JP2007273203A - Cross-linking type polymer electrolyte membrane - Google Patents

Cross-linking type polymer electrolyte membrane Download PDF

Info

Publication number
JP2007273203A
JP2007273203A JP2006096251A JP2006096251A JP2007273203A JP 2007273203 A JP2007273203 A JP 2007273203A JP 2006096251 A JP2006096251 A JP 2006096251A JP 2006096251 A JP2006096251 A JP 2006096251A JP 2007273203 A JP2007273203 A JP 2007273203A
Authority
JP
Japan
Prior art keywords
cross
linking
electrolyte membrane
polymer electrolyte
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006096251A
Other languages
Japanese (ja)
Other versions
JP4858955B2 (en
Inventor
Jinli Qiao
錦麗 喬
Tatsuo Hamaya
健生 浜谷
Tatsuhiro Okada
達弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006096251A priority Critical patent/JP4858955B2/en
Publication of JP2007273203A publication Critical patent/JP2007273203A/en
Application granted granted Critical
Publication of JP4858955B2 publication Critical patent/JP4858955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new cross-linking type polymer electrolyte membrane which has a low water content and can control a membrane swelling and has low permeability of liquid fuel such as methanol, ethanol, formic acid, and has an excellent ion conductivity and a dynamic property, and can be manufactured at low cost. <P>SOLUTION: The cross-linking type polymer electrolyte membrane is composed of a mixture containing a poly-2-acrylamide-2-methyl propane sulfonic acid (PAMPS), a polyvinyl alcohol and a water soluble polymer which are cross-linked by a cross-linking method combining a physical cross-linking with a chemical cross-linking. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池用高分子固体電解質膜として有用なプロトン伝導性の架橋型高分子固体電解質膜に関するものである。   The present invention relates to a proton-conductive cross-linked polymer solid electrolyte membrane useful as a polymer solid electrolyte membrane for fuel cells.

燃料電池用高分子固体電解質膜として高いプロトン導電率を有し、更に化学的、熱的、電気化学的、そして力学的にも十分に安定なものとしては、主に米デュポン社製の「ナフィオン(登録商標)」を代表例とするパーフルオロカーボンスルホン酸膜等が知られている。   As a polymer solid electrolyte membrane for fuel cells, it has high proton conductivity and is sufficiently stable in terms of chemical, thermal, electrochemical and mechanical properties. Perfluorocarbon sulfonic acid membranes and the like with “registered trademark” as a representative example are known.

しかしながら、将来、携帯機器などの電源として応用が期待される、メタノール、エタノールやギ酸などの液体燃料を燃料とする燃料電池においては、これら従来の電解質膜を用いたものでは膜内のメタノールなど液体燃料の透過による性能低下が起こり、十分な性能を発揮することができず、また膜のコストが高すぎることが問題点として指摘されている。   However, in fuel cells that use liquid fuels such as methanol, ethanol, and formic acid, which are expected to be applied as power sources for portable devices in the future, these conventional electrolyte membranes use liquids such as methanol in the membrane. It has been pointed out as a problem that the performance is deteriorated due to the permeation of the fuel, the sufficient performance cannot be exhibited, and the cost of the membrane is too high.

このような問題点を解消するために、本発明者等は、先に、ポリビニルアルコール(PVA)を原料とし、これに酸性基を有するポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)をブレンドした、非フッ素系プロトン伝導性高分子電解質膜を提案した(特許文献1)。   In order to solve such problems, the present inventors first made poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS) using polyvinyl alcohol (PVA) as a raw material and having an acidic group thereon. A non-fluorine proton-conducting polymer electrolyte membrane blended with benzene was proposed (Patent Document 1).

この非フッ素系膜(炭化水素系膜)は材料コストや合成法においてフッ素系電解質膜に対する大きな優位性を持っている。
しかしながら、その後の本発明者らの検討によれば、このような炭化水素系膜では膜の含水率が高く、このため膜が膨潤し過ぎて一部で良い性状の膜が得られないという場合があることが判明した。例えばWU値(Water uptake、膜の乾燥重量あたりの膜に浸入した水の重量)でいうとWU = 1.0より高いものしかできず、含水率が高いため膜の変形が比較的大きく、またメタノールなど液体燃料の透過性が高い、といった問題点があった。
This non-fluorine-based membrane (hydrocarbon-based membrane) has a great advantage over the fluorine-based electrolyte membrane in material costs and synthesis methods.
However, according to the subsequent studies by the present inventors, in such a hydrocarbon-based membrane, the moisture content of the membrane is high, and therefore the membrane is too swelled and a membrane with good properties cannot be obtained in part. Turned out to be. For example, the WU value (water uptake, the weight of water infiltrated into the membrane per dry weight of the membrane) can only be higher than WU = 1.0, the membrane is relatively deformed due to its high water content, and methanol etc. There was a problem that the permeability of liquid fuel was high.

このため、本発明者等は、上記電解質膜に対して2種類の架橋剤による架橋構造を導入物理的あるいは化学的方法で架橋させる際の条件を選ぶことで架橋密度を上げることを試みた(特許文献2)。
この、電解質膜は、イオン伝導性と力学的特性に優れ、低温度から高温度までの広い範囲で性能を発揮するといった多くの利点を有するものであるが、依然として、WU値を1より下げることは極めて困難であり、またメタノール透過性にもやや問題があった。
For this reason, the present inventors tried to increase the cross-linking density by selecting the conditions for cross-linking the above electrolyte membrane by a physical or chemical method by introducing a cross-linking structure with two kinds of cross-linking agents ( Patent Document 2).
This electrolyte membrane has excellent ionic conductivity and mechanical properties, and has many advantages such as exhibiting performance in a wide range from low to high temperatures, but still lowers the WU value below 1. Was extremely difficult and had some problems with methanol permeability.

特願2004−342660Japanese Patent Application No. 2004-342660 特願2004−342906Japanese Patent Application No. 2004-342906

本発明は、含水率が低く膜の膨潤性を抑えることができ、しかもメタノール、エタノールやギ酸などの液体燃料の透過性が低く、かつイオン伝導性と力学特性に優れ、更には廉価なコストで生産が可能な新規な架橋型高分子電解質膜を提供することを目的とする。   The present invention has a low water content and can suppress the swelling of the membrane, has low permeability to liquid fuels such as methanol, ethanol and formic acid, has excellent ionic conductivity and mechanical properties, and is inexpensive. An object is to provide a novel cross-linked polymer electrolyte membrane that can be produced.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)にポリマー PVA と水溶性ポリマーを加え、混合した後キャスト法などで製膜した膜を原料とし、これに好ましくは熱及び/あるいは光架橋のような物理的架橋を行った後、更に架橋剤を用いることにより化学的に架橋して得られる架橋膜は、含水率 WU が1.0より小さくなり、その結果力学的特性とイオン伝導性に優れ、かつメタノールなど液体燃料透過性の低い高分子電解質膜を与えることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have added a polymer PVA and a water-soluble polymer to poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS) and mixed them, followed by a casting method. A crosslinked film obtained by using a film formed by, for example, a raw material, and preferably performing a physical crosslinking such as heat and / or photocrosslinking and then chemically crosslinking using a crosslinking agent, The water content WU was smaller than 1.0, and as a result, it was found that a polymer electrolyte membrane having excellent mechanical properties and ionic conductivity and low liquid fuel permeability such as methanol was obtained, and the present invention was completed.

