe type) used for this invention. 本発明に用いたサイクロン分級器(内筒二重管式)及び付帯機器の配置概略図である。It is an arrangement schematic diagram of a cyclone classifier (inner cylinder double pipe type) and ancillary equipment used in the present invention. 本発明に用いたサイクロン分級器と気流乾燥機及び付帯機器の配置概略図である。It is an arrangement schematic diagram of a cyclone classifier used in the present invention, an air dryer, and incidental equipment. 図5に示した気流乾燥機の概略図である。It is the schematic of the air dryer shown in FIG.

符号の説明Explanation of symbols

1−1 粉フィーダー
1−2 送粉エアー
1−3 受皿
1−4 サイクロン分級器
1−5 所望粒径粒子捕集容器
1−6 サイクロン捕集器
(1−6a 二重管内筒外側管用,1−6b 二重管内筒内側管用)
1−7 小粒径粒子捕集容器
(1−7a 二重管内筒外側管用,1−7b 二重管内筒内側管用)
1−8 排気ファン
1-1 Powder feeder 1-2 Pelletizing air 1-3 Saucepan
1-4 Cyclone classifier 1-5 Desired particle size collection container 1-6 Cyclone collector (1-6a for double pipe inner cylinder outer pipe, 1-6b for double pipe inner cylinder inner pipe)
1-7 Small particle collection container (1-7a for double tube inner tube outer tube, 1-7b for double tube inner tube inner tube)
1-8 Exhaust fan

2−1 サイクロン導入部
2−2 サイクロン内筒
(2−2a 二重管内筒外側管,2−2b 二重管内筒内側管)
2−3 サイクロン外筒直胴部
2−4 サイクロン外筒逆円錐状コーン部
2−5 サイクロン外筒最上面位置
2−α サイクロン外筒逆円錐状コーン部母線
2−β サイクロン外筒逆円錐状コーン部垂線
2−γ サイクロン外筒逆円錐状コーン部傾斜角度
2-1 Cyclone introduction part 2-2 Cyclone inner cylinder (2-2a Double pipe inner cylinder outer pipe, 2-2b Double pipe inner cylinder inner pipe)
2-3 Cyclone outer cylinder straight barrel part 2-4 Cyclone outer cylinder inverted conical cone part 2-5 Cyclone outer cylinder top surface position 2-α Cyclone outer cylinder inverted conical cone part bus 2-β Cyclone outer cylinder inverted cone shape Cone section perpendicular 2-γ Cyclone outer cylinder inverted cone cone section inclination angle

3−1 給気ファン
3−2 ヒータ
3−3 気流乾燥機本体
3−4 供給機
3−5 サイクロン
3−6 タンク
3−7 バグフィルター
3−8 排気ファン
3-1 Air supply fan 3-2 Heater 3-3 Airflow dryer main body 3-4 Supply machine 3-5 Cyclone 3-6 Tank 3-7 Bag filter 3-8 Exhaust fan

4−1 乾燥機本体
4−2 含水ケーキ投入口
4−3 乾燥風供給口
4−4 乾燥後着色重合体粒子と乾燥風の排出口
4-1 Dryer body 4-2 Water-containing cake inlet 4-3 Dry air supply port
4-4 Colored polymer particles after drying and outlet for drying air

Claims (10)

