JP2007272121A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2007272121A
JP2007272121A JP2006100526A JP2006100526A JP2007272121A JP 2007272121 A JP2007272121 A JP 2007272121A JP 2006100526 A JP2006100526 A JP 2006100526A JP 2006100526 A JP2006100526 A JP 2006100526A JP 2007272121 A JP2007272121 A JP 2007272121A
Authority
JP
Japan
Prior art keywords
stray light
thin plate
substrate
optical element
reflecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006100526A
Other languages
Japanese (ja)
Inventor
Katsutoshi Kondo
勝利 近藤
Masayuki Ichioka
雅之 市岡
Mitsuru Sakuma
満 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006100526A priority Critical patent/JP2007272121A/en
Publication of JP2007272121A publication Critical patent/JP2007272121A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element using a thin plate, wherein an S/N ratio of output light is improved. <P>SOLUTION: The optical element has the thin plate 1 with 20 μm or less thickness formed with a material having an electro-optic effect or with a nonlinear optical effect and an optical waveguide 4 formed on the thin plate, wherein stray light reflecting means (10, 20) to reflect stray light propagating in the thin plate and guide the reflected stray light to the outside of the thin plate are arranged in regions of the thin plate except for the optical waveguide and its vicinity. The stray light reflecting means has a chamfered portion 10 on a corner portion of the thin plate and a groove portion 20 formed on the thin plate surface and so on. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光素子に関し、特に、電気光学効果若しくは非線形光学効果をを有する材料で形成された薄板を使用する光素子に関する。   The present invention relates to an optical element, and more particularly, to an optical element using a thin plate formed of a material having an electro-optic effect or a nonlinear optical effect.

従来、光通信分野や光測定分野において、電気光学効果を有する基板上に光導波路や変調電極を形成した導波路型光素子が多用されている。
特に、マルチメディアの発展に伴い情報伝達量も増加傾向にあり、光変調周波数の広帯域化が求められている。これを実現する手段として、LN変調器等による外部変調方式が提供されている。しかし、LN変調器の広帯域の実現には、変調信号であるマイクロ波と光波との速度整合、及び駆動電圧の低減を図る必要がある。
Conventionally, in the optical communication field and the optical measurement field, a waveguide type optical element in which an optical waveguide or a modulation electrode is formed on a substrate having an electro-optic effect has been widely used.
In particular, with the development of multimedia, the amount of information transmission is also increasing, and there is a demand for a wider optical modulation frequency. As means for realizing this, an external modulation system using an LN modulator or the like is provided. However, in order to realize a wide band of the LN modulator, it is necessary to achieve speed matching between the microwave and the light wave that are the modulation signals and to reduce the driving voltage.

前記課題の解決手段として、従来より基板の厚みを薄くすることにより、マイクロ波と光波の速度との速度整合条件を満足させ、且つ駆動電圧の低減を同時に図ることが知られている。
以下の特許文献1又は2においては、30μm以下の厚みを有する薄い基板(以下、「第1基板」という。)に、光導波路並びに変調電極を組み込み、第1基板より誘電率の低い他の基板(以下、「第2基板」という。)を接合し、マイクロ波に対する実効屈折率を下げ、マイクロ波と光波との速度整合を図り且つ基板の機械的強度を維持することが行われている。
特開昭64−18121号公報 特開2003−215519号公報
As means for solving the above-described problems, it has been conventionally known that, by reducing the thickness of the substrate, the speed matching condition between the microwave and the speed of the light wave is satisfied and the driving voltage is simultaneously reduced.
In the following Patent Document 1 or 2, an optical waveguide and a modulation electrode are incorporated into a thin substrate (hereinafter referred to as “first substrate”) having a thickness of 30 μm or less, and another substrate having a lower dielectric constant than the first substrate. (Hereinafter referred to as “second substrate”), the effective refractive index with respect to the microwave is lowered, the velocity matching between the microwave and the light wave is achieved, and the mechanical strength of the substrate is maintained.
JP-A 64-18121 JP 2003-215519 A

特許文献1又は2では、主に、第1基板にはLiNbO(以下、「LN」という。)が利用され、第2基板には、石英、ガラス、アルミナなどLNより低誘電率の材料が使用されている。これらの材料の組合せでは、線膨張係数の違いにより、温度変化に伴う温度ドリフトやDCドリフトが発生することとなる。特許文献2においては、このような不具合を除去するため、第1基板と第2基板との接合を、第1基板に近い線膨張係数を有する接着剤を利用して行うことも開示されている。 In Patent Document 1 or 2, LiNbO 3 (hereinafter referred to as “LN”) is mainly used for the first substrate, and a material having a lower dielectric constant than LN, such as quartz, glass, and alumina, is used for the second substrate. in use. In the combination of these materials, a temperature drift and a DC drift accompanying a temperature change occur due to a difference in linear expansion coefficient. In Patent Document 2, it is also disclosed that bonding of the first substrate and the second substrate is performed using an adhesive having a linear expansion coefficient close to that of the first substrate in order to eliminate such a problem. .

しかし、従来から製造されていたLN基板を用いた変調器とLN基板の厚さを薄くした変調器とを比較した場合、基板の厚みが薄くなるに従い、光導波路から放射又は漏出した光や入射用光ファイバーから光導波路以外に入射した光など(以下、「迷光」という)が基板内に閉じ込められる傾向が強くなる。これは従来のLN基板は、基板の厚さ(例えば500〜1000μm)が厚いため、導波路(例えば深さ数μm)に影響を及ぼさない領域が十分に有り、迷光となっている光の空間分布密度(以下、「迷光密度」という。)が低くなり、その結果迷光の影響があまり問題とならなかった。しかし基板の厚さを導波路の深さ方向の距離と同じくらいにした場合、基板内における基板表面に沿った方向を伝搬する迷光密度が高くなるため、迷光が基板内を伝搬し、光導波路に再入射したり、光素子に接続された出射用光ファイバに入射するなどの現象が生じ、結果として出力光のS/N比が劣化する原因となっていた。   However, when comparing a conventionally manufactured modulator using an LN substrate and a modulator having a thin LN substrate, light or incident light radiated or leaked from the optical waveguide as the substrate thickness decreases. There is a strong tendency for light incident on the substrate other than the optical waveguide (hereinafter referred to as “stray light”) to be confined in the substrate. This is because the conventional LN substrate has a thick substrate (for example, 500 to 1000 μm), so that there is a sufficient area that does not affect the waveguide (for example, a depth of several μm), and the light space is stray light. The distribution density (hereinafter referred to as “stray light density”) was lowered, and as a result, the influence of stray light was not a problem. However, if the thickness of the substrate is the same as the distance in the depth direction of the waveguide, the stray light density that propagates in the direction along the substrate surface in the substrate increases, so stray light propagates in the substrate, and the optical waveguide In such a case, the light re-enters the light beam or enters the outgoing optical fiber connected to the optical element, resulting in the deterioration of the S / N ratio of the output light.

