JP2007273635A - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
JP2007273635A
JP2007273635A JP2006095872A JP2006095872A JP2007273635A JP 2007273635 A JP2007273635 A JP 2007273635A JP 2006095872 A JP2006095872 A JP 2006095872A JP 2006095872 A JP2006095872 A JP 2006095872A JP 2007273635 A JP2007273635 A JP 2007273635A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
conversion device
electrode layer
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006095872A
Other languages
Japanese (ja)
Other versions
JP4988231B2 (en
Inventor
Nobuhisa Ota
信久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006095872A priority Critical patent/JP4988231B2/en
Publication of JP2007273635A publication Critical patent/JP2007273635A/en
Application granted granted Critical
Publication of JP4988231B2 publication Critical patent/JP4988231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion device excellent in durability while maintaining high power generation efficiency. <P>SOLUTION: In the photoelectric conversion device 10 in which a first electrode layer 2, a power generation layer 5, and a second electrode layer 7 are laminated on the insulating substrate 1; the power generation layer 5 includes an optical reflection layer 4, and the second electrode layer 7 is formed of a silver alloy. As a first added element, the silver alloy includes at least one kind selected from among aluminum, indium, tin, bismuth, gallium, zinc and magnesium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換機能を有する半導体膜に反射層を備えた光電変換装置に関するものである。   The present invention relates to a photoelectric conversion device provided with a reflective layer on a semiconductor film having a photoelectric conversion function.

無尽蔵に降り注ぐ太陽エネルギーを利用して発電することができ、且つ排気ガスを排出することなくクリーンであり、さらに放射能を放出するといった危険もなく安全であることから、太陽電池の利用が注目を集めている。   The use of solar cells is attracting attention because it can generate electricity using inexhaustible solar energy, is clean without emitting exhaust gas, and is safe without danger of releasing radioactivity. Collecting.

この太陽電池(光電変換装置)の構造を、図4を参照しながら説明する。図4(a)は、太陽電池100の層構成を簡単に説明する太陽電池100の概念図(ハッチングは省略してある。)である。図4(a)に示すように、太陽電池100は、ガラス基板101に透明導電膜(第一電極層)102と半導体膜(半導体層;p層、i層、n層の三層構造からなる。)103及び裏面電極膜(第二電極層)104が順次積層されたものであり、矢印のように透明導電膜102側から裏面電極膜104側に向かって太陽光線が入射する。   The structure of this solar cell (photoelectric conversion device) will be described with reference to FIG. FIG. 4A is a conceptual diagram (hatching is omitted) of the solar cell 100 for briefly explaining the layer configuration of the solar cell 100. As shown in FIG. 4A, the solar cell 100 has a three-layer structure of a transparent conductive film (first electrode layer) 102 and a semiconductor film (semiconductor layer; p-layer, i-layer, and n-layer) on a glass substrate 101. .) 103 and a back electrode film (second electrode layer) 104 are sequentially laminated, and sunlight is incident from the transparent conductive film 102 side toward the back electrode film 104 side as indicated by an arrow.

半導体膜103を通過(透過)した発電源の太陽光線を、反射率の高い銀(Ag)やアルミニウム(Al)で形成された裏面電極膜104で反射させて、再度半導体膜103内に戻すことにより、発電量を向上させる技術が、例えば特許文献1又は2に開示されている。
特開2004−336086号公報 WO2005/011002号公報
The solar radiation of the power generation source that has passed (transmitted) through the semiconductor film 103 is reflected by the back electrode film 104 formed of silver (Ag) or aluminum (Al) having a high reflectivity, and returned to the semiconductor film 103 again. Thus, for example, Patent Literature 1 or 2 discloses a technique for improving the power generation amount.
JP 2004-336086 A WO2005 / 011002 Publication

太陽電池モジュールは、上述したようにガラス基板101、透明電極層102、半導体膜103及び裏面電極膜104が積層された構造を有しているが、発電効率をさらに向上させるために、本発明者は様々に試行錯誤を繰り返して最適な半導体膜103aの構成を見出した。その半導体膜103aの構成を図4(b)に示す。図4(b)は、本発明者が見出した太陽電池110の層構成を簡単に説明する太陽電池110の概念図(ハッチングは省略してある。)である。太陽電池110の構成は、半導体膜103aに反射層105(Cap−SiO層)を備えた点だけ図4(a)の太陽電池100の構成と相違している。そして反射層105は、ガラス基板101側から入射した光を、半導体膜103a内に閉じ込めるような反射作用を呈する。   The solar cell module has a structure in which the glass substrate 101, the transparent electrode layer 102, the semiconductor film 103, and the back electrode film 104 are laminated as described above. In order to further improve the power generation efficiency, the present inventor Found the optimum configuration of the semiconductor film 103a through various trials and errors. The structure of the semiconductor film 103a is shown in FIG. FIG. 4B is a conceptual diagram (hatching is omitted) of the solar cell 110 that briefly explains the layer configuration of the solar cell 110 found by the present inventor. The configuration of the solar cell 110 is different from the configuration of the solar cell 100 in FIG. 4A only in that the semiconductor film 103a includes a reflective layer 105 (Cap-SiO layer). The reflective layer 105 exhibits a reflective action such that light incident from the glass substrate 101 side is confined in the semiconductor film 103a.

特許文献1に開示されているように、光線を反射させるために、従来の太陽電池では、一般に反射率の高い素材の銀(Ag)やアルミニウム(Al)等を裏面電極膜104に採用している。   As disclosed in Patent Document 1, in order to reflect a light beam, a conventional solar cell generally employs a highly reflective material such as silver (Ag) or aluminum (Al) for the back electrode film 104. Yes.

裏面電極膜104層は透明反射層104tと裏面反射層104mの2層構造になっていることが多く、その場合、透明反射層104tにはZnO、ITOなどの金属酸化物が用いられ、裏面反射層104mに前述した銀やアルミニウムが採用される。
また、裏面反射層104mのさらに外側に裏面反射層104mを保護するために、Ti、ZnOなどの層を設置することもある。
In many cases, the back electrode film 104 has a two-layer structure of a transparent reflective layer 104t and a back reflective layer 104m. In that case, a metal oxide such as ZnO or ITO is used for the transparent reflective layer 104t, and the back reflective film 104t is used. The aforementioned silver or aluminum is used for the layer 104m.
Moreover, in order to protect the back surface reflection layer 104m further outside the back surface reflection layer 104m, layers such as Ti and ZnO may be provided.

ところが、上述の最適な反射層105を含む半導体膜103aと裏面電極膜104とは密着性が悪く、密着状態にある両者を長期に渡って剥離させずに維持するのは困難である場合もあった。すなわち、高い発電効率を維持しながら、良好な密着性(耐久性)を維持するのは困難である場合もあった。   However, the semiconductor film 103a including the above-described optimal reflective layer 105 and the back electrode film 104 have poor adhesion, and it may be difficult to maintain the two in close contact without being separated for a long time. It was. That is, it may be difficult to maintain good adhesion (durability) while maintaining high power generation efficiency.

そこで本発明は、高い発電効率を維持しつつ、耐久性に優れた光電変換装置を提供することを目的としている。   Then, this invention aims at providing the photoelectric conversion apparatus excellent in durability, maintaining high electric power generation efficiency.

上記課題を解決するための請求項1の発明は、絶縁性基板上に、第一電極層と発電層と第二電極層とが積層された光電変換装置において、前記発電層内には光の反射層が含まれており、前記第二電極層は銀(Ag)合金で形成されていることを特徴とする光電変換装置である。   According to a first aspect of the present invention for solving the above-described problem, in the photoelectric conversion device in which the first electrode layer, the power generation layer, and the second electrode layer are laminated on the insulating substrate, the light generation layer contains light. A reflection layer is included, and the second electrode layer is formed of a silver (Ag) alloy.

請求項1の発明を実施すると、発電層が反射層を有しており、第二電極層が銀(Ag)合金で形成されているので、高い発電効率を維持しつつ、耐久性に優れた光電変換装置を提供することができる。   When the invention of claim 1 is carried out, since the power generation layer has a reflective layer and the second electrode layer is formed of a silver (Ag) alloy, it has excellent durability while maintaining high power generation efficiency. A photoelectric conversion device can be provided.

請求項2の発明は、絶縁性基板上に、第一電極層と発電層と第二電極層とが積層された光電変換装置において、前記発電層が複数配置されており、発電層に光の反射層を含み、前記第二電極層は銀合金で形成されていることを特徴とする光電変換装置である。   According to a second aspect of the present invention, in a photoelectric conversion device in which a first electrode layer, a power generation layer, and a second electrode layer are stacked on an insulating substrate, a plurality of the power generation layers are disposed, and light is transmitted to the power generation layer. A photoelectric conversion device comprising a reflective layer, wherein the second electrode layer is made of a silver alloy.

請求項2の発明では、複数の発電層の間に光の反射層が配置されているので、反射層によって反射された光が各発電層内に戻り易くなり、発電効率を向上させることができる。   In the invention of claim 2, since the light reflection layer is disposed between the plurality of power generation layers, the light reflected by the reflection layer is easily returned into each power generation layer, and the power generation efficiency can be improved. .

請求項3の発明は、絶縁性基板上に、第一電極層と発電層と第二電極層とが積層された光電変換装置において、前記発電層が複数配置されており、前記各発電層の間のうちの少なくとも一箇所に光の反射層を配置し、前記第二電極層は銀合金で形成されていることを特徴とする光電変換装置である。   According to a third aspect of the present invention, in the photoelectric conversion device in which the first electrode layer, the power generation layer, and the second electrode layer are laminated on the insulating substrate, a plurality of the power generation layers are arranged, and each of the power generation layers The photoelectric conversion device is characterized in that a light reflection layer is disposed in at least one of the spaces, and the second electrode layer is made of a silver alloy.

請求項3の発明では、発電層が複数配置されていて、各発電層の間のうちの少なくとも一箇所に光の反射層を配置したので、配置した反射層で光りが反射し、発電効率を向上させることができる。   In the invention of claim 3, since a plurality of power generation layers are arranged and the light reflection layer is arranged at least in one place between the power generation layers, the light is reflected by the arranged reflection layers, and the power generation efficiency is reduced. Can be improved.

請求項4の発明は、前記銀(Ag)合金に、第1の添加元素としてアルミニウム、インジウム、錫、ビスマス、ガリウム、亜鉛、マグネシウムを少なくとも1種含んだ銀合金をもちいたことを特徴とする請求項1乃至請求項3のうちのいずれかに記載の光電変換装置である。   The invention of claim 4 is characterized in that the silver (Ag) alloy uses a silver alloy containing at least one kind of aluminum, indium, tin, bismuth, gallium, zinc, and magnesium as the first additive element. It is a photoelectric conversion apparatus in any one of Claims 1 thru | or 3.

請求項4に記載している第1の元素は、銀を主体としつつ、密着性改善に寄与する添加元素を限定し、添加元素として、銀よりも低融点の金属元素であるアルミニウム、インジウム、錫、ビスマス、ガリウム、亜鉛、カルシウム、マグネシウムを採用することにより、密着性を向上させることができる。   The first element described in claim 4 is mainly composed of silver and limits additive elements that contribute to adhesion improvement, and the additive elements are aluminum, indium, which are metal elements having a melting point lower than that of silver, Adhesion can be improved by adopting tin, bismuth, gallium, zinc, calcium, and magnesium.

請求項5の発明は、第1の添加元素は、ガリウムである請求項4に記載の光電変換装置である。   The invention according to claim 5 is the photoelectric conversion device according to claim 4, wherein the first additive element is gallium.

本発明者等の検討によれば、第1の添加元素として挙げられる低融点の金属元素の中でもガリウムを添加した銀合金において、反射膜に要求される諸特性を特に高い次元で保持することが確認されている。   According to the study by the present inventors, among the low melting point metal elements mentioned as the first additive element, in the silver alloy added with gallium, various properties required for the reflective film can be maintained at a particularly high level. It has been confirmed.

請求項6の発明は、第2の添加元素として、または第1の添加元素として白金、金、ロジウム、イリジウム、ルテニウム、パラジウム、銅、マンガン、シリコン、ニッケル、クロム、コバルト、イットリウム、鉄、スカンジウム、ジルコニウム、チタン、ニオブ、モリブデン、タンタル、タングステン、ハフニウム、ランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、ツリウム、イッテルビウム、ホウ素、エルビウムの少なくとも1種を添加する銀合金を用いた請求項4又は請求項5に記載の光電変換装置である。   The invention according to claim 6 provides platinum, gold, rhodium, iridium, ruthenium, palladium, copper, manganese, silicon, nickel, chromium, cobalt, yttrium, iron, scandium as the second additive element or as the first additive element. Silver added with at least one of zirconium, titanium, niobium, molybdenum, tantalum, tungsten, hafnium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, boron, erbium The photoelectric conversion device according to claim 4 or 5, wherein an alloy is used.

請求項6で限定した、第1または第2の添加元素は密着性改善検討を実施した結果として、白金、金、ロジウム、イリジウム、ルテニウム、パラジウム、銅、マンガン、シリコン、ニッケル、クロム、コバルト、イットリウム、鉄、スカンジウム、ジルコニウム、チタン、ニオブ、モリブデン、タンタル、タングステン、ハフニウム、ランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、ツリウム、イッテルビウム、ホウ素、エルビウムの少なくとも1種を添加したものが好ましいことがわかったことによる。これらの元素は、第1の添加元素と複合的に密着性の向上に作用する。   The first or second additive element defined in claim 6 is obtained as a result of conducting an adhesion improvement study, as a result of platinum, gold, rhodium, iridium, ruthenium, palladium, copper, manganese, silicon, nickel, chromium, cobalt, At least one of yttrium, iron, scandium, zirconium, titanium, niobium, molybdenum, tantalum, tungsten, hafnium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, boron, erbium This is because it has been found that a seed added is preferable. These elements act in combination with the first additive element to improve adhesion.

