JP2007274837A - System for reducing power accumulation capacity deviation - Google Patents
System for reducing power accumulation capacity deviation Download PDFInfo
- Publication number
- JP2007274837A JP2007274837A JP2006099028A JP2006099028A JP2007274837A JP 2007274837 A JP2007274837 A JP 2007274837A JP 2006099028 A JP2006099028 A JP 2006099028A JP 2006099028 A JP2006099028 A JP 2006099028A JP 2007274837 A JP2007274837 A JP 2007274837A
- Authority
- JP
- Japan
- Prior art keywords
- output
- circuit
- transformer
- voltage
- capacity deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、直列接続された複数の電池,コンデンサ等の複蓄電要素またはモジュール間の蓄電容量偏差を軽減することができる蓄電容量偏差軽減システムに関する。 The present invention relates to a storage capacity deviation reduction system that can reduce storage capacity deviation between multiple storage elements or modules such as a plurality of batteries and capacitors connected in series.
一般に、同一プロセスで製造された電池やコンデンサにおいては、その蓄電容量と端子電圧に強い相関があり、一般には、端子電圧が蓄電容量の多少と結びついている。従来の蓄電容量偏差軽減技術では、この相関を用いて端子電圧の均等化、すなわち蓄電容量(たとえば電池では、残存容量)の偏差軽減を図っている。 In general, in a battery or a capacitor manufactured by the same process, there is a strong correlation between the storage capacity and the terminal voltage, and the terminal voltage is generally associated with a certain amount of the storage capacity. In the conventional storage capacity deviation reduction technology, this correlation is used to equalize the terminal voltage, that is, to reduce the deviation of the storage capacity (for example, the remaining capacity in a battery).
従来、蓄電容量偏差軽減技術として、充電時に容量偏差の軽減を行うもの(特許文献1:)、複数コイルを有するトランスとスイッチング回路を組み合わせて各蓄電素子の充電容量バラツキを補正するもの(特許文献2:特開2001−286072)、特許文献2の技術を改良したもの(特許文献3:特開2001−339865)が知られている。
しかし、特許文献1の蓄電容量偏差軽減技術では、先に満充電に達した蓄電素子の過充電を熱消費で防止しているため、エネルギー効率が悪い。
また、特許文献2や特許文献3の蓄電容量偏差軽減技術では、エネルギーロスが少ないが、多くのスイッチ素子が必要で精密な制御を必要とするという問題がある。
However, in the storage capacity deviation reduction technique of
In addition, the storage capacity deviation reduction techniques of
本発明は、上記の問題を解決するために提案されたものであって、発振回路、多段トランスおよび整流器を用いて、低価格、高精度の蓄電容量偏差軽減システムを提供することを目的とする。 The present invention has been proposed to solve the above-described problem, and an object thereof is to provide a low-cost, high-accuracy storage capacity deviation reduction system using an oscillation circuit, a multistage transformer, and a rectifier. .
本発明者は、蓄電要素の端子電圧(「蓄電要素電圧」と言う)の均等化が、蓄電要素の容量偏差軽減に直接寄与することに着目した。そして、総蓄電要素を直列接続したときの電圧(「総蓄電要素電圧」)に対応する交流電圧を発振回路により発生させ、この総蓄電要素電圧を多段トランスにより均等分割し、各蓄電要素に帰還させる(すなわち、各蓄電要素を充電する)ことにより、容量偏差を効率よく軽減することができるとの知見を得て本発明をなすに至った。 The inventor has focused on the fact that equalization of the terminal voltage of the power storage element (referred to as “power storage element voltage”) directly contributes to the reduction of the capacity deviation of the power storage element. Then, an AC voltage corresponding to the voltage when the total storage elements are connected in series (“total storage element voltage”) is generated by an oscillation circuit, and this total storage element voltage is equally divided by a multi-stage transformer and fed back to each storage element The present invention has been made by obtaining knowledge that capacity deviation can be efficiently reduced by charging (that is, charging each power storage element).
本発明は、(1)から(4)を要旨とする。
(1)「直列に複数の蓄電要素を接続した蓄電容量偏差軽減システムにおいて、
前記各蓄電要素の合計直列電圧が入力される発振回路と、
一次回路に前記発振回路の出力が入力され、二次回路から複数段の均等電圧を出力する多段トランスと、
前記多段トランスの各段の均等出力をそれぞれ入力し、前記各蓄電要素に直流電力をフィードバック供給する複数の整流回路と、
を備えたことを特徴とする蓄電容量偏差軽減システム。」
多段トランスの二次回路の整流出力は、M個の蓄電要素の合計電圧に比例し、かつ各蓄電要素の電圧の平均値を出力値とする系を構成する。したがって、電圧の低い蓄電要素には大電流がフィードバックされ、電圧の高い蓄電要素には小電流がフィードバックされ、各蓄電要素の容量偏差が軽減され、全ての蓄電要素の容量の均等化を常に保つことができる。
The gist of the present invention is (1) to (4).
(1) “In a storage capacity deviation reduction system in which a plurality of storage elements are connected in series,
An oscillation circuit to which the total series voltage of the respective storage elements is input;
The output of the oscillation circuit is input to a primary circuit, and a multistage transformer that outputs a plurality of stages of equal voltages from the secondary circuit;
A plurality of rectifier circuits that input the equal output of each stage of the multi-stage transformer, and feed back DC power to each power storage element;
A storage capacity deviation reduction system characterized by comprising: "
The rectified output of the secondary circuit of the multistage transformer is proportional to the total voltage of the M power storage elements, and constitutes a system in which the average value of the voltages of the power storage elements is the output value. Therefore, a large current is fed back to the low voltage storage element, and a small current is fed back to the high voltage storage element, the capacity deviation of each storage element is reduced, and the capacity of all the storage elements is always equalized. be able to.
(2)「前記蓄電要素が、バッテリー、コンデンサまたはこれらを組合わせたモジュールからなることを特徴とする(1)に記載の蓄電容量偏差軽減システム。」 (2) “The storage capacity deviation reducing system according to (1), wherein the storage element includes a battery, a capacitor, or a module in which these are combined.”
(3) 前記多段トランスの二次回路出力が各蓄電要素の出力電圧の平均値を超える値となるように構成したことを特徴とする(1)または(2)に記載の蓄電容量偏差軽減システム。」
帰還構成を利用して発振回路、多段トランス、二次回路、発振回路の順に流れる巡回電流を増し、この巡回電流で帰還充電インピーダンスを下げて蓄電要素の容量偏差軽減を早めることができる。
(3) The storage capacity deviation reduction system according to (1) or (2), characterized in that the secondary circuit output of the multi-stage transformer has a value exceeding an average value of output voltages of the respective storage elements. . "
By using the feedback configuration, the cyclic current flowing in the order of the oscillation circuit, the multi-stage transformer, the secondary circuit, and the oscillation circuit can be increased, and the feedback charge impedance can be lowered by this cyclic current to reduce the capacity deviation of the storage element.
(4)「前記多段トランスが複数であり、
前記発振回路の出力が前記各多段トランスの一次回路に入力され、前記各多段トランスの二次回路から複数段の均等電圧を出力することを特徴とする(1)から(3)の何れかに記載の蓄電容量偏差軽減システム。」
蓄電要素が多く、一個の多段トランスでは所要の二次回路数を具備できない場合、複数の多段トランスを用いて、二次回路の合計段数で蓄電要素数をまかなうことができる。この場合も全ての多段トランスの一次回路には全蓄電要素電圧に比例した発振電圧を入力し、いずれの多段トランスの二次側出力にも同一電圧を発生させることができる。
(4) “There are a plurality of the multistage transformers,
Any one of (1) to (3), wherein an output of the oscillation circuit is input to a primary circuit of each multistage transformer, and a plurality of stages of equal voltages are output from a secondary circuit of each multistage transformer. The described storage capacity deviation reduction system. "
When there are many power storage elements and a single multistage transformer cannot provide the required number of secondary circuits, a plurality of multistage transformers can be used to cover the number of power storage elements with the total number of stages of secondary circuits. In this case as well, an oscillating voltage proportional to the total storage element voltage is input to the primary circuits of all the multistage transformers, and the same voltage can be generated at the secondary side output of any multistage transformer.
(5)「前記発振回路が矩形波を発生することを特徴とする(1)から(4)の何れかに記載の蓄電容量偏差軽減システム。」 (5) “The storage capacity deviation reducing system according to any one of (1) to (4), wherein the oscillation circuit generates a rectangular wave.”
本発明では、各蓄電要素の端子電圧の値とは無関係に、充電電圧は全ての蓄電要素について同一としてある。したがって、各蓄電要素の端子電圧の多少に応じて充電電流が自動的に調整され、蓄電要素電圧の均等化がなされる。また、充電エネルギーの経路(充電回路)にはスイッチ素子を使わないようにもでき、この場合には充電時の損失もなく、安価、安定でかつ信頼性の高い蓄電容量偏差軽減システムが実現できる。 In the present invention, the charging voltage is the same for all power storage elements regardless of the value of the terminal voltage of each power storage element. Therefore, the charging current is automatically adjusted according to the degree of the terminal voltage of each power storage element, and the power storage element voltage is equalized. In addition, it is possible to eliminate the use of a switching element in the charging energy path (charging circuit). In this case, there is no loss during charging, and an inexpensive, stable and highly reliable storage capacity deviation reduction system can be realized. .
図1は、本発明の蓄電容量偏差軽減システムの基本構成を示すブロック図である。図1において、蓄電容量偏差軽減システム1は直列に複数の蓄電要素CE1,CE2,・・・,CEMを接続したもので、発振回路11と、多段トランス12と、整流回路A1,A2,・・・,AM(符号13で代表して示す)とからなる。
FIG. 1 is a block diagram showing a basic configuration of a storage capacity deviation reduction system of the present invention. In FIG. 1, a storage capacity
発振回路11の入力端子には、蓄電要素CE1,CE2,・・・,CEM(CEqで代表して示す)合計直列電圧(後述する電源パックSPの電圧VSP)が加えられ、出力端子から交流矩形波電圧Uを出力する。なお、蓄電要素CEqは、バッテリー、コンデンサまたはこれらを組合わせたモジュールである。また、発振回路11の出力波形は、矩形波、正弦波等とすることができるが、効率の点から矩形波とすることが望ましい。
The input terminal of the
多段トランス12の一次回路121には、発振回路11の出力が入力され、二次回路122から複数段の均等電圧を出力する。二次回路122は、多段の二次巻き線W1,W2,・・・,WM(Wrで代表して示す)から構成されている。ここで各二次巻き線の巻き数は同じである(N2)。
本実施形態では、多段トランスの二次回路122の出力は、各蓄電要素CEの出力電圧VCEの平均値を超える値となるように構成されている。
The output of the
In the present embodiment, the output of the secondary circuit 122 of the multistage transformer is configured to have a value that exceeds the average value of the output voltage V CE of each power storage element CE.
整流回路A1,A2,・・・,AM(Asで代表して示す)は多段トランス12の各段(二次巻き線Wr)の均等出力をそれぞれ入力し、蓄電要素CEpに直流電力をフィードバック供給する。
図1の回路では、まず直列接続された蓄電要素CE1,CE2,・・・,CEMの全体(以下、「電源パックSP」と称する)の出力を発振回路11により交流矩形波に変換する。この交流矩形波を多段トランス12に供給し、多段トランス12の二次回路の出力を各整流回路13により整流して蓄電要素CEpにそれぞれ帰還する。
The rectifier circuits A 1 , A 2 ,..., A M (represented by A s ) input the equal outputs of the respective stages (secondary windings W r ) of the
In the circuit of Figure 1, series-connected storage element CE 1, CE 2 First, ..., overall CE M (hereinafter, "power pack SP" hereinafter) converts the output of the AC rectangular wave by the
交流矩形波電圧Uと、電源パックSPの電圧VSPとの間に、
U=k×VSP
k:比例定数
の関係がある。
多段トランス12の巻線比nをN1/N2(N1:一次側巻線数,N2:二次側巻線数)とすれば、多段トランス12の出力Uは、
U/n=k×VSP/n (1)
となる。
Between the AC rectangular wave voltage U and the voltage V SP of the power pack SP,
U = k × V SP
k: There is a proportional constant relationship.
If the winding ratio n of the
U / n = k × V SP / n (1)
It becomes.
電源パックSP(電圧VSP)は、蓄電要素CE1,CE2,・・・,CEM(電圧V1E,V2E,・・・,VME)がM個直列接続されて構成されるので、VSP=ΣVjE(jは1からM)となる。
ここで、kおよびnをk/n=1/Mとなるように選べば、二次回路122の出力は、
k×VSP/n=VSP/M=Σ(VE)/M (2)
となり、蓄電要素電圧VEの平均値VAVEを与える。二次回路122の各段(二次巻き線Wr)には蓄電要素の平均値VAVEが等しく現れる。この結果、端子電圧が平均値VAVEよりも低い蓄電要素CEp1(p1=1,2,・・・,Mの何れか)には充電が行われるが、平均値VAVEよりも高い蓄電要素CEp2(p2=1,2,・・・,Mの何れか)には充電が行われない。
The power pack SP (voltage V SP ) is configured by connecting M power storage elements CE 1 , CE 2 ,..., CE M (voltages V 1E , V 2E ,..., V ME ) in series. , V SP = ΣV jE (j is 1 to M).
Here, if k and n are selected so that k / n = 1 / M, the output of the secondary circuit 122 is
k × V SP / n = V SP / M = Σ (V E ) / M (2)
Thus, the average value V AVE of the storage element voltage V E is given. At each stage (secondary winding W r ) of the secondary circuit 122, the average value V AVE of the storage elements appears equally. As a result, the power storage element CE p1 (p 1 = 1, 2,..., M) whose terminal voltage is lower than the average value V AVE is charged, but the power storage is higher than the average value V AVE. The element CE p2 (p 2 = 1, 2,..., M) is not charged.
多段トランス12の二次巻き線Wr(r=1,2,・・・,M)の出力電圧はk×VSP/nであり、蓄電要素CE1,CE2,・・・,CEMの平均電圧VAVE(VSP/M)である。ここで、
k×VSP/n−VSP/M (3)
は、発振回路11→多段トランス12→整流器13→蓄電要素CEp→発振回路11の経路を流れる巡回電流と、当該経路のインピーダンスとの積に相応するエネルギー消費量である。
Secondary winding W r of the multi-stage transformer 12 (r = 1,2, ···, M) output voltage is k × V SP / n, storage element CE 1, CE 2, ···, CE M Average voltage V AVE (V SP / M). here,
k × V SP / n−V SP / M (3)
Is the energy consumption corresponding to the product of the cyclic current flowing through the path of the
《第1実施形態》
図2により、本発明の第1実施形態(上記の基本構成に基づく具体的な蓄電容量偏差軽減システムの実施形態)を説明する。図2のシステムでは、発振回路11として、マルチバイブレータ11Aが使用され、整流回路13として全波整流回路A1,A2,・・・,AMが使用されている。マルチバイブレータ11Aは、2つのトランジスタTr1,Tr2と、2つのCR回路(C1,R1とC2,R2)とからなる。また、全波整流回路AsとしてダイオードD1〜D4からなるブリッジ回路が採用されている。
<< First Embodiment >>
A first embodiment of the present invention (a specific embodiment of a storage capacity deviation reduction system based on the above basic configuration) will be described with reference to FIG. In the system of FIG. 2, as an
矩形波を出力するマルチバイブレータ11Aは、電源を電源パックSPとして多段トランス12を直接駆動することができる。多段トランス12の二次回路121の合計値は、再びマルチバイブレータ11Aの電源電圧値となる。なお、前述したように、(k×VSP/n)−(VSP/M)が電力消費される。
なお、マルチバイブレータ11Aに代えて、他の発振回路を用いることができる。
たとえば、発振回路11として、マルチバイブレータ11Aに代えて、低電力の矩形波発振回路を用いることもできる。
The multivibrator 11A that outputs a rectangular wave can directly drive the
Note that another oscillation circuit can be used in place of the multivibrator 11A.
For example, a low-power rectangular wave oscillation circuit can be used as the
《第2実施形態》
本発明の第2実施形態を図3および図4により説明する。
図3では、多段トランス12の二次巻き線Wqを中点タップ付巻線として、整流器13(ダイオードブリッジ)の半減化を図っている。
半導体ダイオード等の整流素子は0.2V程度の順方向電圧を有し、その値にはバラツキと温度特性がある、元来大きくない蓄電要素電圧偏差を均等化するための回路にとって、このバラツキ、温度特性を減少させることには大きな意味がある。図3では、同時に動作するダイオードは2個(D1,D3またはD2,D4)であり、整流後の充電電圧誤差はダイオード2個分である。
<< Second Embodiment >>
A second embodiment of the present invention will be described with reference to FIGS.
In Figure 3, the secondary winding W q of the
A rectifier such as a semiconductor diode has a forward voltage of about 0.2 V, and the value has variations and temperature characteristics. For a circuit for equalizing a storage element voltage deviation which is not originally large, this variation, Decreasing the temperature characteristic has great significance. In FIG. 3, there are two diodes (D 1 , D 3 or D 2 , D 4 ) that operate simultaneously, and the charge voltage error after rectification is two diodes.
図4では、多段トランスArの二次側巻線Wrの巻き数は倍の2N2であり、中点タップで二次電圧を二分してある。この結果、同時に動作するダイオードは1個(D1またはD2)であり、整流後の充電電圧誤差が半減する。 In FIG. 4, the number of turns of the secondary winding W r of the multi-stage transformer A r is 2N 2 , and the secondary voltage is divided into two at the midpoint tap. As a result, the number of diodes operating simultaneously is one (D 1 or D 2 ), and the charge voltage error after rectification is halved.
《第3実施形態》
本発明の第3実施形態を図5により説明する。本実施形態では、蓄電要素CEPの数が多い場合を示す。
多段トランスの巻線数には限界があり、1個の多段トランスに数十個の二次巻線を設けることは現実的でない。蓄電要素CEPの数が多い場合にも、各蓄電要素には全蓄電要素の電圧に比例した電圧を帰還させればよいことから、多段トランスの一次回路側には電源パックSPの電圧VSPに比例した発振回路11の出力、即ち交流電圧を加え、適度な二次巻線数を有する多段トランスを複数個使用することができる。
<< Third Embodiment >>
A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, a case where the number of power storage elements CE P is large.
The number of windings of the multistage transformer is limited, and it is not practical to provide several tens of secondary windings in one multistage transformer. Even when the number of power storage elements CE P is large, the voltage V SP of the power pack SP is provided on the primary circuit side of the multi-stage transformer because it is sufficient to feed back a voltage proportional to the voltage of all the power storage elements to each power storage element. It is possible to use a plurality of multi-stage transformers having an appropriate number of secondary windings by applying an output of the
図5では、蓄電要素数が30の場合の例を示す。この場合には、4個の多段トランス12(1),12(2),12(3),12(4)が使用され、それぞれ8個の二次巻き線を有している。多段トランス12(4)では、7番目と8番目の二次巻き線は使用しないので図示はしていない。
多段トランスは(1),12(2),12(3),12(4)は全て同一の発振回路11により駆動される。
多段トランス12(1),12(2),・・・,12(4)として仕様が同一のものを使用しているので、各二次巻線の出力電圧は全て同一である。
このように、全ての蓄電要素CEには同一電圧が帰還され、帰還電圧より端子電圧の低い蓄電要素には充電がなされ、帰還電圧より高い端子電圧を有する蓄電要素は均等化回路への放電のみがなされる。
In FIG. 5, the example in case the number of electrical storage elements is 30 is shown. In this case, four multi-stage transformers 12 (1), 12 (2), 12 (3), 12 (4) are used, each having eight secondary windings. In the multi-stage transformer 12 (4), the seventh and eighth secondary windings are not used and are not shown.
The multistage transformers (1), 12 (2), 12 (3), and 12 (4) are all driven by the
Since the same specifications are used as the multistage transformers 12 (1), 12 (2),..., 12 (4), the output voltages of the secondary windings are all the same.
In this way, the same voltage is fed back to all the storage elements CE, the storage elements having a terminal voltage lower than the feedback voltage are charged, and the storage elements having a terminal voltage higher than the feedback voltage are only discharged to the equalization circuit. Is made.
《第4実施形態》
本発明の第4実施形態を図6により説明する。本実施形態でも、第3実施形態と同様、蓄電要素CEPの数が多い場合を示す。本実施形態では、一次側電圧を2電圧に分割して積み重ねている。
単に分割しただけでは、分割されたそれぞれのブロック内では容量偏差が軽減されるが、ブロック間の偏差は軽減できない。そこでトランスにはブロック内蓄電素子数より多い二次回路を設け、二次回路出力を他ブロックの蓄電素子の一部に供給する。こうしてブロック内、ブロック間の偏差を軽減できる。
<< 4th Embodiment >>
A fourth embodiment of the present invention will be described with reference to FIG. In this embodiment also, similarly to the third embodiment, showing a case where the number of power storage elements CE P is large. In this embodiment, the primary side voltage is divided into two voltages and stacked.
By simply dividing, the capacity deviation is reduced in each divided block, but the deviation between the blocks cannot be reduced. Therefore, the transformer is provided with a secondary circuit larger than the number of power storage elements in the block, and the secondary circuit output is supplied to a part of the power storage elements of other blocks. In this way, the deviation within and between blocks can be reduced.
本実施形態では、多段トランス12(1),12(2)は二次巻き線数が10個であり、10対1の巻線比を有しており、16個の蓄電要素CE1からCE15を駆動する。
蓄電要素が16個で、二次巻き線数が全体で20個であるので、多段トランス12(1)の2つの二次巻き線(W9およびW10)と、多段トランス12(2)の2つの二次巻き線(W1およびW2)は、蓄電要素CE7およびCE8に重複して使われ、多段トランス12(2)の2つの二次巻き線(W1およびW2)と、多段トランス12(1)の2つの二次巻き線(W9およびW10)は、蓄電要素CE9およびCE10に重複して使われる。
なお、10対1の巻線比を有しかつ11個以上の二次巻き線を設けておき、一部の蓄電要素には重複して二次電圧を与えることで全体を均等化することもできる。
《実測例》
図7に、充電電圧が異なる4つの電池CE1,CE2,CE3,CE4(すなわち、M=4)の蓄電容量偏差を軽減した実験例を示す。図7では、4電池の電池間電圧の偏差も合わせて表示してある。
図7では、電池CE1,CE2,CE3,CE4の初期電圧は、約4.1V,4.0V,3.9V,3.8Vであり、これらの電池を、第1実施形態において示した蓄電容量偏差軽減システム1を用いて平均化を行った。図7からわかるように、平均化を開始すると直ちに平均化の効果が現れ、平均化開始から約30から40時間を経過したときには、偏差は0[V]に近くなり、実用に即した平均化が行われたことがわかり、本発明の効果が実証された。
In the present embodiment, a multi-stage transformer 12 (1), 12 (2) is a 10 number of secondary windings, has a turns ratio of 10: 1, CE sixteen storage element CE 1 Drive 15
Since the number of storage elements is 16 and the number of secondary windings is 20 in total, the two secondary windings (W 9 and W 10 ) of the multi-stage transformer 12 ( 1 ) and the multi-stage transformer 12 (2) two secondary windings (W 1 and W 2) is used to duplicate the storage element CE 7 and CE 8, multistage two secondary winding of the transformer 12 (2) and (W 1 and W 2) The two secondary windings (W 9 and W 10 ) of the multi-stage transformer 12 (1) are used redundantly for the power storage elements CE 9 and CE 10 .
It is also possible to equalize the whole by providing a secondary voltage that has a winding ratio of 10 to 1 and 11 or more secondary windings are provided to some of the storage elements. it can.
《Measurement example》
FIG. 7 shows an experimental example in which the storage capacity deviation of four batteries CE 1 , CE 2 , CE 3 , and CE 4 (that is, M = 4) having different charging voltages is reduced. In FIG. 7, the deviation of the inter-battery voltage of 4 batteries is also displayed.
In FIG. 7, the initial voltages of the batteries CE 1 , CE 2 , CE 3 , and CE 4 are about 4.1 V, 4.0 V, 3.9 V, and 3.8 V, and these batteries are referred to in the first embodiment. Averaging was performed using the storage capacity
1 蓄電容量偏差軽減システム
11 発振回路
12 多段トランス
13(Ap:p=1,1,・・・,M) 整流回路
CEq(q=1,1,・・・,M) 蓄電要素
Wr(r=1,1,・・・,M) 二次巻き線
1 storage capacity
Claims (5)
前記各蓄電要素の合計直列電圧が入力される発振回路と、
一次回路に前記発振回路の出力が入力され、二次回路から複数段の均等電圧を出力する多段トランスと、
前記多段トランスの各段の均等出力をそれぞれ入力し、前記各蓄電要素に直流電力をフィードバック供給する複数の整流回路と、
を備えたことを特徴とする蓄電容量偏差軽減システム。 In a storage capacity deviation reduction system in which a plurality of storage elements are connected in series,
An oscillation circuit to which the total series voltage of the respective storage elements is input;
The output of the oscillation circuit is input to a primary circuit, and a multistage transformer that outputs a plurality of stages of equal voltages from the secondary circuit;
A plurality of rectifier circuits that input the equal output of each stage of the multi-stage transformer, and feed back DC power to each power storage element;
A storage capacity deviation reduction system characterized by comprising:
前記発振回路の出力が前記各多段トランスの一次回路に入力され、前記各多段トランスの二次回路から複数段の均等電圧を出力することを特徴とする請求項1から3の何れかに記載の蓄電容量偏差軽減システム。 A plurality of the multi-stage transformers;
The output of the said oscillation circuit is input into the primary circuit of each said multistage transformer, and the equal voltage of a multistage is output from the secondary circuit of each said multistage transformer, The any one of Claim 1 to 3 characterized by the above-mentioned. Storage capacity deviation reduction system.
5. The storage capacity deviation reduction system according to claim 1, wherein the oscillation circuit generates a rectangular wave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006099028A JP2007274837A (en) | 2006-03-31 | 2006-03-31 | System for reducing power accumulation capacity deviation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006099028A JP2007274837A (en) | 2006-03-31 | 2006-03-31 | System for reducing power accumulation capacity deviation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007274837A true JP2007274837A (en) | 2007-10-18 |
Family
ID=38677050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006099028A Pending JP2007274837A (en) | 2006-03-31 | 2006-03-31 | System for reducing power accumulation capacity deviation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007274837A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102170154A (en) * | 2011-04-21 | 2011-08-31 | 无锡市凌翔电气驱动技术有限公司 | An active equalizing system and an equalizing method of power lithium ion battery |
DE102010026608A1 (en) | 2010-07-09 | 2012-01-12 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Device for attaching power supply modules to electric appliance of electric car, has alternating current (AC)-direct current (DC) converters whose AC and DC sides are coupled to device-side coils and electric appliance respectively |
JP2012090366A (en) * | 2010-10-15 | 2012-05-10 | Jtekt Corp | Power supply device and electrically-driven power steering device including the same |
WO2013129602A1 (en) * | 2012-03-02 | 2013-09-06 | 株式会社豊田自動織機 | Cell balancing device |
CN103545871A (en) * | 2012-07-13 | 2014-01-29 | 蔡富生 | Method and apparatus for performing active balance control by means of voltage information sharing |
JP2016134965A (en) * | 2015-01-16 | 2016-07-25 | Tdk株式会社 | Power reception device |
JP2019525717A (en) * | 2016-08-26 | 2019-09-05 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Device and system for balancing energy in a battery pack |
CN111986899A (en) * | 2020-08-28 | 2020-11-24 | 福州大学 | Multi-stage insulation dry current transformer |
-
2006
- 2006-03-31 JP JP2006099028A patent/JP2007274837A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010026608A1 (en) | 2010-07-09 | 2012-01-12 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Device for attaching power supply modules to electric appliance of electric car, has alternating current (AC)-direct current (DC) converters whose AC and DC sides are coupled to device-side coils and electric appliance respectively |
JP2012090366A (en) * | 2010-10-15 | 2012-05-10 | Jtekt Corp | Power supply device and electrically-driven power steering device including the same |
CN102170154A (en) * | 2011-04-21 | 2011-08-31 | 无锡市凌翔电气驱动技术有限公司 | An active equalizing system and an equalizing method of power lithium ion battery |
WO2013129602A1 (en) * | 2012-03-02 | 2013-09-06 | 株式会社豊田自動織機 | Cell balancing device |
CN103545871A (en) * | 2012-07-13 | 2014-01-29 | 蔡富生 | Method and apparatus for performing active balance control by means of voltage information sharing |
CN103545871B (en) * | 2012-07-13 | 2016-04-27 | 蔡富生 | The method and apparatus carrying out active balancing control is shared by means of information of voltage |
JP2016134965A (en) * | 2015-01-16 | 2016-07-25 | Tdk株式会社 | Power reception device |
JP2019525717A (en) * | 2016-08-26 | 2019-09-05 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Device and system for balancing energy in a battery pack |
US11211815B2 (en) | 2016-08-26 | 2021-12-28 | Huawei Technologies Co., Ltd. | Apparatus and system for balancing energy in battery pack |
CN111986899A (en) * | 2020-08-28 | 2020-11-24 | 福州大学 | Multi-stage insulation dry current transformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9318900B2 (en) | Power management system | |
JP2007274837A (en) | System for reducing power accumulation capacity deviation | |
JP5567684B2 (en) | Battery balancing circuit and method for balancing energy stored in a plurality of cells of a battery having a first terminal and a second terminal | |
US8866394B2 (en) | Drive circuit for realizing accurate constant current of multiple LEDs | |
US8269455B2 (en) | Charge balancing system | |
CN110521078A (en) | Battery system | |
US20100225277A1 (en) | Battery charge and discharge controller | |
EP3002863A1 (en) | Single inductor dc-dc converter with regulated output, energy storage and energy harvesting system | |
US8723364B2 (en) | Uninterruptible power supply having integrated charge/discharge circuit | |
KR102308628B1 (en) | Hybrid Power Conversion System and Method for Determining Maximum Efficiency Using the Same | |
US20110057626A1 (en) | Power supply and charging circuit for high energy capacitors | |
US20190089260A1 (en) | Bidirectional dc-dc resonant converter | |
AU2004254749A1 (en) | A system and method for charging a battery | |
US10978961B2 (en) | Pulsed rectifier architecture | |
Fernandez et al. | Multiple output AC/DC converter with an internal DC UPS | |
Oriti et al. | Battery management system with cell equalizer for multi-cell battery packs | |
KR20140052525A (en) | Circuit for charging battery and boosting voltage of battery and method for charging battery | |
WO2018074144A1 (en) | Power supply circuit | |
JP2010104077A (en) | Battery balancing circuit | |
WO2013031934A1 (en) | Interconnected power system | |
US9537339B2 (en) | High-efficiency battery charger | |
US20230395880A1 (en) | Power supply including a cascaded inverter | |
GB2491475A (en) | Stacked voltage doublers fed by multiple sources | |
US20030227364A1 (en) | Power transforming apparatus with multiple parallel-connected transformers | |
KR20070111587A (en) | Battery charging equalizer |