しかも、光素子に薄板を使用する場合には、薄板のみでは機械的強度は不足する関係から、上述したように第1基板の薄板と第2基板の補強板とを接着剤などで接合する必要がある。この際、接着剤の屈折率が薄板のものより低い場合には、上記迷光の閉じ込めがより顕著となる。   In addition, when a thin plate is used for the optical element, it is necessary to join the thin plate of the first substrate and the reinforcing plate of the second substrate with an adhesive or the like as described above because the mechanical strength is insufficient with only the thin plate. There is. At this time, when the refractive index of the adhesive is lower than that of the thin plate, the stray light is more confined.

本発明が解決しようとする課題は、上述した問題を解決し、薄板を用いた光素子における出力光のS/N比を改善した光素子を提供することである。   The problem to be solved by the present invention is to provide an optical element that solves the above-described problems and improves the S / N ratio of output light in an optical element using a thin plate.

上記課題を解決するため、請求項1に係る発明では、電気光学効果を有する材料若しくは非線形光学効果で形成された厚さ20μm以下の薄板に形成された光導波路とを有する光素子において、該薄板の光導波路およびその近傍を除く領域に、該薄板内を伝搬する迷光を反射し、反射した迷光を該薄板外に導くための迷光反射手段が配置されていることを特徴とする。   In order to solve the above-mentioned problem, in the invention according to claim 1, in an optical element having a material having an electro-optic effect or an optical waveguide formed in a thin plate having a thickness of 20 μm or less formed by a nonlinear optical effect, the thin plate The stray light reflecting means for reflecting the stray light propagating in the thin plate and guiding the reflected stray light to the outside of the thin plate is disposed in a region excluding the optical waveguide and its vicinity.

請求項2に係る発明は、請求項1に記載の光素子において、該迷光反射手段は、該薄板の表面又は裏面に対し所定の角度を有し、該薄板の外周面と連続する面により形成されていることを特徴とする。   The invention according to claim 2 is the optical element according to claim 1, wherein the stray light reflecting means has a predetermined angle with respect to the front surface or the back surface of the thin plate and is formed by a surface continuous with the outer peripheral surface of the thin plate. It is characterized by being.

請求項3に係る発明は、請求項1又は2に記載の光素子において、該迷光反射手段は、該薄板の角部分を平面状又は曲面状に切除して形成したことを特徴とする。   The invention according to claim 3 is the optical element according to claim 1 or 2, wherein the stray light reflecting means is formed by cutting a corner portion of the thin plate into a planar shape or a curved shape.

請求項4に係る発明は、請求項1乃至3のいずれかに記載の光素子において、該迷光反射手段により反射した迷光を吸収する迷光吸収手段を有し、該迷光吸収手段は、該迷光反射手段により反射された迷光が該薄板より放出される位置に形成されることを特徴とする。   The invention according to claim 4 is the optical element according to any one of claims 1 to 3, further comprising stray light absorbing means for absorbing stray light reflected by the stray light reflecting means, wherein the stray light absorbing means is the stray light reflecting means. The stray light reflected by the means is formed at a position where it is emitted from the thin plate.

請求項5に係る発明は、請求項1乃至3のいずれかに記載の光素子において、該薄板に接着層を介して接合された補強基板と、該迷光反射手段により反射した迷光を吸収する迷光吸収手段とを有し、該迷光反射手段は該薄板の反接着面に形成され、該迷光吸収手段は該迷光反射手段により反射された迷光が到達する該補強基板の上に形成されることを特徴とする。なお、「反接着面」とは、接着に使用されていない面を意味する。   According to a fifth aspect of the present invention, there is provided the optical element according to any one of the first to third aspects, wherein the stray light that absorbs the stray light reflected by the stray light reflecting means and the reinforcing substrate joined to the thin plate via an adhesive layer. The stray light reflecting means is formed on the anti-adhesion surface of the thin plate, and the stray light absorbing means is formed on the reinforcing substrate to which the stray light reflected by the stray light reflecting means reaches. Features. The “anti-adhesion surface” means a surface that is not used for adhesion.

請求項6に係る発明は、請求項1乃至3のいずれかに記載の光素子において、該迷光反射手段により反射した迷光を除去する迷光放射手段を有し、該迷光放射手段は、該迷光反射手段により反射された迷光が該薄板より放出される位置に形成されることを特徴とする。   The invention according to claim 6 is the optical element according to any one of claims 1 to 3, further comprising stray light emitting means for removing stray light reflected by the stray light reflecting means, wherein the stray light emitting means includes the stray light reflecting means. The stray light reflected by the means is formed at a position where it is emitted from the thin plate.

請求項7に係る発明は、請求項6に記載の光素子において、該迷光放射手段は、基板の表面又は裏面に凹凸を設けることを特徴とする。   The invention according to claim 7 is the optical element according to claim 6, wherein the stray light emitting means is provided with irregularities on the front surface or the back surface of the substrate.

請求項1に係る発明により、電気光学効果を有する材料若しくは非線形光学効果で形成された厚さ20μm以下の薄板と、該薄板に形成された光導波路とを有する光素子において、該薄板の光導波路およびその近傍を除く領域に、該薄板内を伝搬する迷光を反射し、反射した迷光を該薄板外に導くための迷光反射手段が配置されているため、例えば、基板内の基板表面に沿った方向を伝搬する迷光の伝搬方向を基板の厚み方向に変換できるため、光導波路に再入射したり、光素子に接続された出射用光ファイバに入射するなど、迷光による不具合を抑制でき、結果として出力光のS/N比を向上させた光素子を提供することが可能となる。   According to the first aspect of the present invention, in an optical element comprising a material having an electro-optic effect or a thin plate having a thickness of 20 μm or less formed by a nonlinear optical effect, and an optical waveguide formed on the thin plate, the optical waveguide of the thin plate And stray light reflecting means for reflecting stray light propagating in the thin plate and guiding the reflected stray light to the outside of the thin plate is disposed in a region other than the vicinity thereof, for example, along the substrate surface in the substrate. Because the propagation direction of stray light propagating in the direction can be converted to the thickness direction of the substrate, defects such as re-entering the optical waveguide or entering the outgoing optical fiber connected to the optical element can be suppressed, and as a result It is possible to provide an optical element having an improved S / N ratio of output light.

請求項2に係る発明により、迷光反射手段は、薄板の表面又は裏面に対し所定の角度を有し、該薄板の外周面と連続する面により形成されているため、基板の表面又は裏面より機械加工、エッチング等の手段により容易に形成可能となる。   According to the invention of claim 2, the stray light reflecting means has a predetermined angle with respect to the front or back surface of the thin plate and is formed by a surface continuous with the outer peripheral surface of the thin plate. It can be easily formed by means such as processing and etching.

請求項3に係る発明により、迷光反射手段は、薄板の角部分を平面状又は曲面状に切除して形成しているため、迷光反射手段が容易に形成可能となる。   According to the invention of claim 3, since the stray light reflecting means is formed by cutting out the corners of the thin plate into a flat shape or a curved shape, the stray light reflecting means can be easily formed.

請求項4に係る発明により、迷光反射手段により反射した迷光を吸収する迷光吸収手段を有し、該迷光吸収手段は、該迷光反射手段により反射された迷光が該薄板より放出される位置に形成されるため、例えば、迷光反射手段により基板の厚み方向に偏向した迷光を効率的に吸収可能となり、光導波路に再入射したり、光素子に接続された出射用光ファイバに入射するなど、迷光による不具合を抑制でき、結果として出力光のS/N比を向上させた光素子を提供することが可能となる。   According to the invention of claim 4, the stray light absorbing means for absorbing stray light reflected by the stray light reflecting means is provided, and the stray light absorbing means is formed at a position where the stray light reflected by the stray light reflecting means is emitted from the thin plate. Therefore, for example, the stray light deflected in the thickness direction of the substrate by the stray light reflecting means can be efficiently absorbed, reentering the optical waveguide, or entering the outgoing optical fiber connected to the optical element. As a result, it is possible to provide an optical element with an improved S / N ratio of output light.

請求項5に係る発明により、薄板に接着層を介して接合された補強基板と、迷光反射手段により反射した迷光を吸収する迷光吸収手段とを有し、該迷光反射手段は該薄板の反接着面に形成され、該迷光吸収手段は該迷光反射手段により反射された迷光が到達する該補強基板の上に形成されるため、例えば、迷光反射手段により基板の厚み方向に偏向した迷光を効率的に吸収可能となり、光導波路に再入射したり、光素子に接続された出射用光ファイバに入射するなど、迷光による不具合を抑制でき、結果として出力光のS/N比を向上させた光素子を提供することが可能となる。   According to a fifth aspect of the present invention, there is provided a reinforcing substrate joined to a thin plate via an adhesive layer, and stray light absorbing means for absorbing stray light reflected by the stray light reflecting means, wherein the stray light reflecting means is anti-adhered to the thin plate. The stray light absorbing means formed on the surface is formed on the reinforcing substrate to which the stray light reflected by the stray light reflecting means reaches. For example, stray light deflected in the thickness direction of the substrate by the stray light reflecting means can be efficiently used. Can be absorbed in the optical waveguide, and can be prevented from malfunctioning due to stray light, such as incident on an optical fiber for output connected to the optical element, resulting in an improvement in the S / N ratio of the output light. Can be provided.

請求項6に係る発明により、迷光反射手段により反射した迷光を除去する迷光放射手段を有し、該迷光放射手段は、該迷光反射手段により反射された迷光が該薄板より放出される位置に形成されるため、例えば、迷光反射手段により基板の厚み方向に偏向した迷光を効率的に除去可能となり、光導波路に再入射したり、光素子に接続された出射用光ファイバに入射するなど、迷光による不具合を抑制でき、結果として出力光のS/N比を向上させた光素子を提供することが可能となる。   According to the invention of claim 6, the stray light emitting means for removing the stray light reflected by the stray light reflecting means is provided, and the stray light emitting means is formed at a position where the stray light reflected by the stray light reflecting means is emitted from the thin plate. Therefore, for example, the stray light deflected in the thickness direction of the substrate by the stray light reflecting means can be efficiently removed, reentering the optical waveguide, or entering the outgoing optical fiber connected to the optical element. As a result, it is possible to provide an optical element with an improved S / N ratio of output light.

請求項7に記載の発明により、迷光放射手段は、基板の表面又は裏面に凹凸を設けることにより形成されるため、迷光放射手段は容易に形成可能となる。   According to the seventh aspect of the present invention, since the stray light radiating means is formed by providing irregularities on the front surface or the back surface of the substrate, the stray light radiating means can be easily formed.

以下、本発明について好適例を用いて詳細に説明する。
図1は、本発明が適用される薄板を利用した光を強度変調させる光素子の斜視図である。電気光学効果を有する材料で形成された薄板1には、光導波路4や不図示の変調電極(信号電極や接地電極等)などが形成され、補強基板3は薄板1に対し接着剤2等により接合されている。なお、光導波路は、薄板の裏面に形成することも可能である。
Hereinafter, the present invention will be described in detail using preferred examples.
FIG. 1 is a perspective view of an optical element that modulates the intensity of light using a thin plate to which the present invention is applied. An optical waveguide 4 and a modulation electrode (not shown) (signal electrode, ground electrode, etc.) are formed on the thin plate 1 made of a material having an electro-optic effect, and the reinforcing substrate 3 is bonded to the thin plate 1 with an adhesive 2 or the like. It is joined. The optical waveguide can also be formed on the back surface of the thin plate.

光導波路の形成方法としては、Tiなどを熱拡散法やプロトン交換法などで基板表面に
拡散させることにより形成することができる。また、特許文献3のように薄板1の表面に
光導波路の形状に合わせてリッジを形成し、光導波路を構成することも可能である。
信号電極や接地電極などの変調電極は、Ti・Auの電極パターンの形成及び金メッキ
方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板
表面に誘電体SiO等のバッファ層(不図示)を設け、バッファ層の上に変調電極を形
成することも可能である。
特開平6−289341号公報
As a method for forming the optical waveguide, it can be formed by diffusing Ti or the like on the substrate surface by a thermal diffusion method or a proton exchange method. Further, as in Patent Document 3, it is possible to form an optical waveguide by forming a ridge on the surface of the thin plate 1 in accordance with the shape of the optical waveguide.
Modulating electrodes such as signal electrodes and ground electrodes can be formed by forming a Ti / Au electrode pattern, a gold plating method, or the like. Furthermore, if necessary, a buffer layer (not shown) such as dielectric SiO 2 may be provided on the surface of the substrate after the optical waveguide is formed, and a modulation electrode may be formed on the buffer layer.
JP-A-6-289341

電気光学効果を有する材料としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能である。特に、電気光学効果の高いニオブ酸リチウム(LN)結晶が好適に利用される。   As a material having an electro-optic effect, for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used. In particular, a lithium niobate (LN) crystal having a high electro-optic effect is preferably used.

光素子を含む薄板1の製造方法は、数百μmの厚さを有する基板に上述した光導波路を形成し、基板の裏面を研磨して、20μm以下の厚みを有する薄板を作成する。その後薄板の表面に変調電極を作り込む。また、光導波路や変調電極などの作り込みを行った後に、基板の裏面を研磨することも可能である。なお、光導波路形成時の熱的衝撃や各種処理時の薄膜の取り扱いによる機械的衝撃などが加わると、薄板が破損する危険性もあるため、これらの熱的又は機械的衝撃が加わり易い工程は、基板を研磨して薄板化する前に行うことが好ましい。   In the manufacturing method of the thin plate 1 including an optical element, the above-described optical waveguide is formed on a substrate having a thickness of several hundreds μm, and the back surface of the substrate is polished to produce a thin plate having a thickness of 20 μm or less. Then, a modulation electrode is formed on the surface of the thin plate. It is also possible to polish the back surface of the substrate after making the optical waveguide, the modulation electrode, and the like. In addition, there is a risk that the thin plate may be damaged when a thermal shock during the formation of the optical waveguide or a mechanical shock due to the handling of the thin film during various treatments. It is preferably performed before the substrate is polished and thinned.

補強基板3に使用される材料としては、種々のものが利用可能であり、例えば、薄板と同様の材料を使用する他に、石英、ガラス、アルミナなどのように薄板より低誘電率の材料を使用したり、上記特許文献3のように薄板と異なる結晶方位を有する材料を使用することも可能である。ただし、線膨張係数が薄板と同等である材料を選定することが、温度変化に対する光素子の変調特性を安定させる上で好ましい。仮に、同等の材料の選定が困難である場合には、特許文献2のように薄板と補強板とを接合する接着剤に、薄板と同等な線膨張係数を有する材料を選定する。   Various materials can be used as the reinforcing substrate 3. For example, in addition to using the same material as the thin plate, a material having a lower dielectric constant than the thin plate, such as quartz, glass, and alumina, can be used. It is also possible to use, or to use a material having a crystal orientation different from that of the thin plate as in Patent Document 3. However, it is preferable to select a material having a linear expansion coefficient equivalent to that of the thin plate in order to stabilize the modulation characteristics of the optical element with respect to temperature changes. If it is difficult to select an equivalent material, a material having a linear expansion coefficient equivalent to that of the thin plate is selected as an adhesive for joining the thin plate and the reinforcing plate as in Patent Document 2.

薄板1と補強基板3との接合には、接着層2として、エポキシ系接着剤、熱硬化型接着剤、紫外線硬化性接着剤、半田ガラス、熱硬化性、光硬化性あるいは光増粘性の樹脂接着剤シートなど、種々の接着材料を使用することが可能である。   For bonding the thin plate 1 and the reinforcing substrate 3, as the adhesive layer 2, an epoxy adhesive, a thermosetting adhesive, an ultraviolet curable adhesive, solder glass, a thermosetting, photocurable or photothickening resin It is possible to use various adhesive materials such as an adhesive sheet.

図1のような光素子においては、光導波路の光分岐部や合波部、また、不図示の入射用光ファイバと光素子との接合部などから、光導波路以外の薄板内に迷光が発生し、薄板の厚みが薄く、特に20μm以下に設定されている場合には、該迷光が薄板内を伝搬し光導波路や出射用光ファイバに入射するという不具合を生じることが、本発明者らにより見出され、本発明をなすに至ったものである。   In the optical element as shown in FIG. 1, stray light is generated in a thin plate other than the optical waveguide from the optical branching and combining part of the optical waveguide, or a junction between the optical fiber for incident and the optical element (not shown). However, when the thickness of the thin plate is thin, especially when it is set to 20 μm or less, the present inventors have a problem that the stray light propagates in the thin plate and enters the optical waveguide or the outgoing optical fiber. It has been found and has led to the present invention.

本出願人は、上記問題を解決するため、下記特許文献4において、電気光学効果を有する材料で形成された厚さ20μm以下の薄板と、該薄板の表面又は裏面に形成された光導波路と、該薄板の表面に形成され、該光導波路内を通過する光を変調するための変調電極とを含む光変調器において、該薄板内又は該薄板に近接して、迷光除去手段が配置されていることを特徴とする光変調器を提案した。   In order to solve the above problem, the present applicant, in the following Patent Document 4, a thin plate having a thickness of 20 μm or less formed of a material having an electro-optic effect, and an optical waveguide formed on the front or back surface of the thin plate, In an optical modulator formed on the surface of the thin plate and including a modulation electrode for modulating light passing through the optical waveguide, stray light removing means is disposed in the thin plate or in proximity to the thin plate. An optical modulator characterized by this was proposed.

特に、迷光除去手段としては、以下のようなものを例示している。
(1)光導波路及びその近傍を除く薄板の外表面に接して配置された光吸収部
(2)光導波路又はその近傍の一部に、薄板の外表面に接して配置された高屈折率部
(3)光導波路を除く薄板の表面又は裏面に形成された光ガイド部
(4)光導波路を除く薄板の表面又は裏面に形成された凹部であり、必要に応じて該凹部には、光吸収材料を充填する。
特願2005−96447号(出願日:平成17年3月29日)
In particular, examples of the stray light removing means include the following.
(1) Light absorbing portion disposed in contact with the outer surface of the thin plate excluding the optical waveguide and the vicinity thereof (2) High refractive index portion disposed in contact with the outer surface of the thin plate on the optical waveguide or a part of the vicinity thereof (3) A light guide portion formed on the front or back surface of the thin plate excluding the optical waveguide. (4) A concave portion formed on the front surface or the back surface of the thin plate excluding the optical waveguide. Fill material.
Japanese Patent Application No. 2005-96447 (filing date: March 29, 2005)

しかしながら、これらの方法では、迷光除去手段の設置場所が限定されるため、基板内部に拡散して伝搬している多くの迷光を除去するには、依然として不十分であり、特に、基板表面又は裏面と平行な方向に伝搬する多くの迷光を効果的に除去することが難しい。
このため、本発明においては、電気光学効果を有する材料で形成された厚さ20μm以下の薄板と、該薄板の表面又は裏面に形成された光導波路とを有する光素子において、該薄板の光導波路およびその近傍を除く領域に、該薄板内を伝搬する迷光を反射し、反射した迷光を該薄板外に導くための迷光反射手段が配置されていることを特徴とする。
However, in these methods, since the installation location of the stray light removing means is limited, it is still insufficient to remove a lot of stray light that diffuses and propagates inside the substrate. It is difficult to effectively remove a lot of stray light propagating in a direction parallel to the.
For this reason, in the present invention, in an optical element having a thin plate having a thickness of 20 μm or less formed of a material having an electro-optic effect, and an optical waveguide formed on the front or back surface of the thin plate, the optical waveguide of the thin plate Further, stray light reflecting means for reflecting stray light propagating in the thin plate and guiding the reflected stray light to the outside of the thin plate is arranged in a region other than the vicinity thereof.

本発明に適用される迷光反射手段としては、種々のものが利用可能であるが、特に、図1に示すような基板の角部の面取り10、あるいは基板表面又は裏面に設けた溝20などによる凹部などが好適に使用可能である。
図2は、図1に示す光素子の一点鎖線Aにおける断面図を示したものである。
As the stray light reflecting means applied to the present invention, various means can be used. In particular, the chamfer 10 at the corner of the substrate as shown in FIG. 1 or the groove 20 provided on the front surface or the back surface of the substrate is used. A recessed part etc. can be used conveniently.
FIG. 2 is a cross-sectional view taken along one-dot chain line A of the optical element shown in FIG.

分岐光導波路などの薄板1に形成された光導波路4を伝搬する光波を、迷光反射手段である面取り10で反射しないように配慮するため、面取り10は、光導波路4及びその近傍を避けるように配置されている。迷光反射手段の作成方法は、基板厚さが数百μm以上の厚さ有している状態で、基板の角部に研磨若しくはエッチング等により所定の位置に設ける方法や、20μm以下の厚みを有する薄板を作成した後、前記方法により迷光反射手段を設ける方法もある。
また、迷光反射手段は、基板角部の面取りのみならず、図3に示すように、角部を曲面状に切除してR加工11を施したり、図1又は2に示すように、基板の表面に溝20を設ける方法もある。
In order to prevent the light wave propagating through the optical waveguide 4 formed on the thin plate 1 such as the branched optical waveguide from being reflected by the chamfer 10 which is the stray light reflecting means, the chamfer 10 avoids the optical waveguide 4 and its vicinity. Has been placed. The method for creating the stray light reflecting means is a method in which the substrate thickness is several hundred μm or more and is provided at a predetermined position by polishing or etching at the corner of the substrate, or has a thickness of 20 μm or less. There is also a method in which stray light reflecting means is provided by the above method after the thin plate is formed.
Further, the stray light reflecting means is not only chamfered at the corners of the substrate, but as shown in FIG. 3, the corners are cut into a curved surface and subjected to R processing 11, or as shown in FIG. There is also a method of providing the groove 20 on the surface.

さらに、図1乃至3に一例を示すように、反射された迷光5,6を除去する手段として、基板表面に設けられた迷光反射手段の形成部に対向する薄板裏面に、迷光吸収手段30又は31を配し、基板内を浮遊し迷光反射手段(10,11,20)により反射された迷光を吸収することにより、基板内の迷光を除去することができる。   Furthermore, as shown in FIG. 1 to FIG. 3 as an example, as a means for removing the reflected stray light 5 and 6, the stray light absorbing means 30 or the back surface of the thin plate facing the formation portion of the stray light reflecting means provided on the substrate surface is used. 31 is disposed, and stray light in the substrate can be removed by absorbing stray light floating in the substrate and reflected by the stray light reflecting means (10, 11, 20).

迷光吸収手段30,31は、迷光反射手段と向い合う基板裏面に光の吸収係数が0より大きい材料を配するもので、その形成方法は、蒸着、スパッタ、メッキ等、種々の方法がある。
また、迷光吸収手段の形成位置は、迷光反射手段を基板角部に設けた場合、迷光吸収手段30は、迷光反射手段と向い合う基板裏面に端面から10μm以上の幅bで設けることが好ましい。
The stray light absorbing means 30 and 31 are provided with a material having a light absorption coefficient larger than 0 on the back surface of the substrate facing the stray light reflecting means, and there are various methods such as vapor deposition, sputtering and plating.
In addition, when the stray light absorbing means is provided at the corner of the substrate, the stray light absorbing means is preferably provided on the back surface of the substrate facing the stray light reflecting means with a width b of 10 μm or more from the end face.

また、迷光反射手段が基板の表面に溝20を設ける方法の場合は、迷光吸収手段31は、迷光反射手段と向い合う基板裏面部より基板中心側へ10μm以上の幅cで該裏面部に設けることが好ましい。
また、基板が20μm以下と薄いため、例えば基板表面から光導波路を形成したとしても、導波する光波は裏面近辺にまで到達している為、導波路近辺にまで迷光吸収手段30,31が形成されていた場合、導波路を伝搬する光波まで吸収されてしまう。そこで迷光吸収手段30,31は、光導波路端部から20μm以上離間する位置に形成することが好ましい。したがって、図2に示す光導波路の中心から迷光吸収手段までの距離aは、光導波路の幅の半分に20μmを加算したものより大きくする必要がある。
In the case where the stray light reflecting means is provided with the grooves 20 on the surface of the substrate, the stray light absorbing means 31 is provided on the back surface portion with a width c of 10 μm or more from the back surface portion of the substrate facing the stray light reflecting means to the center side of the substrate. It is preferable.
Further, since the substrate is as thin as 20 μm or less, for example, even if an optical waveguide is formed from the surface of the substrate, the light wave to be guided reaches the vicinity of the back surface, so that the stray light absorbing means 30 and 31 are formed near the waveguide. If so, even the light wave propagating through the waveguide is absorbed. Therefore, it is preferable to form the stray light absorbing means 30 and 31 at a position separated by 20 μm or more from the end portion of the optical waveguide. Therefore, the distance a from the center of the optical waveguide shown in FIG. 2 to the stray light absorbing means needs to be larger than the half of the width of the optical waveguide plus 20 μm.

光素子が薄板、補強基板及び両者を接続する接着層を有している場合には、迷光吸収手段30,31は、図2に示すように、薄板の裏面上に形成するだけでなく、図4に示すように、迷光反射手段に対向する補強基板の接着層側に形成することも可能である。
迷光吸収手段30’,31’を補強基板上に形成する場合には、迷光吸収手段の図面横方向の形成位置は基本的に図2のものと同様であるが、面取り10に対向する迷光吸収手段30’の補強基板の接着剤側部から基板中心方向への幅b’や、溝20に対向する迷光吸収手段31’の溝の下方から基板中心方向への幅c’は、20μm以上の幅であれば好適である。
また、接着層2が薄板1より低屈折率である場合は、迷光吸収手段と光導波路との距離はa’は図2の場合と異なり、光導波路の下部領域にまで迷光吸収手段30’,31’が形成されたとしても、低屈折率の接着層を介しているため導波路を伝搬する光波を吸収することはない。
When the optical element has a thin plate, a reinforcing substrate, and an adhesive layer that connects the two, the stray light absorbing means 30 and 31 are not only formed on the back surface of the thin plate, as shown in FIG. As shown in FIG. 4, it can also be formed on the adhesive layer side of the reinforcing substrate facing the stray light reflecting means.
When the stray light absorbing means 30 ′ and 31 ′ are formed on the reinforcing substrate, the formation position of the stray light absorbing means in the horizontal direction of the drawing is basically the same as that of FIG. The width b ′ from the side of the adhesive of the reinforcing substrate of the means 30 ′ toward the center of the substrate and the width c ′ from the bottom of the groove of the stray light absorbing means 31 ′ facing the groove 20 toward the center of the substrate are 20 μm or more. A width is preferred.
When the adhesive layer 2 has a lower refractive index than that of the thin plate 1, the distance a ′ between the stray light absorbing means and the optical waveguide is different from that in FIG. 2, and the stray light absorbing means 30 ′, Even if 31 'is formed, the light wave propagating through the waveguide is not absorbed because of the low refractive index adhesive layer.

迷光吸収手段の材料としては、Al、Ti、Ta、Fe、Y、La、等の光吸収係数の高い金属などが好適に使用可能である。これらは、基板内を浮遊し迷光反射手段により反射された迷光を吸収し、基板内の迷光を除去するものである。   As a material for the stray light absorbing means, a metal having a high light absorption coefficient such as Al, Ti, Ta, Fe, Y, La, or the like can be suitably used. These absorb stray light floating in the substrate and reflected by the stray light reflecting means, and remove stray light in the substrate.

また、上記とは別の反射された迷光を除去する手段としては、図5に一例を示すように、反射された迷光を除去する手段として、基板表面に設けられた迷光反射手段の形成部に対向する薄板裏面に迷光放射手段40を配し、基板内を浮遊し該迷光反射手段により反射された迷光を基板外部へ放射することにより、基板内の迷光を除去するものである。   Further, as a means for removing the reflected stray light different from the above, as shown in FIG. 5, as an example for removing the reflected stray light, a stray light reflecting means provided on the substrate surface is formed. Stray light radiating means 40 is arranged on the opposite thin plate back surface, and stray light in the substrate is removed by floating the inside of the substrate and radiating the stray light reflected by the stray light reflecting means to the outside of the substrate.

迷光放射手段は、光反射手段に対向する基板裏面に凹凸をつけるもので、その形成方法は、基板裏面の所定の位置をサンドブラスト加工、GC砥粒研磨、エチッチング等により基板裏面を加工する方法がある。   The stray light radiating means is provided with unevenness on the back surface of the substrate facing the light reflecting means, and the formation method is a method of processing the back surface of the substrate by sandblasting, GC abrasive polishing, etching, or the like at a predetermined position on the back surface of the substrate. is there.

迷光放射手段の形成位置は、迷光反射手段を基板角部に設けた場合、迷光放射部40は、図2と同様に基板端面から10μm以上の幅で基板裏面に設けることが好ましい。
迷光反射手段が基板の表面に溝(不図示)を設ける方法の場合は、図2と同様に、迷光放射部は、迷光反射手段と向い合う基板裏面部より基板中心側へ10μm以上の幅で該裏面部に設けることが好ましい。
また、基板が20μm以下と薄いため、例えば基板表面から光導波路を形成したとしても、導波する光波は裏面近辺にまで到達している為、導波路近辺にまで迷光放射部40が形成されていた場合、導波路を伝搬する光波を基板外へしまう。そこで、図2と同様に迷光放射部40は、光導波路端部から20μm以上離間する位置に形成することが好ましい。
As for the formation position of the stray light radiating means, when the stray light reflecting means is provided at the corner of the substrate, the stray light radiating portion 40 is preferably provided on the back surface of the substrate with a width of 10 μm or more from the end face of the substrate as in FIG.
In the case where the stray light reflecting means is provided with a groove (not shown) on the surface of the substrate, the stray light emitting portion has a width of 10 μm or more from the back side of the substrate facing the stray light reflecting means toward the center of the substrate, as in FIG. It is preferable to provide in this back surface part.
In addition, since the substrate is as thin as 20 μm or less, for example, even if an optical waveguide is formed from the substrate surface, the guided light wave reaches the vicinity of the back surface, so the stray light emitting portion 40 is formed near the waveguide. In this case, the light wave propagating through the waveguide is removed from the substrate. Therefore, it is preferable to form the stray light emitting portion 40 at a position that is 20 μm or more away from the end portion of the optical waveguide, as in FIG.

以上の説明では、電気光学効果を有する材料からなる薄板の表面に電極と光導波路を形成する例を中心として、光素子について説明したが、本発明は非線形効果を有する材料からなる薄板の表面に光導波路を形成する光素子についても同様に適用できる。
また、本発明の光素子は、薄板の裏面に光導波路を形成するものであっても良い。また、迷光反射手段の形成位置についても、薄板の表面に限らず、裏面側に形成することも可能である。なお、裏面側に迷光反射手段を形成する場合には、迷光吸収手段や迷光放射部は薄板の表面側に形成することとなる。
In the above description, the optical element has been described mainly with respect to an example in which an electrode and an optical waveguide are formed on the surface of a thin plate made of a material having an electro-optic effect, but the present invention is applied to the surface of a thin plate made of a material having a nonlinear effect. The same applies to an optical element that forms an optical waveguide.
The optical element of the present invention may be one in which an optical waveguide is formed on the back surface of a thin plate. Further, the formation position of the stray light reflecting means is not limited to the surface of the thin plate, but can be formed on the back surface side. In the case where the stray light reflecting means is formed on the back surface side, the stray light absorbing means and the stray light emitting portion are formed on the surface side of the thin plate.

次に、本発明の光素子に係る具体的な実施例及びその試験について説明する。
(実施例1)
薄板の光素子は、基板に厚み500μmのXカット型のLN基板を使用し、Ti拡散プロセスなどにより、基板表面に図1のようなマッハツェンダー型の光導波路を形成する。
基板表面に熱可塑性樹脂を塗布し、研磨ダミー基板を貼り付ける。基板の裏面を、研磨機で基板の厚さが20μmとなるまで研磨し、メッキプロセスで高さ14μmの変調電極を形成することで、光素子を組み込んだ薄板を製作する。
上記の方法で製作した薄板の表面の光の導波方向の基板角部を面取り加工する。
Next, specific examples and tests related to the optical element of the present invention will be described.
Example 1
The thin optical element uses an X-cut LN substrate having a thickness of 500 μm for the substrate, and forms a Mach-Zehnder type optical waveguide as shown in FIG. 1 on the substrate surface by Ti diffusion process or the like.
A thermoplastic resin is applied to the substrate surface, and a polishing dummy substrate is attached. The back surface of the substrate is polished by a polishing machine until the thickness of the substrate becomes 20 μm, and a modulation electrode having a height of 14 μm is formed by a plating process, thereby manufacturing a thin plate incorporating an optical element.
Chamfering is performed on the corner portion of the light guide direction on the surface of the thin plate manufactured by the above method.

(実施例2)
実施例2においては、実施例1で製作したLN薄板の基板表面に設けられた面取り加工部と向い合う薄板裏面の端面から10μmの幅でAl膜を蒸着した。
(Example 2)
In Example 2, an Al film was deposited in a width of 10 μm from the end surface of the thin plate back surface facing the chamfered portion provided on the substrate surface of the LN thin plate manufactured in Example 1.

(実施例3)
実施例3においては、実施例1で製作したLN薄板の基板表面に設けられた面取り加工部と向い合う薄板裏面の端面から20μmの幅でTi膜を蒸着した。
(Example 3)
In Example 3, a Ti film was deposited with a width of 20 μm from the end surface of the back surface of the thin plate facing the chamfered portion provided on the substrate surface of the LN thin plate manufactured in Example 1.

(実施例4)
実施例4においては、実施例1で製作したLN薄板の基板表面に設けられた面取り加工部に対向する薄板裏面の端面から10μmの幅でエッチングを行った。
Example 4
In Example 4, etching was performed with a width of 10 μm from the end surface of the back surface of the thin plate facing the chamfered portion provided on the substrate surface of the LN thin plate manufactured in Example 1.

(実施例5)
薄板の光素子は、基板に厚み500μmのXカット型のLN基板を使用し、Ti拡散プロセスなどにより、基板表面に図1のようなマッハツェンダー型の光導波路を形成する。
基板表面に熱可塑性樹脂を塗布し、研磨ダミー基板を貼り付ける。基板の裏面を、研磨機で基板の厚さが20μmとなるまで研磨し、メッキプロセスで高さ14μmの変調電極を形成することで、光素子を組み込んだ薄板を製作する。
上記の方法で製作した薄板の表面にスライシングソーでV溝(10)を設ける。
(Example 5)
The thin optical element uses an X-cut LN substrate having a thickness of 500 μm for the substrate, and forms a Mach-Zehnder type optical waveguide as shown in FIG. 1 on the substrate surface by Ti diffusion process or the like.
A thermoplastic resin is applied to the substrate surface, and a polishing dummy substrate is attached. The back surface of the substrate is polished by a polishing machine until the thickness of the substrate becomes 20 μm, and a modulation electrode having a height of 14 μm is formed by a plating process, thereby manufacturing a thin plate incorporating an optical element.
A V-groove (10) is provided by a slicing saw on the surface of the thin plate manufactured by the above method.

(実施例6)
実施例6においては、実施例5で製作したLN薄板の基板表面に設けられたV溝と向い合う薄板裏面の端面から10μmの幅でAl膜を蒸着した。
(Example 6)
In Example 6, an Al film was deposited with a width of 10 μm from the end surface of the back surface of the thin plate facing the V groove provided on the substrate surface of the LN thin plate manufactured in Example 5.

(実施例7)
実施例7においては、実施例5で製作したLN薄板の基板表面に設けられたV溝と向い合う薄板裏面の端面から20μmの幅でTa膜を蒸着した。
(Example 7)
In Example 7, a Ta film was deposited with a width of 20 μm from the end surface of the back surface of the thin plate facing the V groove provided on the substrate surface of the LN thin plate manufactured in Example 5.

(実施例8)
実施例8においては、実施例5で製作したLN薄板の基板表面に設けられたV溝と向い合う薄板裏面の端面から10μmの幅でエッチング処理を行った。
(Example 8)
In Example 8, the etching process was performed with a width of 10 μm from the end surface of the back of the thin plate facing the V groove provided on the substrate surface of the LN thin plate manufactured in Example 5.

(実施例9)
実施例9においては、実施例1で製作したLN薄板の基板表面に設けられた面取り加工部と向い合う補強基板の接着剤側に端面から10μmの幅でAl膜を蒸着した。
Example 9
In Example 9, an Al film having a width of 10 μm from the end face was deposited on the adhesive side of the reinforcing substrate facing the chamfered portion provided on the substrate surface of the LN thin plate manufactured in Example 1.

(比較例)
上記実施例1と同様に製作した薄板(厚さ20μm)において、光素子を組み込んだ薄板に対し、薄板の面取りを行わず、薄板と同じの材料の基板を補強板として、薄板の裏面に接着剤を介して接合した。
(Comparative example)
In the thin plate (thickness 20 μm) manufactured in the same manner as in Example 1, the thin plate with the optical element incorporated is not chamfered, and the substrate made of the same material as the thin plate is used as a reinforcing plate and bonded to the back surface of the thin plate. It joined through the agent.

(試験方法)
実施例1〜9及び比較例の各光素子に光ファイバを接続した。次に、入射用光ファイバに試験光を入射し、出射用光ファイバからの出力光を、パワーメータにより計測し、各光素子の出力光のS/N比を測定した。測定結果を、表1に示す。
(Test method)
Optical fibers were connected to the optical elements of Examples 1 to 9 and Comparative Example. Next, test light was incident on the incident optical fiber, the output light from the outgoing optical fiber was measured with a power meter, and the S / N ratio of the output light of each optical element was measured. The measurement results are shown in Table 1.

Figure 2007272121
Figure 2007272121

消光比(dB)の良否判定は、以下の評価で行った。
・20dB以上は、○(使用可能)
・20db未満は、×(使用不可)
表1の結果から、比較例と比較し、実施例1乃至9のいずれにおいても、出力光のS/N比が改善されていることが理解される。
The quality of the extinction ratio (dB) was judged by the following evaluation.
・ For 20 dB or more, ○ (available)
-Less than 20db x (unusable)
From the results of Table 1, it is understood that the S / N ratio of the output light is improved in any of Examples 1 to 9 as compared with the comparative example.

以上説明したように、本発明によれば、厚さ20μm以下の薄板を用いた光素子における出力光のS/N比を改善した光素子を提供することが可能となる。   As described above, according to the present invention, it is possible to provide an optical element having an improved S / N ratio of output light in an optical element using a thin plate having a thickness of 20 μm or less.

本発明の光素子の斜視図である。It is a perspective view of the optical element of this invention. 図1の光素子の断面図の一部を示す。FIG. 2 shows a part of a cross-sectional view of the optical element in FIG. 1. 迷光反射手段として薄板の角部を曲面状とする光素子の断面図の一部を示す。A part of sectional drawing of the optical element which makes the corner | angular part of a thin plate into a curved surface shape as a stray light reflection means is shown. 迷光反射手段を有し、迷光吸収手段を補強基板上に配置する光素子の断面図の一部を示す。A part of sectional drawing of the optical element which has a stray light reflection means and arrange | positions a stray light absorption means on a reinforcement board | substrate is shown. 迷光反射手段と迷光放射部とを有する光素子の断面図の一部を示す。A part of sectional drawing of the optical element which has a stray-light reflection means and a stray-light radiation | emission part is shown.

符号の説明Explanation of symbols

1 薄板
2 接着層
3 補強基板
4 光導波路
5,6,7 迷光
10 面取り部
11 曲面状の切除部
20 溝部
30,30’,31,31’ 迷光吸収手段
40 迷光放射部
DESCRIPTION OF SYMBOLS 1 Thin plate 2 Adhesive layer 3 Reinforcement substrate 4 Optical waveguide 5, 6, 7 Stray light 10 Chamfer 11 Cut-off part 20 Groove part 30,30 ', 31,31' Stray light absorption means 40 Stray light radiation part

Claims (7)

電気光学効果を有する材料若しくは非線形光学効果で形成された厚さ20μm以下の薄板と、
該薄板に形成された光導波路とを有する光素子において、
該薄板の光導波路およびその近傍を除く領域に、該薄板内を伝搬する迷光を反射し、反射した迷光を該薄板外に導くための迷光反射手段が配置されていることを特徴とする光素子。
A thin plate having a thickness of 20 μm or less formed of a material having an electro-optic effect or a nonlinear optical effect;
In an optical element having an optical waveguide formed on the thin plate,
An optical element characterized in that stray light reflecting means for reflecting stray light propagating in the thin plate and guiding the reflected stray light to the outside of the thin plate is disposed in a region excluding the optical waveguide of the thin plate and its vicinity. .
請求項1に記載の光素子において、該迷光反射手段は、該薄板の表面又は裏面に対し所定の角度を有し、該薄板の外周面と連続する面により形成されていることを特徴とする光素子。   2. The optical element according to claim 1, wherein the stray light reflecting means has a predetermined angle with respect to the front or back surface of the thin plate and is formed by a surface continuous with the outer peripheral surface of the thin plate. Optical element. 請求項1又は2に記載の光素子において、該迷光反射手段は、該薄板の角部分を平面状又は曲面状に切除して形成したことを特徴とする光素子。   3. The optical element according to claim 1, wherein the stray light reflecting means is formed by cutting a corner portion of the thin plate into a flat shape or a curved shape. 請求項1乃至3のいずれかに記載の光素子において、該迷光反射手段により反射した迷光を吸収する迷光吸収手段を有し、該迷光吸収手段は、該迷光反射手段により反射された迷光が該薄板より放出される位置に形成されることを特徴とする光素子。   4. The optical element according to claim 1, further comprising stray light absorbing means for absorbing stray light reflected by the stray light reflecting means, wherein the stray light absorbing means is configured such that the stray light reflected by the stray light reflecting means is An optical element formed at a position where it is emitted from a thin plate. 請求項1乃至3のいずれかに記載の光素子において、該薄板に接着層を介して接合された補強基板と、該迷光反射手段により反射した迷光を吸収する迷光吸収手段とを有し、該迷光反射手段は該薄板の反接着面に形成され、該迷光吸収手段は該迷光反射手段により反射された迷光が到達する該補強基板上に形成されることを特徴とする光素子。   The optical element according to any one of claims 1 to 3, comprising a reinforcing substrate joined to the thin plate via an adhesive layer, and stray light absorbing means for absorbing stray light reflected by the stray light reflecting means, The stray light reflecting means is formed on an anti-adhesion surface of the thin plate, and the stray light absorbing means is formed on the reinforcing substrate to which the stray light reflected by the stray light reflecting means reaches. 請求項1乃至3のいずれかに記載の光素子において、該迷光反射手段により反射した迷光を除去する迷光放射手段を有し、該迷光放射手段は、該迷光反射手段により反射された迷光が該薄板より放出される位置に形成されることを特徴とする光素子。   4. The optical element according to claim 1, further comprising: stray light emitting means for removing stray light reflected by the stray light reflecting means, wherein the stray light emitting means is configured to receive the stray light reflected by the stray light reflecting means. An optical element formed at a position where it is emitted from a thin plate. 請求項6に記載の光素子において、該迷光放射手段は、基板の表面又は裏面に凹凸を設けることを特徴とする光素子。
7. The optical element according to claim 6, wherein the stray light emitting means is provided with irregularities on the front surface or the back surface of the substrate.
JP2006100526A 2006-03-31 2006-03-31 Optical element Pending JP2007272121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100526A JP2007272121A (en) 2006-03-31 2006-03-31 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100526A JP2007272121A (en) 2006-03-31 2006-03-31 Optical element

Publications (1)

Publication Number Publication Date
JP2007272121A true JP2007272121A (en) 2007-10-18

Family

ID=38674942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100526A Pending JP2007272121A (en) 2006-03-31 2006-03-31 Optical element

Country Status (1)

Country Link
JP (1) JP2007272121A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186132A (en) * 2009-02-13 2010-08-26 Nec Corp Reflected light attenuator
US9612410B2 (en) 2013-07-18 2017-04-04 Nec Corporation Optical transmission/reception module
WO2020092789A1 (en) * 2018-10-31 2020-05-07 Kvh Industries, Inc. Method and apparatus for control and suppression of stray light in a photonic integrated circuit
WO2020145284A1 (en) * 2019-01-11 2020-07-16 日本電信電話株式会社 Planar optical waveguide circuit
US10921682B1 (en) 2019-08-16 2021-02-16 Kvh Industries, Inc. Integrated optical phase modulator and method of making same
US11092748B2 (en) 2017-09-15 2021-08-17 Kvh Industries, Inc. Method and apparatus for self-alignment connection of optical fiber to waveguide of photonic integrated circuit
US11320267B2 (en) 2017-03-23 2022-05-03 Kvh Industries, Inc. Integrated optic wavemeter and method for fiber optic gyroscopes scale factor stabilization
US11353655B2 (en) 2019-05-22 2022-06-07 Kvh Industries, Inc. Integrated optical polarizer and method of making same
US11415419B2 (en) 2018-10-11 2022-08-16 Kvh Industries, Inc. Polarizer implemented in a photonic integrated circuit for use in a fiber optic gyroscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159626A (en) * 1990-10-24 1992-06-02 Olympus Optical Co Ltd Optical pickup
JPH07301537A (en) * 1994-05-09 1995-11-14 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH1152154A (en) * 1997-07-31 1999-02-26 Sharp Corp Optical integrated circuit element
JP2003215519A (en) * 2001-11-16 2003-07-30 Ngk Insulators Ltd Optical waveguide device, and traveling wave form optical modulator
JP2004093905A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Optical modulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159626A (en) * 1990-10-24 1992-06-02 Olympus Optical Co Ltd Optical pickup
JPH07301537A (en) * 1994-05-09 1995-11-14 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH1152154A (en) * 1997-07-31 1999-02-26 Sharp Corp Optical integrated circuit element
JP2003215519A (en) * 2001-11-16 2003-07-30 Ngk Insulators Ltd Optical waveguide device, and traveling wave form optical modulator
JP2004093905A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Optical modulator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186132A (en) * 2009-02-13 2010-08-26 Nec Corp Reflected light attenuator
US9612410B2 (en) 2013-07-18 2017-04-04 Nec Corporation Optical transmission/reception module
US11320267B2 (en) 2017-03-23 2022-05-03 Kvh Industries, Inc. Integrated optic wavemeter and method for fiber optic gyroscopes scale factor stabilization
US11092748B2 (en) 2017-09-15 2021-08-17 Kvh Industries, Inc. Method and apparatus for self-alignment connection of optical fiber to waveguide of photonic integrated circuit
US11415419B2 (en) 2018-10-11 2022-08-16 Kvh Industries, Inc. Polarizer implemented in a photonic integrated circuit for use in a fiber optic gyroscope
WO2020092789A1 (en) * 2018-10-31 2020-05-07 Kvh Industries, Inc. Method and apparatus for control and suppression of stray light in a photonic integrated circuit
WO2020145284A1 (en) * 2019-01-11 2020-07-16 日本電信電話株式会社 Planar optical waveguide circuit
US11353655B2 (en) 2019-05-22 2022-06-07 Kvh Industries, Inc. Integrated optical polarizer and method of making same
US10921682B1 (en) 2019-08-16 2021-02-16 Kvh Industries, Inc. Integrated optical phase modulator and method of making same

Similar Documents

Publication Publication Date Title
JP4658658B2 (en) Light modulator
JP4847177B2 (en) Light modulation element
JP4874685B2 (en) Light modulator
JP5454547B2 (en) Light modulator
JP5012624B2 (en) Optical waveguide device
JP2007272121A (en) Optical element
US8406578B2 (en) Mach-zehnder waveguide type optical modulator
JP4691481B2 (en) Optical waveguide device
WO2005019913A1 (en) Optical waveguide device and traveling wave type opticalmodulator
JP4745432B2 (en) Optical waveguide device
JP4868763B2 (en) Light modulator
JP4544474B2 (en) Light modulator
JP4183583B2 (en) Integrated optical waveguide device
JP7428051B2 (en) Optical waveguide device and optical modulation device and optical transmitter using the same
US7409114B2 (en) Optical modulator
JP4589884B2 (en) Light control element and manufacturing method thereof
JP5494400B2 (en) Optical waveguide device
JP2010230741A (en) Optical modulator
WO2024069952A1 (en) Optical waveguide element, optical modulation device using same, and optical transmission device
JP5463832B2 (en) Light modulator
JP2006276519A (en) Waveguide type optical device
JPS63123665A (en) End surface grinding method for single crystal substrate for optical element
JP2009229793A (en) Optical waveguide device
JP2009199018A (en) Optical waveguide element
JP2007101642A (en) Optical modulator and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823