請求項7の発明は、第1または第2の添加元素は、白金、パラジウム、ジスプロシウム、銅、エルビウムの少なくとも1種である請求項6に記載の光電変換装置である。   The invention according to claim 7 is the photoelectric conversion device according to claim 6, wherein the first or second additive element is at least one of platinum, palladium, dysprosium, copper, and erbium.

特に、第1または第2の添加元素として白金、パラジウム、ジスプロシウム、銅、エルビウムを添加した銀合金を採用すると、加湿環境中において裏面側電極層評価サンプル材料中で発生する場合がある凝集現象を有効に抑制することができる。   In particular, when a silver alloy to which platinum, palladium, dysprosium, copper, or erbium is added as the first or second additive element is employed, an agglomeration phenomenon that may occur in the back side electrode layer evaluation sample material in a humidified environment. It can be effectively suppressed.

請求項8の発明は、添加元素濃度の合計が、0.01〜5.0重量%である請求項4〜請求項7のうちのいずれかに記載の光電変換装置である。   The invention according to claim 8 is the photoelectric conversion device according to any one of claims 4 to 7, wherein the total concentration of the additive elements is 0.01 to 5.0% by weight.

請求項9の発明は、添加元素濃度の合計が、0.01〜3.0重量%である請求項8に記載の光電変換装置である。   The invention according to claim 9 is the photoelectric conversion device according to claim 8, wherein the total concentration of the additive elements is 0.01 to 3.0% by weight.

ここで、添加元素の濃度は、0.01〜5.0重量%とするのが好ましい。0.01重量%未満の添加量では、耐環境性向上の効果がなく、また、添加元素濃度が5.0重量%を超えると、合金の比抵抗が大きくなり、銀に比較して相対的に反射率が低下するからである。そして、特に好ましい濃度は0.01〜3.0重量%である。この範囲では、使用環境によらず比抵抗をより高い次元で維持することができる。   Here, the concentration of the additive element is preferably 0.01 to 5.0% by weight. When the additive amount is less than 0.01% by weight, there is no effect of improving the environmental resistance. When the additive element concentration exceeds 5.0% by weight, the specific resistance of the alloy increases, which is relative to silver. This is because the reflectance decreases. A particularly preferred concentration is 0.01 to 3.0% by weight. In this range, the specific resistance can be maintained at a higher dimension regardless of the use environment.

請求項10の発明は、添加元素がガリウムと銅の2種であり、添加量が0.01〜3.0重量%である請求項9に記載の光電変換装置である。   The invention according to claim 10 is the photoelectric conversion device according to claim 9, wherein the additive elements are two kinds of gallium and copper, and the addition amount is 0.01 to 3.0% by weight.

添加元素がガリウムと銅の2種であり、添加量の合計が0.01〜3.0重量%である請求項9記載の光電変換装置が最も耐久性に優れ、なおかつ光電変換装置としての特性が大きい。   The additive elements are two kinds of gallium and copper, and the total amount of addition is 0.01 to 3.0% by weight. The photoelectric conversion device according to claim 9 has the most excellent durability and characteristics as a photoelectric conversion device. Is big.

本発明は、発電層が反射層を有しており、第二電極層が銀(Ag)合金で形成されているので、高い発電効率を維持しつつ、密着性や耐久性に優れた光電変換装置を提供することができる。   In the present invention, since the power generation layer has a reflective layer and the second electrode layer is formed of a silver (Ag) alloy, photoelectric conversion with excellent adhesion and durability is maintained while maintaining high power generation efficiency. An apparatus can be provided.

図1(a)〜(f)は、本発明を実施する太陽電池10(光電変換装置)の製造の各工程を示す基板の断面図である。また、図2は図1(f)のII部拡大図である。さらに図3は、図1とは別の構成の太陽電池11の断面図である。   Fig.1 (a)-(f) is sectional drawing of the board | substrate which shows each process of manufacture of the solar cell 10 (photoelectric conversion apparatus) which implements this invention. FIG. 2 is an enlarged view of a portion II in FIG. FIG. 3 is a cross-sectional view of a solar cell 11 having a configuration different from that of FIG.

太陽電池10は、最初の工程として図1(a)に示すようにガラス等の透光性を有する基板1(絶縁性基板)の上に、透明導電膜(第一電極層)2を成膜する。透明導電膜2には、酸化インジウム錫(ITO)、酸化錫(SnO2)酸化亜鉛(ZnO)等が用いられる。透明導電膜2は真空蒸着、熱CVDまたはスパッタなどの方法によって基板1上に形成される。 As shown in FIG. 1A, the solar cell 10 forms a transparent conductive film (first electrode layer) 2 on a substrate 1 (insulating substrate) having translucency such as glass as shown in FIG. To do. For the transparent conductive film 2, indium tin oxide (ITO), tin oxide (SnO 2 ), zinc oxide (ZnO) or the like is used. The transparent conductive film 2 is formed on the substrate 1 by a method such as vacuum deposition, thermal CVD or sputtering.

続いて、第一レーザスクライブ工程を行い、図1(b)に示すように透明導電膜2に対して周知のレーザスクライブによって第一溝3を形成する。なお、基板1は、図示しないXYテーブル上に透明導電膜2側を下にして載置されており、XYテーブルを移動させることによって第一溝3(後述の第二溝6と共通溝8も同じ)を形成するのに必要な方向に基板1を移動させることができるようになっている。   Subsequently, a first laser scribe process is performed, and the first groove 3 is formed on the transparent conductive film 2 by a well-known laser scribe as shown in FIG. The substrate 1 is placed on an XY table (not shown) with the transparent conductive film 2 side down. By moving the XY table, the first groove 3 (the second groove 6 and the common groove 8 described later are also formed). The substrate 1 can be moved in the direction necessary to form the same).

次に、この基板1を分離形成型のプラズマCVD装置(図示せず)に入れ、p型シリコン層、i型シリコン層、Cap−SiO層4(反射層)およびn型シリコン層を順次堆積し、図1(c)に示すような半導体膜5(発電層)を形成する。そしてCVD装置から取り出した基板1に対して第二レーザスクライブ工程を行い、図1(d)に示すように半導体膜5に第二溝6を形成する。   Next, the substrate 1 is put into an isolation formation type plasma CVD apparatus (not shown), and a p-type silicon layer, an i-type silicon layer, a Cap-SiO layer 4 (reflection layer) and an n-type silicon layer are sequentially deposited. Then, a semiconductor film 5 (power generation layer) as shown in FIG. 1C is formed. Then, a second laser scribing process is performed on the substrate 1 taken out from the CVD apparatus to form a second groove 6 in the semiconductor film 5 as shown in FIG.

続いて、マグネトロンスパッタ装置等の公知の装置によって、図1(e)に示すように半導体膜5の上に、0.01〜5.0重量%(より好ましくは0.01〜3.0重量%)のアルミニウム、インジウム、錫、ビスマス、ガリウム、亜鉛、マグネシウムを少なくとも1種を包含する銀(Ag)合金からなる裏面側電極層(第二電極層)7を形成する。   Subsequently, by a known apparatus such as a magnetron sputtering apparatus, 0.01 to 5.0 wt% (more preferably 0.01 to 3.0 wt%) is formed on the semiconductor film 5 as shown in FIG. %) Aluminum, indium, tin, bismuth, gallium, zinc, magnesium, and a back electrode layer (second electrode layer) 7 made of a silver (Ag) alloy including at least one kind.

ここで、図2に示すように、裏面側電極層(第二電極層)7は酸化インジウム錫(ITO)、酸化錫(SnO2)酸化亜鉛(ZnO)等からなる透明反射層7tと0.01〜5.0重量%(より好ましくは0.01〜3.0重量%)のアルミニウム、インジウム、錫、ビスマス、ガリウム、亜鉛、マグネシウムを少なくとも1種包含する銀(Ag)合金からなる裏面反射層7mとの2層構造であってもかまわない。
まず、耐久性試験前後の反射率の評価結果を表1に示す。各測定値は、波長405nm、520nm、670nmにおける値である。また、表中には比較のため従来技術である純銀を用いた裏面側電極層評価サンプルについての試験結果も示している。
Here, as shown in FIG. 2, the rear surface side electrode layer (second electrode layer) 7 is indium tin oxide (ITO), tin oxide (SnO 2) made of such as zinc oxide (ZnO) transparent reflective layer 7t and 0. Back reflection made of a silver (Ag) alloy containing at least one kind of aluminum, indium, tin, bismuth, gallium, zinc, and magnesium of 01 to 5.0% by weight (more preferably 0.01 to 3.0% by weight). It may be a two-layer structure with the layer 7m.
First, Table 1 shows the evaluation results of the reflectance before and after the durability test. Each measured value is a value at wavelengths of 405 nm, 520 nm, and 670 nm. Moreover, the test result about the back side electrode layer evaluation sample using the pure silver which is a prior art is also shown in the table | surface for the comparison.

さらに続いて第三レーザスクライブ工程を行い、図1(f)に示すように裏面側電極層7と半導体膜5の双方に共通溝8を形成する。第三レーザスクライブ工程を行う際に使用する装置及び手順は、先の第二レーザスクライブ工程と同一である。   Subsequently, a third laser scribing step is performed to form a common groove 8 in both the back-side electrode layer 7 and the semiconductor film 5 as shown in FIG. The apparatus and procedure used when performing the third laser scribing process are the same as those of the previous second laser scribing process.

そして、裏面側電極層7の上からフィルム膜(図示せず)を被覆して太陽電池10は完成する。フィルム膜を設けることにより、裏面側電極層7の露出を防ぎ、太陽電池10の損傷や摩耗を防止する。なお、フィルム膜は、本発明とは直接関係がないため、構成の明確化のために描写を省略してある。   Then, a solar cell 10 is completed by covering a film film (not shown) from the back side electrode layer 7. By providing the film film, exposure of the back-side electrode layer 7 is prevented, and damage and wear of the solar cell 10 are prevented. Note that the film film is not directly related to the present invention, and therefore the depiction is omitted for the sake of clarifying the configuration.

以上の工程を経て太陽電池10が製造されるが、この製造工程は周知であり、以下に本発明の特徴部分について説明する。   The solar cell 10 is manufactured through the above steps. This manufacturing process is well known, and the characteristic part of the present invention will be described below.

本発明は、半導体膜5内の構成と、裏面側電極層7の構成の組み合わせに特徴がある。半導体膜5の細部と裏面側電極層7とを、図2を参照しながら説明する。半導体膜5は、基板1に近い側から順にp層、i層、Cap−SiO層4(反射層)、及びn層の四層構造となっている。半導体膜5の全体の厚みは、例えば0.1〜3.0μmである。これに対して、Cap−SiO層4の厚みは、例えば50〜800オングストロームとすることができる。   The present invention is characterized by a combination of the configuration in the semiconductor film 5 and the configuration of the back surface side electrode layer 7. Details of the semiconductor film 5 and the back electrode layer 7 will be described with reference to FIG. The semiconductor film 5 has a four-layer structure of a p layer, an i layer, a Cap-SiO layer 4 (reflection layer), and an n layer in order from the side closer to the substrate 1. The total thickness of the semiconductor film 5 is, for example, 0.1 to 3.0 μm. On the other hand, the thickness of the Cap-SiO layer 4 can be set to, for example, 50 to 800 angstroms.

Cap−SiO層4(反射層)は、シリコンオキサイドが代表的に用いられる。Cap−SiO層4(反射層)には、結晶質シリコン成分が含まれていてもよいし、含まれていなくてもよい。   As the Cap-SiO layer 4 (reflection layer), silicon oxide is typically used. The Cap-SiO layer 4 (reflective layer) may or may not contain a crystalline silicon component.

Cap−SiO層4(反射層)の波長600nmにおける屈折率として2.5以下が好ましく用いられる。Cap−SiO層4(反射層)中の層中に占めるシリコンを除く最多構成元素の割合として25重量%以上が好ましく用いられる。Cap−SiO層4(反射層)としてシリコンオキサイドを用いた場合、層中に占める酸素の割合または、その屈折率を実現するためには、CO2/SiH4のガス比として、2〜10程度が用いられる。 The refractive index at a wavelength of 600 nm of the Cap-SiO layer 4 (reflection layer) is preferably 2.5 or less. As the ratio of the most constituent elements excluding silicon in the cap-SiO layer 4 (reflection layer), 25% by weight or more is preferably used. If the silicon oxide was used as the Cap-SiO layer 4 (the reflective layer), the proportion of oxygen occupied in the layer or, in order to realize the refractive index, as the gas ratio of CO 2 / SiH 4, about 2 to 10 Is used.

Cap−SiO層4(反射層)は膜厚方向に屈折率が一定でもよく、途中で屈折率が変化していてもよい。さらに、屈折率が周期的に増減するようになっていてもよい。   The Cap-SiO layer 4 (reflection layer) may have a constant refractive index in the film thickness direction, or the refractive index may change in the middle. Furthermore, the refractive index may be increased or decreased periodically.

なお、図2ではi層の上側に、i層に接してCap−SiO層4(反射層)が配置される構造を示しているが、i層とCap−SiO層4(反射層)の間にn層等の別の層が挟まれて配置されていてもよい。   Note that FIG. 2 shows a structure in which the Cap-SiO layer 4 (reflective layer) is disposed on the upper side of the i layer in contact with the i layer, but between the i layer and the Cap-SiO layer 4 (reflective layer). Another layer such as an n layer may be sandwiched between the two layers.

また、反射層としては、シリコンオキサイドの代わりに、シリコンナイトライド、シリコンカーバイド、シリコンオキシナイトライド、シリコンオキシカーバイド等、シリコンに窒素、炭素、酸素のいずれか一つ以上の元素が含まれる層であってもよい。   As the reflective layer, silicon nitride, silicon carbide, silicon oxynitride, silicon oxycarbide, or the like, in which silicon contains one or more elements of nitrogen, carbon, and oxygen instead of silicon oxide. There may be.

図2の例では、太陽電池10内に一つの半導体膜5(発電層)がある例を示しているが、ハイブリッド基板と呼ばれる複数の半導体膜を備えた太陽電池であっても差し支えなく本発明を実施することができる。その一例を図3に示す。   In the example of FIG. 2, an example in which one semiconductor film 5 (power generation layer) is provided in the solar cell 10 is shown. However, a solar cell including a plurality of semiconductor films called a hybrid substrate may be used. Can be implemented. An example is shown in FIG.

図3の例では、a−Si(アモルファスシリコン)とp−Si(ポリシリコン)とが設けられた太陽電池11を示している。図3の例のように二つの半導体膜(a−Siとp−Si)がある場合には、a−Siとp−Siの間に中間層−SiO(反射層)が配置され、さらに裏面側電極層7に近い側の半導体膜であるp−Si内のi層とn層の間にCap−SiO層(反射層)が設けられる。   In the example of FIG. 3, the solar cell 11 provided with a-Si (amorphous silicon) and p-Si (polysilicon) is shown. When there are two semiconductor films (a-Si and p-Si) as in the example of FIG. 3, an intermediate layer-SiO (reflection layer) is disposed between a-Si and p-Si, and the back surface A Cap-SiO layer (reflection layer) is provided between an i layer and an n layer in p-Si, which is a semiconductor film close to the side electrode layer 7.

ただし、中間層SiO(反射層)は無くてもかまわない。   However, the intermediate layer SiO (reflection layer) may be omitted.

絶縁性基板側から侵入した光が、中間層−SiOとCap−SiO層で主に反射され、a−Siのi層とp−Siのi層の中を光が往復する。これにより発電効率が向上する。   Light entering from the insulating substrate side is mainly reflected by the intermediate layer -SiO and the Cap-SiO layer, and the light reciprocates in the a-Si i layer and the p-Si i layer. This improves power generation efficiency.

以下、本発明の好適な裏面側電極層7の実施形態を比較例とともに説明する。ここで、裏面側電極層7は、透明反射層7tと裏面反射層7mの2層構造になっている。透明反射層7tにはZnOを用い、裏面反射層7mは、銀を主要成分とする2元系、3元系の各種組成の銀合金であってスパッタリング法にて成膜し、太陽電池10を形成する。この太陽電池10に対して、種々の環境下で耐久性試験を実施し、試験後の太陽電池10の特性の変化について検討した。   Hereinafter, preferred embodiments of the back-side electrode layer 7 of the present invention will be described together with comparative examples. Here, the back surface side electrode layer 7 has a two-layer structure of a transparent reflection layer 7t and a back surface reflection layer 7m. ZnO is used for the transparent reflecting layer 7t, and the back reflecting layer 7m is a silver alloy having various binary and ternary compositions containing silver as a main component, and is formed by a sputtering method. Form. Durability tests were performed on the solar cell 10 under various environments, and changes in characteristics of the solar cell 10 after the test were examined.

裏面側電極層評価サンプルの製造は、裏面側電極層7のない太陽電池基板及びターゲットをスパッタリング装置に設置し、装置内を5.0×10-3Paまで真空に引いた後、アルゴンガスを5.0×10-1Paまで導入した。スパッタリング条件は、直流0.4kWで成膜を行ない、膜厚を2000Åとした。尚、膜厚分布は±10%以内であった。 The back side electrode layer evaluation sample was manufactured by placing a solar cell substrate without the back side electrode layer 7 and a target in a sputtering apparatus, and evacuating the inside of the apparatus to 5.0 × 10 −3 Pa. Up to 5.0 × 10 −1 Pa was introduced. As sputtering conditions, the film was formed at a direct current of 0.4 kW, and the film thickness was 2000 mm. The film thickness distribution was within ± 10%.

製造した裏面側電極層7の検討は、裏面側電極層評価サンプルを種々の環境中に暴露する耐久性試験を行い、試験前後の裏面側電極層評価サンプルの特性を評価することで行なった。裏面側電極層評価サンプルの耐久性試験として、評価サンプルをホットプレート上に載置し、大気中で250℃で1時間加熱し、加熱後の特性を評価した(加熱試験)。また、裏面側電極層評価サンプルの耐湿性を検討するための加湿試験として、裏面側電極層評価サンプルを温度85℃、湿度85%の雰囲気中に暴露し、加湿後の特性を評価した。加湿試験では、暴露時間を24時間とした。   The manufactured back side electrode layer 7 was examined by conducting a durability test in which the back side electrode layer evaluation sample was exposed to various environments, and evaluating the characteristics of the back side electrode layer evaluation sample before and after the test. As a durability test of the back side electrode layer evaluation sample, the evaluation sample was placed on a hot plate, heated in the atmosphere at 250 ° C. for 1 hour, and the characteristics after the heating were evaluated (heating test). In addition, as a humidification test for examining the moisture resistance of the backside electrode layer evaluation sample, the backside electrode layer evaluation sample was exposed to an atmosphere at a temperature of 85 ° C. and a humidity of 85%, and the characteristics after humidification were evaluated. In the humidification test, the exposure time was 24 hours.

耐久性試験前後に評価する特性は、反射率、比抵抗である。反射率の測定は、分光光度計により行い、純銀を100として各裏面側電極層サンプルの反射率を相対評価した。   The characteristics evaluated before and after the durability test are reflectance and specific resistance. The reflectance was measured with a spectrophotometer, and the reflectance of each back-side electrode layer sample was relatively evaluated with pure silver as 100.

まず、耐久性試験前後の反射率の評価結果を表1に示す。各測定値は、波長405nm、520nm、670nmにおける値である。また、表1には比較のため従来技術である純銀を用いた裏面側電極層評価サンプルについての試験結果も示している。   First, Table 1 shows the evaluation results of the reflectance before and after the durability test. Each measured value is a value at wavelengths of 405 nm, 520 nm, and 670 nm. Table 1 also shows the test results for the back-side electrode layer evaluation sample using pure silver, which is the prior art, for comparison.

Figure 2007273635
Figure 2007273635

この反射率の評価において、本発明に係る銀合金からなる裏面側電極層評価サンプルについて、成膜直後と耐久性試験後の変化率を比較してみると、全て純銀の場合の変化率よりも低く、各波長で銀合金が純銀に優っていることが確認された。また、全般的にみると、銀に比較して波長間の差が小さい。このように波長による反射率低下の差が低いことは、光電変換装置にとって大きな利点となる。   In this evaluation of the reflectance, when comparing the rate of change immediately after film formation and after the durability test for the backside electrode layer evaluation sample made of the silver alloy according to the present invention, the rate of change is more than that in the case of pure silver. It was confirmed that the silver alloy was superior to pure silver at each wavelength. In general, the difference between wavelengths is small compared to silver. Such a low difference in reflectivity reduction due to wavelength is a great advantage for the photoelectric conversion device.

次に、表2に各銀合金被膜の、耐久性試験前後の比抵抗の評価結果を示す。   Next, Table 2 shows the evaluation results of the specific resistance of each silver alloy coating before and after the durability test.

Figure 2007273635
Figure 2007273635

比抵抗の評価において、耐久性試験前の従来技術の純銀の比抵抗は最も低いが、加熱試験後には約3割、加湿試験後には約2割の上昇が見られる。これに対し、本発明に係る銀合金の場合は、加熱試験後と加湿試験後のいずれの場合においても比抵抗の上昇率は概ね10%以下であり、電気的に安定であることを示している。   In the evaluation of specific resistance, the specific resistance of pure silver of the prior art before the durability test is the lowest, but increases of about 30% after the heating test and about 20% after the humidification test. On the other hand, in the case of the silver alloy according to the present invention, the rate of increase in specific resistance is approximately 10% or less in both cases after the heating test and after the humidification test, indicating that it is electrically stable. Yes.

次に、基板に対する裏面側電極層評価サンプルの密着性を評価する試験を行った。密着性評価試験は、上記の耐久性試験前後の裏面側電極層評価サンプルを試料とした。基板上の裏面側電極層評価サンプルに、市販のセロハンテープ(3M製メンディングテープ テープ幅12mm)を約30mmの長さで貼り付け、十分に押えて密着させてから、一気に面に直角方向に剥がした。テープを剥がした後、膜の剥離程度から、3段階で評価した。3段階評価は、剥離無しを○、ごく一部剥離有りを△、大部分が剥離したものを×とした。表3はその結果を示す。   Next, the test which evaluates the adhesiveness of the back surface side electrode layer evaluation sample with respect to a board | substrate was done. In the adhesion evaluation test, the back side electrode layer evaluation samples before and after the above durability test were used as samples. Apply a commercially available cellophane tape (3M mending tape, tape width 12mm) to the back side electrode layer evaluation sample on the substrate with a length of about 30mm, and press it sufficiently to make it adhere to the surface. I peeled it off. After peeling off the tape, it was evaluated in three stages from the degree of film peeling. In the three-level evaluation, “No” indicates that there is no peeling, “Δ” indicates that there is only a small amount of peeling, and “X” indicates that most of the peeling has occurred. Table 3 shows the results.

Figure 2007273635
Figure 2007273635

純銀(Ag)の場合、耐久性試験(加熱試験、加湿試験)後には裏面側電極層評価サンプルが基板から全面剥がれた。これに対し、本発明に係る銀合金では、密着性が大きく改善されており、特に、環境試験実施後も成膜直後と同様に全く剥がれない強い密着力を維持することが可能になった。これは屋外で使用することの多い、光電変換装置にとって大きな利点となる。   In the case of pure silver (Ag), after the durability test (heating test, humidification test), the back side electrode layer evaluation sample was peeled off from the substrate. On the other hand, in the silver alloy according to the present invention, the adhesion is greatly improved, and in particular, it is possible to maintain a strong adhesion that does not peel at all after the environmental test as well as immediately after the film formation. This is a great advantage for a photoelectric conversion device that is often used outdoors.

次に図3に示す層構造を持つ太陽電池10(光電変換装置)に、ガリウム0.8重量%銅1.0重量%を含む銀合金を裏面側電極層7として採用した基板の高温高湿試験を実施した。
裏面側電極層7は、透明反射層7tとして酸化亜鉛(ZnO)を用い、裏面反射層7mとして、ガリウム0.8重量%銅1.0重量%を含む銀合金を用いた。
Next, the high temperature and high humidity of the substrate in which a silver alloy containing 0.8% by weight of gallium and 1.0% by weight of copper is used as the back electrode layer 7 in the solar cell 10 (photoelectric conversion device) having the layer structure shown in FIG. The test was conducted.
For the back electrode layer 7, zinc oxide (ZnO) was used as the transparent reflective layer 7t, and a silver alloy containing 0.8% by weight of gallium and 1.0% by weight of copper was used as the back reflective layer 7m.

高温高湿試験は、裏面側電極層7のみ成膜していないサンプルを22℃70%の恒温恒湿槽に入れ、0日(保持なし)〜12日の間で設定した期間放置し、放置期間終了後すぐに裏面側電極層7をスパッタを用いて成膜する。
その後、経時的に剥離試験を実施し、剥離がいつ発生するかを調べた。また、剥離試験を実施する直前に光電変換装置としての発電量を調査し、試験前と比較した。
剥離試験は、市販のセロハンテープ(3M製メンディングテープ テープ幅12mm)を約30mmの長さで貼り付け、十分に押えて密着させてから、一気に面に直角方向に剥がした。テープを剥がした後、膜の剥離程度から、2段階で評価した。2段階評価は、剥離無しを○、剥離ありを×とした。
結果を実施例として表4に示す。また、比較例として、裏面反射層7mに純銀(Ag)を用いた結果を表5に示す。
In the high-temperature and high-humidity test, a sample in which only the back-side electrode layer 7 is not formed is placed in a constant temperature and humidity chamber at 22 ° C. and 70%, and left for a set period between 0 days (no holding) and 12 days. Immediately after the end of the period, the back-side electrode layer 7 is formed by sputtering.
Thereafter, a peel test was performed over time to examine when peeling occurred. In addition, the amount of power generation as a photoelectric conversion device was investigated immediately before the peel test was performed, and compared with before the test.
In the peeling test, a commercially available cellophane tape (3M mending tape, tape width: 12 mm) was applied with a length of about 30 mm, and after pressing it sufficiently, it was peeled in a direction perpendicular to the surface at once. After peeling off the tape, it was evaluated in two stages from the degree of film peeling. In the two-stage evaluation, “no peeling” was evaluated as “◯”, and “with peeling” was set as “X”.
The results are shown in Table 4 as examples. As a comparative example, Table 5 shows the results of using pure silver (Ag) for the back reflective layer 7m.

Figure 2007273635
Figure 2007273635

Figure 2007273635
Figure 2007273635

表4及び表5の結果から、純粋な銀(Ag)よりも、Ga0.8重量%Cu1.0重量%を含む銀合金の方が、高温高湿試験に対する耐久性が高いことがわかる。また、Ga(ガリウム)およびCu(銅)の含有量を変化させて試験を行った結果、裏面側電極層とCap−SiO層との密着性が比較的良好な含有率は、0.01〜5.0重量%の間であり、そのうちの0.01〜3.0重量%の範囲が特に良好であった。ちなみに、Cap−SiO層を設けないで同様の試験を行うと、裏面側電極層にGa(ガリウム)およびCu(銅)を含まない銀(Ag)であっても、良好な密着性を確認することができた。   From the results of Table 4 and Table 5, it can be seen that the silver alloy containing 0.8 wt% Ga and 1.0 wt% Ga has higher durability against the high temperature and high humidity test than pure silver (Ag). Moreover, as a result of performing the test by changing the contents of Ga (gallium) and Cu (copper), the content ratio with relatively good adhesion between the back-side electrode layer and the Cap-SiO layer is 0.01 to It was between 5.0% by weight, of which 0.01 to 3.0% by weight was particularly good. By the way, when a similar test is performed without providing a Cap-SiO layer, even if the back side electrode layer is silver (Ag) that does not contain Ga (gallium) and Cu (copper), good adhesion is confirmed. I was able to.

すなわち、半導体膜にCap−SiO層を設けなければ、裏面側電極層が混合物を含まない銀(Ag)であっても、両者間の密着性には問題がないことがわかる。しかし、発電効率を向上させるためには、半導体膜にCap−SiO層を設けることが好ましい。そこで本発明を実施して裏面側電極層7の銀(Ag)に0.01〜5.0重量%の含有率でGa(ガリウム)などの元素を混入させると、裏面側電極層と半導体膜との密着性を良好に維持しつつ、発電効率の向上を図ることができる。   That is, it can be seen that if the Cap-SiO layer is not provided on the semiconductor film, there is no problem in the adhesion between the two even if the back electrode layer is silver (Ag) containing no mixture. However, in order to improve power generation efficiency, it is preferable to provide a Cap-SiO layer in the semiconductor film. Therefore, when the present invention is carried out and an element such as Ga (gallium) is mixed in the silver (Ag) of the back electrode layer 7 at a content of 0.01 to 5.0% by weight, the back electrode layer and the semiconductor film The power generation efficiency can be improved while maintaining good adhesion to the power.

なお、図4に示す従来の太陽電池100において、裏面側電極膜104と半導体膜103a(反射層105)との間の密着性が粗悪なのは、両者の間に水分が侵入することに起因するものと考えられる。本発明を実施して裏面側電極層7をGa(ガリウム)などの元素を混入させた銀(Ag)合金で構成すると、両者の密着性を良好にすることができる。   In addition, in the conventional solar cell 100 shown in FIG. 4, the poor adhesion between the back-side electrode film 104 and the semiconductor film 103a (reflective layer 105) is due to moisture entering between the two. it is conceivable that. When the present invention is implemented and the back electrode layer 7 is made of a silver (Ag) alloy mixed with an element such as Ga (gallium), the adhesion between the two can be improved.

また、裏面側電極層の剥離が発生した場合の発電量は、高温高湿試験前の発電量を100とすると、80以下に低下する。剥離が発生しない場合の発電量は、95以上を維持しており、剥離と発電量には相関関係が見られる。
よって、裏面側電極層に銀合金を採用すると、高温高湿条件下であっても剥離を抑制できるので、光電変換装置にとって大きな利点となる。
In addition, the amount of power generation when the peeling of the back side electrode layer occurs is reduced to 80 or less, assuming that the amount of power generation before the high temperature and high humidity test is 100. When the separation does not occur, the power generation amount is maintained at 95 or more, and there is a correlation between the separation and the power generation amount.
Therefore, when a silver alloy is used for the back electrode layer, peeling can be suppressed even under high-temperature and high-humidity conditions, which is a great advantage for the photoelectric conversion device.

(a)〜(f)は、本発明の実施形態の太陽電池(光電変換装置)の製造方法の各工程を示す基板の断面図である。(A)-(f) is sectional drawing of the board | substrate which shows each process of the manufacturing method of the solar cell (photoelectric conversion apparatus) of embodiment of this invention. 図1(f)のII部の拡大図である。It is an enlarged view of the II section of Drawing 1 (f). 図1とは別の構成の太陽電池の断面図である。It is sectional drawing of the solar cell of a structure different from FIG. (a)は、従来の太陽電池の概念図である。(b)は、(a)とは別の従来の太陽電池の概念図である。(A) is a conceptual diagram of the conventional solar cell. (B) is a conceptual diagram of a conventional solar cell different from (a).

符号の説明Explanation of symbols

1 基板(絶縁性基板)
2 透明導電膜(第一電極層)
4 Cap−SiO層(反射層)
5 半導体膜
7 裏面側電極層(第二電極層)
7t 透明反射層
7m 裏面反射層
10 太陽電池(光電変換装置)
11 太陽電池(光電変換装置)
1 Substrate (insulating substrate)
2 Transparent conductive film (first electrode layer)
4 Cap-SiO layer (reflection layer)
5 Semiconductor film 7 Back side electrode layer (second electrode layer)
7t transparent reflective layer 7m back reflective layer 10 solar cell (photoelectric conversion device)
11 Solar cell (photoelectric conversion device)

Claims (10)

絶縁性基板上に、第一電極層と発電層と第二電極層とが積層された光電変換装置において、前記発電層内には光の反射層が含まれており、前記第二電極層は銀合金で形成されていることを特徴とする光電変換装置。   In the photoelectric conversion device in which a first electrode layer, a power generation layer, and a second electrode layer are stacked on an insulating substrate, a light reflection layer is included in the power generation layer, and the second electrode layer is A photoelectric conversion device formed of a silver alloy. 絶縁性基板上に、第一電極層と発電層と第二電極層とが積層された光電変換装置において、前記発電層が複数配置されており、発電層に光の反射層を配置し、前記第二電極層は銀合金で形成されていることを特徴とする光電変換装置。   In a photoelectric conversion device in which a first electrode layer, a power generation layer, and a second electrode layer are stacked on an insulating substrate, a plurality of the power generation layers are disposed, a light reflection layer is disposed on the power generation layer, and A photoelectric conversion device, wherein the second electrode layer is formed of a silver alloy. 絶縁性基板上に、第一電極層と発電層と第二電極層とが積層された光電変換装置において、前記発電層が複数配置されており、前記各発電層の間のうちの少なくとも一箇所に光の反射層を配置し、前記第二電極層は銀合金で形成されていることを特徴とする光電変換装置。   In a photoelectric conversion device in which a first electrode layer, a power generation layer, and a second electrode layer are stacked on an insulating substrate, a plurality of the power generation layers are arranged, and at least one place among the power generation layers A photoelectric conversion device, wherein a light reflection layer is disposed on the second electrode layer, and the second electrode layer is made of a silver alloy. 銀合金は、第1の添加元素としてアルミニウム、インジウム、錫、ビスマス、ガリウム、亜鉛、マグネシウムのうちの少なくとも1種を含むことを特徴とする請求項1乃至請求項3のうちのいずれかに記載の光電変換装置。   The silver alloy contains at least one of aluminum, indium, tin, bismuth, gallium, zinc, and magnesium as the first additive element, according to any one of claims 1 to 3. Photoelectric conversion device. 銀合金の第1の添加元素は、ガリウムである請求項4に記載の光電変換装置。   The photoelectric conversion device according to claim 4, wherein the first additive element of the silver alloy is gallium. 第2の添加元素として、または第1の添加元素として白金、金、ロジウム、イリジウム、ルテニウム、パラジウム、銅、マンガン、シリコン、ニッケル、クロム、コバルト、イットリウム、鉄、スカンジウム、ジルコニウム、チタン、ニオブ、モリブデン、タンタル、タングステン、ハフニウム、ランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、ツリウム、イッテルビウム、ホウ素、エルビウムのうちの少なくとも1種を含む銀合金を用いたことを特徴とする請求項4又は請求項5に記載の光電変換装置。   As the second additive element or as the first additive element, platinum, gold, rhodium, iridium, ruthenium, palladium, copper, manganese, silicon, nickel, chromium, cobalt, yttrium, iron, scandium, zirconium, titanium, niobium, Using a silver alloy containing at least one of molybdenum, tantalum, tungsten, hafnium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, thulium, ytterbium, boron, erbium The photoelectric conversion device according to claim 4 or 5, wherein the photoelectric conversion device is characterized. 第2の添加元素または第1の添加元素は、白金、パラジウム、ジスプロシウム、銅、エルビウムのうちの少なくとも1種である請求項6に記載の光電変換装置。   The photoelectric conversion device according to claim 6, wherein the second additive element or the first additive element is at least one of platinum, palladium, dysprosium, copper, and erbium. 添加元素濃度の合計が、0.01〜5.0重量%である請求項4乃至請求項7のうちのいずれかに記載の光電変換装置。   The photoelectric conversion device according to claim 4, wherein the total concentration of the additive elements is 0.01 to 5.0% by weight. 添加元素濃度の合計が、0.01〜3.0重量%である請求項8記載の光電変換装置。   The photoelectric conversion device according to claim 8, wherein the total concentration of the additive elements is 0.01 to 3.0% by weight. 添加元素がガリウムと銅の2種であり、その添加量の合計が0.01〜3.0重量%である請求項9記載の光電変換装置。   The photoelectric conversion device according to claim 9, wherein the additive elements are two kinds of gallium and copper, and the total addition amount is 0.01 to 3.0% by weight.
JP2006095872A 2006-03-30 2006-03-30 Photoelectric conversion device Expired - Fee Related JP4988231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095872A JP4988231B2 (en) 2006-03-30 2006-03-30 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095872A JP4988231B2 (en) 2006-03-30 2006-03-30 Photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2007273635A true JP2007273635A (en) 2007-10-18
JP4988231B2 JP4988231B2 (en) 2012-08-01

Family

ID=38676144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095872A Expired - Fee Related JP4988231B2 (en) 2006-03-30 2006-03-30 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4988231B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110070539A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
WO2011105171A1 (en) * 2010-02-26 2011-09-01 三洋電機株式会社 Solar cell and manufacturing method thereof
CN101556977B (en) * 2008-04-11 2012-04-18 福建钧石能源有限公司 Film silicon photovoltaic device and manufacturing method, back electrode and photovoltaic component thereof
JP2018041753A (en) * 2016-09-05 2018-03-15 長州産業株式会社 Photovoltaic element and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335991A (en) * 2003-04-14 2004-11-25 Fuji Electric Holdings Co Ltd Forming method for conductive light-reflecting film and thin-film solar cell applied with the same
WO2005011002A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Silicon based thin film solar cell
JP2005072192A (en) * 2003-08-22 2005-03-17 Tohoku Univ Photovoltaic device, solar cell, and method of manufacturing the device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335991A (en) * 2003-04-14 2004-11-25 Fuji Electric Holdings Co Ltd Forming method for conductive light-reflecting film and thin-film solar cell applied with the same
WO2005011002A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Silicon based thin film solar cell
JP2005072192A (en) * 2003-08-22 2005-03-17 Tohoku Univ Photovoltaic device, solar cell, and method of manufacturing the device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556977B (en) * 2008-04-11 2012-04-18 福建钧石能源有限公司 Film silicon photovoltaic device and manufacturing method, back electrode and photovoltaic component thereof
KR20110070539A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
KR101626364B1 (en) * 2009-12-18 2016-06-02 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
WO2011105171A1 (en) * 2010-02-26 2011-09-01 三洋電機株式会社 Solar cell and manufacturing method thereof
CN102782878A (en) * 2010-02-26 2012-11-14 三洋电机株式会社 Solar cell and manufacturing method thereof
JP2018041753A (en) * 2016-09-05 2018-03-15 長州産業株式会社 Photovoltaic element and method of manufacturing the same

Also Published As

Publication number Publication date
JP4988231B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
KR101024288B1 (en) Silicon based thin film solar cell
JP4901834B2 (en) High performance photoelectric device
RU2435251C2 (en) Front electrode with layer of thin metal film and high-work function buffer layer for use in photovoltaic device and production method thereof
WO2006057160A1 (en) Thin film photoelectric converter
JP2006310348A (en) Laminate type photovoltaic device
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
AU2012203184A1 (en) Refractive index matching of thin film layers for photovoltaic devices and methods of their manufacture
JP2005045129A (en) Stacked photoelectric converter device and its manufacturing method
CN107148676B (en) Solar cell module and manufacturing method thereof
WO2011158841A1 (en) Cigs-type solar cell, and electrode-attached glass substrate for use in the solar cell
JP2008270562A (en) Multi-junction type solar cell
JP2016517183A (en) Back contact substrate for photovoltaic cell or photovoltaic cell module
JP4988231B2 (en) Photoelectric conversion device
JP5180574B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
EP1069623A1 (en) Amorphous silicon-based thin film photovoltaic device
EP2293344A1 (en) Solar cell and method for manufacturing the same
JP5362016B2 (en) Solar cell and method for manufacturing the same
JPH10190028A (en) High refractive index transparent conductive film and solar cell
JPH11274528A (en) Photovoltaic device
JPH06338623A (en) Thin-film solar cell
JP2008300872A (en) Method for manufacturing laminated photoelectric conversion device
JP2008060605A (en) Stacked photoelectric converter
JP5539081B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP2014099613A (en) Solar battery and manufacturing method of the same
JP5022246B2 (en) Multi-junction silicon-based thin film photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Ref document number: 4988231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees