JP2007274754A - Superconducting current limiter - Google Patents

Superconducting current limiter Download PDF

Info

Publication number
JP2007274754A
JP2007274754A JP2006093959A JP2006093959A JP2007274754A JP 2007274754 A JP2007274754 A JP 2007274754A JP 2006093959 A JP2006093959 A JP 2006093959A JP 2006093959 A JP2006093959 A JP 2006093959A JP 2007274754 A JP2007274754 A JP 2007274754A
Authority
JP
Japan
Prior art keywords
current limiting
phase
superconducting current
coil
inductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006093959A
Other languages
Japanese (ja)
Other versions
JP4861035B2 (en
Inventor
Kenji Tazaki
賢司 田崎
Takashi Yazawa
孝 矢澤
Masami Urata
昌身 浦田
Ryoichi Sugawara
良市 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006093959A priority Critical patent/JP4861035B2/en
Publication of JP2007274754A publication Critical patent/JP2007274754A/en
Application granted granted Critical
Publication of JP4861035B2 publication Critical patent/JP4861035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting current limiter that reduces the size of a cryostat for housing the superconducting current limiter as much as possible and facilitates maintenance. <P>SOLUTION: The superconducting current limiter is so constructed that a superconducting current limiting element is placed in each of electric circuits of multiple phases. The superconducting current limiting elements are each constructed of a noninductive winding coil, and are coaxial concentrically or coaxially disposed. Therefore, it is possible to reduce the size of a cryostat for housing the superconducting current limiter as much as possible, to ensure a space in a cubicle to facilitate maintenance, and to reduce pressure rise in the cryostat. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力系統の事故時に系統に流れる短絡電流を抑制する超電導限流装置に関する。   The present invention relates to a superconducting current limiting device that suppresses a short-circuit current flowing in a power system when a power system fault occurs.

電力系統に事故が発生した場合、電力系統に流れる短絡電流を所定値以下に抑制する機器として限流装置が用いられている。限流装置は系統の定常時はゼロに近いインピーダンスであるが、系統の事故時には高いインピーダンスが生じて短絡電流を所定値以下に抑制する機能を有するものである。このような限流装置の適用が期待される設置箇所の一つは、例えば系統連系である。系統連系では2つの系統を限流装置で接続し、常時2つの系統の電力を融通し合い、事故時には事故電流を抑制してその後に2系統を切り離すという切替方法が行われている。   When an accident occurs in the power system, a current limiting device is used as a device that suppresses a short-circuit current flowing in the power system to a predetermined value or less. The current limiting device has an impedance close to zero when the system is stationary, but has a function of suppressing a short-circuit current to a predetermined value or less by generating a high impedance when a system fault occurs. One installation location where such a current limiting device is expected to be applied is, for example, grid connection. In the grid connection, a switching method is used in which two systems are connected by a current limiting device, the power of the two systems is always interchanged, an accident current is suppressed in the event of an accident, and then the two systems are disconnected.

これまで、限流装置はその有用性について技術的には実証されてきたが、コストメリットを十分に示すことができず、必ずしも電力系統に広く導入されることがなかった。しかし、近年、イットリウム系高温超電導線材の特性向上、長尺化、低コスト化が実現するようになり、コストメリットもあることが分かってきたので、実用化に向けた開発が急速に進んでいる。   Up to now, the current limiting device has been technically verified for its usefulness, but the cost merit cannot be sufficiently exhibited, and it has not necessarily been widely introduced into the power system. However, in recent years, it has become clear that yttrium-based high-temperature superconducting wire has improved characteristics, lengthened, and reduced costs, and it has been found that there are also cost advantages, so development for practical use is rapidly progressing. .

一般的に、限流装置は標準盤(キュービクル)に収納されるため、極力小型化し、限流装置導入後のメンテナンスを容易にすることが要求されている。一般的な超電導限流装置は、特許文献1の図1に記載されている構成が知られている。
特開平4−359626号公報 特許第2774672号
Generally, since the current limiting device is housed in a standard board (cubicle), it is required to reduce the size as much as possible and to facilitate maintenance after the current limiting device is introduced. As a general superconducting current limiting device, a configuration described in FIG.
JP-A-4-359626 Japanese Patent No. 2774672

ところで、通常、限流装置を収納するクライオスタットは、標準盤(キュービクル)という限られた空間に配置されるので、クライオスタットの小型化が重要な課題である。3相分の限流素子を収納するクライオスタットは、限流時の圧力上昇を考慮し、円筒型にすることが望ましい。   By the way, normally, the cryostat that houses the current limiting device is arranged in a limited space called a standard board (cubicle), and thus downsizing of the cryostat is an important issue. The cryostat that houses the current limiting elements for three phases is preferably cylindrical in consideration of the pressure increase during current limiting.

従来、3相分の限流素子は、特許文献1の図1に記載されているように、120°間隔の対称的な配置となっていた。このような形状で限流素子を配置した場合、少なくとも限流素子の外径の2倍以上の内径を持つクライオスタットを配置する必要があり、クライオスタットの小型化の障害となっていた。また、従来のクライオスタットでは、輻射熱量が大きく、クライオスタット内部の圧力が上昇するという問題があった。
本発明では、上記状況に対処するためになされたもので、その課題はクライオスタットの小型化が可能な超電導限流素子を備えた超電導限流装置を提供することにある。
Conventionally, the current limiting elements for three phases are symmetrically arranged at intervals of 120 ° as described in FIG. When the current limiting element is arranged in such a shape, it is necessary to arrange a cryostat having an inner diameter that is at least twice as large as the outer diameter of the current limiting element, which is an obstacle to miniaturization of the cryostat. Further, the conventional cryostat has a problem that the amount of radiant heat is large and the pressure inside the cryostat increases.
The present invention has been made to cope with the above situation, and an object thereof is to provide a superconducting current limiting device including a superconducting current limiting element capable of reducing the size of a cryostat.

上記課題を解決するために、本発明の超電導限流装置は、複数相の各電路にそれぞれ超電導限流素子が介挿されると共に、前記各超電導限流素子はそれぞれ無誘導巻コイルで構成され、かつ同軸同心状またはに同軸上に配置されていることを特徴とする。   In order to solve the above-described problem, the superconducting current limiting device of the present invention includes a superconducting current limiting element interposed in each of the plurality of phases, and each superconducting current limiting element is configured by a non-inductive winding coil. And it is arrange | positioned coaxially concentrically or coaxially.