すなわち、この出願によれば、以下の発明が提供される。
(1)ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、ポリビニルアルコール(PVA)及び水溶性高分子を含む混合物を物理的架橋と化学的架橋を組み合わせた架橋法により架橋化させた架橋型高分子電解質膜。
(2)水溶性高分子が、ポリエチレングリコール(PEG)、ポリエチレングリコールメチルエーテル(PEGME)、ポリエチレングリコールヂメチルエーテル(PEGDE)、ポリエチレングリコールヂグリシヂルエーテル(PEGDCE)、ポリエチレングリコールビスカルボキシメチルエーテル(PEGBCME)、ポリエチレングリコールメタクリレート(PEGMA)、ポリエチレン・ブロック・ポリエチレングリコール(PEB-PEG)及びポリオキシプロピレン・ポリオキシエチレン・ブロックコポリマー(PPO-PEO)から選ばれた少なくとも一種であることを特徴とする上記(1)に記載の架橋型高分子電解質膜。
(3)物理的架橋の後に化学的架橋が行われることを特徴とする上記(1)又は(2)に記載の架橋型高分子電解質膜。
(4)物理的架橋が熱架橋であることを特徴とする上記(1)〜(3)の何れかに記載の架橋型高分子電解質膜。
(5)熱架橋温度が60〜180℃であることを特徴とする上記(4)に記載の架橋型高分子電解質膜。
(6)物理的架橋が光架橋であることを特徴とする上記(1)〜(3)の何れかに記載の架橋型高分子電解質膜。
(7)照射光の波長が100〜600nmであることを特徴とする上記(6)に記載の架橋型高分子電解質膜。
(8)化学的架橋が架橋剤を用いるものであることを特徴とする上記(1)〜(3)の何れかに記載の架橋型高分子電解質膜。
(9)架橋剤が2官能基性アルデヒド架橋剤であることを特徴とする上記(8)に記載の架橋型高分子電解質膜。
(10)ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、ポリビニルアルコール(PVA)及び水溶性高分子を含む混合物を製膜し、当該膜を物理的架橋により架橋させ、ついで、当該架橋膜を化学的架橋により更に架橋させることを特徴とする上記(1)〜(9)の何れかに記載の架橋型高分子電解質膜の製造方法。
(11)上記(1)〜(9)の何れかに記載の架橋型高分子電解質膜を用いた燃料電池用膜または電極接合体。
(12)上記(11)に記載の燃料電池用膜または電極接合体を備えた水素・酸素あるいは水素・空気燃料電池。
(13)上記(11)に記載の燃料電池用膜または電極接合体を備えたダイレクトメタノール型燃料電池、ダイレクトエタノール型燃料電池またはダイレクトギ酸型燃料電池。
That is, according to this application, the following invention is provided.
(1) A mixture containing poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinyl alcohol (PVA) and a water-soluble polymer was crosslinked by a crosslinking method combining physical crosslinking and chemical crosslinking. Cross-linked polymer electrolyte membrane.
(2) Water-soluble polymers are polyethylene glycol (PEG), polyethylene glycol methyl ether (PEGME), polyethylene glycol dimethyl ether (PEGDE), polyethylene glycol glycidyl ether (PEGDCE), polyethylene glycol biscarboxymethyl ether (PEGBCME) ), Polyethylene glycol methacrylate (PEGMA), polyethylene block polyethylene glycol (PEB-PEG) and polyoxypropylene / polyoxyethylene block copolymer (PPO-PEO). The crosslinked polymer electrolyte membrane according to (1).
(3) The crosslinked polymer electrolyte membrane according to (1) or (2), wherein chemical crosslinking is performed after physical crosslinking.
(4) The crosslinked polymer electrolyte membrane according to any one of (1) to (3) above, wherein the physical crosslinking is thermal crosslinking.
(5) The crosslinked polymer electrolyte membrane according to (4) above, wherein the thermal crosslinking temperature is 60 to 180 ° C.
(6) The crosslinked polymer electrolyte membrane according to any one of (1) to (3) above, wherein the physical crosslinking is photocrosslinking.
(7) The crosslinked polymer electrolyte membrane as described in (6) above, wherein the wavelength of irradiation light is 100 to 600 nm.
(8) The crosslinked polymer electrolyte membrane according to any one of (1) to (3) above, wherein the chemical crosslinking uses a crosslinking agent.
(9) The crosslinked polymer electrolyte membrane according to (8) above, wherein the crosslinking agent is a bifunctional aldehyde crosslinking agent.
(10) Forming a mixture containing poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinyl alcohol (PVA) and a water-soluble polymer, cross-linking the membrane by physical cross-linking, The method for producing a crosslinked polymer electrolyte membrane according to any one of the above (1) to (9), wherein the crosslinked membrane is further crosslinked by chemical crosslinking.
(11) A fuel cell membrane or electrode assembly using the crosslinked polymer electrolyte membrane according to any one of (1) to (9) above.
(12) A hydrogen / oxygen or hydrogen / air fuel cell comprising the fuel cell membrane or electrode assembly according to (11) above.
(13) A direct methanol fuel cell, a direct ethanol fuel cell or a direct formic acid fuel cell comprising the fuel cell membrane or electrode assembly according to (11).

本発明に係る架橋型高分子電解質膜は、含水率が低く膜の膨潤性を抑えることができ、しかもメタノール、エタノールやギ酸などの液体燃料の透過性が低く、かつイオン伝導性と力学特性に優れ、更には廉価なコストで生産が可能なものである。
したがって、この架橋型高分子電解質膜は、ダイレクトメタノール型燃料電池、ダイレクトエタノール型燃料電池やダイレクトギ酸型燃料電池における燃料電池用膜または電極接合体として極めて有用なものである。
The cross-linked polymer electrolyte membrane according to the present invention has a low water content and can suppress the swelling property of the membrane, has low permeability to liquid fuels such as methanol, ethanol and formic acid, and has ionic conductivity and mechanical properties. It is excellent and can be produced at low cost.
Therefore, the cross-linked polymer electrolyte membrane is extremely useful as a fuel cell membrane or an electrode assembly in a direct methanol fuel cell, a direct ethanol fuel cell or a direct formic acid fuel cell.

本発明の架橋型高分子電解質膜は、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、ポリビニルアルコール(PVA)及び水溶性高分子を含む混合物を物理的架橋と化学的架橋を組み合わせた架橋法により架橋化させたものである。   The cross-linked polymer electrolyte membrane of the present invention is a combination of physical cross-linking and chemical cross-linking of a mixture containing poly-2-acrylamido-2-methylpropane sulfonic acid (PAMPS), polyvinyl alcohol (PVA) and a water-soluble polymer. Cross-linked by a cross-linking method.

