JP2007273867A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2007273867A
JP2007273867A JP2006099687A JP2006099687A JP2007273867A JP 2007273867 A JP2007273867 A JP 2007273867A JP 2006099687 A JP2006099687 A JP 2006099687A JP 2006099687 A JP2006099687 A JP 2006099687A JP 2007273867 A JP2007273867 A JP 2007273867A
Authority
JP
Japan
Prior art keywords
capacitor
heat
terminal electrode
electrode plate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006099687A
Other languages
Japanese (ja)
Inventor
Ichio Konno
市夫 紺野
Koichi Hasegawa
宏一 長谷川
Norio Kamiyama
典男 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2006099687A priority Critical patent/JP2007273867A/en
Publication of JP2007273867A publication Critical patent/JP2007273867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor with superior reliability that can sufficiently withstand mechanical stress of curvature, bending, etc., of a substrate after the substrate is mounted. <P>SOLUTION: When the capacitor is soldered to be mounted on the substrate by joining a terminal electrode plate to a flank of the capacitor, joining a heat-resisting member forming a gap with the terminal electrode plate to a bottom surface of a capacitor body, and then folding the terminal electrode plate along a bottom surface of the heat-resisting member; the space is formed between the terminal electrode and heat-resisting member to prevent the heat-resisting member which has extended along the width owing to a difference in thermal expansion between the capacitor body and heat-resisting member, from pressing and spreading the terminal electrode plate in contact with the terminal electrode plate, and then mechanical stress applied to the capacitor body can be eliminated to prevent cracking. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コンデンサ、特にコンデンサの構造に関する。   The present invention relates to a capacitor, particularly a capacitor structure.

コンデンサは広範囲の電子機器に利用されているが、近年、さらに大容量化が求められている。特に小型で大きな静電容量を有するセラミックコンデンサは、さらに静電容量を大きくするために、その積層数を増加させている。これらのセラミックコンデンサを回路基板上に直接半田等により面実装した場合、半田付け時の基板の膨張、収縮によりクラック等の不都合が生じる。また、基板上に直接固定しているために、基板の反りや曲げに順応できず、コンデンサにクラックを生じたり、半田付け部が剥がれてしまう等の不良が生じていた。   Capacitors are used in a wide range of electronic devices, but in recent years, larger capacities have been demanded. In particular, a ceramic capacitor having a large capacitance has a large number of stacked layers in order to further increase the capacitance. When these ceramic capacitors are surface-mounted directly on a circuit board by solder or the like, problems such as cracks occur due to expansion and contraction of the board during soldering. Further, since it is directly fixed on the substrate, it cannot adapt to the warp or bend of the substrate, resulting in defects such as cracking of the capacitor or peeling off of the soldered portion.

これらの問題を解決するために、たとえば、実開昭63−187320号に開示されているような方法(手段)がある。すなわち、コンデンサの底面に絶縁性ゴムブロックを設け、該絶縁性ゴムブロックの側面に外部電極と接続された金属端子を設けることによりコンデンサを製造する。(特許文献1)
実開昭63−187320号公報
In order to solve these problems, for example, there is a method (means) disclosed in Japanese Utility Model Laid-Open No. 63-187320. That is, a capacitor is manufactured by providing an insulating rubber block on the bottom surface of the capacitor and providing a metal terminal connected to the external electrode on the side surface of the insulating rubber block. (Patent Document 1)
Japanese Utility Model Publication No. 63-187320

これにより、基板の反りや曲げによるクラックの発生等を抑制し信頼性を向上させることができる。   Thereby, generation | occurrence | production of the crack by the curvature or bending of a board | substrate etc. can be suppressed, and reliability can be improved.

しかしながら、特許文献1に提案されている方法では、コンデンサの底面に絶縁性ゴムブロックを設けているために、基板の反りや曲げ等による機械的応力に対して、その応力を緩和することができるが、セラミックコンデンサにおいて、絶縁性ゴムブロックの熱膨張率がコンデンサの熱膨張率に比べ大きいため、基板実装する際の半田の熱によるコンデンサ本体と絶縁性ゴムの熱膨張の差によって、コンデンサ本体に直接応力が掛かり、クラックの発生によりコンデンサの信頼性が低下するという問題が生じる。あるいは、金属端子をコンデンサ本体から引き剥がしてしまうような不都合も考えられる。   However, in the method proposed in Patent Document 1, since the insulating rubber block is provided on the bottom surface of the capacitor, the stress can be relieved with respect to mechanical stress caused by warping or bending of the substrate. However, in ceramic capacitors, the coefficient of thermal expansion of the insulating rubber block is larger than the coefficient of thermal expansion of the capacitor, so the difference in thermal expansion between the capacitor body and the insulating rubber due to the heat of the solder when mounting on the board causes the capacitor body to There is a problem that the stress is directly applied and the reliability of the capacitor is lowered due to the occurrence of cracks. Alternatively, there may be a problem that the metal terminal is peeled off from the capacitor body.

本発明の技術的課題は(目的)は、基板実装時の半田付けによるクラックの発生のない信頼性に優れたコンデンサを提供することである。   The technical problem of the present invention is to provide a capacitor having excellent reliability free from cracks caused by soldering when mounted on a board.

本発明のコンデンサは、コンデンサの側面に端子電極板を接合するとともに、このコンデンサ本体の底面に、前記端子電極板との間に空間部を形成する耐熱部材を接合し、端子電極板が耐熱部材の底面に沿って折り込まれたことを特徴とするものである。このことにより、基板上にコンデンサを実装する際の半田付けにおいて、コンデンサ本体と耐熱部材との熱膨張との差によって生じる耐熱部材の伸びを、端子電極板と耐熱部材の間に空間部を設けることで、幅方向に伸びた耐熱部材が端子電極板に接触しながら端子電極板を押し広げることを防止できることにより、コンデンサ本体にかかる機械的応力をなくすことができるため、クラックの発生を防止できる。   In the capacitor of the present invention, a terminal electrode plate is bonded to the side surface of the capacitor, and a heat-resistant member that forms a space portion between the terminal electrode plate and the terminal electrode plate is bonded to the bottom surface of the capacitor body. It is characterized by being folded along the bottom surface. As a result, in soldering when mounting the capacitor on the substrate, a space portion is provided between the terminal electrode plate and the heat-resistant member for the expansion of the heat-resistant member caused by the difference between the thermal expansion of the capacitor body and the heat-resistant member. By preventing the heat resistant member extending in the width direction from spreading the terminal electrode plate while contacting the terminal electrode plate, the mechanical stress applied to the capacitor body can be eliminated, and the occurrence of cracks can be prevented. .

また、前記耐熱部材の形状は板状の部材である。前記耐熱部材をコンデンサ本体の底面に板状として設置することにより、基板と端子電極板を接合する半田付けにおいて、コンデンサ本体と端子電極板を接合する半田が溶解した場合に、コンデンサ本体の落下を防止できる。さらに、ディップによる半田付けにおいて、コンデンサ本体に直接半田がかかるのを防止することができる。   The shape of the heat-resistant member is a plate-like member. By installing the heat-resistant member as a plate on the bottom surface of the capacitor body, when the solder for joining the capacitor body and the terminal electrode plate is dissolved in the soldering for joining the substrate and the terminal electrode plate, the capacitor body is dropped. Can be prevented. Furthermore, it is possible to prevent the capacitor body from being directly soldered during dipping soldering.

さらに、基板上面から前記コンデンサ本体の底面までの間隔は、電子部品としての適度な高さを考慮して、0.2mm以上に設定することが表面実装部品として望ましく、適正高さが保てる限り小さいほうが好ましい。
前記端子電極板と前記耐熱部材の間に形成された前記空間部と、前記耐熱部材の底面に沿って折り込まれた端子電極板の底面からコンデンサ本体の底面までの距離を0.2mm以上設けることにより、基板が反りや曲げを生じた場合に、端子電極板の前記空間部と接する部分が基板の反りや曲げに応じて外側に広がるように曲がり、あるいは、内側に狭まるように曲がるようなばねの働きをすることにより、コンデンサ本体に掛かる機械的応力を緩和することができる。また、基板の温度上昇や冷却による温度サイクルにおいて、基板がコンデンサ本体に対して膨張した場合は、端子電極板が外側に開き、逆に基板がコンデンサ本体に対して収縮した場合は、端子電極板が内側に曲がることにより、コンデンサ本体に掛かる機械的応力を緩和することができるため、コンデンサ本体にクラックが発生することを防止できる。
Further, the distance from the top surface of the substrate to the bottom surface of the capacitor body is preferably set to 0.2 mm or more in consideration of an appropriate height as an electronic component, and is small as long as the appropriate height can be maintained. Is preferred.
The space formed between the terminal electrode plate and the heat-resistant member, and the distance from the bottom surface of the terminal electrode plate folded along the bottom surface of the heat-resistant member to the bottom surface of the capacitor body should be 0.2 mm or more. Therefore, when the substrate is warped or bent, the spring is bent so that the portion of the terminal electrode plate in contact with the space expands outward according to the warp or bend of the substrate, or bends so as to be narrowed inward. By acting as described above, mechanical stress applied to the capacitor body can be relaxed. Also, when the substrate expands with respect to the capacitor body in a temperature cycle due to temperature rise or cooling of the substrate, the terminal electrode plate opens outward, and conversely, when the substrate contracts with respect to the capacitor body, the terminal electrode plate Since the mechanical stress applied to the capacitor body can be relieved by bending inward, cracks can be prevented from occurring in the capacitor body.

前記コンデンサ本体の側面と前記端子電極板との接合は、低融点半田で接合する。この場合の低融点半田は、特に220℃以下の融点を有する半田が好ましく、SnまたはPbを基材としZn、Cu、Agなどが添加されたものである。
コンデンサ本体の側面と端子電極板を低融点半田で接合することにより、高温半田の際に生じていたコンデンサ本体の外部電極の電極くわれを防止することができる。また、低融点半田付けの温度が高温半田より低温で可能になるため、半田接合後に半田が固形化して冷却していく際に生じていたコンデンサ本体と半田金属との熱収縮の差を低減することができることから、コンデンサ本体に掛かる応力が緩和されるためコンデンサ本体のダメージを軽減することができる。
The side surface of the capacitor body and the terminal electrode plate are joined by low melting point solder. In this case, the low melting point solder is preferably a solder having a melting point of 220 ° C. or less, and Sn or Pb is used as a base material and Zn, Cu, Ag or the like is added.
By joining the side surface of the capacitor body and the terminal electrode plate with a low melting point solder, it is possible to prevent the external electrodes of the capacitor body from being broken during high temperature soldering. In addition, since the low melting point soldering temperature can be lower than the high temperature solder, the difference in thermal shrinkage between the capacitor body and the solder metal that occurs when the solder solidifies and cools after soldering is reduced. Therefore, since the stress applied to the capacitor body is relieved, damage to the capacitor body can be reduced.

前記コンデンサ本体の底面に接合された耐熱部材は、その融点が270℃以上の絶縁性の部材とする。コンデンサ本体の底面に接合された耐熱部材の融点が270℃以上とすることで、基板接合時の半田付け、特に遠赤外炉でのリフローによる半田付けの際の熱に耐えることができる。   The heat-resistant member bonded to the bottom surface of the capacitor body is an insulating member having a melting point of 270 ° C. or higher. By setting the melting point of the heat-resistant member bonded to the bottom surface of the capacitor body to 270 ° C. or higher, it is possible to withstand the heat at the time of soldering at the time of board bonding, particularly soldering by reflow in a far-infrared furnace.

また、本発明のコンデンサは、前記コンデンサ本体が複数積層されたコンデンサであって、この積層したコンデンサ本体の最下部に前記耐熱部材を接合したことを特徴とするものである。前記コンデンサ本体を複数積層されたコンデンサとすることにより、前記発明の効果をそのまま維持することができるとともに、同一実装面積で大容量のコンデンサを得ることができる。
さらに、温度特性の異なるコンデンサを複数個積み重ねて一体化して各外部電極を端子電極板に接合することにより、積み重ねたコンデンサの組み合わせに応じ、使用目的に合った温度特性のコンデンサを得ることができる。
The capacitor of the present invention is a capacitor in which a plurality of capacitor bodies are laminated, and the heat-resistant member is joined to the lowermost part of the laminated capacitor bodies. By using a capacitor in which a plurality of capacitor bodies are stacked, the effect of the invention can be maintained as it is, and a large-capacity capacitor can be obtained with the same mounting area.
Furthermore, by stacking and integrating a plurality of capacitors having different temperature characteristics and joining each external electrode to the terminal electrode plate, a capacitor having a temperature characteristic suitable for the purpose of use can be obtained according to the combination of the stacked capacitors. .

コンデンサ本体の側面に端子電極板を接合するとともに、このコンデンサ本体の底面に、前記端子電極板との間に空間部を形成する耐熱部材を接合し、端子電極板が耐熱部材の底面に沿って折り込まれることにより、基板上にコンデンサを実装する際の半田付けにおいて、コンデンサ本体と耐熱部材との熱膨張との差によって生じる耐熱部材の伸びを、端子電極板と耐熱部材の間に空間部を設けることで、幅方向に伸びた耐熱部材が端子電極板に接触しながら端子電極板を押し広げることを防止できることにより、コンデンサ本体にかかる機械的応力をなくすことができるため、クラックの発生を防止できる。   A terminal electrode plate is joined to the side surface of the capacitor body, and a heat-resistant member that forms a space with the terminal electrode plate is joined to the bottom surface of the capacitor body, and the terminal electrode plate extends along the bottom surface of the heat-resistant member. By folding, when soldering when mounting the capacitor on the substrate, the expansion of the heat-resistant member caused by the difference between the thermal expansion of the capacitor main body and the heat-resistant member, the space between the terminal electrode plate and the heat-resistant member By providing, it is possible to prevent the heat stress member extending in the width direction from spreading the terminal electrode plate while contacting the terminal electrode plate, thereby eliminating the mechanical stress on the capacitor body and preventing the occurrence of cracks it can.

以下に実施例を挙げ、本発明のコンデンサについて図面を用いて詳細に説明する。図1は本発明の第一の実施形態を示す断面図である。   EXAMPLES Examples are given below to describe the capacitor of the present invention in detail with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention.

まず、コンデンサ本体1の両側面にそれぞれ板状の端子電極板4を低融点半田6で接合する。次に、前記端子電極板4との間に端子電極板の間隔間よりも狭い幅の耐熱部材2を、その両側の空間部7の幅がほぼ同じになるように、コンデンサ本体の底面に耐熱部材2を接着剤で接合する。   First, plate-like terminal electrode plates 4 are bonded to both side surfaces of the capacitor body 1 with low melting point solder 6. Next, the heat-resistant member 2 having a width narrower than that between the terminal electrode plates 4 is placed between the terminal electrode plate 4 and the bottom surface of the capacitor body so that the widths of the space portions 7 on both sides thereof are substantially the same. The member 2 is joined with an adhesive.

さらに、双方の端子電極板4の下端部を、空間部7の幅を保持したまま耐熱部材2の底面に沿ってそれぞれ内側に折り曲げ、折り込み保持部4−1を形成することにより本発明のコンデンサが作成される。   Furthermore, the lower end portions of both terminal electrode plates 4 are folded inward along the bottom surface of the heat-resistant member 2 while maintaining the width of the space portion 7 to form the folded holding portion 4-1, thereby forming the capacitor of the present invention. Is created.

前記耐熱部材2は、その厚さが一定の板状の部材を使用し、その部材の材質は基板実装時の半田の温度に耐えられるように、融点が270℃以上を有する板材とする。   The heat-resistant member 2 is a plate-like member having a constant thickness, and the material of the member is a plate material having a melting point of 270 ° C. or higher so that it can withstand the temperature of the solder when mounted on the board.

また、基板上面から前記コンデンサ本体1の底面までの間隔は、折り込み保持部4−1と耐熱部材2、及び接着剤3が間に入ることにより、0.2mm以上の間隔となった。   Moreover, the space | interval from the board | substrate upper surface to the bottom face of the said capacitor | condenser main body 1 became a space | interval of 0.2 mm or more because the folding holding | maintenance part 4-1, the heat-resistant member 2, and the adhesive agent 3 intervened.

コンデンサ本体1と耐熱部材2との接合は、基板実装時の半田付けの対して耐熱性を有する接着剤で接合する。   The capacitor body 1 and the heat-resistant member 2 are bonded with an adhesive having heat resistance against soldering when mounting on the board.

さらに、図2は本発明の第二の実施形態によるコンデンサ本体を複数積層したコンデンサを示す斜視図である。   FIG. 2 is a perspective view showing a capacitor in which a plurality of capacitor bodies according to the second embodiment of the present invention are stacked.

複数のコンデンサ本体1−1、1−2の外部電極5を揃えて積み重ね、接着剤3−1を用いてコンデンサ本体1−1、1−2を接合する。次に、コンデンサ本体1−1、1−2の両側面に端子電極板4をそれぞれ低融点半田6で接合する。さらに、双方の端子電極板4と耐熱部材2との間に、空間部7が両側に形成されるように、コンデンサ本体の最下部に耐熱部材2を接合する。次に、それぞれの端子電極板4の下端部を、空間部7の幅が保持されるように耐熱部材2の底面に沿って内側に折り曲げ、折り込み保持部4−1を形成することにより、本発明の第二の実施形態によるコンデンサが作成される。   The external electrodes 5 of the plurality of capacitor bodies 1-1 and 1-2 are aligned and stacked, and the capacitor bodies 1-1 and 1-2 are joined using an adhesive 3-1. Next, the terminal electrode plates 4 are joined to the both side surfaces of the capacitor main bodies 1-1 and 1-2 with low melting point solder 6, respectively. Further, the heat-resistant member 2 is joined to the lowermost part of the capacitor body so that the space 7 is formed on both sides between the both terminal electrode plates 4 and the heat-resistant member 2. Next, the lower end portion of each terminal electrode plate 4 is bent inward along the bottom surface of the heat-resistant member 2 so that the width of the space portion 7 is maintained, thereby forming the folding holding portion 4-1. A capacitor according to a second embodiment of the invention is created.

実施例1では、まず、コンデンサの寸法が、長さ3.2mm、幅2.5mmのセラミックコンデンサを使用した。端子電極板は、厚みが0.1mmで材質が42Alloyの金属板を使用し、コンデンサ本体の側面に低融点半田(Sn−3.0Ag−0.5Cu)で接合した。次に、コンデンサ本体の底面に接合する耐熱部材は、厚みが0.5mmの耐熱性ポリアミド樹脂板(商品名;ジェネスタ、クラレ製)で、この耐熱部材と端子電極板との間の空間部の幅が、左右それぞれ10μmで、合計20μmの幅が確保される長さとし、幅方向の寸法はコンデンサの寸法と同一とした。この耐熱部材をエポキシ接着剤にてコンデンサ本体の底面に接着し、この空間部の幅を保持したまま、端子電極板を耐熱部材の底面に沿って内側に直角に折り込み、折り込み保持部を形成した。   In Example 1, first, a ceramic capacitor having a capacitor size of 3.2 mm in length and 2.5 mm in width was used. As the terminal electrode plate, a metal plate having a thickness of 0.1 mm and a material of 42 Alloy was used, and the terminal electrode plate was joined to the side surface of the capacitor body with a low melting point solder (Sn-3.0Ag-0.5Cu). Next, the heat-resistant member to be joined to the bottom surface of the capacitor body is a heat-resistant polyamide resin plate (trade name; manufactured by Genesta, Kuraray Co., Ltd.) having a thickness of 0.5 mm. The space between the heat-resistant member and the terminal electrode plate The width is 10 μm on each of the left and right sides, and the width is 20 μm in total. The dimensions in the width direction are the same as the dimensions of the capacitor. This heat-resistant member was adhered to the bottom surface of the capacitor body with an epoxy adhesive, and the terminal electrode plate was folded inward at right angles along the bottom surface of the heat-resistant member while maintaining the width of the space portion to form a folded holding portion. .

尚、耐熱部材と端子電極板との間の空間部の幅については、耐熱部材が幅方向に熱膨張した際に端子電極板に接触することがない寸法になっていれば良く、コンデンサの寸法と耐熱部材の熱膨張率、及び基板実装時の半田付けの温度に応じて規定されるもので、本実施例の寸法に限定されるものではない。   Note that the width of the space between the heat-resistant member and the terminal electrode plate may be a size that does not contact the terminal electrode plate when the heat-resistant member thermally expands in the width direction. And the coefficient of thermal expansion of the heat-resistant member, and the soldering temperature when mounting the board, and are not limited to the dimensions of this embodiment.

次に、アルミ基板上に半田を用いて実装し、−55℃〜+125℃の温度範囲で温度サイクル試験を実施した。サイクル数が1000サイクルまで、外観及び静電容量、絶縁抵抗の低下などの不良発生は認められなかった。   Next, it mounted on the aluminum substrate using the solder, and the temperature cycle test was implemented in the temperature range of -55 degreeC-+125 degreeC. The occurrence of defects such as a decrease in appearance, capacitance, and insulation resistance was not observed up to 1000 cycles.

さらに、このコンデンサをガラスエポキシからなる基板上に半田を用いて実装し、耐基板曲げ性試験(旧JIS C6429に準拠)を実施した。基板の中心を加圧して曲げ量が2mmにおける外観を確認したが不良発生は認められず、耐基板曲げ性で曲げ量が8mmまで曲げてもクラックの発生がないことを確認した。   Further, this capacitor was mounted on a substrate made of glass epoxy using solder, and a substrate bending resistance test (based on the former JIS C6429) was performed. Although the appearance at a bending amount of 2 mm was confirmed by pressurizing the center of the substrate, no occurrence of defects was observed, and it was confirmed that no crack was generated even when the bending amount was bent to 8 mm due to the substrate bending resistance.

(比較例)アルミ基板上に半田を用いて実施例1に用いたセラミックコンデンサを直接実装し、−55℃〜+125℃の温度範囲で温度サイクル試験を実施しところ、サイクル数が700サイクルにおいて、コンデンサにクラックが発生したことが認められた。   (Comparative example) The ceramic capacitor used in Example 1 was directly mounted on an aluminum substrate using a solder, and a temperature cycle test was performed in a temperature range of -55 ° C to + 125 ° C. It was observed that cracks occurred in the capacitor.

また、比較例で使用したセラミックコンデンサを直接基板に半田実装し、耐基板曲げ性試験を実施したところ、耐基板曲げ性試験において曲げ量が3mmまで曲げるとコンデンサにクラックが発生することが確認された。
In addition, when the ceramic capacitor used in the comparative example was directly solder-mounted on a substrate and a substrate bending resistance test was performed, it was confirmed that the capacitor would crack when the bending amount was bent to 3 mm in the substrate bending resistance test. It was.

本発明の第一の実施形態によるコンデンサを示す断面図である。It is sectional drawing which shows the capacitor | condenser by 1st embodiment of this invention. 本発明の第二の実施形態による複数積層されたコンデンサの斜視図である。FIG. 6 is a perspective view of a plurality of stacked capacitors according to a second embodiment of the present invention. 従来技術における絶縁性ゴムブロックを使用したコンデンサの断面図である。It is sectional drawing of the capacitor | condenser which uses the insulating rubber block in a prior art.

符号の説明Explanation of symbols

1,1−1,1−2 コンデンサ本体
2 耐熱部材
3,3−1,3−2 接着剤
4 端子電極板
4−1 折り込み保持部
5 外部電極
6 半田部
7 空間部





DESCRIPTION OF SYMBOLS 1,1-1,1-2 Capacitor main body 2 Heat-resistant member 3,3-1,3-2 Adhesive 4 Terminal electrode board 4-1 Folding holding part 5 External electrode
6 Solder part 7 Space part





Claims (2)

コンデンサ本体の側面に端子電極板を接合するとともに、このコンデンサ本体の底面に、前記端子電極板との間に空間部を形成する耐熱部材を接合し、端子電極板が耐熱部材の底面に沿って折り込まれたコンデンサ。 A terminal electrode plate is joined to the side surface of the capacitor body, and a heat-resistant member that forms a space with the terminal electrode plate is joined to the bottom surface of the capacitor body, and the terminal electrode plate extends along the bottom surface of the heat-resistant member. Folded capacitor. 前記コンデンサ本体が複数積層されたコンデンサであって、この積層したコンデンサ本体の最下部に前記耐熱部材を接合した請求項1記載のコンデンサ。
The capacitor according to claim 1, wherein a plurality of the capacitor main bodies are stacked, and the heat-resistant member is joined to a lowermost portion of the stacked capacitor main bodies.
JP2006099687A 2006-03-31 2006-03-31 Capacitor Pending JP2007273867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099687A JP2007273867A (en) 2006-03-31 2006-03-31 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099687A JP2007273867A (en) 2006-03-31 2006-03-31 Capacitor

Publications (1)

Publication Number Publication Date
JP2007273867A true JP2007273867A (en) 2007-10-18

Family

ID=38676326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099687A Pending JP2007273867A (en) 2006-03-31 2006-03-31 Capacitor

Country Status (1)

Country Link
JP (1) JP2007273867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091588A (en) * 2006-09-30 2008-04-17 Nippon Chemicon Corp Manufacturing method of capacitor with terminal
WO2009051029A1 (en) 2007-10-18 2009-04-23 Nikon Corporation Projector apparatus
CN110875133A (en) * 2018-09-04 2020-03-10 三星电机株式会社 Electronic assembly
JP2022016970A (en) * 2020-07-13 2022-01-25 Tdk株式会社 Electronic component with metal terminals and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091588A (en) * 2006-09-30 2008-04-17 Nippon Chemicon Corp Manufacturing method of capacitor with terminal
WO2009051029A1 (en) 2007-10-18 2009-04-23 Nikon Corporation Projector apparatus
CN110875133A (en) * 2018-09-04 2020-03-10 三星电机株式会社 Electronic assembly
CN110875133B (en) * 2018-09-04 2022-06-07 三星电机株式会社 Electronic assembly
JP2022016970A (en) * 2020-07-13 2022-01-25 Tdk株式会社 Electronic component with metal terminals and manufacturing method of the same
JP7327305B2 (en) 2020-07-13 2023-08-16 Tdk株式会社 ELECTRONIC COMPONENT WITH METAL TERMINAL AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT WITH METAL TERMINAL

Similar Documents

Publication Publication Date Title
JP7223814B2 (en) CERAMIC ELEMENT AND METHOD OF MANUFACTURING CERAMIC ELEMENT
JP5892281B2 (en) Power module substrate with heat sink and power module
TWI727146B (en) Substrate for power module with heat sink attached
US10580577B2 (en) Multilayer ceramic electronic component and mounting structure thereof
JP5857847B2 (en) Ceramic electronic components
CN108140625B (en) Substrate for power module with heat sink and power module
JP2015008270A (en) Ceramic electronic component
US10573459B2 (en) Multilayer ceramic electronic component and mounting structure thereof
JP6201827B2 (en) Manufacturing method of power module substrate with heat sink
JP2014053598A (en) Electronic component
JP6201828B2 (en) Manufacturing method of power module substrate with heat sink
JP2016072563A (en) Manufacturing method of substrate for power module with heat sink
JP2007273867A (en) Capacitor
JP5786569B2 (en) Power module substrate manufacturing method
JP5640610B2 (en) Power module substrate manufacturing equipment
JP2014229868A (en) Ceramic electronic component and method of manufacturing the same
JP5678684B2 (en) Power module substrate manufacturing method
JP2007234820A (en) Ceramic electronic component
JP4910789B2 (en) Power element mounting substrate, power element mounting substrate manufacturing method, and power module
JP6264822B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP6201297B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
JP2006310618A (en) Ceramic electronic component and its manufacturing method
JP4984696B2 (en) Power element mounting unit and power module
JP2013149739A (en) Electronic apparatus module
JP6264889B2 (en) Power module substrate with heat sink and manufacturing method thereof