逆円錐状コーン部の上端に直胴部を接続した外筒と、外筒内に一端が挿入された内筒からなるサイクロン分級器において、排気吸引口である外筒内に挿入された内筒先端が、外筒における逆円錐状コーン部の存在する高さの範囲内に配置されることを特徴とするサイクロン分級器。   In a cyclone classifier consisting of an outer cylinder with a straight barrel connected to the upper end of an inverted conical cone and an inner cylinder with one end inserted into the outer cylinder, the inner cylinder inserted into the outer cylinder as an exhaust suction port A cyclone classifier characterized in that the tip is disposed within a height range where an inverted conical cone portion exists in the outer cylinder. 前記内筒先端位置が少なくとも前記逆円錐状コーン部の存在する高さの範囲内で可変であることを特徴とする請求項1に記載のサイクロン分級器。   2. The cyclone classifier according to claim 1, wherein the tip position of the inner cylinder is variable at least within a height range where the inverted conical cone portion exists. 前記逆円錐状コーン部母線の垂線に対する傾斜角が45゜以下であることを特徴とする請求項1又は2に記載のサイクロン分級器。   The cyclone classifier according to claim 1 or 2, wherein an inclination angle of the inverted conical cone portion bus with respect to the perpendicular is 45 ° or less. 前記内筒が多重管により多層構成されていることを特徴とする請求項1から3のいずれかに記載のサイクロン分級器。   The cyclone classifier according to any one of claims 1 to 3, wherein the inner cylinder is formed of a multi-layer structure with multiple tubes. 前記多重管により多層構成される内筒の先端位置の少なくとも一つが前記逆円錐状コーン部の存在する高さの範囲内に配置されることを特徴とする請求項4に記載のサイクロン分級器。   5. The cyclone classifier according to claim 4, wherein at least one of the tip positions of the inner cylinder constituted by the multiple pipes is disposed within a height range where the inverted conical cone portion exists. 前記多重管により多層構成される内筒が、各層先端位置が各々独立して可変であることを特徴とする請求項4又は5に記載のサイクロン分級器。   The cyclone classifier according to claim 4 or 5, wherein the inner cylinder constituted by the multiple pipes is variable in the position of the tip of each layer independently. 前記多重管により多層構成される内筒より吸引排出された粉体が、各々独立して設置される捕集容器に回収されることを特徴とする請求項4から6のいずれかに記載のサイクロン分級器。   The cyclone according to any one of claims 4 to 6, wherein the powder sucked and discharged from the inner cylinder constituted by the multiple pipes is collected in collection containers installed independently. Classifier. 前記サイクロン分級器において、気流乾燥機を備えたことを特徴とする請求項1から7のいずれかに記載のサイクロン分級器。   The cyclone classifier according to any one of claims 1 to 7, wherein the cyclone classifier includes an airflow dryer. 請求項1から8のいずれかに記載のサイクロン分級器を用いてトナー粉体を分級する工程と、分級されたトナー粉体を捕集する工程とを特徴とするトナーの製造方法。   9. A method for producing toner, comprising: a step of classifying toner powder using the cyclone classifier according to claim 1; and a step of collecting the classified toner powder. 請求項1から8のいずれかに記載のサイクロン分級器を用いて捕集された粉体であることを特徴とするトナー。   A toner, which is a powder collected using the cyclone classifier according to claim 1.
JP2006209635A 2005-11-18 2006-08-01 Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner Pending JP2007275863A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006209635A JP2007275863A (en) 2006-03-15 2006-08-01 Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner
EP06023902.7A EP1787729B1 (en) 2005-11-18 2006-11-17 Cyclone classifier, method of preparing a toner.
US11/561,220 US8403149B2 (en) 2005-11-18 2006-11-17 Cyclone classifier, flash drying system using the cyclone classifier, and toner prepared by the flash drying system
CN2006101494451A CN1966156B (en) 2005-11-18 2006-11-20 Cyclone classifier, air current drying system and toner prepared therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006070287 2006-03-15
JP2006209635A JP2007275863A (en) 2006-03-15 2006-08-01 Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner

Publications (1)

Publication Number Publication Date
JP2007275863A true JP2007275863A (en) 2007-10-25

Family

ID=38677917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209635A Pending JP2007275863A (en) 2005-11-18 2006-08-01 Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner

Country Status (1)

Country Link
JP (1) JP2007275863A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036054A (en) * 2008-07-31 2010-02-18 Sumco Corp Cyclone dust collector, and system for pulling up single crystal
KR100959838B1 (en) * 2009-05-26 2010-05-28 한국건설기술연구원 Sorting system and method of recycle material from construction waste
WO2012066692A1 (en) * 2010-11-19 2012-05-24 新東工業株式会社 Cyclonic classifying device
WO2013047177A1 (en) * 2011-09-29 2013-04-04 株式会社カシワバラ・コーポレーション Powder and granular material separation processing device, powder and granular material separation processing method, and powder and granular material separation and recovery processing system
JP2013071228A (en) * 2011-09-29 2013-04-22 Kashiwabara Corporation:Kk Powder and granular material separation processing device, and powder and granular material separation processing method
KR101555328B1 (en) * 2014-04-29 2015-09-23 주식회사 나노캐스트테크 Structure of multiple classification cyclone for manufacturing nano powder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544818U (en) * 1977-06-03 1979-01-12
JPH02191555A (en) * 1989-01-20 1990-07-27 Nippon Steel Corp Method for classifying ceramic powder
JPH10314623A (en) * 1997-05-15 1998-12-02 Ishikawajima Harima Heavy Ind Co Ltd Cyclone dust collector and circulating fluidized bed boiler using same
JP2000107698A (en) * 1998-10-02 2000-04-18 Minolta Co Ltd Classifier
JP2000304439A (en) * 1999-04-22 2000-11-02 Miike Tekkosho:Kk Air flow drier provided with wind-force sorting function
JP2003275685A (en) * 2002-03-20 2003-09-30 Ricoh Co Ltd Air current type grinding classifier
JP2005516750A (en) * 2002-02-16 2005-06-09 ダイソン・リミテッド Cyclone separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544818U (en) * 1977-06-03 1979-01-12
JPH02191555A (en) * 1989-01-20 1990-07-27 Nippon Steel Corp Method for classifying ceramic powder
JPH10314623A (en) * 1997-05-15 1998-12-02 Ishikawajima Harima Heavy Ind Co Ltd Cyclone dust collector and circulating fluidized bed boiler using same
JP2000107698A (en) * 1998-10-02 2000-04-18 Minolta Co Ltd Classifier
JP2000304439A (en) * 1999-04-22 2000-11-02 Miike Tekkosho:Kk Air flow drier provided with wind-force sorting function
JP2005516750A (en) * 2002-02-16 2005-06-09 ダイソン・リミテッド Cyclone separator
JP2003275685A (en) * 2002-03-20 2003-09-30 Ricoh Co Ltd Air current type grinding classifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036054A (en) * 2008-07-31 2010-02-18 Sumco Corp Cyclone dust collector, and system for pulling up single crystal
KR100959838B1 (en) * 2009-05-26 2010-05-28 한국건설기술연구원 Sorting system and method of recycle material from construction waste
WO2012066692A1 (en) * 2010-11-19 2012-05-24 新東工業株式会社 Cyclonic classifying device
WO2013047177A1 (en) * 2011-09-29 2013-04-04 株式会社カシワバラ・コーポレーション Powder and granular material separation processing device, powder and granular material separation processing method, and powder and granular material separation and recovery processing system
JP2013071228A (en) * 2011-09-29 2013-04-22 Kashiwabara Corporation:Kk Powder and granular material separation processing device, and powder and granular material separation processing method
US9254508B2 (en) 2011-09-29 2016-02-09 Kashiwabara Corporation Powder and granular material separation processing device, powder and granular material separation processing method, and powder and granular material separation and collection processing system
KR101555328B1 (en) * 2014-04-29 2015-09-23 주식회사 나노캐스트테크 Structure of multiple classification cyclone for manufacturing nano powder

Similar Documents

Publication Publication Date Title
EP1787729B1 (en) Cyclone classifier, method of preparing a toner.
JP2007275863A (en) Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner
JP4732276B2 (en) Cyclone classifier, airflow drying system and toner
CN110882865A (en) Atmosphere grading device for deep submicron powder
JP6074895B2 (en) Powder filling system and powder filling method
JP2001232296A (en) Classifying device and toner manufacturing method
US9207552B2 (en) Classifying apparatus, classifying method, toner and method for producing the toner
US20030049559A1 (en) Method for producing toner by mixing colored particles and outer-additive by mixer with stirrer of high speed rotation
US8191808B2 (en) Fluid spray nozzle, pulverizer and method of preparing toner
JP2013147266A (en) Powder filling apparatus, powder filling system, and powder filling method
JP2016180521A (en) Drying method and drying device for resin particle
JP2006212587A (en) Cyclone system for entrapping raw powder material
JP3005132B2 (en) Method of manufacturing toner and manufacturing apparatus system therefor
JP6287026B2 (en) Airflow classifier
CN107583772A (en) Multiphase cyclonic separation unit and cyclone separator
JP3486524B2 (en) Method and system for manufacturing toner
JP4461394B2 (en) Toner production method
JP3451288B2 (en) Collision type air flow pulverizer, fine powder production apparatus and toner production method
JP7492405B2 (en) Toner manufacturing method
JP2003175343A (en) Apparatus and method for classification
JP4143574B2 (en) Toner production method and surface modification apparatus
JPH1115194A (en) Production of toner
JP5309881B2 (en) Drying device and toner for developing electrostatic image
JPH09179345A (en) Production of toner
JP2023079431A (en) Method for manufacturing toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Effective date: 20110202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A02