このような本発明の架橋型高分子電解質膜は、たとえば、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、水酸基を有するポリビニルアルコール(PVA)、可塑剤としての水溶性高分子をそれぞれ蒸留水等に溶解し、これら3種類の水溶液を混合後、キャスト法により製膜後、後述する物理的及び化学的に膜を架橋することにより、水に不溶性で低含水率の架橋型高分子固体電解質膜とすることができる。   Such a crosslinked polymer electrolyte membrane of the present invention includes, for example, poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinyl alcohol (PVA) having a hydroxyl group, and a water-soluble polymer as a plasticizer. Each is dissolved in distilled water, etc., mixed with these three types of aqueous solution, formed into a film by the casting method, and then cross-linked physically and chemically as described later, so that it is insoluble in water and has a low water content. A molecular solid electrolyte membrane can be obtained.

本発明で用いるポリマーの一つである、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)は下記一般式(1)で示されるものであり、その分子量に特に制限はないが、水に対するポリマーの溶解性、及び架橋後の膜の柔軟性、イオン伝導性及び化学的耐久性などの点からみて、10,000〜5,000,000であることが好ましく、50,000〜2、000,000であることが更に好ましい。   Poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), which is one of the polymers used in the present invention, is represented by the following general formula (1), and the molecular weight is not particularly limited. In view of the solubility of the polymer in the film and the flexibility of the film after crosslinking, ion conductivity and chemical durability, it is preferably 10,000 to 5,000,000, 50,000 to 2, More preferably, it is 000,000.

また、本発明で用いるポリビニルアルコール(PVA)の分子量は特に限定されないが、10,000〜1,000,000の範囲であることが好ましく、さらにポリマーの水に対する溶解性及び架橋後の膜の柔軟性及び耐久性の観点から50,000〜200,000の範囲であることがさらに好ましい。   The molecular weight of the polyvinyl alcohol (PVA) used in the present invention is not particularly limited, but is preferably in the range of 10,000 to 1,000,000, and further the solubility of the polymer in water and the flexibility of the film after crosslinking. From the viewpoints of properties and durability, it is more preferably in the range of 50,000 to 200,000.

また、本発明で用いる水溶性高分子は特に限定されず、ポリエチレングリコール及びその誘導体や、ポリアクリルアミド、ポリアクリル酸やポリビニルピロリドンおよびそれらの共重合体などのビニル基開裂型の水溶性高分子、ヒドロキシメチルセルロースやヒドロキシプロピルセルロースなどのセルロース骨格の水酸基を他の官能基で置換したセルロース誘導体、カルボキシメチルセルロース等の天然セルロースを例示することができるが、ポリエチレングリコールとその誘導体が好ましく使用される。
このような高分子としては、ポリエチレングリコール(PEG)、ポリエチレングリコールメチルエーテル(PEGME)、ポリエチレングリコールヂメチルエーテル(PEGDE)、ポリエチレングリコールヂグリシヂルエーテル(PEGDCE)、ポリエチレングリコールビスカルボキシメチルエーテル(PEGBCME)、ポリエチレン・ブロック・ポリエチレングリコール(PEB-PEG)及びポリオキシプロピレン・ポリオキシエチレン・ブロックコポリマー(PPO-PEO)などが挙げられる。から選ばれた少なくとも一種の高分子、ビニル基開裂型の高分子、セルロース骨格誘導体等の高分子等が挙げられる。
Further, the water-soluble polymer used in the present invention is not particularly limited, and vinyl group cleavage type water-soluble polymers such as polyethylene glycol and derivatives thereof, polyacrylamide, polyacrylic acid, polyvinyl pyrrolidone and copolymers thereof, Examples thereof include cellulose derivatives in which the hydroxyl group of the cellulose skeleton such as hydroxymethylcellulose and hydroxypropylcellulose is substituted with other functional groups, and natural celluloses such as carboxymethylcellulose, but polyethylene glycol and its derivatives are preferably used.
Such polymers include polyethylene glycol (PEG), polyethylene glycol methyl ether (PEGME), polyethylene glycol dimethyl ether (PEGDE), polyethylene glycol glycidyl ether (PEGDCE), polyethylene glycol biscarboxymethyl ether (PEGBCME). And polyethylene block polyethylene glycol (PEB-PEG) and polyoxypropylene polyoxyethylene block copolymer (PPO-PEO). And at least one kind of polymer selected from the group consisting of vinyl group cleavage type polymer, cellulose skeleton derivative and the like.

ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、ポリビニルアルコール(PVA)、及び水溶性高分子の使用割合に特別な制限はないが、架橋後の膜の柔軟性及びイオン伝導性の点からみて、重量比で、PAMPS/PVA=0.2〜4、好ましくは、0.5〜2であり、水溶性高分子/PVA =0.1〜4、好ましくは、0.2〜1である。   There are no particular restrictions on the proportion of poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinyl alcohol (PVA), and water-soluble polymer, but the flexibility and ion conductivity of the membrane after crosslinking From the point of view, in terms of weight ratio, PAMPS / PVA = 0.2-4, preferably 0.5-2, water-soluble polymer / PVA = 0.1-4, preferably 0.2-1 It is.

本発明の架橋型高分子電解質膜は、前記したように、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、水酸基を有するポリビニルアルコール(PVA)、可塑剤としての水溶性高分子をそれぞれ蒸留水等に溶解し、これら3種類の水溶液を混合後キャスト法により製膜後、後述する物理的及び化学的に膜を架橋することにより得られる。   As described above, the crosslinked polymer electrolyte membrane of the present invention comprises poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinyl alcohol (PVA) having a hydroxyl group, and a water-soluble polymer as a plasticizer. Each is dissolved in distilled water or the like, mixed with these three kinds of aqueous solutions, formed into a film by a casting method, and then physically and chemically crosslinked as described later.

キャストする基板にはガラス板やテフロン(登録商標)板あるいはテフロン(登録商標)シートなどを用いることができる。キャストする際の混合溶液の厚みは特に制限されないが、10〜1000μmであることが好ましい。薄すぎると膜の形態が保てなくなり、厚すぎると膜の均一性が保ちにくくなる。より好ましくは50〜300μmである。混合溶液のキャスト厚を制御する方法は公知の方法を用いることができる。たとえば、アプリケーター、ドクターブレードなどを用いて一定の厚みにし、ガラスシャーレやテフロン(登録商標)シャーレなどを用いてキャスト面積を一定にし混合溶液の量や濃度で厚みを制御することができる。
本発明のポリマー電解質膜は目的に応じて任意の膜厚にすることができるが、イオン伝導性の面からはできるだけ薄いことが好ましい。具体的に200μm以下であることが好ましく、30μm〜100μm前後の膜がさらに好ましい。
As the substrate to be cast, a glass plate, a Teflon (registered trademark) plate, a Teflon (registered trademark) sheet, or the like can be used. The thickness of the mixed solution at the time of casting is not particularly limited, but is preferably 10 to 1000 μm. If it is too thin, the shape of the film cannot be maintained, and if it is too thick, it is difficult to maintain the uniformity of the film. More preferably, it is 50-300 micrometers. As a method for controlling the cast thickness of the mixed solution, a known method can be used. For example, the thickness can be controlled by the amount and the concentration of the mixed solution with a constant thickness using an applicator, a doctor blade, and the like, and with a glass petri dish, a Teflon (registered trademark) petri dish or the like, and a cast area constant.
The polymer electrolyte membrane of the present invention can have any film thickness depending on the purpose, but is preferably as thin as possible from the viewpoint of ion conductivity. Specifically, it is preferably 200 μm or less, and more preferably a film having a thickness of about 30 μm to 100 μm.

本発明の架橋型高分子電解質膜は、上記製膜後、当該膜を物理的架橋と化学的架橋の組み合わせにより架橋化されていることが本質的な特徴である。このような特有な架橋法を適用したことにより、はじめて膜の含水率を抑え膜の膨潤変形や機械的強度の低下、またメタノールやギ酸などの液体燃料の透過などといった問題点が解決される。
架橋法として物理的架橋単独では、架橋が完全ではないため、膜の強度が保てない、膜の化学的耐久性が悪い、膜含水率が高くなる、メタノールなど液体燃料の透過係数が高くなるなど性状が悪くなり、また化学的架橋単独では、膜含水率が高くなる、メタノールなど液体燃料の透過係数が高くなるなど性状が悪くなり、本発明の所望の作用効果が発現しない。
The essential feature of the cross-linked polymer electrolyte membrane of the present invention is that, after the film formation, the membrane is cross-linked by a combination of physical cross-linking and chemical cross-linking. By applying such a specific cross-linking method, problems such as suppressing the moisture content of the membrane for the first time and reducing the swelling deformation and mechanical strength of the membrane and the permeation of liquid fuel such as methanol and formic acid are solved.
As the crosslinking method, the physical crosslinking alone is not complete, so the strength of the membrane cannot be maintained, the chemical durability of the membrane is poor, the membrane moisture content is increased, and the permeability coefficient of liquid fuel such as methanol is increased. In addition, the chemical cross-linking alone deteriorates the properties such as an increase in the moisture content of the membrane and the permeation coefficient of liquid fuel such as methanol, and the desired effects of the present invention are not exhibited.

本発明において、物理的架橋は、乾式法によるポリマー主鎖同士の予備架橋反応を促すものであり、水溶性の3成分ポリマーブレンド中の含水率を低下させために必須のものである。   In the present invention, physical cross-linking promotes a pre-crosslinking reaction between polymer main chains by a dry method, and is essential for reducing the water content in a water-soluble three-component polymer blend.

このような物理的架橋を行うと、膜全体が均等に架橋されるため、PAMPS 相の膨潤が抑えられる結果、最終的なポリマーの構造がより低含水率側になることが期待される。すなわち、この後に引き続く溶媒中での架橋剤による化学的架橋においては、架橋剤が膜中に浸透しながらポリマー主鎖の架橋反応が進行するため、膜の内部と比較し表面側により架橋が起こりやすく、そのため膜の膨潤性が高くなる傾向があるが、物理法ではこれを防ぐ効果がある。   When such physical cross-linking is performed, the entire membrane is cross-linked evenly, so that the swelling of the PAMPS phase is suppressed, and as a result, the final polymer structure is expected to have a lower water content. That is, in the subsequent chemical crosslinking with a crosslinking agent in a solvent, the crosslinking reaction of the polymer main chain proceeds while the crosslinking agent penetrates into the film, so that crosslinking occurs on the surface side compared to the inside of the film. The film tends to be easily swellable, so that the physical method has an effect of preventing this.

本発明においては、物理的架橋法として、熱架橋や光架橋が採用することが好ましく、化学的架橋法としては、架橋剤を用いる方法を採用することが好ましい。
また、物理的架橋法と化学的架橋法を組み合わせる際の順序は特に制約されないが、化学架橋を先に行うと膜の表面側と内側とで架橋の不均一性が進み易く、その後物理架橋しても良い性状の膜が得られにくい。逆の順序、即ち物理架橋で均一な架橋を行ってから化学架橋した方が膜全体に架橋が進み、良い性状の膜が得られる。このような架橋の均一性の観点からみて、物理的架橋を先に行うことが望ましい
In the present invention, thermal crosslinking or photocrosslinking is preferably employed as the physical crosslinking method, and a method using a crosslinking agent is preferably employed as the chemical crosslinking method.
In addition, the order in which the physical crosslinking method and the chemical crosslinking method are combined is not particularly limited. However, if the chemical crosslinking is performed first, non-uniformity of crosslinking tends to proceed on the surface side and the inner side of the film, and then the physical crosslinking is performed. However, it is difficult to obtain a film having good properties. In the reverse order, that is, when the uniform cross-linking is performed by physical cross-linking and then chemical cross-linking, the cross-linking proceeds to the entire film, and a film having good properties can be obtained. From the viewpoint of the uniformity of such crosslinking, it is desirable to perform physical crosslinking first.

熱架橋を行うときの条件は、空気中、あるいは環状炉などを用いた不活性ガス中に上記3成分ブレンドポリマーをキャストした膜を設置し、40〜200℃の温度範囲内、より好適には60〜180℃の温度範囲内において、5分〜48時間、より好適には10分〜2時間の範囲内で反応を行わせる。反応時間は温度条件によって種々選ぶことができるが、短すぎる場合は架橋が十分でなく、長すぎるとポリマーが構造劣化を起こす恐れがあるので、20分〜150分程度が最も望ましい。イオン伝導性の面から120℃〜150℃で20分〜90分の処理が最も好ましい。   The conditions for carrying out the thermal crosslinking are as follows: a film obtained by casting the above-mentioned three-component blend polymer in air or an inert gas using a ring furnace, and the like, and more preferably within a temperature range of 40 to 200 ° C. The reaction is carried out in the temperature range of 60 to 180 ° C. for 5 minutes to 48 hours, more preferably in the range of 10 minutes to 2 hours. The reaction time can be variously selected depending on the temperature conditions. If the reaction time is too short, crosslinking is not sufficient. If the reaction time is too long, the polymer may cause structural deterioration. Therefore, about 20 minutes to 150 minutes is most desirable. From the viewpoint of ion conductivity, treatment at 120 to 150 ° C. for 20 to 90 minutes is most preferable.

また、光架橋を行うときの条件は、空気中、真空中あるいは不活性ガスが満たされた石英ガラスなどの容器中に上記3成分ブレンドポリマーをキャストした膜を設置し、10〜数10cmの距離に置かれた水銀ランプ、キセノンランプなどの光源を用いて、波長100〜1000nm、より好適には波長300〜600nmの範囲のいずれかにかかる紫外線照射を行い時間5分〜2時間の範囲内で反応を行わせる。光源下20 cm で30分〜1時間の処理が最も好ましい。処理時間は紫外線照射条件によって種々選ぶことができるが、短すぎる場合は架橋が十分でなく、膜強度がすこぶる弱い恐れがあり、長すぎると架橋度は増すがその後の膜性状が良くないことがある。なお、紫外線照射時に膜試料が加熱し、熱架橋も同時に進行することがある。この場合は両者の区別が付きにくく、熱/光架橋両者の効果を考慮に入れる必要がある。   The conditions for photocrosslinking are as follows: a film in which the above three-component blend polymer is cast is placed in a container such as quartz glass filled with an inert gas in air, vacuum, or a distance of 10 to several tens of centimeters. And using a light source such as a mercury lamp or a xenon lamp placed on the substrate, and irradiating with ultraviolet rays in a wavelength range of 100 to 1000 nm, and more preferably in a range of wavelength of 300 to 600 nm. Let the reaction take place. Most preferred is treatment at 20 cm under a light source for 30 minutes to 1 hour. The treatment time can be variously selected depending on the ultraviolet irradiation conditions. If the treatment time is too short, the crosslinking may not be sufficient, and the film strength may be extremely weak. If the treatment time is too long, the degree of crosslinking may increase but the subsequent film properties may not be good. is there. In addition, the film sample may be heated during ultraviolet irradiation, and thermal crosslinking may proceed simultaneously. In this case, it is difficult to distinguish between the two, and it is necessary to take into account the effects of both thermal / photocrosslinking.

化学的架橋は、アセトンなどの溶媒中に予備架橋させたブレンド膜を浸積し、グルタルアルデヒド、テレフタルアルデヒド、グリオキサルなどに代表されるような2官能基性アルデヒド架橋剤を用いることで、PVA 主鎖上の水酸基とアルデヒド基間をアセタール結合させるものである。これによって3成分ポリマーの構造を強固にすると同時に、PAMPS
相が PVA 相内に相分離構造を形成しH+イオン伝導パスを確保することでイオン伝導性が高く機械的強度を保つ効果がある。
Chemical cross-linking is performed by immersing the pre-cross-linked blend film in a solvent such as acetone and using a bifunctional aldehyde cross-linking agent such as glutaraldehyde, terephthalaldehyde, glyoxal, etc. This is an acetal bond between a hydroxyl group on the chain and an aldehyde group. This strengthens the structure of the three-component polymer and at the same time PAMPS
The phase forms a phase-separated structure in the PVA phase and secures the H + ion conduction path, which has the effect of maintaining high ionic conductivity and mechanical strength.

本発明においては、化学的架橋法としては、グルタルアルデヒド、テレフタルアルデヒド、グリオキサル等やスベロイルクロライドなどの PVA の水酸基と反応する2官能性試薬を用いることが好ましく、特に、グルタルアルデヒド、テレフタルアルデヒド、グリオキサルなどに代表されるような2官能基性アルデヒド架橋剤を用いることが好ましい。
また、従来公知の溶媒および反応時間を適宜選ぶことで架橋電解質膜を作ることができる。この時の反応条件は、膜を少しだけ膨潤させることのできる非プロトン溶媒(アセトン、ジメチルホルムアミド(DMF)、ジメチルスルホキサイド(DMSO))中、架橋試薬濃度1〜20wt% で1〜24時間処理することで架橋度をコントロールした最適な膜を作ることができる。
In the present invention, as the chemical crosslinking method, it is preferable to use a bifunctional reagent that reacts with the hydroxyl group of PVA such as glutaraldehyde, terephthalaldehyde, glyoxal and suberoyl chloride, and in particular, glutaraldehyde, terephthalaldehyde, It is preferable to use a bifunctional aldehyde crosslinking agent such as glyoxal.
Moreover, a crosslinked electrolyte membrane can be produced by appropriately selecting a conventionally known solvent and reaction time. The reaction conditions at this time were 1 to 24 hours at a crosslinking reagent concentration of 1 to 20 wt% in an aprotic solvent (acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO)) capable of slightly swelling the membrane. By processing, an optimal film with a controlled degree of crosslinking can be produced.

本発明に係る架橋型高分子電解質膜は、含水率が低く膜の膨潤性を抑えることができ、しかもメタノール、エタノールやギ酸などの液体燃料の透過性が低く、かつイオン伝導性と力学特性に優れ、更には廉価なコストで生産が可能なものである。
したがって、この架橋型高分子電解質膜は、ダイレクトメタノール型燃料電池、ダイレクトエタノール型燃料電池やダイレクトギ酸型燃料電池における燃料電池用膜または電極接合体として極めて有用なものである。
The cross-linked polymer electrolyte membrane according to the present invention has a low water content and can suppress the swelling property of the membrane, has low permeability to liquid fuels such as methanol, ethanol and formic acid, and has ionic conductivity and mechanical properties. It is excellent and can be produced at low cost.
Therefore, the cross-linked polymer electrolyte membrane is extremely useful as a fuel cell membrane or an electrode assembly in a direct methanol fuel cell, a direct ethanol fuel cell or a direct formic acid fuel cell.

以下に本発明について、実施例を用いて具体的に説明する。なお、本発明はこれらの実施例に限定されることはない。なお、各種の測定は次のように行った。
(イオン伝導性測定)自作測定用セル(テフロン(登録商標)製)を用い、単一正弦波測定方式による交流インピーダンス測定により伝導度を測定した。5 X 10 mm の穴のあいた2枚のテフロン(登録商標)製ブロック間に膜試料をはさみ、膜の両端を白金箔で接触させ、AC電圧振幅 0.02V, 周波数 0.001〜106 Hz における交流インピーダンスを湿潤状態で周波数応答分析器により測定した。
(含水率測定)膜を純水中に24時間浸漬した後、取り出して膜表面をティッシュペーパーで軽く拭いて重量を測定する。その後膜を110℃、24時間真空乾燥した後重量をはかり次式により含水率を計算する。
含水率(WSR) = (純水中浸漬後の重量/真空乾燥後の重量)−1
(メタノール透過性)容量80mlで側面に断面積5.72cmの穴のあいたガラスセル2つからなる1対のH型セル(メタノール透過セル)の穴の部分に膜をセットし、一方のセルに10wt%メタノール水溶液、他方のセルに純水を注入した後、メタノール水溶液側から純水側に透過してくるメタノール量を、赤外吸収法で一定時間ごとに濃度変化を測定することでメタノール透過係数Pを計算した。
Hereinafter, the present invention will be specifically described with reference to examples. The present invention is not limited to these examples. Various measurements were performed as follows.
(Ion conductivity measurement) Using a self-made measurement cell (Teflon (registered trademark)), conductivity was measured by AC impedance measurement by a single sine wave measurement method. A membrane sample is sandwiched between two Teflon (registered trademark) blocks with a 5 x 10 mm hole, and both ends of the membrane are in contact with platinum foil. AC impedance at AC voltage amplitude of 0.02V and frequency of 0.001 to 10 6 Hz Was measured with a frequency response analyzer in the wet state.
(Measurement of moisture content) After immersing the membrane in pure water for 24 hours, the membrane is taken out and the surface of the membrane is gently wiped with tissue paper to measure the weight. Thereafter, the membrane is vacuum-dried at 110 ° C. for 24 hours, then weighed, and the water content is calculated by the following formula.
Moisture content (WSR) = (weight after immersion in pure water / weight after vacuum drying) -1
Set the film in the portion of the hole in the (methanol permeability) consisting glass cell two having a hole cross-sectional area 5.72 cm 2 on the side surface in a volume 80 ml 1 pair of H-type cell (methanol permeation cell), one cell After injecting pure water into the other cell, the amount of methanol permeating from the methanol aqueous solution side to the pure water side was measured by measuring the concentration change at regular intervals by the infrared absorption method. the permeability coefficient P M was calculated.

実施例1
PVA(Mw=150,000) の6wt% 水溶液、PAMPS (Mw=2,000,000) の 15wt% 水溶液および ポリエチレングリコール(PEG)とその誘導体である、ポリエチレングリコールメチルエーテル(PEGME)、ポリエチレングリコールヂメチルエーテル(PEGDE)、ポリエチレングリコールヂグリシヂルエーテル(PEGDCE)のいずれか1つの10 wt% 水溶液をそれぞれ準備する。この3者を70℃においてポリマー重量比で1:1:0:5乃至1:1:0.3となるように混合し、攪拌モーターで均一になるまで混合溶解した。溶液をデシケータ中で減圧脱気し、溶液中に溶けている気体を取り除いた後、直径8.5cm の平底シャーレ上に注ぎ、室温で3日放置して製膜した。この膜を恒温槽内で150℃に保ちながら45乃至60分間熱処理し、予備架橋を行わせた。次にこれらの膜を10wt%のグルタルアルデヒドを含むアセトン溶液中で室温において1時間攪拌反応させて架橋膜を作成した。反応溶液から膜を取り出し、純水中に膜を一昼夜浸漬して未反応の反応試薬を除去した。膜厚は60mmであった。
用いた水溶性高分子、ポリエチレングリコール(PEG)とその誘導体である、ポリエチレングリコールメチルエーテル(PEGME)、ポリエチレングリコールヂメチルエーテル(PEGDE)、ポリエチレングリコールヂグリシヂルエーテル(PEGDCE)に対して、上記方法でそれぞれ測定した膜導電率s、含水率 WU、メタノール透過係数 P及び選択性 s/P(膜導電率とメタノール透過係数の比)の測定結果を、全フッ素化膜であるナフィオン膜の結果と比較した例を表1に示す。表1より、膜導電率s はナフィオン膜と比べほぼ同じ0.09 Scm-1 の高い値を示す一方、含水率 WU < 1 となり、かつメタノール透過係数がナフィオン膜の5〜6倍低いことから、ナフィオン膜に比較し非常に優れた選択性を示すことが分かった。即ち、150℃において予備架橋し最後にグルタルアルデヒドで化学架橋することによって、膜導電率を低下させることなく低い含水率、低いメタノール透過性の膜を得ることができた。
Example 1
6 wt% aqueous solution of PVA (Mw = 150,000), 15 wt% aqueous solution of PAMPS (Mw = 2,000,000) and polyethylene glycol (PEG) and its derivatives, polyethylene glycol methyl ether (PEGME), polyethylene glycol dimethyl ether (PEGDE), Prepare a 10 wt% aqueous solution of any one of polyethylene glycol diglycidyl ether (PEGDCE). The three were mixed at 70 ° C. so that the weight ratio of the polymer was 1: 1: 0: 5 to 1: 1: 0.3, and mixed and dissolved with a stirring motor until uniform. The solution was degassed under reduced pressure in a desiccator to remove the gas dissolved in the solution, and then poured onto a flat bottom petri dish having a diameter of 8.5 cm, and allowed to stand at room temperature for 3 days to form a film. This film was heat-treated for 45 to 60 minutes while being kept at 150 ° C. in a thermostatic chamber to carry out preliminary crosslinking. Next, these membranes were stirred and reacted at room temperature for 1 hour in an acetone solution containing 10 wt% glutaraldehyde to form a crosslinked membrane. The membrane was taken out from the reaction solution, and the membrane was immersed in pure water all day and night to remove unreacted reaction reagent. The film thickness was 60 mm.
For the water-soluble polymer used, polyethylene glycol (PEG) and its derivatives, polyethylene glycol methyl ether (PEGME), polyethylene glycol dimethyl ether (PEGDE), polyethylene glycol diglycidyl ether (PEGDCE) in film conductivity ratio s measured respectively, the moisture content WU, the measurement results of the methanol permeability coefficient P M and selectivity s / P M (the ratio of the film conductivity rate and methanol permeability coefficient), the Nafion membrane is perfluorinated membranes Table 1 shows an example compared with the results. From Table 1, the membrane conductivity s shows a high value of 0.09 Scm -1 , which is almost the same as that of the Nafion membrane, while the moisture content is WU <1 and the methanol permeability is 5 to 6 times lower than that of the Nafion membrane. It was found that the selectivity was excellent compared to the membrane. That is, by performing preliminary crosslinking at 150 ° C. and finally chemically crosslinking with glutaraldehyde, it was possible to obtain a membrane having a low moisture content and a low methanol permeability without lowering the membrane conductivity.

比較例1
実施例1と同様な条件であるが、熱処理による予備架橋を行わないで化学架橋のみにより作製した膜において、膜導電率s、含水率 WU、メタノール透過係数 P及び選択性s/Pを測定した結果を表2に示す。表1と表2を比較することにより、化学架橋前に熱処理による物理架橋を行うことによって、膜の選択性s/Pを大幅に向上できることが分かった。
Comparative Example 1
Is similar conditions as in Example 1, in films produced only by chemical cross-linking without performing pre-crosslinked by heat treatment, Makushirubedenritsu s, water content WU, the methanol permeation coefficient P M and selectivity s / P M Table 2 shows the measurement results. By comparing Table 1 and Table 2, by performing physical crosslinking by heat treatment before chemical crosslinking, it was found that the selectivity s / P M of the film can be greatly improved.

実施例2
ポリビニルアルコール(PVA)、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、各種水溶性高分子 からなるブレンド膜を、温度150℃において熱処理後、グルタルアルデヒドで化学架橋して得られた膜、グルタルアルデヒドで化学架橋後、熱処理して得られた膜、の各処理の場合についてメタノール透過係数を測定した結果を、ナフィオン膜と比較したものを図1に示す。なお、熱処理なしでグルタルアルデヒドによる化学架橋のみで得られた膜の結果も比較として図1に示した。
図1より、物理架橋→化学架橋、化学架橋→物理架橋いずれの場合も化学架橋のみの場合よりも優れた膜が得られるが、化学架橋→物理架橋の順序よりも物理架橋→化学架橋の順序で行った方がより膜の改善ができることが分かった。
Example 2
It was obtained by heat-treating a blend film consisting of polyvinyl alcohol (PVA), poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS) and various water-soluble polymers at 150 ° C and then chemically crosslinking with glutaraldehyde. FIG. 1 shows a result of measuring the methanol permeation coefficient in the case of each treatment of a membrane, a membrane obtained by chemical cross-linking with glutaraldehyde, and a heat treatment, compared with a Nafion membrane. In addition, the result of the film | membrane obtained only by the chemical crosslinking by glutaraldehyde without heat processing was also shown in FIG.
From FIG. 1, a film superior to the case of only chemical cross-linking can be obtained in any of physical cross-linking → chemical cross-linking, chemical cross-linking → physical cross-linking, but the order of physical cross-linking → chemical cross-linking rather than the order of chemical cross-linking → physical cross-linking. It was found that the film can be improved more by performing the above.

実施例3
実施例1と同様な条件であるが、水溶性高分子ポリエチレングリコールヂメチルエーテル(PEGDE)、及びポリエチレングリコールヂグリシヂルエーテル(PEGDCE)を用いて作製した厚さの異なる膜において、熱処理温度を150℃、熱処理時間を60分とした場合の膜導電率(s)及び含水率(WU)の測定結果を表3に示す。表3より、膜厚が薄いほど熱処理時間を少なくすべきであることが分かる。これより膜厚に応じて最適な熱処理温度、時間を選ぶことにより、膜導電率を低下させることなく低い含水率の膜を得ることができることが分かった。
Example 3
Under the same conditions as in Example 1, but with films having different thicknesses produced using water-soluble polymer polyethylene glycol dimethyl ether (PEGDE) and polyethylene glycol glycidyl ether (PEGDCE), the heat treatment temperature was 150. Table 3 shows the measurement results of the film conductivity (s) and moisture content (WU) when the heat treatment time is 60 ° C. From Table 3, it can be seen that the heat treatment time should be reduced as the film thickness decreases. From this, it was found that a film having a low water content can be obtained without reducing the film conductivity by selecting the optimum heat treatment temperature and time according to the film thickness.

実施例2で得た各種架橋膜のメタノール透過係数の比較図。FIG. 3 is a comparative diagram of methanol permeability coefficients of various crosslinked membranes obtained in Example 2.

Claims (13)

ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、ポリビニルアルコール(PVA)及び水溶性高分子を含む混合物を物理的架橋と化学的架橋を組み合わせた架橋法により架橋化させた架橋型高分子電解質膜。   Cross-linked high-crosslinkable poly-acrylamido-2-methylpropane sulfonic acid (PAMPS), polyvinyl alcohol (PVA) and water-soluble polymer cross-linked by a cross-linking method combining physical cross-linking and chemical cross-linking Molecular electrolyte membrane. 水溶性高分子が、ポリエチレングリコール(PEG)、ポリエチレングリコールメチルエーテル(PEGME)、ポリエチレングリコールヂメチルエーテル(PEGDE)、ポリエチレングリコールヂグリシヂルエーテル(PEGDCE)、ポリエチレングリコールビスカルボキシメチルエーテル(PEGBCME)、ポリエチレングリコールメタクリレート(PEGMA)、ポリエチレン・ブロック・ポリエチレングリコール(PEB-PEG)及びポリオキシプロピレン・ポリオキシエチレン・ブロックコポリマー(PPO-PEO)から選ばれた少なくとも一種であることを特徴とする請求項1に記載の架橋型高分子電解質膜。   Water-soluble polymers are polyethylene glycol (PEG), polyethylene glycol methyl ether (PEGME), polyethylene glycol dimethyl ether (PEGDE), polyethylene glycol glycidyl ether (PEGDCE), polyethylene glycol biscarboxymethyl ether (PEGBCME), polyethylene 2. At least one selected from glycol methacrylate (PEGMA), polyethylene block polyethylene glycol (PEB-PEG) and polyoxypropylene / polyoxyethylene block copolymer (PPO-PEO). The crosslinked polymer electrolyte membrane described. 物理的架橋の後に化学的架橋が行われることを特徴とする請求項1又は2に記載の架橋型高分子電解質膜。   The cross-linked polymer electrolyte membrane according to claim 1, wherein chemical cross-linking is performed after physical cross-linking. 物理的架橋が熱架橋であることを特徴とする請求項1〜3の何れかに記載の架橋型高分子電解質膜。   The cross-linked polymer electrolyte membrane according to claim 1, wherein the physical cross-linking is thermal cross-linking. 熱架橋温度が60〜180℃であることを特徴とする請求項4に記載の架橋型高分子電解質膜。   The cross-linked polymer electrolyte membrane according to claim 4, wherein the thermal cross-linking temperature is 60 to 180 ° C. 物理的架橋が光架橋であることを特徴とする請求項1〜3の何れかに記載の架橋型高分子電解質膜。   The crosslinked polymer electrolyte membrane according to any one of claims 1 to 3, wherein the physical crosslinking is photocrosslinking. 照射光の波長が100〜600nmであることを特徴とする請求項6に記載の架橋型高分子電解質膜。   The cross-linked polymer electrolyte membrane according to claim 6, wherein the wavelength of irradiation light is 100 to 600 nm. 化学的架橋が架橋剤を用いるものであることを特徴とする請求項1〜3の何れかに記載の架橋型高分子電解質膜。   The cross-linked polymer electrolyte membrane according to any one of claims 1 to 3, wherein the chemical cross-linking uses a cross-linking agent. 架橋剤が2官能基性アルデヒド架橋剤であることを特徴とする請求項8に記載の架橋型高分子電解質膜。   9. The crosslinked polymer electrolyte membrane according to claim 8, wherein the crosslinking agent is a bifunctional aldehyde crosslinking agent. ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸(PAMPS)、ポリビニルアルコール(PVA)及び水溶性高分子を含む混合物を製膜し、当該膜を物理的架橋により架橋させ、ついで、当該架橋膜を化学的架橋により更に架橋させることを特徴とする請求項1〜9の何れかに記載の架橋型高分子電解質膜の製造方法。   A mixture containing poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS), polyvinyl alcohol (PVA) and a water-soluble polymer is formed, and the film is crosslinked by physical crosslinking. The method for producing a crosslinked polymer electrolyte membrane according to any one of claims 1 to 9, wherein the crosslinking is further performed by chemical crosslinking. 請求項1〜9の何れかに記載の架橋型高分子電解質膜を用いた燃料電池用膜または電極接合体。   A fuel cell membrane or electrode assembly using the cross-linked polymer electrolyte membrane according to any one of claims 1 to 9. 請求項11に記載の燃料電池用膜または電極接合体を備えた水素・酸素あるいは水素・空気燃料電池。   A hydrogen / oxygen or hydrogen / air fuel cell comprising the fuel cell membrane or electrode assembly according to claim 11. 請求項11に記載の燃料電池用膜または電極接合体を備えたダイレクトメタノール型燃料電池、ダイレクトエタノール型燃料電池またはダイレクトギ酸型燃料電池。
A direct methanol fuel cell, a direct ethanol fuel cell, or a direct formic acid fuel cell comprising the fuel cell membrane or electrode assembly according to claim 11.
JP2006096251A 2006-03-31 2006-03-31 Cross-linked polymer electrolyte membrane Expired - Fee Related JP4858955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096251A JP4858955B2 (en) 2006-03-31 2006-03-31 Cross-linked polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096251A JP4858955B2 (en) 2006-03-31 2006-03-31 Cross-linked polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2007273203A true JP2007273203A (en) 2007-10-18
JP4858955B2 JP4858955B2 (en) 2012-01-18

Family

ID=38675804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096251A Expired - Fee Related JP4858955B2 (en) 2006-03-31 2006-03-31 Cross-linked polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4858955B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125636A1 (en) * 2008-04-11 2009-10-15 日東電工株式会社 Proton conductive polymer electrolyte membrane, process for producing the proton conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton conductive polymer electrolyte membrane
CN103566780A (en) * 2012-07-27 2014-02-12 清华大学 Preparation method of fluorine substituted polyarylether compound anion electrolyte membrane
JP2017513968A (en) * 2014-03-19 2017-06-01 ダウ グローバル テクノロジーズ エルエルシー Biodegradable cross-linked polymer
CN111276724A (en) * 2020-02-15 2020-06-12 西北工业大学 Half-interpenetrating network anion exchange membrane based on polyphenyl ether/polyvinyl alcohol and preparation method thereof
CN111525169A (en) * 2020-04-30 2020-08-11 吕丽芳 Preparation method of high-temperature proton exchange membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154710A (en) * 2003-03-10 2005-06-16 Toray Ind Inc Polymer solid electrolyte, method for producing the same, and solid polymer type fuel cell by using the same
WO2005090480A1 (en) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. Solid polyelectrolyte, solid-polymer gel film, solid polyelectrolyte film, and fuel cell
JP2005534785A (en) * 2002-08-02 2005-11-17 ペメアス ゲーエムベーハー Proton conducting polymer electrolyte membranes containing sulfonic acid group-containing polymers and their use in fuel cells
JP2005327703A (en) * 2004-03-23 2005-11-24 Mitsubishi Gas Chem Co Inc Solid polyelectrolyte, solid polymer gel film, solid polyelectrolyte film, and fuel cell
JP2006156041A (en) * 2004-11-26 2006-06-15 National Institute Of Advanced Industrial & Technology Blend-cross-linked polymer electrolyte membrane
JP2006291161A (en) * 2005-03-16 2006-10-26 Toyota Motor Corp Graft polymer, polyelectrolyte membrane, these production method and fuel cell using the same membrane
JP2007042606A (en) * 2005-07-05 2007-02-15 Toray Ind Inc Power generation method by liquid supply type fuel cell and liquid supply type fuel cell
WO2007093588A1 (en) * 2006-02-17 2007-08-23 Basf Se Oligomeric and polymeric siloxanes substituted by arylphosphonic acids

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534785A (en) * 2002-08-02 2005-11-17 ペメアス ゲーエムベーハー Proton conducting polymer electrolyte membranes containing sulfonic acid group-containing polymers and their use in fuel cells
JP2005154710A (en) * 2003-03-10 2005-06-16 Toray Ind Inc Polymer solid electrolyte, method for producing the same, and solid polymer type fuel cell by using the same
WO2005090480A1 (en) * 2004-03-23 2005-09-29 Mitsubishi Gas Chemical Co., Inc. Solid polyelectrolyte, solid-polymer gel film, solid polyelectrolyte film, and fuel cell
JP2005327703A (en) * 2004-03-23 2005-11-24 Mitsubishi Gas Chem Co Inc Solid polyelectrolyte, solid polymer gel film, solid polyelectrolyte film, and fuel cell
JP2006156041A (en) * 2004-11-26 2006-06-15 National Institute Of Advanced Industrial & Technology Blend-cross-linked polymer electrolyte membrane
JP2006291161A (en) * 2005-03-16 2006-10-26 Toyota Motor Corp Graft polymer, polyelectrolyte membrane, these production method and fuel cell using the same membrane
JP2007042606A (en) * 2005-07-05 2007-02-15 Toray Ind Inc Power generation method by liquid supply type fuel cell and liquid supply type fuel cell
WO2007093588A1 (en) * 2006-02-17 2007-08-23 Basf Se Oligomeric and polymeric siloxanes substituted by arylphosphonic acids

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125636A1 (en) * 2008-04-11 2009-10-15 日東電工株式会社 Proton conductive polymer electrolyte membrane, process for producing the proton conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton conductive polymer electrolyte membrane
JP2009252721A (en) * 2008-04-11 2009-10-29 Nitto Denko Corp Proton conductive polyelectrolyte film, its manufacturing method, and membrane-electrode assembly and polyelectrolyte fuel cell using it
CN101999188A (en) * 2008-04-11 2011-03-30 日东电工株式会社 Proton conductive polymer electrolyte membrane, process for producing the proton conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton conductive polymer electrolyte membrane
US8304135B2 (en) 2008-04-11 2012-11-06 Nitto Denko Corporation Proton-conductive polymer electrolyte membrane, method of manufacturing the proton-conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton-conductive polymer electrolyte membrane
CN103566780A (en) * 2012-07-27 2014-02-12 清华大学 Preparation method of fluorine substituted polyarylether compound anion electrolyte membrane
JP2017513968A (en) * 2014-03-19 2017-06-01 ダウ グローバル テクノロジーズ エルエルシー Biodegradable cross-linked polymer
CN111276724A (en) * 2020-02-15 2020-06-12 西北工业大学 Half-interpenetrating network anion exchange membrane based on polyphenyl ether/polyvinyl alcohol and preparation method thereof
CN111276724B (en) * 2020-02-15 2022-11-22 西北工业大学 Half-interpenetrating-network anion exchange membrane based on polyphenyl ether/polyvinyl alcohol and preparation method thereof
CN111525169A (en) * 2020-04-30 2020-08-11 吕丽芳 Preparation method of high-temperature proton exchange membrane
CN111525169B (en) * 2020-04-30 2023-01-24 深圳市众通新能源汽车科技有限公司 Preparation method of high-temperature proton exchange membrane

Also Published As

Publication number Publication date
JP4858955B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
He et al. Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes
Yang et al. Preparation and characterization of poly (vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane
Kim et al. Preparation of ion exchange membranes for fuel cell based on crosslinked poly (vinyl alcohol) with poly (styrene sulfonic acid-co-maleic acid)
Yang et al. Strengthening phosphoric acid doped polybenzimidazole membranes with siloxane networks for using as high temperature proton exchange membranes
Lee et al. End-group cross-linked poly (arylene ether) for proton exchange membranes
Sen et al. Nafion/poly (1-vinyl-1, 2, 4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells
Song et al. Novel alkaline anion-exchange membranes based on chitosan/ethenylmethylimidazoliumchloride polymer with ethenylpyrrolidone composites for low temperature polymer electrolyte fuel cells
JP4430618B2 (en) Proton conductive membrane, method for producing the same, and fuel cell using the same
Yang et al. Dual cross-linked polymer electrolyte membranes based on poly (aryl ether ketone) and poly (styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells
JPH11503262A (en) Proton conductive polymer
Yang et al. Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly (2, 6-dimethyl-1, 4-phenylene oxide) and polystyrene
Rogalsky et al. New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid
JP2001307545A (en) Proton conductive film, its manufacturing method, and fuel cell using the same
JP4858955B2 (en) Cross-linked polymer electrolyte membrane
Lin et al. Preparation and characterization of imidazolium-based membranes for anion exchange membrane fuel cell applications
Neelakandan et al. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells
Lin et al. Novel hybrid polymer electrolyte membranes with high proton conductivity prepared by a silane-crosslinking technique for direct methanol fuel cells
Schmidt et al. Proton Conducting Membranes Obtained by Doping Radiation‐Grafted Basic Membrane Matrices with Phosphoric Acid
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP2006156041A (en) Blend-cross-linked polymer electrolyte membrane
Jiang et al. Optimization and synthesis of plasma polymerized proton exchange membranes for direct methanol fuel cells
KR101350382B1 (en) Styrene-butadiene triblock copolymer, and preparing method of the same
TWI430502B (en) Proton conductive film, membrane-electrode assembly and solid polymer fuel cell
Feng et al. A redox poly (ionic liquid) hydrogel: Facile method of synthesis and electrochemical sensing
Chen et al. Photo-Cross-Linking of Sulfonated Styrene− Ethylene− Butylene Copolymer Membranes for Fuel Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees