JP2007272990A - Magnetic recording medium and its manufacturing method - Google Patents

Magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2007272990A
JP2007272990A JP2006097400A JP2006097400A JP2007272990A JP 2007272990 A JP2007272990 A JP 2007272990A JP 2006097400 A JP2006097400 A JP 2006097400A JP 2006097400 A JP2006097400 A JP 2006097400A JP 2007272990 A JP2007272990 A JP 2007272990A
Authority
JP
Japan
Prior art keywords
layer
intermediate layer
magnetic
recording medium
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097400A
Other languages
Japanese (ja)
Inventor
Akira Kurita
亮 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006097400A priority Critical patent/JP2007272990A/en
Publication of JP2007272990A publication Critical patent/JP2007272990A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To promote separation structure in a magnetic layer by increasing surface coarseness R<SB>a</SB>of an intermediate layer without thickening a film thickness, as regards a magnetic recording medium and its manufacturing method. <P>SOLUTION: At least the surface part of the intermediate layer 3 of the magnetic recording medium in which the intermediate layer 3 for controlling crystal orientation of a recording layer 8 and for uniformly isolating magnetic particles 6 is provided between a soft magnetic backing layer 2 and the recording layer 8 provided on a substrate 1 is made granular structure of metal particles comprised of Ru or RU alloy and a non-magnetic base material 7, and the metal particles 6 comprised of Ru or Ry alloy are projected from the non-magnetic base material 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は磁気記録媒体及びその製造方法に関するものであり、特に、垂直磁気記録方式を用いた磁気ディスク装置の記録密度を高めるために必要な磁気記録媒体における信号品質の改善のための構成に特徴のある磁気記録媒体及びその製造方法に関するものである。   The present invention relates to a magnetic recording medium and a method for manufacturing the same, and more particularly to a configuration for improving signal quality in a magnetic recording medium necessary for increasing the recording density of a magnetic disk apparatus using a perpendicular magnetic recording system. The present invention relates to a magnetic recording medium having the same and a manufacturing method thereof.

近年、取り扱うデータサイズの大規模化に伴ってHDD用磁気記録媒体において、高密度記録が強く要望されている。
このような高密度記録化の要請に応えるものとして、基板に対して垂直方向に磁化容易軸方向を有する記録層を用いる垂直記録方式が提案されている。
In recent years, high-density recording is strongly demanded in HDD magnetic recording media as the data size handled increases.
As a response to such a demand for high density recording, a perpendicular recording method using a recording layer having an easy axis direction in the direction perpendicular to the substrate has been proposed.

この様な垂直磁気記録媒体としてCo、Cr、Ptなどを含有する磁性合金粒子をSiO2 などの非磁性母材で分離したいわゆるグラニュラ構造が広く用いられている。 As such a perpendicular magnetic recording medium, a so-called granular structure in which magnetic alloy particles containing Co, Cr, Pt or the like are separated by a nonmagnetic base material such as SiO 2 is widely used.

この垂直記録媒体に分離構造を持たせて記録再生特性を向上させるためには、Ru中間層の表面粗さRa が大きいことが望ましいことが知られている。(例えば、非特許文献1参照)。 The perpendicular recording medium in order to improve recording and reproducing characteristics to have a separated structure is known to be desirable surface roughness R a of the Ru intermediate layer is large. (For example, refer nonpatent literature 1).

ここで、図5を参照して従来の磁気記録媒体を説明する。
図5参照
図5は従来の磁気記録媒体の概念的断面図であり、まず、結晶化ガラス基板31上にシード層32、軟磁性裏打層33、Ru中間層34、グラニュラ構造からなる磁気記録層35、及び、保護層36を順次堆積させたのち、その表面に潤滑剤37を塗布したものである。
Here, a conventional magnetic recording medium will be described with reference to FIG.
See Figure 5
FIG. 5 is a conceptual cross-sectional view of a conventional magnetic recording medium. First, on a crystallized glass substrate 31, a seed layer 32, a soft magnetic backing layer 33, a Ru intermediate layer 34, a magnetic recording layer 35 having a granular structure, and After the protective layers 36 are sequentially deposited, a lubricant 37 is applied to the surface.

このような垂直記録媒体において、所定の記録再生特性を得るためにRu中間層34の表面粗さを増大させる必要があるが、そのためには、Ruの膜厚を20nm程度以上に厚くする必要がある。   In such a perpendicular recording medium, it is necessary to increase the surface roughness of the Ru intermediate layer 34 in order to obtain predetermined recording / reproducing characteristics. For this purpose, it is necessary to increase the Ru film thickness to about 20 nm or more. is there.

一方、磁気記録層35における分離構造を促進するために、中間層をRuからなる下部中間層と、Ru粒子とSi酸化物からなるグラニュラ構造の上部中間層とにより構成することが提案されている(例えば、特許文献1或いは特許文献2参照)。
49th Annual Conference on Magnetism & magnetic materials DB−11 “Effect of Ru Intermediate Layer on Properties of CoCrPt−SiO2 Perpendicular Recording Media” 特開2005−093040号公報 特開2005−108268号公報
On the other hand, in order to promote the separation structure in the magnetic recording layer 35, it has been proposed that the intermediate layer is composed of a lower intermediate layer made of Ru and an upper intermediate layer having a granular structure made of Ru particles and Si oxide. (For example, refer to Patent Document 1 or Patent Document 2).
49th Annual Conference on Magnetics & Magnetic Materials DB-11 “Effect of Ru Intermediate Layer on Properties of CoCrPt-SiO2 Perpendicular Recorder” JP 2005-093040 A JP 2005-108268 A

しかし、表面粗さRa を大きくするためにRu中間層の膜厚を厚くすると、記録ヘッドと軟磁性裏打層間の距離が増大し記録特性が低下し、さらには、記録時の磁界勾配が低下し記録ビット間の遷移領域が不鮮明になり、それが媒体ノイズNm の増大の要因となって信号品質が低下するという問題がある。 However, if the thickness of the Ru intermediate layer is increased in order to increase the surface roughness Ra , the distance between the recording head and the soft magnetic underlayer increases, the recording characteristics deteriorate, and the magnetic field gradient during recording also decreases. However, there is a problem that the transition area between recording bits becomes unclear, which causes an increase in the medium noise N m and the signal quality decreases.

なお、垂直記録媒体の記録特性を良好にし、記録ビット間の遷移領域を鮮明にし媒体ノイズNm を低減するためにはRu中間層を薄膜化すれば良いが、そうすると、Ru中間層の表面粗さRa が低下して記録再生特性が低下してしまうという問題がある。 In order to improve the recording characteristics of the perpendicular recording medium, clear the transition region between recording bits, and reduce the medium noise N m , the Ru intermediate layer may be thinned. There is a problem that the recording / reproducing characteristics are deteriorated due to a decrease in Ra .

また、中間層の上部をグラニュラ構造とする場合にも、記録層における磁性粒子の孤立化は必ずしも充分ではなく、また、中間層の膜厚に関する特段の問題認識はなく、軟磁性裏打層と中間層との間に設けるシード層を含めると軟磁性裏打層と記録層との間隔は21nm以上となっており、結局、記録ヘッドと軟磁性裏打層間の距離が増大するという問題がある。   Even when the upper part of the intermediate layer has a granular structure, isolation of the magnetic particles in the recording layer is not always sufficient, and there is no particular problem regarding the film thickness of the intermediate layer. When the seed layer provided between the layers is included, the distance between the soft magnetic backing layer and the recording layer is 21 nm or more, and as a result, there is a problem that the distance between the recording head and the soft magnetic backing layer increases.

したがって、本発明は、中間層の膜厚を厚くすることなく、中間層の表面粗さRa を大きくして磁性層における分離構造を促進することを目的とする。 Accordingly, the present invention is, without increasing the film thickness of the intermediate layer, and an object thereof is the surface roughness R a of the intermediate layer is increased to promote separation structure in the magnetic layer.

図1は本発明の原理的構成図であり、ここで図1を参照して、本発明における課題を解決するための手段を説明する。
図1参照
上記課題を解決するために、本発明は、基板1上に設けた軟磁性裏打層2と記録層8の間に記録層8の結晶配向制御と磁性粒子を均一に孤立化させるための中間層3を設けた磁気記録媒体であって、中間層3の少なくとも表面部は、Ru或いはRu合金からなる金属粒子6と非磁性母材7のグラニュラ構造からなり、且つ、Ru或いはRu合金からなる金属粒子6が非磁性母材7から突出していることを特徴とする。
FIG. 1 is a diagram illustrating the basic configuration of the present invention. Means for solving the problems in the present invention will be described with reference to FIG.
See FIG. 1 In order to solve the above-mentioned problem, the present invention is for controlling the crystal orientation of the recording layer 8 and isolating the magnetic particles uniformly between the soft magnetic backing layer 2 and the recording layer 8 provided on the substrate 1. The intermediate layer 3 is provided with a magnetic recording medium in which at least a surface portion has a granular structure of a metal particle 6 made of Ru or a Ru alloy and a non-magnetic base material 7, and the Ru or Ru alloy. The metal particle 6 made of is protruded from the nonmagnetic base material 7.

このように、中間層3の少なくとも表面部をRu或いはRu合金からなる金属粒子6と非磁性母材7のグラニュラ構造から構成するとともに、Ru或いはRu合金からなる金属粒子6が非磁性母材7から突出するように構成することによって、中間層3の厚さを増大させることなく中間層3の表面粗さRa を大きくすることができ、それによって、磁性層における分離構造を促進することができる。 In this way, at least the surface portion of the intermediate layer 3 is composed of the granular structure of the metal particles 6 made of Ru or Ru alloy and the nonmagnetic base material 7, and the metal particles 6 made of Ru or Ru alloy are made of the nonmagnetic base material 7. by configuring so as to protrude from, it is possible to increase the surface roughness R a of the intermediate layer 3 without increasing the thickness of the intermediate layer 3, thereby to promote isolation structure in the magnetic layer it can.

この場合、中間層3の表面粗さRa を充分大きくするためには、Ru或いはRu合金からなる金属粒子6の各頂部が、金属粒子6を埋め込む非磁性母材7の表面から平均値として1nm以上突出させることが望ましい。 In this case, in order to sufficiently increase the surface roughness R a of the intermediate layer 3, the top of the metal particles 6 made of Ru or Ru alloy, as an average from the surface of the non-magnetic matrix 7 to embed the metal particles 6 It is desirable to project 1 nm or more.

また、非磁性母材7は、Ru或いはRu合金に対して選択エッチング性を有する非磁性材料であれば何でも良く、例えば、Cu等の非磁性金属でもよいが、Ru或いはRu合金に対して選択ドライエッチングが容易なSiO2 或いはSiNが望ましい。 The nonmagnetic base material 7 may be any nonmagnetic material having selective etching properties with respect to Ru or Ru alloy. For example, it may be a nonmagnetic metal such as Cu, but selected with respect to Ru or Ru alloy. SiO 2 or SiN that is easy to dry-etch is desirable.

また、中間層3はグラニュラ構造の単層の中間層3で構成しても良いが、Ru或いはRu合金からなる下部中間層4と、Ru或いはRu合金と非磁性母材7のグラニュラ構造の下部中間層5とによって構成しても良く、それによって、記録層8における結晶配向制御と磁性粒子の均一な孤立化を良好に行うことができる。   The intermediate layer 3 may be composed of a single intermediate layer 3 having a granular structure, but the lower intermediate layer 4 made of Ru or Ru alloy and the lower part of the granular structure of Ru or Ru alloy and the nonmagnetic base material 7. The intermediate layer 5 may be used, whereby the crystal orientation in the recording layer 8 and uniform isolation of the magnetic particles can be satisfactorily performed.

この場合の下部中間層4の厚さは10nm以下とすることが望ましく、それによって、記録ヘッドと軟磁性裏打層2との間の距離が近くなり記録特性が向上し、さらには、記録時の磁界勾配が低下し記録ビット間の遷移領域が鮮明になるので媒体ノイズNm を低減することができる。
また、軟磁性裏打層2と記録層8との間隔としては、20nm以下であることが望ましい。
In this case, the thickness of the lower intermediate layer 4 is preferably 10 nm or less, whereby the distance between the recording head and the soft magnetic backing layer 2 is reduced, and the recording characteristics are improved. Since the magnetic field gradient is lowered and the transition region between recorded bits becomes clear, the medium noise N m can be reduced.
The distance between the soft magnetic backing layer 2 and the recording layer 8 is preferably 20 nm or less.

また、この場合の記録層8としては、磁性体粒子と非磁性母材のグラニュラ構造が典型的なものである。   In this case, the recording layer 8 is typically a granular structure of magnetic particles and a nonmagnetic base material.

また、上述の構成を製造する場合には、基板1上に軟磁性裏打層2を介して少なくとも表面部がRu或いはRu合金からなる金属粒子6と非磁性母材7のグラニュラ構造からなる中間層3を設けたのち、中間層3を構成する非磁性母材7の表面部を金属粒子6に対して選択的にエッチング除去すれば良い。   In the case of manufacturing the above-described configuration, an intermediate layer having a granular structure of metal particles 6 and a nonmagnetic base material 7 having at least a surface portion made of Ru or Ru alloy on a substrate 1 with a soft magnetic backing layer 2 interposed therebetween. 3, the surface portion of the nonmagnetic base material 7 constituting the intermediate layer 3 may be selectively etched away with respect to the metal particles 6.

特に、中間層3を構成する非磁性母材7をSiO2 或いはSiNのいずれかとすることによって、非磁性母材7をドライエッチングによって選択的に除去することが容易になる。 In particular, when the nonmagnetic base material 7 constituting the intermediate layer 3 is made of either SiO 2 or SiN, the nonmagnetic base material 7 can be easily selectively removed by dry etching.

上述の構成を備えた磁気記録媒体を搭載することによって、磁気ディスク装置の高密度記録化が実現される。   By mounting the magnetic recording medium having the above-described configuration, high-density recording of the magnetic disk device is realized.

本発明によれば、Ruを主構成要素とする中間層の膜厚を増大させることなく中間層の表面粗さRa を大きくすることが可能となり、それによって、磁気記録層における磁性粒子が均一に孤立化されるので、信号品質が改善される。 According to the present invention, it is possible to increase the surface roughness R a of the intermediate layer without increasing the thickness of the intermediate layer whose main component a Ru, whereby uniform magnetic particles in the magnetic recording layer Signal quality is improved.

本発明は、結晶化ガラス基板等の基板上にCoZrNb等の軟磁性裏打層を介して厚さが、例えば、10nm以下のRu或いはRuCr等のRu合金からなる下部中間層と厚さが、例えば、10nm以下のRu或いはRuCr等のRu合金からなる金属粒子と非磁性母材、特に、SiO2 或いはSiNのグラニュラ構造からなる上部中間層との積層構造からなる中間層を設けたのち、中間層を構成する非磁性母材の表面部を金属粒子に対して選択的にエッチング、好適にはドライエッチングによって除去し、以降は、CoCrPt−SiO2 等のグラニューラ構造の記録層、CN等の保護層、潤滑剤を順次設けるものである。 The present invention has a thickness of, for example, a lower intermediate layer made of a Ru alloy such as Ru or RuCr with a thickness of 10 nm or less on a substrate such as a crystallized glass substrate via a soft magnetic backing layer such as CoZrNb. After providing an intermediate layer having a laminated structure of a metal particle made of a Ru alloy such as Ru or RuCr of 10 nm or less and a non-magnetic base material, particularly an upper intermediate layer made of a SiO 2 or SiN granular structure, the intermediate layer The surface portion of the nonmagnetic base material constituting the material is selectively etched with respect to the metal particles, preferably by dry etching, and thereafter, the recording layer having a granular structure such as CoCrPt—SiO 2 and the protection of CN, etc. A layer and a lubricant are sequentially provided.

ここで、図2乃至図3を参照して、本発明の実施例1の磁気記録媒体の製造工程を説明する。
なお、図においては、基板の一方の面側に堆積した構造として示しているが、実際には基板の両面に同時に堆積するものである。
図2参照
まず、結晶化ガラス基板11上にスパッタリング法を用いて厚さが、例えば、10nmのTiWからなるシード層12、厚さが、例えば、50nmのCoZrNbからなる軟磁性裏打層13、厚さが10nm以下、例えば、5nmのRuからなる下部中間層14、及び、厚さが10nm以下、例えば、5nmのRu−SiO2 グラニュラ構造からなる上部中間層15を順次堆積させる。
なお、この場合、上部中間層15は、Ruに例えば、10mol%のSiO2 を添加してRu粒子16がSiO2 母材17中に埋設したRu−SiO2 グラニュラ構造とする。
Here, with reference to FIG. 2 thru | or FIG. 3, the manufacturing process of the magnetic-recording medium of Example 1 of this invention is demonstrated.
In the figure, the structure is shown as being deposited on one side of the substrate, but in actuality, it is deposited on both sides of the substrate simultaneously.
See Figure 2
First, a seed layer 12 made of TiW having a thickness of, for example, 10 nm, a soft magnetic backing layer 13 made of, for example, 50 nm of CoZrNb, and having a thickness of 10 nm on the crystallized glass substrate 11 by sputtering. Hereinafter, for example, a lower intermediate layer 14 made of Ru of 5 nm and an upper intermediate layer 15 made of Ru-SiO 2 granular structure having a thickness of 10 nm or less, eg 5 nm are sequentially deposited.
In this case, the upper intermediate layer 15 has a Ru—SiO 2 granular structure in which, for example, 10 mol% of SiO 2 is added to Ru, and Ru particles 16 are embedded in the SiO 2 base material 17.

次いで、エッチングガスとしてArを例えば15sccm、CF4 を例えば25sccm流し、ソースパワーを300W、バイアスパワーを30W印加して発生させたプラズマを利用して上部中間層15を構成するSiO2 母材17の露出部を選択的にエッチングしてRu粒子16を突出させて表面粗さRa を大きくする。 Next, the SiO 2 base material 17 constituting the upper intermediate layer 15 is formed using plasma generated by applying Ar as an etching gas, for example, 15 sccm, CF 4, for example, 25 sccm, applying a source power of 300 W, and a bias power of 30 W. the exposed portion is selectively etched by projecting the Ru particles 16 to increase the surface roughness R a in.

なお、この場合のエッチング量としては、Ru粒子16の各頂部が、Ru粒子16を埋め込むSiO2 母材17の表面から平均的に1nm以上、より好適には2nm以上突出するようにエッチングする。 In this case, the etching amount is such that each top portion of the Ru particles 16 protrudes from the surface of the SiO 2 base material 17 embedding the Ru particles 16 on the average by 1 nm or more, more preferably 2 nm or more.

図3参照
次いで、再びスパッタリング法を用いて、厚さが、例えば、50nmのSiO2 母材中にCoCrPt粒子が埋設されたCoCrPt−SiO2 グラニュラ構造からなる記録層18を堆積させる。
この時、記録層18を構成するCoCrPt粒子は上部中間層15を構成するRu粒子16によって結晶配向が制御されるとともに、Ru粒子16の表面粗さRa によって均一に孤立化される。
See Figure 3
Next, a recording layer 18 having a CoCrPt—SiO 2 granular structure in which CoCrPt particles are embedded in a SiO 2 base material having a thickness of, for example, 50 nm is deposited again using the sputtering method.
At this time, CoCrPt particles constituting the recording layer 18 with crystal orientation of Ru particles 16 constituting the upper intermediate layer 15 is controlled, is uniformly isolated by surface roughness R a of Ru particles 16.

以降は、スパッタリング法によって厚さが、例えば、3nmのCN(窒化炭素)からなる保護層19を形成したのち、例えば、パーフルオロカーボン系の潤滑剤20を塗布することによって、本発明の実施例1の磁気記録媒体の基本構成が完成する。   Thereafter, a protective layer 19 made of CN (carbon nitride) having a thickness of, for example, 3 nm is formed by sputtering, and then a perfluorocarbon-based lubricant 20 is applied, for example. The basic configuration of the magnetic recording medium is completed.

この本発明の実施例1においては、中間層を上部中間層15/下部中間層14の積層構造とし、上部中間層15をRu−SiO2 グラニュラ構造とするとともに、SiO2 母材の露出表面を選択的にエッチング除去しているので、中間層全体の厚さを厚くすることなく、上部中間層15の表面粗さRa を大きくすることができる。 In the first embodiment of the present invention, the intermediate layer has a laminated structure of an upper intermediate layer 15 / lower intermediate layer 14, the upper intermediate layer 15 has a Ru-SiO 2 granular structure, and the exposed surface of the SiO 2 base material is formed. since selectively etched, without increasing the thickness of the entire intermediate layer, it is possible to increase the surface roughness R a of the upper intermediate layer 15.

次に、図4を参照して、本発明の実施例2の磁気記録媒体の製造工程を説明するが、基本的な製造工程は上記の実施例1と同様であるので最終構造を図示する。
図4参照
まず、結晶化ガラス基板21上にスパッタリング法を用いて厚さが、例えば、10nmのTiWからなるシード層22、厚さが、例えば、50nmのCoZrNbからなる軟磁性裏打層23、及び、厚さが10nm以下、例えば、5nmのRu−SiO2 グラニュラ構造からなる中間層24を順次堆積させる。
なお、この場合、中間層24は、Ruに例えば、10mol%のSiO2 を添加してRu粒子25がSiO2 母材26中に埋設したRu−SiO2 グラニュラ構造とする。
Next, the manufacturing process of the magnetic recording medium according to the second embodiment of the present invention will be described with reference to FIG. 4. Since the basic manufacturing process is the same as that of the first embodiment, the final structure is illustrated.
See Figure 4
First, a seed layer 22 made of TiW having a thickness of 10 nm, for example, a soft magnetic backing layer 23 made of CoZrNb having a thickness of 50 nm, for example, on the crystallized glass substrate 21, and a thickness thereof. The intermediate layer 24 having a Ru—SiO 2 granular structure with a thickness of 10 nm or less, for example, 5 nm is sequentially deposited.
In this case, the intermediate layer 24 has a Ru—SiO 2 granular structure in which, for example, 10 mol% of SiO 2 is added to Ru, and Ru particles 25 are embedded in the SiO 2 base material 26.

次いで、エッチングガスとしてArを例えば15sccm、CF4 を例えば25sccm流し、ソースパワーを300W、バイアスパワーを30W印加して発生させたプラズマを利用して中間層24を構成するSiO2 母材26の露出部を選択的にエッチングしてRu粒子25を突出させて表面粗さRa を大きくする。 Next, exposure of the SiO 2 base material 26 constituting the intermediate layer 24 using plasma generated by applying Ar as an etching gas, for example, 15 sccm, CF 4, for example, 25 sccm, applying a source power of 300 W, and a bias power of 30 W. part selectively etched by projecting the Ru particles 25 to increase the surface roughness R a in.

なお、この場合のエッチング量としては、Ru粒子25の各頂部が、Ru粒子25を埋め込むSiO2 母材26の表面から平均的に1nm以上、より好適には2nm以上突出するようにエッチングする。 The etching amount in this case is such that each top portion of the Ru particles 25 protrudes from the surface of the SiO 2 base material 26 embedding the Ru particles 25 on average at least 1 nm, more preferably at least 2 nm.

次いで、再びスパッタリング法を用いて、厚さが、例えば、10nmのSiO2 母材中にCoCrPt粒子が埋設されたCoCrPt−SiO2 グラニュラ構造からなる記録層27を堆積させる。
この時、記録層27を構成するCoCrPt粒子は中間層24を構成するRu粒子25によって結晶配向が制御されるとともに、Ru粒子25の表面粗さRa によって均一に孤立化される。
Next, the recording layer 27 having a CoCrPt—SiO 2 granular structure in which CoCrPt particles are embedded in a SiO 2 base material having a thickness of, for example, 10 nm is deposited again by using the sputtering method.
At this time, CoCrPt particles constituting the recording layer 27 with crystal orientation of Ru particles 25 constituting the intermediate layer 24 is controlled, is uniformly isolated by surface roughness R a of Ru particles 25.

以降は、スパッタリング法によって厚さが、例えば、3nmのCN(窒化炭素)からなる保護層28を形成したのち、例えば、パーフルオロカーボン系の潤滑剤29を塗布することによって、本発明の実施例2の磁気記録媒体の基本構成が完成する。   Thereafter, after forming a protective layer 28 made of CN (carbon nitride) having a thickness of, for example, 3 nm by sputtering, for example, by applying a perfluorocarbon-based lubricant 29, Example 2 of the present invention is applied. The basic configuration of the magnetic recording medium is completed.

この本発明の実施例2においては、中間層をRu−SiO2 グラニュラ構造の単層で構成しているので、軟磁性裏打層と記録ヘッドとの距離をより短くすることができ、それによって、記録特性が向上し、さらには、記録時の磁界勾配が大きくなり記録ビット間の遷移領域が鮮明になる。
但し、Ru下部中間層を設けていないので、記録層を構成する磁性粒子の結晶配向制御性が若干低下することになる。
In the second embodiment of the present invention, since the intermediate layer is composed of a single layer of Ru—SiO 2 granular structure, the distance between the soft magnetic backing layer and the recording head can be further shortened. The recording characteristics are improved, and further, the magnetic field gradient during recording is increased, and the transition region between recording bits becomes clear.
However, since the Ru lower intermediate layer is not provided, the crystal orientation controllability of the magnetic particles constituting the recording layer is slightly lowered.

以上、本発明の各実施例を説明してきたが、本発明は各実施例に記載された構成・条件等に限られるものではなく各種の変更が可能であり、例えば、上記の実施例1においては下部中間層及び上部中間層の金属粒子をRuで構成しているが、Ruに限られるものではなく、RuCr等のRu合金を用いても良いものである。   The embodiments of the present invention have been described above, but the present invention is not limited to the configurations and conditions described in the embodiments, and various modifications are possible. For example, in the above-described first embodiment The metal particles of the lower intermediate layer and the upper intermediate layer are made of Ru, but are not limited to Ru, and a Ru alloy such as RuCr may be used.

また、上記の各実施例においては、上部中間層或いは中間双を構成する非磁性母材としてSiO2 を用いているが、SiO2 に限られるものではなく、Ru或いはRu合金に対する良好な選択エッチング性を有する非磁性材料であれば良く、例えば、SiNやSiON等の非絶縁膜を用いても良いものである。 In each of the above embodiments, SiO 2 is used as the nonmagnetic base material constituting the upper intermediate layer or the intermediate twin, but is not limited to SiO 2, and good selective etching for Ru or Ru alloy. For example, a non-insulating film such as SiN or SiON may be used.

さらには、非磁性母材としてCu等の非磁性金属を用いても良いものであり、この場合には選択的ドライエッチングは困難であるので、硫酸を用いたウェット・エッチングを施せば良い。   Furthermore, a nonmagnetic metal such as Cu may be used as the nonmagnetic base material. In this case, selective dry etching is difficult, and wet etching using sulfuric acid may be performed.

また、上記の各実施例においては、中間層を軟磁性裏打層上に直接設けているが、Ta、NiFe、NiFeCr等のシード層を介して設けても良いものである。
但し、この場合には、シード層を3nm程度の厚さとして軟磁性裏打層と記録層との間隔を20nm以下にすれば良い。
In each of the above embodiments, the intermediate layer is directly provided on the soft magnetic backing layer, but may be provided via a seed layer such as Ta, NiFe, NiFeCr or the like.
However, in this case, the seed layer may be about 3 nm thick and the distance between the soft magnetic backing layer and the recording layer may be 20 nm or less.

また、上記の各実施例においては基板として結晶化ガラス基板を用いているが、結晶化ガラス基板に限られるものではなく、アルミ基板や、表面平滑性と機械強度に優れている各種の材料を基板として用いても良いものである。   In each of the above embodiments, a crystallized glass substrate is used as the substrate, but it is not limited to a crystallized glass substrate, and various materials excellent in surface smoothness and mechanical strength are used. It may be used as a substrate.

また、上記の各実施例においては軟磁性層としてCoZrNbを用いているが、CoZrNbに限られるものではなく、CoZrNbと同様に高周波応答性に優れるCoZrTa、FeCoB、FeTaC、FeTaN、FeAlSi、FeCoAlO、CoNiFeB、CoFe2 4 、ZnFe2 4 、CoFe等の他の軟磁性体を用いても良いものである。 In each of the above embodiments, CoZrNb is used as the soft magnetic layer, but is not limited to CoZrNb, and CoZrTa, FeCoB, FeTaC, FeTaN, FeAlSi, FeCoAlO, and CoNiFeB that are excellent in high-frequency response like CoZrNb. Other soft magnetic materials such as CoFe 2 O 4 , ZnFe 2 O 4 , and CoFe may be used.

また、上記の各実施例においては記録層として垂直磁気異方性を有するCoCrPt−SiO2 を用いているが、CoCrPt−SiO2 に限られるものではなく、CoCrPt−Ta2 5 、CoCrPt−TiO2 、CoCrPtO、(Pt/ Co)n 、(Fe/ Pt)n 等を用いて良いものである。
なお、(Pt/ Co)n 、(Fe/ Pt)n 等の超格子構造を用いる場合には、Pt,Co,Fe等の各層を成膜する際にSiO2 等の非磁性材料と同時スパッタリングすれば良い。
Further, in the embodiments described above uses a CoCrPt-SiO 2 having a perpendicular magnetic anisotropy as a recording layer, but not limited to CoCrPt-SiO 2, CoCrPt-Ta 2 O 5, CoCrPt-TiO 2 , CoCrPtO, (Pt / Co) n , (Fe / Pt) n, or the like may be used.
When a superlattice structure such as (Pt / Co) n or (Fe / Pt) n is used, a non-magnetic material such as SiO 2 is sputtered simultaneously with the formation of each layer such as Pt, Co, or Fe. Just do it.

また、上記の各実施例においては、保護層としてCNを用いているがCNに限られるものではなく、DLC(ダイヤモンドライクカーボン)やSiN等を用いても良いものである。   In each of the above embodiments, CN is used as the protective layer, but is not limited to CN, and DLC (diamond-like carbon), SiN, or the like may be used.

また、上記の各実施例においては、軟磁性裏打層、中間層、記録層の成膜をスパッタリング法を用いて行っているが、スパッタリング法に限られるものではなく、メッキ法によって成膜しても良いものである。   In each of the above embodiments, the soft magnetic backing layer, the intermediate layer, and the recording layer are formed using the sputtering method, but the present invention is not limited to the sputtering method. Is also good.

ここで、再び図1を参照して、本発明の詳細な特徴を改めて説明する。
再び、図1参照
(付記1) 基板1上に設けた軟磁性裏打層2と記録層8の間に記録層8の結晶配向制御と磁性粒子を均一に孤立化させるための中間層3を設けた磁気記録媒体であって、上記中間層3の少なくとも表面部は、Ru或いはRu合金からなる金属粒子6と非磁性母材7のグラニュラ構造からなり、且つ、前記Ru或いはRu合金からなる金属粒子6が非磁性母材7から突出していることを特徴とする磁気記録媒体。
(付記2) 上記Ru或いはRu合金からなる金属粒子6の各頂部が、前記金属粒子6を埋め込む非磁性母材7の表面から平均値として1nm以上突出していることを特徴とする付記1記載の磁気記録媒体。
(付記3) 上記非磁性母材7がSiO2 或いはSiNのいずれかからなることを特徴とする付記1または2に記載の磁気記録媒体。
(付記4) 上記中間層3が、Ru或いはRu合金からなる下部中間層5と、上記Ru或いはRu合金と非磁性母材7のグラニュラ構造の上部中間層4とからなることを特徴とする付記1乃至3のいずれか1に記載の磁気記録媒体。
(付記5) 上記下部中間層5の厚さが10nm以下であることを特徴とする付記4記載の磁気記録媒体。
(付記6) 上記軟磁性裏打層2と記録層8との間隔が20nm以下であることを特徴とする付記1乃至5のいずれか1に記載の磁気記録媒体。
(付記7) 上記記録層8が、磁性体粒子6と非磁性母材のグラニュラ構造からなることを特徴とする付記1乃至6のいずれか1に記載の磁気記録媒体。
(付記8) 基板1上に軟磁性裏打層2を介して少なくとも表面部がRu或いはRu合金からなる金属粒子6と非磁性母材7のグラニュラ構造からなる中間層3を設けたのち、前記中間層3を構成する非磁性母材7の表面部を前記金属粒子6に対して選択的にエッチング除去する工程を有することを特徴とする磁気記録媒体の製造方法。
(付記9) 上記中間層3を構成する非磁性母材7が、SiO2 或いはSiNのいずれかからなり、前記非磁性母材7をドライエッチングによって選択的に除去することを特徴とする付記8記載の磁気記録媒体の製造方法。
(付記10) 付記1乃至7のいずれか1に記載の磁気記録媒体を搭載したことを特徴とする磁気ディスク装置。
Here, the detailed features of the present invention will be described again with reference to FIG.
Again see Figure 1
(Supplementary Note 1) A magnetic recording medium in which an intermediate layer 3 for controlling the crystal orientation of the recording layer 8 and isolating magnetic particles uniformly is provided between the soft magnetic backing layer 2 and the recording layer 8 provided on the substrate 1. At least the surface portion of the intermediate layer 3 has a granular structure of a metal particle 6 made of Ru or Ru alloy and a nonmagnetic base material 7, and the metal particle 6 made of Ru or Ru alloy has a nonmagnetic base. A magnetic recording medium which protrudes from the material 7.
(Additional remark 2) Each top part of the metal particle 6 which consists of said Ru or Ru alloy protrudes 1 nm or more from the surface of the nonmagnetic base material 7 which embeds the said metal particle 6 as an average value, The additional description 1 characterized by the above-mentioned Magnetic recording medium.
(Supplementary Note 3) The magnetic recording medium according to appendix 1 or 2 the non-magnetic matrix 7, characterized in that it consists of one of SiO 2 or SiN.
(Additional remark 4) The said intermediate | middle layer 3 consists of the lower intermediate | middle layer 5 which consists of Ru or Ru alloy, and the upper intermediate | middle layer 4 of the granular structure of the said Ru or Ru alloy and the nonmagnetic base material 7 characterized by the above-mentioned. The magnetic recording medium according to any one of 1 to 3.
(Additional remark 5) The thickness of the said lower intermediate | middle layer 5 is 10 nm or less, The magnetic recording medium of Additional remark 4 characterized by the above-mentioned.
(Supplementary note 6) The magnetic recording medium according to any one of supplementary notes 1 to 5, wherein an interval between the soft magnetic backing layer 2 and the recording layer 8 is 20 nm or less.
(Supplementary note 7) The magnetic recording medium according to any one of supplementary notes 1 to 6, wherein the recording layer 8 comprises a granular structure of magnetic particles 6 and a nonmagnetic matrix.
(Additional remark 8) After providing the intermediate layer 3 which consists of the granular structure of the metal particle 6 and the nonmagnetic base material 7 which at least surface part consists of Ru or Ru alloy on the board | substrate 1 via the soft-magnetic backing layer 2, the said intermediate | middle A method of manufacturing a magnetic recording medium, comprising a step of selectively removing the surface portion of the nonmagnetic base material 7 constituting the layer 3 by etching with respect to the metal particles 6.
(Supplementary Note 9) non-magnetic matrix 7 constituting the intermediate layer 3 is, note 8 consist either of SiO 2 or SiN, characterized in that said non-magnetic matrix 7 is selectively removed by dry etching A method for producing the magnetic recording medium according to claim.
(Additional remark 10) A magnetic disk device comprising the magnetic recording medium according to any one of additional remarks 1 to 7.

本発明の原理的構成の説明図である。It is explanatory drawing of the fundamental structure of this invention. 本発明の実施例1の磁気記録媒体の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the magnetic recording medium of Example 1 of this invention. 本発明の実施例1の磁気記録媒体の図2以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 2 of the magnetic recording medium of Example 1 of this invention. 本発明の実施例2の磁気記録媒体の概念的断面図である。It is a conceptual sectional view of the magnetic recording medium of Example 2 of the present invention. 従来の磁気記録媒体の概念的断面図である。It is a conceptual sectional view of a conventional magnetic recording medium.

符号の説明Explanation of symbols

1 基板
2 軟磁性裏打層
3 中間層
4 下部中間層
5 上部中間層
6 金属粒子
7 非磁性母材
8 記録層
11 結晶化ガラス基板
12 シード層
13 軟磁性裏打層
14 下部中間層
15 上部中間層
16 Ru粒子
17 SiO2 母材
18 記録層
19 保護層
20 潤滑剤
21 結晶化ガラス基板
22 シード層
23 軟磁性裏打層
24 中間層
25 Ru粒子
26 SiO2 母材
27 記録層
28 保護層
29 潤滑剤
31 結晶化ガラス基板
32 シード層
33 軟磁性裏打層
34 Ru中間層
35 磁気記録層
36 保護層
37 潤滑剤
DESCRIPTION OF SYMBOLS 1 Substrate 2 Soft magnetic backing layer 3 Intermediate layer 4 Lower intermediate layer 5 Upper intermediate layer 6 Metal particle 7 Nonmagnetic base material 8 Recording layer 11 Crystallized glass substrate 12 Seed layer 13 Soft magnetic backing layer 14 Lower intermediate layer 15 Upper intermediate layer 16 Ru particles 17 SiO 2 base material 18 Recording layer 19 Protective layer 20 Lubricant 21 Crystallized glass substrate 22 Seed layer 23 Soft magnetic backing layer 24 Intermediate layer 25 Ru particles 26 SiO 2 base material 27 Recording layer 28 Protective layer 29 Lubricant 31 Crystallized glass substrate 32 Seed layer 33 Soft magnetic backing layer 34 Ru intermediate layer 35 Magnetic recording layer 36 Protective layer 37 Lubricant

Claims (5)

基板上に設けた軟磁性裏打層と記録層の間に記録層の結晶配向制御と磁性粒子を均一に孤立化させるための中間層を設けた磁気記録媒体であって、上記中間層の少なくとも表面部は、Ru或いはRu合金からなる金属粒子と非磁性母材のグラニュラ構造からなり、且つ、前記Ru或いはRu合金からなる金属粒子が非磁性母材から突出していることを特徴とする磁気記録媒体。 A magnetic recording medium comprising an intermediate layer for controlling the crystal orientation of the recording layer and isolating magnetic particles uniformly between a soft magnetic underlayer and a recording layer provided on a substrate, wherein at least the surface of the intermediate layer The magnetic recording medium is characterized in that the portion has a granular structure of a metal particle made of Ru or Ru alloy and a nonmagnetic matrix, and the metal particle made of Ru or Ru alloy protrudes from the nonmagnetic matrix. . 上記Ru或いはRu合金からなる金属粒子の各頂部が、前記金属粒子を埋め込む非磁性母材の表面から平均値として1nm以上突出していることを特徴とする請求項1記載の磁気記録媒体。 2. The magnetic recording medium according to claim 1, wherein each top of the metal particles made of Ru or Ru alloy protrudes from the surface of the nonmagnetic base material in which the metal particles are embedded by an average value of 1 nm or more. 上記非磁性母材がSiO2 或いはSiNのいずれかからなることを特徴とする請求項1または2に記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the nonmagnetic base material is made of either SiO 2 or SiN. 上記中間層が、Ru或いはRu合金からなる下部中間層と、上記Ru或いはRu合金と非磁性母材のグラニュラ構造の上部中間層とからなることを特徴とする請求項1乃至3のいずれか1項に記載の磁気記録媒体。 4. The intermediate layer according to claim 1, wherein the intermediate layer includes a lower intermediate layer made of Ru or Ru alloy, and an upper intermediate layer having a granular structure of the Ru or Ru alloy and a nonmagnetic base material. The magnetic recording medium according to Item. 基板上に軟磁性裏打層を介して少なくとも表面部がRu或いはRu合金からなる金属粒子と非磁性母材のグラニュラ構造からなる中間層を設けたのち、前記中間層を構成する非磁性母材の表面部を前記金属粒子に対して選択的にエッチング除去する工程を有することを特徴とする磁気記録媒体の製造方法。 An intermediate layer comprising a granular structure of metal particles and a non-magnetic base material, at least the surface portion of which is made of Ru or Ru alloy, is provided on a substrate via a soft magnetic backing layer, and then the non-magnetic base material constituting the intermediate layer is provided. A method of manufacturing a magnetic recording medium comprising a step of selectively removing a surface portion of the metal particles by etching.
JP2006097400A 2006-03-31 2006-03-31 Magnetic recording medium and its manufacturing method Pending JP2007272990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097400A JP2007272990A (en) 2006-03-31 2006-03-31 Magnetic recording medium and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097400A JP2007272990A (en) 2006-03-31 2006-03-31 Magnetic recording medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007272990A true JP2007272990A (en) 2007-10-18

Family

ID=38675639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097400A Pending JP2007272990A (en) 2006-03-31 2006-03-31 Magnetic recording medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007272990A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084479A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Perpendicular magnetic recording medium and its manufacturing method
JP2009155152A (en) * 2007-12-26 2009-07-16 Hitachi Maxell Ltd Method for manufacturing die for molding optical element and method for manufacturing optical element
JP2010118091A (en) * 2008-11-11 2010-05-27 Showa Denko Kk Method of manufacturing magnetic recording medium, and magnetic recording and playback device
CN102737653A (en) * 2011-03-30 2012-10-17 昭和电工株式会社 Method for manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2012208992A (en) * 2011-03-30 2012-10-25 Showa Denko Kk Manufacturing method of magnetic recording medium and magnetic recording/reproducing device
US8367155B2 (en) 2009-02-02 2013-02-05 Showa Denko K.K. Manufacturing method of magnetic recording medium and magnetic recording/reproducing apparatus
US8603651B2 (en) 2010-08-26 2013-12-10 Showa Denko K.K. Perpendicular magnetic recording medium and magentic recording and reproducing apparatus
CN103730135A (en) * 2012-10-11 2014-04-16 昭和电工株式会社 Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording and reproducing device
JP2014078315A (en) * 2008-11-26 2014-05-01 Seagate Technology Llc Magnetic recording device
US8804285B2 (en) 2012-05-28 2014-08-12 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
US8968526B2 (en) 2009-01-27 2015-03-03 Showa Denko K.K. Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US9064520B2 (en) 2011-05-24 2015-06-23 Showa Denko K.K. Magnetic recording medium and method of manufacturing the same, and magnetic record/reproduction apparatus
US9245563B2 (en) 2011-05-17 2016-01-26 Showa Denko K.K. Magnetic medium with an orientation control layer
US9959895B2 (en) 2013-08-05 2018-05-01 Showa Denko K.K. Method for manufacturing magnetic recording medium, magnetic recording medium and magnetic recording and reproducing apparatus
US10056103B2 (en) 2013-01-23 2018-08-21 Showa Denko K.K. Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US10127932B2 (en) 2015-05-29 2018-11-13 Showa Denko K.K. Perpendicular magnetic recording medium and magnetic storage apparatus
US10192571B2 (en) 2015-04-13 2019-01-29 Showa Denko K.K. Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083417A (en) * 2000-09-07 2002-03-22 Hitachi Maxell Ltd Magnetic recording medium and magnetic recording device using the same
JP2002163819A (en) * 2000-11-22 2002-06-07 Hitachi Maxell Ltd Information recording medium and information recording device using the same
JP2004047052A (en) * 2002-05-14 2004-02-12 Fujitsu Ltd Information recording medium
JP2004220737A (en) * 2003-01-17 2004-08-05 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium and its manufacturing method
JP2005108268A (en) * 2003-09-12 2005-04-21 Hitachi Ltd Perpendicular magnetic recording medium and its manufacturing method
JP2005190517A (en) * 2003-12-24 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and magnetic storage device
JP2006085742A (en) * 2004-09-14 2006-03-30 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083417A (en) * 2000-09-07 2002-03-22 Hitachi Maxell Ltd Magnetic recording medium and magnetic recording device using the same
JP2002163819A (en) * 2000-11-22 2002-06-07 Hitachi Maxell Ltd Information recording medium and information recording device using the same
JP2004047052A (en) * 2002-05-14 2004-02-12 Fujitsu Ltd Information recording medium
JP2004220737A (en) * 2003-01-17 2004-08-05 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium and its manufacturing method
JP2005108268A (en) * 2003-09-12 2005-04-21 Hitachi Ltd Perpendicular magnetic recording medium and its manufacturing method
JP2005190517A (en) * 2003-12-24 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and magnetic storage device
JP2006085742A (en) * 2004-09-14 2006-03-30 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium and its manufacturing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084479A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Perpendicular magnetic recording medium and its manufacturing method
JP2009155152A (en) * 2007-12-26 2009-07-16 Hitachi Maxell Ltd Method for manufacturing die for molding optical element and method for manufacturing optical element
JP2010118091A (en) * 2008-11-11 2010-05-27 Showa Denko Kk Method of manufacturing magnetic recording medium, and magnetic recording and playback device
JP2014078315A (en) * 2008-11-26 2014-05-01 Seagate Technology Llc Magnetic recording device
US8968526B2 (en) 2009-01-27 2015-03-03 Showa Denko K.K. Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US8367155B2 (en) 2009-02-02 2013-02-05 Showa Denko K.K. Manufacturing method of magnetic recording medium and magnetic recording/reproducing apparatus
US8603651B2 (en) 2010-08-26 2013-12-10 Showa Denko K.K. Perpendicular magnetic recording medium and magentic recording and reproducing apparatus
US9449632B2 (en) 2011-03-30 2016-09-20 Showa Denko K.K. Method for manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2012208992A (en) * 2011-03-30 2012-10-25 Showa Denko Kk Manufacturing method of magnetic recording medium and magnetic recording/reproducing device
CN102737653A (en) * 2011-03-30 2012-10-17 昭和电工株式会社 Method for manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
CN102737653B (en) * 2011-03-30 2015-07-22 昭和电工株式会社 Method for manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
US9245563B2 (en) 2011-05-17 2016-01-26 Showa Denko K.K. Magnetic medium with an orientation control layer
US9064520B2 (en) 2011-05-24 2015-06-23 Showa Denko K.K. Magnetic recording medium and method of manufacturing the same, and magnetic record/reproduction apparatus
US8804285B2 (en) 2012-05-28 2014-08-12 Showa Denko K.K. Magnetic recording medium and magnetic storage apparatus
CN103730135A (en) * 2012-10-11 2014-04-16 昭和电工株式会社 Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording and reproducing device
CN103730135B (en) * 2012-10-11 2017-04-12 昭和电工株式会社 Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording and reproducing device
US10056103B2 (en) 2013-01-23 2018-08-21 Showa Denko K.K. Method of manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US9959895B2 (en) 2013-08-05 2018-05-01 Showa Denko K.K. Method for manufacturing magnetic recording medium, magnetic recording medium and magnetic recording and reproducing apparatus
US10192571B2 (en) 2015-04-13 2019-01-29 Showa Denko K.K. Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus
US10127932B2 (en) 2015-05-29 2018-11-13 Showa Denko K.K. Perpendicular magnetic recording medium and magnetic storage apparatus

Similar Documents

Publication Publication Date Title
JP2007272990A (en) Magnetic recording medium and its manufacturing method
JP4469774B2 (en) Magnetic recording medium and magnetic recording apparatus
JP5260510B2 (en) Perpendicular magnetic recording medium and method for manufacturing perpendicular magnetic recording medium
US20060093863A1 (en) Magnetic recording medium, manufacturing process thereof, and magnetic recording apparatus
JP4219941B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP5242109B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JP2006277868A (en) Discrete track medium and its manufacturing method
JP4968591B2 (en) Magnetic recording medium and method for manufacturing the same
US20070026265A1 (en) Patterned substrate having patterns of protrusions and recesses, method of manufacturing the same, magnetic recording media, and magnetic recording apparatus
JP4575498B2 (en) Method for manufacturing magnetic recording medium
JP2006351058A (en) Negative anisotropic exchange coupling type magnetic recording medium and magnetic recording and reproducing apparatus
JP2006286158A (en) Magnetic recording medium and its manufacturing method
JP2007052900A (en) Perpendicular magnetic recording disk having recording layer formed on exchange break layer including selected metal oxide and reduced in thickness
JP2009289360A (en) Perpendicular magnetic recording medium and device
JP2009211781A (en) Method of manufacturing perpendicular magnetic recording medium
JP2009117012A (en) Method for manufacturing magnetic recording medium
JP2009117013A (en) Method for manufacturing magnetic recording medium
JP5245734B2 (en) Magnetic recording medium and method for manufacturing the same
JP4421403B2 (en) Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium
JP2008276859A (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing device
JP2010067335A (en) Magnetic recording medium, method of manufacturing magnetic recording medium, magnetic recording and reproducing device
JP5213470B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP4123944B2 (en) Vertical double-layer patterned medium and manufacturing method thereof
JP2010027110A (en) Perpendicular magnetic recording medium and magnetic recording/reproduction apparatus
JP5114285B2 (en) Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019