本発明によると、超電導限流装置を収納するクライオスタットを極力小型化し、キュービクル内の空間を確保することによってメンテナンスを容易にするとともに、クライオスタット内部の圧力上昇を低減することができる。   According to the present invention, the cryostat accommodating the superconducting current limiting device can be miniaturized as much as possible to secure the space in the cubicle, thereby facilitating maintenance and reducing the pressure increase inside the cryostat.

以下、本発明に係る超電導限流装置の最良の実施形態を図を参照して説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態である超電導限流装置の構成図であり,同図(a)は平面図、同図(b),(c),(d)はそれぞれ同図(a)のU相無誘導限流素子,V相無誘導限流素子,W相無誘導限流素子の斜視図である。
Hereinafter, the best embodiment of a superconducting current limiting device according to the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a configuration diagram of a superconducting current limiting device according to a first embodiment of the present invention. FIG. 1 (a) is a plan view, and FIGS. 1 (b), (c), and (d) are the same. It is a perspective view of a U-phase non-inductive current limiting element, a V-phase non-inductive current limiting element, and a W-phase non-inductive current limiting element of (a).

図1に示すように、本実施形態の超電導限流装置は、U相無誘導限流素子11と、V相無誘導限流素子12と、W相無誘導限流素子13を同心状に配置して構成されている。それぞれの無誘導限流素子は、少なくとも1本以上の超電導線21と、1個以上の巻枠22および2個以上の電極23a、23bから構成されており、電極23aと電極23b間のインダクタンスは極力ゼロに近くなるような巻線構成となっている。無誘導限流素子の構成例については、例えば特許文献2に記載されているが、バイファイラー巻線で構成された限流素子などでもよい。   As shown in FIG. 1, the superconducting current limiting device of this embodiment has a U-phase non-inductive current limiting element 11, a V-phase non-inductive current limiting element 12, and a W-phase non-inductive current limiting element 13 arranged concentrically. Configured. Each non-inductive current limiting element includes at least one superconducting wire 21, one or more winding frames 22, and two or more electrodes 23a and 23b. The inductance between the electrode 23a and the electrode 23b is as follows. The winding configuration is as close to zero as possible. A configuration example of the non-inductive current limiting element is described in, for example, Patent Document 2, but may be a current limiting element configured by a bifilar winding.

本実施形態では、U相無誘導限流素子11のコイル外径が最も大きく、次にV相無誘導限流素子12のコイル外径が大きく、W相無誘導限流素子13のコイル外径が最も小さくなっているが、特にコイル径と相との相関はなく、相とコイル径との6通りの組み合わせのいずれでもよい。ただし、3相分の無誘導限流コイルが同心状に収まるように、コイル径を調整しておくことは必要である。すなわち、コイルの径の大きさ順に、大径無誘導限流素子、中径無誘導限流素子、小径無誘導限流素子と定義した場合、小径無誘導限流素子のコイル外径より中径無誘導限流素子のコイル内径が大きくし、かつ中径無誘導限流素子のコイル外径より大径無誘導限流素子のコイル内径を大きくなるように構成する必要がある。   In this embodiment, the U-phase non-inductive current limiting element 11 has the largest coil outer diameter, then the V-phase non-inductive current limiting element 12 has the largest coil outer diameter, and the W-phase non-inductive current limiting element 13 has a coil outer diameter. However, there is no correlation between the coil diameter and the phase, and any of six combinations of the phase and the coil diameter may be used. However, it is necessary to adjust the coil diameter so that the non-inductive current limiting coils for three phases are concentrically accommodated. That is, when defined as large-diameter non-inductive current limiting element, medium-diameter non-inductive current-limiting element, and small-diameter non-inductive current-limiting element in the order of the coil diameter, the medium diameter is smaller than the coil outer diameter of the small-diameter non-inductive current limiting element. The coil inner diameter of the non-inductive current limiting element needs to be large, and the coil inner diameter of the non-inductive current limiting element having a larger diameter needs to be larger than the outer diameter of the coil of the medium non-inductive current limiting element.

図1に示すように、3相の限流素子を同心円状に配置することにより、必要となるクライオスタットの内径は、大径無誘導限流素子であるU相無誘導限流素子11とほぼ同等の大きさにすることが可能となり、限流素子のコイル径の少なくとも2倍以上の径のクライオスタットが必要であった例えば特許文献1に示された従来の限流装置と比較すると、大幅な小型化を実現することができる。   As shown in FIG. 1, by arranging the three-phase current limiting elements concentrically, the required inner diameter of the cryostat is almost equal to the U-phase non-inductive current limiting element 11 which is a large-diameter non-inductive current limiting element. Compared with, for example, the conventional current limiting device disclosed in Patent Document 1, a cryostat having a diameter at least twice as large as the coil diameter of the current limiting element is required. Can be realized.

本実施形態では超電導限流装置を3相電路に適用した例を示しているが、本発明は2相電路あるいは4相以上の多相電路にも適用することができる。2相電路では2個の径の異なる無誘導限流素子を同心状に配置して超電導限流装置を構成する。4相電路では4個の径の異なる無誘導限流素子を同心状に配置して超電導限流装置を構成する。以下多相の電路にも同様に適用して超電導限流装置を構成する。また、2相電路では180度位相の異なる電路、4相電路では90度位相の異なる電路、5相電路では72度位相の異なる電路が好適であり、それ以上の多相電路にも適用することができる。   Although the present embodiment shows an example in which the superconducting current limiting device is applied to a three-phase circuit, the present invention can also be applied to a two-phase circuit or a multiphase circuit having four or more phases. In a two-phase electric circuit, two non-inductive current limiting elements having different diameters are arranged concentrically to constitute a superconducting current limiting device. In a four-phase circuit, four non-inductive current limiting elements having different diameters are arranged concentrically to constitute a superconducting current limiting device. Hereinafter, the superconducting current limiting device is configured in the same manner to a multiphase electric circuit. In addition, a two-phase circuit is a circuit having a phase difference of 180 degrees, a four-phase circuit is a circuit having a phase difference of 90 degrees, and a five-phase circuit is a circuit having a phase difference of 72 degrees. Can do.

(第2の実施形態)
図2は、本発明の第2の実施形態である超電導限流装置の斜視図である。
図2に示すように、本実施形態の超電導限流装置は、U相無誘導限流素子11、V相無誘導限流素子12、W相無誘導限流素子13を同軸上に配置した構成になっている。図1の第1の実施形態と比較すると、軸方向に長い構成になっている。例えば、軸方向の長さより、径方向の長さの方を優先的に小型化する必要がある場合には、図1の第1の実施形態より本実施形態の方が有効である。21は超電導線材、22は巻枠、23a,23bは電極である。
(Second Embodiment)
FIG. 2 is a perspective view of a superconducting current limiting device according to the second embodiment of the present invention.
As shown in FIG. 2, the superconducting current limiting device of this embodiment has a configuration in which a U-phase non-inductive current limiting element 11, a V-phase non-inductive current limiting element 12, and a W-phase non-inductive current limiting element 13 are arranged on the same axis. It has become. Compared to the first embodiment of FIG. 1, the configuration is longer in the axial direction. For example, when it is necessary to preferentially reduce the radial length over the axial length, the present embodiment is more effective than the first embodiment of FIG. 21 is a superconducting wire, 22 is a winding frame, and 23a and 23b are electrodes.

本実施形態の場合は、U相無誘導限流素子11、V相無誘導限流素子12およびW相無誘導限流素子13を同等の大きさにすることが可能であるので、従来構成の限流装置と比較すると大幅な小型化を実現することができる。   In the case of the present embodiment, the U-phase non-inductive current limiting element 11, the V-phase non-inductive current limiting element 12, and the W-phase non-inductive current limiting element 13 can be made equal in size. Compared with a current limiting device, a significant reduction in size can be realized.

本実施形態では超電導限流装置を3相電路に適用した例を示しているが、本発明は2相電路あるいは4相以上の多相電路にも容易に適用することができる。2相電路では2個の無誘導限流素子を同軸上に配置して超電導限流装置を構成する。4相電路では4個の無誘導限流素子を同軸上に配置して超電導限流装置を構成する。以下多相の電路にも同様に適用して超電導限流装置を構成する。また、2相電路では180度位相の異なる電路、4相電路では90度位相の異なる電路、5相電路では72度位相の異なる電路が好適であり、それ以上の多相電路にも適用することができる。   Although the present embodiment shows an example in which the superconducting current limiting device is applied to a three-phase circuit, the present invention can be easily applied to a two-phase circuit or a multiphase circuit having four or more phases. In a two-phase electric circuit, two non-inductive current limiting elements are arranged coaxially to constitute a superconducting current limiting device. In a four-phase circuit, four non-inductive current limiting elements are arranged coaxially to constitute a superconducting current limiting device. Hereinafter, the superconducting current limiting device is configured in the same manner to a multiphase electric circuit. In addition, a two-phase circuit is a circuit having a phase difference of 180 degrees, a four-phase circuit is a circuit having a phase difference of 90 degrees, and a five-phase circuit is a circuit having a phase difference of 72 degrees. Can do.

(第3の実施形態)
図3は、本発明の第3の実施形態の構成図であり、同図(a)は超電導限流装置の平面図、同図(b)は同図(a)の超電導限流装置を構成する要素コイルの斜視図である。
(Third embodiment)
3A and 3B are configuration diagrams of a third embodiment of the present invention, in which FIG. 3A is a plan view of a superconducting current limiting device, and FIG. 3B is a configuration of the superconducting current limiting device of FIG. It is a perspective view of the element coil to do.

図3に示すように、本実施形態の超電導限流装置は、U相、V相、W相のそれぞれの無誘導限流素子を、複数の要素コイルに分割し、各相の無誘導限流素子は、複数の要素コイルを直列あるいは並列に接続することにより構成するものである。図3では、U相無誘導限流素子は2個の要素コイル31a、31b、V相無誘導限流素子は2個の要素コイル31c、31d、W相無誘導限流素子は2個の要素コイル31e、31fから構成されている。そして、1個の無誘導要素コイル31fのコイル軸を中心として無誘導要素コイル31a、31bと無誘導要素コイル31c、31dおよび無誘導要素コイル31eが等配構成で配置される。ここで、任意の無誘導要素コイルの組み合わせで同数の無誘導要素コイル群を3組構成するが、図では要素コイル31aと31bで1組、要素コイル31c、31dで1組、要素コイル31e、31fで1組を構成し、各組内の無誘導要素コイル同士が電気的に直列に接続されるとともに、かつ各組で直列接続された無誘導要素コイル群がそれぞれ3相電路の各相に接続されている。   As shown in FIG. 3, the superconducting current limiting device of this embodiment divides the non-inductive current limiting elements of the U phase, the V phase, and the W phase into a plurality of element coils, and the non-inductive current limiting of each phase. The element is configured by connecting a plurality of element coils in series or in parallel. In FIG. 3, the U-phase non-inductive current limiting element has two element coils 31a and 31b, the V-phase non-inductive current limiting element has two element coils 31c and 31d, and the W-phase non-inductive current limiting element has two elements. The coils 31e and 31f are included. Then, the non-inductive element coils 31a and 31b, the non-inductive element coils 31c and 31d, and the non-inductive element coil 31e are arranged in a uniform configuration around the coil axis of one non-inductive element coil 31f. Here, three sets of the same number of non-inductive element coil groups are configured by any combination of non-inductive element coils, but in the figure, one set of element coils 31a and 31b, one set of element coils 31c and 31d, one element coil 31e, 31f constitutes one set, and non-inductive element coils in each set are electrically connected in series, and non-inductive element coil groups connected in series in each set are respectively connected to each phase of the three-phase circuit. It is connected.

このように無誘導限流素子を複数の要素コイルに分割することにより、コイルを配置する際の無効スペースをより減じるように構成することができる。その結果、クライオスタットの小型化を実現することができる。   By dividing the non-inductive current limiting element into a plurality of element coils in this way, the ineffective space when arranging the coils can be further reduced. As a result, it is possible to reduce the size of the cryostat.

なお、ここでは、各組内の無誘導コイル同士が電気的に直列に接続されるとしたが、この構成に代えて、各組内の無誘導コイル同士が電気的に並列に接続されるとしてもよい。さらには、各組同構成で複数の無誘導コイルを電気的に直列および並列に接続した直並列構成としてもよい。こうした配置によっても上述と同様の作用を得ることができる。   Here, the non-inductive coils in each group are electrically connected in series, but instead of this configuration, the non-inductive coils in each group are electrically connected in parallel. Also good. Furthermore, it is good also as a series-parallel structure which connected the some noninductive coil electrically in series and in parallel by each group structure. Even with such an arrangement, the same effect as described above can be obtained.

図4は、本発明の超電導限流装置は図3の第3の実施形態の変形例であり、同図(a)は超電導限流装置の平面図、同図(b)は同図(a)の超電導限流装置を構成する要素コイルの斜視図である。   4A and 4B show a superconducting current limiting device according to the present invention, which is a modification of the third embodiment of FIG. 3. FIG. 4A is a plan view of the superconducting current limiting device, and FIG. 2) is a perspective view of an element coil constituting the superconducting current limiting device of FIG.

図4に示すように、本実施形態では、中心に配置されたU相の無誘導限流素子(V相あるいはW相と置き換えても可)は、1個の要素コイル33で構成されている。一方、周囲を取り巻くV相およびW相の要素コイルはそれぞれ複数個で構成されている。すなわち、1個の要素コイル33を中心にして偶数個の要素コイルが等配構成で配置され、この偶数個の要素コイルが2組の同数の要素コイル群を構成する。2組の要素コイル群が3相電路のうち2相分の電路にそれぞれ接続され、中心に配置された1個の要素コイル33が残りの1相分の電路に接続される。図4では、V相の要素コイルは32a,32b,32c、W相の要素コイルは32d,32e,32fのそれぞれ3個づつで構成した場合を示している。U相、V相、W相がそれぞれ無誘導構成されていれば良く、必ずしも同じ形状である必要がないことを示す例である。   As shown in FIG. 4, in this embodiment, the U-phase non-inductive current limiting element (which may be replaced with a V-phase or a W-phase) arranged at the center is composed of one element coil 33. . On the other hand, a plurality of V-phase and W-phase element coils surrounding the periphery are formed. That is, an even number of element coils are arranged in a uniform configuration with one element coil 33 as the center, and the even number of element coils constitute two sets of the same number of element coil groups. Two sets of element coil groups are connected to the two-phase electric circuit among the three-phase electric circuits, respectively, and one element coil 33 arranged at the center is connected to the remaining one-phase electric circuit. FIG. 4 shows a case in which three V-phase element coils are formed of 32a, 32b, and 32c, and three W-phase element coils are respectively formed of 32d, 32e, and 32f. This is an example showing that the U phase, the V phase, and the W phase only need to be configured in a non-inductive manner and do not necessarily have the same shape.

このように無誘導限流素子を複数の要素コイルに分割することにより、コイルを配置する際の無効スペースをより減じるように構成したものである。その結果、クライオスタットの小型化を実現することができるようになった。   As described above, the non-inductive current limiting element is divided into a plurality of element coils, so that the ineffective space when the coils are arranged is further reduced. As a result, the cryostat can be miniaturized.

(第4の実施形態)
図5は、本発明の第4の実施形態である超電導限流装置の斜視図である。
図5に示すように、本実施形態の超電導限流装置は、U相無誘導限流素子11と、V相無誘導限流素子12と、W相無誘導限流素子13を直線状に配置した構成になっている。なお、21は超電導線材、22は巻枠、23a,23bは電極である。
(Fourth embodiment)
FIG. 5 is a perspective view of a superconducting current limiting device according to a fourth embodiment of the present invention.
As shown in FIG. 5, the superconducting current limiting device of the present embodiment has a U-phase non-inductive current limiting element 11, a V-phase non-inductive current limiting element 12, and a W-phase non-inductive current limiting element 13 arranged in a straight line. It has a configuration. In addition, 21 is a superconducting wire, 22 is a winding frame, and 23a and 23b are electrodes.

本実施形態の超電導限流装置の構成では、1個の超電導限流素子を除く超電導限流素子を構成する3の倍数個の無誘導要素コイルを備えており、超電導限流素子を構成するコイルのコイル軸を中心として、3の倍数個の無誘導要素コイルが等配構成で配置され、かつ任意の無誘導要素コイルの組み合わせで同数の無誘導要素コイル群を2組構成する。それぞれの組内の無誘導要素コイル同士が電気的に直列、または並列、または直並列に接続されており、かつ、各組で直列、または並列、または直並列に接続された無誘導要素コイル群が3相電路のうち2相分の電路にそれぞれ接続され、かつ超電導限流素子が残りの1相分の電路に接続されている。なお、クライオスタットが円筒形の場合は、必ずしも最適な構成ではないが、例えば、クライオスタットが直方体形状の場合には小型化を実現するのに特に有効である。   In the configuration of the superconducting current limiting device according to the present embodiment, a coil that constitutes the superconducting current limiting element is provided with multiple non-inductive element coils that constitute a superconducting current limiting element excluding one superconducting current limiting element. A non-inductive element coil of multiples of 3 is arranged in a uniform configuration with the coil axis of the same as the center, and two sets of non-inductive element coil groups of the same number are configured by any combination of non-inductive element coils. Non-inductive element coils in which each non-inductive element coil in each group is electrically connected in series, parallel, or series-parallel, and each group is connected in series, parallel, or series-parallel. Are connected to the two-phase circuit among the three-phase circuits, and the superconducting current limiting element is connected to the remaining one-phase circuit. When the cryostat is cylindrical, the configuration is not necessarily optimal. However, for example, when the cryostat has a rectangular parallelepiped shape, it is particularly effective for realizing miniaturization.

(第5の実施形態)
図6は、本発明の第5の実施形態の超電導限流装置の構成図であり、同図(a)は超電導限流装置の平面図、同図(b)は同図(a)のU相限流コイルの斜視図、同図(c)は同図(a)のV相限流コイルの斜視図、同図(d)は同図(a)のW相限流コイルの斜視図である。
(Fifth embodiment)
6A and 6B are configuration diagrams of a superconducting current limiting device according to a fifth embodiment of the present invention. FIG. 6A is a plan view of the superconducting current limiting device, and FIG. FIG. 4C is a perspective view of the V-phase current limiting coil of FIG. 1A, and FIG. 1D is a perspective view of the W-phase current limiting coil of FIG. is there.

図6に示すように、本実施形態の超電導限流装置が図1の第1の実施形態と異なる構成は、U相限流コイル41、V相限流コイル42、W相限流コイル43のそれぞれの素子が無誘導構成ではなく、誘導コイルとなっている点である。   As shown in FIG. 6, the superconducting current limiting device of this embodiment differs from the first embodiment of FIG. 1 in that a U-phase current limiting coil 41, a V-phase current limiting coil 42, and a W-phase current limiting coil 43. Each element is not a non-inductive configuration but an induction coil.

本実施形態では、U相、V相、W相の電流位相がそれぞれ120°ずれていることを考慮して、各瞬間のコイル中心磁場がほぼゼロになるように、U相、V相、W相のコイルの形状や巻数を設定しており、3相電流通電により、見かけ上無誘導になるように構成したものである。21は誘導コイル、22は巻枠、23a,23bは電極である。   In this embodiment, considering that the current phases of the U phase, the V phase, and the W phase are shifted by 120 °, the U phase, the V phase, and the W phase so that the coil center magnetic field at each moment becomes almost zero. The shape and the number of turns of the phase coil are set, and it is configured to be apparently non-inductive when the three-phase current is applied. 21 is an induction coil, 22 is a winding frame, and 23a and 23b are electrodes.

本実施形態によると、例えば、U相に事故電流が流れて、U相コイルがクエンチしたときには、上述の無誘導性がくずれて、V相、W相にはインダクタンスが生じるため、V相およびW相にも限流効果が自動的に現れる、という効果がある。   According to the present embodiment, for example, when an accident current flows in the U phase and the U phase coil is quenched, the non-inductivity described above is lost, and inductance occurs in the V phase and the W phase. There is also an effect that the current limiting effect automatically appears in the phase.

(第6の実施形態)
図7は、本発明の第6の実施形態の超電導限流装置の構成図であり、同図(a)は超電導限流装置の導体構成の斜視図、同図(b)は同図(a)の導体の部分側面図、同図(c)は同図(a)とは異なる導体の部分側面図、同図(d)は同図(b)および同図(c)とは異なる導体の部分側面図である。
(Sixth embodiment)
FIG. 7: is a block diagram of the superconducting current limiting device of the 6th Embodiment of this invention, The figure (a) is a perspective view of the conductor structure of a superconducting current limiting device, The figure (b) is the figure (a) (C) is a partial side view of a conductor different from FIG. (A), FIG. (D) is a conductor different from FIG. (B) and (c). It is a partial side view.

図7(a)および同図(b)に示すように、本実施形態の超電導限流装置の超電導限流素子(超電導集合導体)51は、3本の超電導線(52a、52b、52c)による集合導体から構成され、それぞれの超電導線間は、絶縁体53により電気的に絶縁されている。3本の超電導線は、それぞれ系統のU相、V相、W相に接続されている。21は誘導コイル、22は巻枠、23a,23bは電極である。   As shown in FIG. 7A and FIG. 7B, the superconducting current limiting element (superconducting collective conductor) 51 of the superconducting current limiting device of this embodiment is composed of three superconducting wires (52a, 52b, 52c). It is composed of an aggregate conductor, and each superconducting wire is electrically insulated by an insulator 53. The three superconducting wires are connected to the U phase, V phase, and W phase of the system, respectively. 21 is an induction coil, 22 is a winding frame, and 23a and 23b are electrodes.

本実施形態によると、第5の実施形態と同様に、3相電流が通電された場合に、コイルが発生する磁場はキャンセルされ、コイルのインダクタンスは理想的にはゼロにすることができる。また、例えば、U相に事故電流が流れ、U相コイルがクエンチしたときには、上述の無誘導性がくずれて、V相、W相にはインダクタンスが生じるため、V相およびW相にも限流効果が自動的に現れるという効果がある。   According to this embodiment, similarly to the fifth embodiment, when a three-phase current is applied, the magnetic field generated by the coil is canceled, and the inductance of the coil can be ideally zero. In addition, for example, when an accident current flows in the U phase and the U phase coil is quenched, the non-inductivity described above is lost, and inductance occurs in the V phase and the W phase. There is an effect that the effect appears automatically.

また、本実施形態の超電導限流装置の第1の変形例の超電導限流素子(超電導集合導体)51Aは、図7(c)に示すように、U相を54aと54bの超電導線から構成、V相を54cと54dの超電導線から構成、W相を54eと54fの超電導線から構成されており、それぞれの相間は絶縁体53により電気的に絶縁されている。   Further, the superconducting current limiting element (superconducting collective conductor) 51A of the first modification of the superconducting current limiting device of the present embodiment has a U phase composed of superconducting wires of 54a and 54b as shown in FIG. 7C. The V phase is composed of superconducting wires 54c and 54d, and the W phase is composed of superconducting wires 54e and 54f. The phases are electrically insulated by an insulator 53.

さらに、本実施形態の超電導限流装置の第2の変形例の超電導限流素子(超電導集合導体)51Bは、図7(d)に示すように、U相を54aと54bの超電導線から構成、V相を54cと54dの超電導線から構成、W相を54eと54fの超電導線から構成されており、それぞれの超電導線間は絶縁体53により電気的に絶縁されている。   Furthermore, the superconducting current limiting element (superconducting collective conductor) 51B of the second modification of the superconducting current limiting device of the present embodiment is composed of superconducting wires of 54a and 54b as shown in FIG. 7 (d). The V phase is composed of superconducting wires 54c and 54d, and the W phase is composed of superconducting wires 54e and 54f. The superconducting wires are electrically insulated by an insulator 53.

上記第1の変形例および第2の変形例のように超電導限流装置の超電導限流素子を構成することにより、第6の実施形態と同様に、3相電流が通電された場合に、コイルが発生する磁場はキャンセルされ、コイルのインダクタンスは理想的にはゼロにすることができる。また、例えば、U相に事故電流が流れ、U相コイルがクエンチしたときには、上記の無誘導性がくずれて、V相、W相にはインダクタンスが生じるため、V相およびW相にも限流効果が自動的に現れるという効果がある。   By configuring the superconducting current limiting element of the superconducting current limiting device as in the first and second modified examples, the coil can be used when a three-phase current is applied as in the sixth embodiment. The magnetic field generated by is canceled and the inductance of the coil can ideally be zero. In addition, for example, when an accident current flows in the U phase and the U phase coil is quenched, the non-inductivity is lost, and inductance is generated in the V phase and the W phase. There is an effect that the effect appears automatically.

本発明の第1の実施形態の構成図であり、同図(a)は超電導限流装置の平面図、同図(b),同図(c),同図(d)は同図(a)のそれぞれU相,V相,W相の無誘導限流素子の斜視図。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the 1st Embodiment of this invention, the figure (a) is a top view of a superconducting current limiting device, the figure (b), the figure (c), and the figure (d) are the figures (a) ) Are perspective views of U-phase, V-phase, and W-phase non-inductive current limiting elements. 本発明の第2の実施形態の構成図。The block diagram of the 2nd Embodiment of this invention. 本発明の第3の実施形態の構成図であり、同図(a)は超電導限流装置の平面図、同図(b)は同図(a)の超電導限流装置を構成する要素コイルの斜視図。It is the block diagram of the 3rd Embodiment of this invention, The figure (a) is a top view of a superconducting current limiting device, The figure (b) is the element coil which comprises the superconducting current limiting device of the same figure (a). Perspective view. 図3の第3の実施形態の変形例であり、同図(a)は超電導限流装置の平面図、同図(b)は同図(a)の超電導限流装置を構成する要素コイルの斜視図。FIG. 3A is a modification of the third embodiment of FIG. 3, in which FIG. 3A is a plan view of the superconducting current limiting device, and FIG. 3B is an element coil constituting the superconducting current limiting device of FIG. Perspective view. 本発明の第4の実施形態の斜視図。The perspective view of the 4th Embodiment of this invention. 本発明の第5の実施形態の構成図であり、同図(a)は超電導限流装置の平面図、同図(b),同図(c),同図(d)は同図(a)のそれぞれU相,V相,W相の超電導限流素子を構成する各要素コイルの斜視図。It is a block diagram of the 5th Embodiment of this invention, The figure (a) is a top view of a superconducting current limiting device, The figure (b), the figure (c), and the figure (d) are the figures (a) ) Is a perspective view of each element coil constituting the U-phase, V-phase, and W-phase superconducting current limiting elements. 本発明の第6の実施形態の超電導限流装置の構成図であり、同図(a)は超電導限流装置の導体構成の斜視図、同図(b)は同図(a)の導体の部分側面図、同図(c) は同図(a)とは異なる導体の部分側面図、同図(d)は同図(b)および同図(c)とは異なる導体の部分側面図。It is a block diagram of the superconducting current limiting device of the 6th Embodiment of this invention, The figure (a) is a perspective view of the conductor structure of a superconducting current limiting device, The figure (b) is the conductor of the figure (a). FIG. 3C is a partial side view of a conductor different from FIG. 1A, and FIG. 4D is a partial side view of a conductor different from FIG. 2B and FIG.

符号の説明Explanation of symbols

11…U相無誘導限流素子、12…V相無誘導限流素子、13…W相無誘導限流素子、21…超電導線、22…巻枠、23a,23b…電極、31a,31b…U相無誘導限流素子の要素コイル、31c,31d…V相無誘導限流素子の要素コイル、31e,31f…W相無誘導限流素子の要素コイル、32a,32b,32c…U相無誘導限流素子の要素コイル、32d,32e,32f…V相無誘導限流素子の要素コイル、33…W相無誘導限流素子の要素コイル、41…U相限流コイル、42…V相限流コイル、43…W相限流コイル、51,51A,51B…超電導限流素子、52a…U相用超電導線、52b…V相用超電導線、52c…W相用超電導線、53…絶縁体、54a,54b…U相用超電導線、54c,54d…V相用超電導線、54e,54f…W相用超電導線。

DESCRIPTION OF SYMBOLS 11 ... U-phase non-inductive current limiting element, 12 ... V-phase non-inductive current limiting element, 13 ... W-phase non-inductive current limiting element, 21 ... Superconducting wire, 22 ... Winding frame, 23a, 23b ... Electrode, 31a, 31b ... Element coil of U-phase non-inductive current limiting element, 31c, 31d... Element coil of V-phase non-inductive current limiting element, 31e, 31f... Element coil of W-phase non-inductive current limiting element, 32a, 32b, 32c. Element coil of induction current limiting element, 32d, 32e, 32f ... Element coil of V phase non-inductive current limiting element, 33 ... Element coil of W phase non-inductive current limiting element, 41 ... U phase current limiting coil, 42 ... V phase Current limiting coil, 43 ... W phase current limiting coil, 51, 51A, 51B ... Superconducting current limiting element, 52a ... U phase superconducting wire, 52b ... V phase superconducting wire, 52c ... W phase superconducting wire, 53 ... insulation Body, 54a, 54b ... superconducting wire for U phase, 54c, 54d ... for V phase Conductive lines, 54e, 54f ... W-phase superconducting wire.

Claims (8)

複数相の各電路にそれぞれ超電導限流素子が介挿されると共に、前記各超電導限流素子はそれぞれ無誘導巻コイルで構成され、かつ同軸同心状に配置されていることを特徴とする超電導限流装置。   A superconducting current limiting element characterized in that a superconducting current limiting element is inserted in each of the electric paths of the plurality of phases, and each of the superconducting current limiting elements is composed of a non-inductive winding coil and is coaxially arranged. apparatus. 複数相の各電路にそれぞれ超電導限流素子が介挿されると共に、前記各超電導限流素子はそれぞれ無誘導巻コイルで構成され、かつ同軸に配置されるすべての超電導限流素子のコイル軸が同一直線状に配置されていることを特徴とする超電導限流装置。   A superconducting current limiting element is inserted in each of the electric paths of the plurality of phases, each superconducting current limiting element is composed of a non-inductive winding coil, and the coil axes of all superconducting current limiting elements arranged coaxially are the same. A superconducting current limiting device characterized by being arranged in a straight line. 複数相の電路は3相電路である請求項1または請求項2に記載の超電導限流装置。   The superconducting current limiting device according to claim 1 or 2, wherein the multi-phase electric circuit is a three-phase electric circuit. 3相電路を構成している各相にそれぞれ超電導限流素子が介挿されてなる3相限流の超電導限流装置において、前記超電導限流素子を構成する無誘導要素コイルが3の倍数個で、当該無誘導要素コイルのうち1個の無誘導要素コイルのコイル軸を中心として、当該1個の無誘導要素コイルを除く無誘導要素コイルが等配構成で配置され、かつ任意の無誘導要素コイルの組み合わせで同数の無誘導要素コイル群を3組構成し、各組内の無誘導要素コイル同士が電気的に直列または並列に接続されるとともに、かつ各組で直列または並列に接続された無誘導要素コイル群がそれぞれ3相電路の各相に接続されていることを特徴とする超電導限流装置。   In a three-phase current limiting superconducting current limiting device in which a superconducting current limiting element is inserted in each phase constituting a three-phase circuit, the number of non-inductive element coils constituting the superconducting current limiting element is a multiple of three. In the non-inductive element coil, the non-inductive element coils other than the non-inductive element coil are arranged in a uniform configuration around the coil axis of one non-inductive element coil, and any non-inductive The same number of non-inductive element coil groups is composed of a combination of element coils, and non-inductive element coils in each group are electrically connected in series or in parallel, and each group is connected in series or in parallel. A nonconducting element coil group is connected to each phase of a three-phase circuit, respectively. 3相電路を構成している各相にそれぞれ超電導限流素子が介挿されてなる3相限流の超電導限流装置において、前記超電導限流素子を構成する無誘導要素コイルが3の倍数個で、当該無誘導要素コイルのうち、1個の無誘導要素コイルのコイル軸を中心として、当該1個の無誘導要素コイルを除く無誘導要素コイルが等配構成で配置され、かつ任意の無誘導要素コイルの組み合わせで同数の無誘導要素コイル群を3組構成し、各組内の無誘導要素コイル同士が各組同構成で電気的に直列および並列に接続されるとともに、かつ各組で直並列接続された無誘導要素コイル群がそれぞれ3相電路の各相に接続されていることを特徴とする超電導限流装置。   In a three-phase current limiting superconducting current limiting device in which a superconducting current limiting element is inserted in each phase constituting a three-phase circuit, the number of non-inductive element coils constituting the superconducting current limiting element is a multiple of three. In the non-inductive element coil, the non-inductive element coils excluding the non-inductive element coil are arranged in a uniform configuration around the coil axis of one non-inductive element coil, and any non-inductive element coil is provided. Three sets of non-inductive element coil groups of the same number are formed by the combination of inductive element coils, and non-inductive element coils in each set are electrically connected in series and in parallel in each set, and in each set A superconducting current limiting device, wherein non-inductive element coil groups connected in series and parallel are connected to each phase of a three-phase circuit. 3相電路を構成している各相にそれぞれ超電導限流素子が介挿されてなる3相限流の超電導限流装置において、1個の超電導限流素子と、前記1個の超電導限流素子を除く超電導限流素子を構成する偶数個の無誘導要素コイルを具備し、前記超電導限流素子を構成するコイルのコイル軸を中心として、前記偶数個の無誘導要素コイルが等配構成で配置され、かつこの等配構成で配置された任意の無誘導要素コイルの組み合わせで同数の無誘導要素コイル群を2組構成し、各組内の無誘導要素コイル同士が電気的に直列、または並列、または直並列に接続されており、かつ、各組で直列、または並列、または直並列に接続された無誘導要素コイル群が3相電路のうち2相分の電路にそれぞれ接続され、かつ当該超電導限流素子が残りの1相分の電路に接続されていることを特徴とする超電導限流装置。   In a superconducting current limiting device having a three-phase current limit, in which a superconducting current limiting element is inserted in each phase constituting a three-phase circuit, one superconducting current limiting element and the one superconducting current limiting element Including an even number of non-inductive element coils constituting the superconducting current limiting element except for the coil, and the even number of non-inductive element coils arranged in a uniform configuration around the coil axis of the coil constituting the superconducting current limiting element. In addition, two sets of non-inductive element coil groups of the same number are formed by a combination of arbitrary non-inductive element coils arranged in this equal configuration, and the non-inductive element coils in each group are electrically connected in series or in parallel. Or a non-inductive element coil group connected in series, parallel, or series-parallel in each group is connected to a two-phase circuit among the three-phase circuits, and The superconducting current limiting element is for the remaining one phase Superconducting current limiting device, characterized in that connected to the road. 3相電路を構成している各相にそれぞれ超電導限流素子が介挿されてなる3相限流の超電導限流装置において、前記超電導限流素子はそれぞれ誘導巻コイルで構成され、かつ同軸同心状に配置されるとともに、当該各誘導巻コイルが発生する単位通電電流値あたりの発生中心磁場の値がほぼ同値によるように構成されていることを特徴とする超電導限流装置。   In a three-phase current limiting superconducting current limiting device in which a superconducting current limiting element is inserted in each phase constituting a three-phase circuit, each of the superconducting current limiting elements is composed of an induction winding coil and coaxially concentric The superconducting current limiting device is characterized in that the value of the central magnetic field generated per unit energization current value generated by each induction winding coil is substantially the same value. 3相電路を構成している各相にそれぞれ超電導限流素子が介挿されてなる3相限流の超電導限流装置において、前記超電導限流素子を構成するコイルが、3の倍数枚の超電導線材と、当該超電導線材群を3等分割する位置に挿入された絶縁体により構成された集合導体で巻線され、3等分割された集合導体の各分割導体がそれぞれ3相の電路に接続されることを特徴とする超電導限流装置。

In a superconducting current limiting device having a three-phase current limiting element in which a superconducting current limiting element is inserted in each phase constituting a three-phase electric circuit, the coil constituting the superconducting current limiting element is a multiple of three superconducting currents. The conductor is wound with an assembly conductor composed of an insulator inserted at a position where the superconducting wire group is divided into three equal parts, and each divided conductor of the aggregate conductor divided into three equal parts is connected to a three-phase electric circuit. A superconducting current limiting device.

JP2006093959A 2006-03-30 2006-03-30 Superconducting current limiting device Expired - Fee Related JP4861035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093959A JP4861035B2 (en) 2006-03-30 2006-03-30 Superconducting current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093959A JP4861035B2 (en) 2006-03-30 2006-03-30 Superconducting current limiting device

Publications (2)

Publication Number Publication Date
JP2007274754A true JP2007274754A (en) 2007-10-18
JP4861035B2 JP4861035B2 (en) 2012-01-25

Family

ID=38676976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093959A Expired - Fee Related JP4861035B2 (en) 2006-03-30 2006-03-30 Superconducting current limiting device

Country Status (1)

Country Link
JP (1) JP4861035B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151583A3 (en) * 2009-06-26 2011-02-24 Varian Semiconductor Equipment Associates Technique for limiting transmission of fault current
JP2015142450A (en) * 2014-01-29 2015-08-03 住友電気工業株式会社 Current limiter
CN106062897A (en) * 2014-02-26 2016-10-26 西门子公司 Electrical component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426328A (en) * 1987-07-20 1989-01-27 Toshiba Corp Superconductive current limiter
JPH0458725A (en) * 1990-06-28 1992-02-25 Tokyo Electric Power Co Inc:The Superconducting current limiter
JPH04208062A (en) * 1990-11-30 1992-07-29 Aisin Aw Co Ltd Superconducting magnet for superconducting motor
JPH04359626A (en) * 1991-06-04 1992-12-11 Tokyo Electric Power Co Inc:The Current limiter
JPH09252527A (en) * 1996-03-14 1997-09-22 Tokyo Electric Power Co Inc:The Superconducting device
JPH10285792A (en) * 1997-03-31 1998-10-23 Tokyo Electric Power Co Inc:The Current limiter
JPH1118290A (en) * 1997-06-20 1999-01-22 Mitsubishi Electric Corp Superconducting current limiting device
JPH11332090A (en) * 1998-05-19 1999-11-30 Tokyo Electric Power Co Inc:The Current-limiting device
JPH11341709A (en) * 1998-05-27 1999-12-10 Toshiba Corp Superconductor power storage device
JP2004040036A (en) * 2002-07-08 2004-02-05 Fujikura Ltd Noninductive winding and permanent current switch
JP2004039591A (en) * 2002-07-08 2004-02-05 Fujikura Ltd Noninductive winding and permanent current switch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426328A (en) * 1987-07-20 1989-01-27 Toshiba Corp Superconductive current limiter
JPH0458725A (en) * 1990-06-28 1992-02-25 Tokyo Electric Power Co Inc:The Superconducting current limiter
JPH04208062A (en) * 1990-11-30 1992-07-29 Aisin Aw Co Ltd Superconducting magnet for superconducting motor
JPH04359626A (en) * 1991-06-04 1992-12-11 Tokyo Electric Power Co Inc:The Current limiter
JPH09252527A (en) * 1996-03-14 1997-09-22 Tokyo Electric Power Co Inc:The Superconducting device
JPH10285792A (en) * 1997-03-31 1998-10-23 Tokyo Electric Power Co Inc:The Current limiter
JPH1118290A (en) * 1997-06-20 1999-01-22 Mitsubishi Electric Corp Superconducting current limiting device
JPH11332090A (en) * 1998-05-19 1999-11-30 Tokyo Electric Power Co Inc:The Current-limiting device
JPH11341709A (en) * 1998-05-27 1999-12-10 Toshiba Corp Superconductor power storage device
JP2004040036A (en) * 2002-07-08 2004-02-05 Fujikura Ltd Noninductive winding and permanent current switch
JP2004039591A (en) * 2002-07-08 2004-02-05 Fujikura Ltd Noninductive winding and permanent current switch

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010151583A3 (en) * 2009-06-26 2011-02-24 Varian Semiconductor Equipment Associates Technique for limiting transmission of fault current
CN102576799A (en) * 2009-06-26 2012-07-11 瓦里安半导体设备公司 Technique for limiting transmission of fault current
JP2012531881A (en) * 2009-06-26 2012-12-10 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Technology to limit transmission of fault current
US8467158B2 (en) 2009-06-26 2013-06-18 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
US8804288B2 (en) 2009-06-26 2014-08-12 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
CN102576799B (en) * 2009-06-26 2015-05-06 瓦里安半导体设备公司 Technique for limiting transmission of fault current
US9391450B2 (en) 2009-06-26 2016-07-12 Varian Semiconductor Equipment Associates, Inc. Technique for limiting transmission of fault current
JP2015142450A (en) * 2014-01-29 2015-08-03 住友電気工業株式会社 Current limiter
CN106062897A (en) * 2014-02-26 2016-10-26 西门子公司 Electrical component
US11043330B2 (en) 2014-02-26 2021-06-22 Siemens Aktiengesellschaft Electrical component

Also Published As

Publication number Publication date
JP4861035B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
US20100141067A1 (en) Rotating electrical machine
US7961071B2 (en) Multiphase inductor and filter assemblies using bundled bus bars with magnetic core material rings
US20180175694A1 (en) Electric Motor And Stator Thereof
EP3920198B1 (en) Inductor assemblies
JP2009135271A (en) Reactor, and noise filter
JP4861035B2 (en) Superconducting current limiting device
JP6106095B2 (en) Interconnects for connecting switch-mode inverters to loads
JP2001524748A (en) Electromagnetic device
JP2012119617A (en) Reactor
JP2010165711A (en) Coil and transformer
JP2023521204A (en) transformer
KR101338905B1 (en) High frequency transformer
JP2015527034A (en) Parallel inverter connected to one inductor
US10862544B2 (en) Magnetic coupler and communication system
JP5811670B2 (en) Transformer
JP2010251543A (en) Resin molded coil
WO2010106916A1 (en) Integral three-phase gas insulated switchgear
US9012780B2 (en) 3-coaxial superconducting power cable and cable&#39;s structure
JP2007295691A (en) Stator coil of multiplex-winding motor
AU2020273556B2 (en) High voltage transformer, method for producing a high voltage transformer and test system and test signal device comprising a high voltage transformer
CN215933340U (en) Reactor for three-phase transformer and three-phase transformer
JP3157735B2 (en) Coil and manufacturing method thereof
JP2009060698A (en) Motor
JP2000037009A (en) Gas-insulated switchgear
JP2006081284A (en) Parallel inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees