JP2007271553A - Physical property evaluation method of sample, and physical property evaluating device of semiconductor material - Google Patents

Physical property evaluation method of sample, and physical property evaluating device of semiconductor material Download PDF

Info

Publication number
JP2007271553A
JP2007271553A JP2006100163A JP2006100163A JP2007271553A JP 2007271553 A JP2007271553 A JP 2007271553A JP 2006100163 A JP2006100163 A JP 2006100163A JP 2006100163 A JP2006100163 A JP 2006100163A JP 2007271553 A JP2007271553 A JP 2007271553A
Authority
JP
Japan
Prior art keywords
sample
physical property
amount
property evaluation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006100163A
Other languages
Japanese (ja)
Inventor
Fumiaki Otani
文章 大谷
Satoshi Uchida
聡 内田
Rie Yamada
理恵 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Tohoku Electronic Industrial Co Ltd
Original Assignee
Hokkaido University NUC
Tohoku Electronic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Tohoku Electronic Industrial Co Ltd filed Critical Hokkaido University NUC
Priority to JP2006100163A priority Critical patent/JP2007271553A/en
Publication of JP2007271553A publication Critical patent/JP2007271553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which enables simple and quick evaluation of the physical properties of semiconductor material consisting of metal oxide particles or metal sulfide particles, in particular, constitutional component consisting of amount of crystal defects, degree of crystallization and crystalline form type and/or amorphous type, using a nondestructive means and additionally, to provide a physical property evaluating device used for the implementation of these methods. <P>SOLUTION: The physical property evaluating method of samples, irradiated with an exciting light, measuring the amounts of luminescences at a specific wavelengths generated from irradiation with the exciting light is characterized by measuring the amount of luminescence at the specific wavelength of the reference sample where physical property used as evaluation object is known; preliminarily deriving correspondence between physical properties of the reference sample and the amount of luminescence measured; measuring the amount of luminescence at the specific wavelength of a test sample, where physical property used as evaluation object is unknown; and finally evaluating the physical property of the test sample concerned through the comparison of the amount of luminescence from the test sample measured with the correspondence to the reference sample. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、試料の物性評価方法及びその方法に使用される物性測定装置に係るものであり、詳しくは、金属酸化物粒子又は金属硫化物粒子からなる半導体材料の結晶欠陥量、結晶化度又は構成成分(結晶型及び/又は非結晶型)等の物性を簡便に評価する方法、及びその方法に使用される半導体材料の物性評価装置に係るものである。   The present invention relates to a method for evaluating physical properties of a sample and a physical property measuring apparatus used for the method, and more specifically, the amount of crystal defects, the degree of crystallinity, or the crystallinity of a semiconductor material composed of metal oxide particles or metal sulfide particles. The present invention relates to a method for simply evaluating physical properties such as constituent components (crystalline type and / or non-crystalline type) and a physical property evaluation apparatus for semiconductor materials used in the method.

色素増感(湿式)太陽電池の半導体電極としては、一般的に、酸化チタン(TiO)、酸化亜鉛(ZnO)、あるいは酸化マグネシウム(MgO)等の金属酸化物ナノ粒子の焼結体が一般的に用いられている。太陽電池の性能は、用いられる電極材料による影響を受けやすく、ナノ粒子等の結晶欠陥量や結晶化度によって大きく左右されることが知られている。これは、結晶欠陥や無定形(アモルファス)部分に色素から注入された電子が捕捉され、電解溶液中の物質と反応して電流が低下するためと考えられている(例えば、非特許文献1を参照。)。 As a semiconductor electrode of a dye-sensitized (wet) solar cell, a sintered body of metal oxide nanoparticles such as titanium oxide (TiO 2 ), zinc oxide (ZnO), or magnesium oxide (MgO) is generally used. Has been used. It is known that the performance of a solar cell is easily influenced by the electrode material used and greatly depends on the amount of crystal defects such as nanoparticles and the degree of crystallization. This is thought to be because electrons injected from the dye into crystal defects and amorphous (amorphous) portions are trapped and react with substances in the electrolytic solution to reduce the current (for example, Non-Patent Document 1). reference.).

一方、TiOやZnO等の金属酸化物や金属硫化物粒子からなる半導体材料は一般に光触媒材料としても用いられ、その結晶欠陥量や結晶化度によって光触媒性能が大きく左右されることが知られている。これは、結晶欠陥や無定形(アモルファス)部分に光励起電子が捕捉され、正孔との再結合反応が起こるためと考えられている(例えば、非特許文献2を参照。)。 On the other hand, semiconductor materials made of metal oxide or metal sulfide particles such as TiO 2 and ZnO are generally used as photocatalytic materials, and it is known that the photocatalytic performance is greatly influenced by the amount of crystal defects and the degree of crystallinity. Yes. This is considered to be because photoexcited electrons are trapped in crystal defects and amorphous (amorphous) portions, and a recombination reaction with holes occurs (for example, see Non-Patent Document 2).

かかるTiOやZnO等の金属酸化物粒子からなる半導体材料の物性評価方法として現在使用されている手段としては、例えば、結晶欠陥量に関しては、光化学反応によって試料中に蓄積する電子量を検出することにより結晶欠陥量を測定する方法が公知である(例えば、非特許文献3又は4を参照。)。粉末を対象とする結晶欠陥量の測定技術としてはこれ以外に知られていない。しかしながら、該測定方法は作業が煩雑で長時間を要し、更には破壊型の測定である。また、光触媒材料の物性を評価する方法としては、主にX線回折法による結晶型の測定や吸着法による比表面積測定が知られているが、前者は高価で高度な維持管理が必要な機器を用いるものであり、後者は前処理が必要で非破壊とはいえない方法である。 As a means currently used as a method for evaluating the physical properties of a semiconductor material composed of metal oxide particles such as TiO 2 and ZnO, for example, regarding the amount of crystal defects, the amount of electrons accumulated in a sample by a photochemical reaction is detected. Thus, a method for measuring the amount of crystal defects is known (for example, see Non-Patent Document 3 or 4). There is no other known technique for measuring the amount of crystal defects for powders. However, this measurement method is complicated and requires a long time, and is a destructive measurement. In addition, as a method for evaluating the physical properties of photocatalytic materials, crystal type measurement by X-ray diffraction method and specific surface area measurement by adsorption method are known, but the former is expensive and requires high-level maintenance management. The latter is a method that requires pretreatment and cannot be said to be non-destructive.

このように、TiOやZnO等の金属酸化物や硫化物粒子からなる半導体材料において、その結晶欠陥量や結晶化度等の物性がその性能に与える影響は大きいものの、その物性評価を簡便且つ短時間に、しかも非破壊で評価する技術は存在しないのが実情である。
Kambe, S.; Murakoshi, K.; Kitamura, T.; Yanagida, S.; Kominami, H.; Kera, Y.; Solar Energy Mater. Solar Cells, 61, 427-441 (2000). Ohtani, B.; Kominami, H.; Bowman, R.M.; Colombo Jr., P.; Noguchi, H.; Uosaki, K.; Chem. Lett., 579-580 (1998). Ikeda, S.; Sugiyama, N.; Pal, B.; Ohtani, B.; Noguchi, H.; Uosaki, K.; Marci, G.; Palmisano, L., "Photocatalytic Activity of Transition-Metal-Loaded Titanium (IV) Oxide Powders Suspended in Aqueous Solutions: Correlation with Electron-Hole Recombination Kinetics, Phys. Chem. Chem. Phys., 3, 267-273 (2001). Ikeda, S.; Sugiyama, N.; Murakami, S. S.-y.; Kominami, H.; Kera, Y.; Noguchi, H.; Uosaki, K.; Phys. Chem. Chem. Phys., 5, 778-783 (2003).
As described above, in semiconductor materials composed of metal oxides such as TiO 2 and ZnO and sulfide particles, the physical properties such as the amount of crystal defects and the degree of crystallinity have a great influence on the performance, but the physical property evaluation is simple and easy. In fact, there is no technology that can be evaluated in a short time and non-destructively.
Kambe, S .; Murakoshi, K .; Kitamura, T .; Yanagida, S .; Kominami, H .; Kera, Y .; Solar Energy Mater.Solar Cells, 61, 427-441 (2000). Ohtani, B .; Kominami, H .; Bowman, RM; Colombo Jr., P .; Noguchi, H .; Uosaki, K .; Chem. Lett., 579-580 (1998). Ikeda, S .; Sugiyama, N .; Pal, B .; Ohtani, B .; Noguchi, H .; Uosaki, K .; Marci, G .; Palmisano, L., "Photocatalytic Activity of Transition-Metal-Loaded Titanium (IV) Oxide Powders Suspended in Aqueous Solutions: Correlation with Electron-Hole Recombination Kinetics, Phys. Chem. Chem. Phys., 3, 267-273 (2001). Ikeda, S .; Sugiyama, N .; Murakami, SS-y .; Kominami, H .; Kera, Y .; Noguchi, H .; Uosaki, K .; Phys. Chem. Chem. Phys., 5, 778- 783 (2003).

本発明は、上記背景技術に鑑み開発されたものであり、金属酸化物粒子又は金属硫化物粒子からなる半導体材料の物性、特に結晶欠陥量、結晶化度及び結晶型及び/又は非結晶型からなる構成成分を簡便且つ迅速に、非破壊な手段で評価し得る方法を提供すること、更に、該方法の実施に使用するこれら物性の評価装置を提供することを目的とする。   The present invention has been developed in view of the above-described background art. From the physical properties of a semiconductor material composed of metal oxide particles or metal sulfide particles, particularly from the amount of crystal defects, crystallinity, crystal type and / or amorphous type. It is an object of the present invention to provide a method capable of simply and rapidly evaluating the constituent components by non-destructive means, and to provide an evaluation apparatus for these physical properties used for carrying out the method.

本発明者等は、上記課題を解決すべく鋭意検討した結果、半導体材料に光を照射した際に発生する発光スペクトルを検出することにより、その結晶欠陥量や結晶化度等の物性を評価し得ることを見出した。すなわち、検出される発光スペクトルにおいて、特定波長における発光量と、結晶欠陥量や結晶化度、結晶型及び/又は非結晶型からなる構成成分との間に相関があることを見出し、簡便かつ非破壊型の半導体材料の物性評価方法を完成すると共に、本方法の実施において使用される物性評価装置をも完成するに至ったものである。   As a result of intensive studies to solve the above problems, the present inventors evaluated the physical properties such as the amount of crystal defects and the degree of crystallinity by detecting the emission spectrum generated when the semiconductor material is irradiated with light. Found to get. That is, in the detected emission spectrum, it is found that there is a correlation between the amount of luminescence at a specific wavelength and the amount of crystal defects, the degree of crystallinity, and the constituents composed of crystalline and / or amorphous types. In addition to completing a physical property evaluation method for destructive semiconductor materials, a physical property evaluation apparatus used in the implementation of this method has also been completed.

すなわち、本発明により、試料に励起光を照射し、該励起光の照射により発生する特定波長における発光量を測定する試料の物性評価方法であって、評価対象となる物性が既知である基準試料の特定波長における発光量を測定し、前記基準試料の物性と前記測定された発光量との対応関係を予め得ておき、評価対象となる物性が未知である被測定試料の特定波長における発光量を測定し、前記測定された被測定試料の発光量と前記基準試料について得られた対応関係とを比較することにより該被測定試料の物性を測定することを特徴とする、試料の物性評価方法が提供される。ここで、評価対象となる物性には、結晶欠陥量、結晶化度、または結晶型及び/又は非結晶型からなる構成成分並びにその含有率の少なくとも一つが含まれる。   That is, according to the present invention, a sample physical property evaluation method for irradiating a sample with excitation light and measuring a light emission amount at a specific wavelength generated by the irradiation of the excitation light, the reference sample having a known physical property to be evaluated The light emission amount at a specific wavelength is measured, and the correspondence between the physical properties of the reference sample and the measured light emission amount is obtained in advance, and the light emission amount at a specific wavelength of the sample to be measured whose physical properties to be evaluated are unknown And measuring the physical properties of the sample to be measured by comparing the measured amount of luminescence of the sample to be measured with the correspondence obtained for the reference sample. Is provided. Here, the physical properties to be evaluated include at least one of the amount of crystal defects, the degree of crystallinity, or a constituent component composed of a crystalline form and / or an amorphous form and the content thereof.

本発明の物性評価方法において、測定対象となる試料としては、金属酸化物あるいは硫化物粒子からなる半導体材料が含まれる。半導体材料としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、硫化カドミウム(CdS)等が挙げられ、中でも酸化チタン(TiO)からなる半導体材料の物性評価に好適に用いられる。 In the physical property evaluation method of the present invention, the sample to be measured includes a semiconductor material made of metal oxide or sulfide particles. Examples of the semiconductor material include titanium oxide (TiO 2 ), zinc oxide (ZnO), cadmium sulfide (CdS), and the like. Among them, the semiconductor material is suitably used for evaluating physical properties of a semiconductor material made of titanium oxide (TiO 2 ).

評価対象となる物性が結晶欠陥量又は結晶化度である場合において、前記特定波長は1270±20nm又は620±20nmを中心波長とする光であり得る。   In the case where the physical property to be evaluated is the amount of crystal defects or the degree of crystallinity, the specific wavelength may be light having a central wavelength of 1270 ± 20 nm or 620 ± 20 nm.

また、評価対象となる物性が結晶型及び/又は非結晶型(構成成分)である場合においては、前記特定波長は結晶型及び/又は非結晶型からなる構成成分が既知である基準試料由来の2つの発光ピーク波長1及び2であり、該発光ピーク波長1及び2における発光量の比と結晶型及び/又は非結晶型からなる構成成分との対応関係を予め得ておき、結晶型及び/又は非結晶型からなる構成成分が未知である被測定試料の発光ピーク波長1及び2における発光量の比を測定し、得られた被測定試料の発光量の比と前記基準試料について得られた対応関係とを比較することにより該被測定試料の構成成分、すなわち、結晶型及び/又は非結晶型並びにその含有率を評価することができる。その際、測定試料が酸化チタンTiOからなる半導体材料である場合には、前記二つの発光ピーク波長1及び2は、560−580nm及び620−640nmの波長域にある。 Further, in the case where the physical property to be evaluated is a crystalline type and / or an amorphous type (component), the specific wavelength is derived from a reference sample having a known constituent of the crystalline type and / or the amorphous type. Two emission peak wavelengths 1 and 2, and a correspondence relationship between the ratio of the light emission amount at the emission peak wavelengths 1 and 2 and the constituents composed of the crystalline type and / or the amorphous type is obtained in advance. Alternatively, the ratio of the luminescence amount at the emission peak wavelengths 1 and 2 of the sample to be measured whose constituent components are of an amorphous type is unknown was measured, and the ratio of the luminescence amount of the obtained sample to be measured and the reference sample were obtained. By comparing the correspondence, the constituent components of the sample to be measured, that is, the crystalline form and / or the amorphous form, and the content thereof can be evaluated. At that time, when the measurement sample is a semiconductor material made of titanium oxide TiO 2 , the two emission peak wavelengths 1 and 2 are in a wavelength range of 560-580 nm and 620-640 nm.

更に、本発明により、前記物性評価方法において使用される物性評価装置であって、特定波長の光照射手段と、微弱発光測定手段と、を具備する物性評価装置が提供される。   Furthermore, according to the present invention, there is provided a physical property evaluation apparatus used in the physical property evaluation method, comprising a light irradiation means having a specific wavelength and a weak light emission measurement means.

また、本発明により、前記物性評価方法において使用される物性評価装置であって、試料セルと、前記試料セルを収容する試料室と、前記試料セルに収容されるべき試料に光を照射するための光照射手段と、前記試料から発生する発光強度を測定する発光強度測定手段と、前記試料室と前記発光強度測定手段との間に設けられた分光機構と、を具備する物性評価装置が提供される。   Further, according to the present invention, there is provided a physical property evaluation apparatus used in the physical property evaluation method for irradiating light to a sample cell, a sample chamber for storing the sample cell, and a sample to be stored in the sample cell. There is provided a physical property evaluation apparatus comprising: a light irradiation means; a light emission intensity measuring means for measuring light emission intensity generated from the sample; and a spectroscopic mechanism provided between the sample chamber and the light emission intensity measuring means. Is done.

この装置は、一態様において、前記分光機構として光学フィルター、分光器又は受光素子が用いられ、分光器としては、例えばグレーティングなどが好適に用いられる。   In this embodiment, in one aspect, an optical filter, a spectroscope, or a light receiving element is used as the spectroscopic mechanism, and a grating or the like is preferably used as the spectroscope.

また、他の態様において、前記試料セル及び/又は試料室が、照射される光により励起される物質を含まない材料から形成される。   In another aspect, the sample cell and / or the sample chamber is formed of a material that does not include a substance that is excited by irradiated light.

また、他の態様において、前記試料室が、前記試料セル中に収容されるべき試料の雰囲気を不活性ガス雰囲気に置換するためのガス入口及びガス出口を備えている。   In another aspect, the sample chamber includes a gas inlet and a gas outlet for replacing the atmosphere of the sample to be accommodated in the sample cell with an inert gas atmosphere.

また、他の態様において、光照射手段としてレーザー光源が使用され、該レーザー光源は300〜450nmとされ得る。   Moreover, in another aspect, a laser light source is used as a light irradiation means, and this laser light source can be 300-450 nm.

本発明により、金属酸化物粒子又は金属硫化物粒子からなる半導体材料を用いてなる製品、例えばTiOからなる半導体電極を具備する太陽電池や光触媒効果を有する製品に用いられる材料の選択において、非破壊で且つ短時間に実施し得る簡便な品質評価技術の提供が可能となった。 According to the present invention, in selecting a material used for a product using a semiconductor material made of metal oxide particles or metal sulfide particles, for example, a solar cell having a semiconductor electrode made of TiO 2 or a product having a photocatalytic effect, It has become possible to provide a simple quality evaluation technique that can be carried out in a short time by destruction.

以下、本発明を詳細に説明する。
上述したように、本発明に係る物性評価方法は、半導体材料への励起光の照射により発生する特定波長における発光量と、当該材料における結晶欠陥量や結晶化度、結晶型及び/又は非結晶型からなる構成成分との間に相関があるとの知見に基づき開発されたものであり、材料に励起光を照射し、該励起光の照射により発生する特定波長における発光量を測定する物性評価方法である。
Hereinafter, the present invention will be described in detail.
As described above, the physical property evaluation method according to the present invention includes a light emission amount at a specific wavelength generated by irradiation of excitation light to a semiconductor material, a crystal defect amount, crystallinity, crystal type and / or non-crystal in the material. Developed on the basis of the knowledge that there is a correlation with the constituent components of the mold, and evaluates the physical properties by irradiating the material with excitation light and measuring the amount of light emitted at the specific wavelength generated by the irradiation of the excitation light Is the method.

まず、結晶欠陥、結晶化度、または結晶型及び/又は非結晶型からなる構成成分など評価対象となる物性が既知である複数の材料(基準試料)について、励起光照射により発生する発光スペクトルを得、特定波長における発光量を各々測定することにより、基準試料の物性と特定波長における発光量との対応関係を予め得ておく。次に、評価対象となる物性が未知である材料(被測定試料)について同じ特定波長における発光量を測定し、これを基準試料について得られた前記対応関係と比較することにより被測定試料の物性、すなわち、結晶欠陥や結晶化度の程度、あるいは結晶型及び/又は非結晶型からなる構成成分並びにその含有率の程度が測定される。なお、本発明において結晶化度の評価は比表面積を測定することにより結晶化度を評価することができる。すなわち、例えば比表面積が小さい場合は粒径が大きく結晶化度が高いことがわかる。   First, for a plurality of materials (reference samples) whose physical properties to be evaluated are known, such as crystal defects, crystallinity, or constituents composed of crystalline and / or amorphous types, emission spectra generated by irradiation with excitation light are calculated. The correspondence between the physical properties of the reference sample and the light emission amount at the specific wavelength is obtained in advance by measuring the light emission amount at the specific wavelength. Next, the amount of luminescence at the same specific wavelength is measured for a material (sample to be measured) whose physical properties to be evaluated are unknown, and the physical properties of the sample to be measured are compared with the corresponding relationship obtained for the reference sample. That is, the degree of crystal defects and the degree of crystallinity, or the constituents composed of crystalline and / or non-crystalline types and the contents thereof are measured. In the present invention, the crystallinity can be evaluated by measuring the specific surface area. That is, for example, when the specific surface area is small, the particle size is large and the crystallinity is high.

本発明において物性の評価対象となる材料は、主として粉末又は固体状の半導体材料であり、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、あるいは酸化マグネシウム(MgO)等の金属酸化物粒子や金属硫化物粒子からなる半導体材料が挙げられる。 The material whose physical properties are evaluated in the present invention is mainly a powder or solid semiconductor material, for example, metal oxide particles such as titanium oxide (TiO 2 ), zinc oxide (ZnO), or magnesium oxide (MgO). And semiconductor materials made of metal sulfide particles.

本発明者等が鋭意検討した結果、本発明の一態様によれば、材料として酸化チタンを用い、評価対象となる物性が結晶欠陥量又は結晶化度である場合において、前記特定波長として1270nm±20nm(1250〜1290nm)、または620nm±20nm(600〜640nm)に中心波長を有する光を測定すればよい。具体的には、後掲の実施例1〜3及び5を参照することができる。   As a result of intensive studies by the present inventors, according to one aspect of the present invention, when titanium oxide is used as the material and the physical property to be evaluated is the amount of crystal defects or the degree of crystallinity, the specific wavelength is 1270 nm ± Light having a central wavelength at 20 nm (1250 to 1290 nm) or 620 nm ± 20 nm (600 to 640 nm) may be measured. Specifically, Examples 1 to 3 and 5 described later can be referred to.

このように特定波長として1270nm±20nmに中心波長を有する光を測定すればよいことに対しては、以下の推察が可能である。すなわち、酸化チタンはその禁制帯幅である約3eV以上のエネルギーをもつ光を吸収して価電子帯の電子が伝導帯に励起し、結果として励起電子と正孔(ホール)が生成する。次に、励起電子と正孔は次の3つの過程をとると考えられる(例えば、1)野坂芳雄、野坂篤子著「入門光触媒」、東京図書、2004、第3章『光触媒の反応機構』)。第一に、励起電子と正孔が再結合して熱を放出する過程、第二に、励起電子と正孔が再結合して光を放出する過程、および第三に、それぞれが粒子表面の化学物質と反応する過程、である。このうち、第一の過程は、結晶欠陥や結晶化していない部分において起こりやすいため、結晶欠陥量が大きく、結晶化度が低い試料においては、他の過程より優先して起こることとなる。第二の過程は、酸化チタンが室温に置かれたときには殆ど無視できることが知られており、実際に不活性ガス雰囲気下では発光は検知できないくらい小さい。第三の過程はいろいろなものが知られているが、通常の空気中では、励起電子が酸素分子と反応するのが主たる反応となる。結果として生じるスーパーオキシドアニオンラジカルは特に反応し易い化学物質を添加しない限り、正孔と反応して通常の酸素分子(三重項状態)より大きなエネルギーをもつ一重項酸素となることが知られている。上記のように、第二の過程は無視できるので、結晶欠陥量が少ないほど、結晶化度が高いほど第一の過程をとる励起電子と正孔の割合が減少し、結果として第三の過程によって生じる一重項酸素量が増大する。一重項酸素はそのエネルギーを失って三重項酸素に変換する際に主に波長1270nmの光を放出する。本発明の一態様において検出するのはこの発光である。   As described above, the following inference can be made for measuring the light having the center wavelength of 1270 nm ± 20 nm as the specific wavelength. That is, titanium oxide absorbs light having energy of about 3 eV or more, which is the forbidden band width, and electrons in the valence band are excited to the conduction band, resulting in generation of excited electrons and holes. Next, excited electrons and holes are considered to take the following three processes (for example, 1) Yoshio Nosaka and Atsuko Nosaka, “Introductory Photocatalyst”, Tokyo Book, 2004, Chapter 3, “Photocatalytic Reaction Mechanism”) . First, the process in which excited electrons and holes recombine to release heat, second, the process in which excited electrons and holes recombine to emit light, and third, The process of reacting with chemical substances. Of these, the first process is likely to occur in crystal defects and non-crystallized portions, and therefore occurs in a sample having a large amount of crystal defects and low crystallinity over other processes. The second process is known to be almost negligible when the titanium oxide is placed at room temperature, and the light emission is actually so small that it cannot be detected in an inert gas atmosphere. Various processes are known for the third process, but in normal air, the main reaction is that excited electrons react with oxygen molecules. The resulting superoxide anion radical is known to react with holes to become singlet oxygen with greater energy than normal oxygen molecules (triplet state) unless a particularly reactive chemical is added. . As mentioned above, the second process is negligible, so the smaller the amount of crystal defects and the higher the degree of crystallinity, the lower the proportion of excited electrons and holes that take the first process, resulting in the third process. Increases the amount of singlet oxygen produced by. Singlet oxygen mainly emits light having a wavelength of 1270 nm when it loses its energy and is converted into triplet oxygen. It is this luminescence that is detected in one embodiment of the present invention.

また、本発明の他の態様によれば、評価対象となる物性が結晶型及び/又は非結晶型からなる構成成分並びにその含有率である場合には、前記特定波長として二つの発光ピーク波長1及び2、具体的には励起光照射により得られる発光スペクトルにおいて560〜580nm及び620〜640nmの波長域に見られる発光ピーク1及び2各々における発光量を測定し互いの比を測定することにより、結晶型及び/又は非結晶型からなる構成成分並びにその含有率を測定することができる。具体的には、後掲の実施例4を参照することができる。   Further, according to another aspect of the present invention, when the physical property to be evaluated is a constituent component consisting of a crystalline type and / or an amorphous type and its content, two emission peak wavelengths 1 as the specific wavelength And 2, specifically, in the emission spectrum obtained by excitation light irradiation, by measuring the emission amount in each of the emission peaks 1 and 2 seen in the wavelength range of 560-580 nm and 620-640 nm, and measuring the ratio between them, It is possible to measure a constituent component consisting of a crystalline form and / or an amorphous form and the content thereof. Specifically, Example 4 described later can be referred to.

本発明に係る物性評価方法においては、材料への励起光照射により発生する発光スペクトルを高感度に測定することが必要であり、本発明により本物性評価方法の実施において好適に使用し得る物性評価装置として、特定波長の光照射手段と、低雑音で高感度に発光スペクトルを観測できる微弱発光測定手段とを具備する物性評価装置が提供される。図1は、本発明の物性評価装置の一態様を示すものであり、試料セル1と、試料セルを収容する試料室2と、試料セル1に収容されるべき試料に光を照射するための光照射手段10と、試料から発生する発光強度を測定する発光測定手段11と、前記発光測定手段11との間に設けられた光学フィルター12と、前記試料室の下方に設けられた加熱手段13とを具備し、更に前記試料室2は、該試料室内の雰囲気を不活性ガス雰囲気に置換するためのガス入口3及びガス出口4を備えている。前記光学フィルター12は、分光機構の一例である。また、前記試料セル1及び/又は試料室2は、照射される光により励起される物質を含まない材料、すなわち、高純度物質から形成されていることが好ましく、例えば、SiO、高純度ガラス、高純度石英ガラス、ステンレス、Si、SiCなどが具体例として挙げられる。また、光照射手段10としてレーザー光源が使用され得る。 In the physical property evaluation method according to the present invention, it is necessary to measure the emission spectrum generated by the excitation light irradiation to the material with high sensitivity, and the physical property evaluation that can be suitably used in the implementation of the physical property evaluation method according to the present invention. As the apparatus, there is provided a physical property evaluation apparatus including a light irradiation unit having a specific wavelength and a weak emission measuring unit capable of observing an emission spectrum with low noise and high sensitivity. FIG. 1 shows an embodiment of a physical property evaluation apparatus according to the present invention, which is used for irradiating light to a sample cell 1, a sample chamber 2 for storing the sample cell, and a sample to be stored in the sample cell 1. Light irradiation means 10, light emission measurement means 11 for measuring the light emission intensity generated from the sample, optical filter 12 provided between the light emission measurement means 11, and heating means 13 provided below the sample chamber The sample chamber 2 further includes a gas inlet 3 and a gas outlet 4 for replacing the atmosphere in the sample chamber with an inert gas atmosphere. The optical filter 12 is an example of a spectroscopic mechanism. The sample cell 1 and / or sample chamber 2 is preferably formed of a material that does not contain a substance excited by irradiated light, that is, a high-purity substance. For example, SiO 2 , high-purity glass Specific examples include high-purity quartz glass, stainless steel, Si, and SiC. Further, a laser light source can be used as the light irradiation means 10.

(実施例1)1270nm±20nm発光量と結晶欠陥量との関係
化学発光検出(Chemiluminescence detection: CL-detection)は、室温において、図1に示した低雑音で高感度に発光スペクトルを観測できる本発明の物性評価装置を用い、レーザー照射しながら行った。
(Example 1) Relationship between light emission amount of 1270 nm ± 20 nm and crystal defect amount Chemiluminescence detection (CL-detection) is a book in which emission spectrum can be observed with high sensitivity and low noise as shown in FIG. Using the physical property evaluation apparatus of the invention, it was performed while irradiating with a laser.

本実施例では、図1に示す装置において、発光測定手段11として発光検出器ケミルミネッセンスアナライザmodel CLA−310(検出波長領域300−1400nm)、光照射手段10としてレーザー光源を用い、更に分光フィルターとして1270nm発光測定のために1270±21.6nmのバンドパスフィルター、及び発光量を調節するためのNDフィルター(10−3)がセットされた装置を用いた。 In the present embodiment, in the apparatus shown in FIG. 1, a light emission detector chemiluminescence analyzer model CLA-310 (detection wavelength region 300-1400 nm) is used as the light emission measuring means 11, a laser light source is used as the light irradiation means 10, and a spectral filter is further used. A device in which a 1270 ± 21.6 nm band-pass filter and an ND filter (10 −3 ) for adjusting the light emission amount were set for measuring 1270 nm emission was used.

そして、被測定試料(基準試料)として、アナタース型とルチル型の酸化チタン粒子TiO各々2gを用意した(図2、後掲の表1を参照。)。基準試料を50mmφの試料セル1(ステンレスシャーレ)に秤量し、試料室2にセットした。レーザー光の波長は408nm、照射出力は6mW、化学発光の測定時間は30秒間とし、その平均値を求めた。 Then, 2 g each of anatase-type and rutile-type titanium oxide particles TiO 2 were prepared as samples to be measured (reference samples) (see FIG. 2, Table 1 below). The reference sample was weighed in a 50 mmφ sample cell 1 (stainless steel petri dish) and set in the sample chamber 2. The wavelength of the laser light was 408 nm, the irradiation output was 6 mW, the measurement time of chemiluminescence was 30 seconds, and the average value was obtained.

図2A及び図2Bは、上記測定において検出された酸化チタン粒子TiO(基準試料)の1270nmにおける発光量と結晶欠陥量の逆数との関係をプロットしたものであり、図2Aがアナタース型酸化チタン、図2Bがルチル型酸化チタンに関するものである。ここで結晶欠陥量は、光化学反応によって試料中に蓄積する電子量を測定する方法であって、前記背景技術の項において言及した非特許文献4に記載の測定方法に従い求めたものである。 2A and 2B are plots of the relationship between the amount of luminescence at 1270 nm of the titanium oxide particles TiO 2 (reference sample) detected in the above measurement and the reciprocal of the amount of crystal defects. FIG. 2A shows anatase-type titanium oxide. FIG. 2B relates to a rutile type titanium oxide. Here, the amount of crystal defects is a method of measuring the amount of electrons accumulated in a sample by a photochemical reaction, and is obtained according to the measurement method described in Non-Patent Document 4 mentioned in the section of the background art.

図2A及び図2Bから、アナタース型酸化チタン及びルチル型酸化チタンのいずれにおいても、1270nmにおける発光量と結晶欠陥量との間には相関関係があり、1270nm発光量が高いほど結晶欠陥量が少ないことが確認された。そして、結晶欠陥の程度が既知である少数の基準試料について特定波長における発光量を測定し、図2A及び図2Bに見られるような、基準試料の結晶欠陥の程度と発光量との対応関係が得られれば、これとの比較により、発光測定という簡便な方法により結晶欠陥の程度が未知である被測定試料の結晶欠陥量を評価することが可能となる。なお、アナタース型とルチル型という結晶型の違いによってスーパーオキシドアニオンラジカルの生成効率が異なるため、図2A及び図2Bを比較したとき、直線の傾きに違いが生じているものと推測されるが、少数の基準試料について前記非特許文献4に記載の方法により結晶欠陥量の絶対値を測定してそれぞれの結晶について傾きを求めておけば、本発明に係る評価方法により結晶欠陥量の絶対値を知ることができる。   From FIG. 2A and FIG. 2B, in both anatase type titanium oxide and rutile type titanium oxide, there is a correlation between the light emission amount at 1270 nm and the crystal defect amount, and the higher the 1270 nm light emission amount, the smaller the crystal defect amount. It was confirmed. Then, the amount of light emission at a specific wavelength is measured for a small number of reference samples whose degree of crystal defects is known, and the correspondence between the degree of crystal defects in the reference sample and the amount of light emission as seen in FIGS. 2A and 2B. If it is obtained, it becomes possible to evaluate the amount of crystal defects of a sample to be measured whose degree of crystal defects is unknown by a simple method called light emission measurement by comparison with this. In addition, since the production efficiency of the superoxide anion radical is different depending on the difference between the crystal form of the anatase type and the rutile type, when comparing FIG. 2A and FIG. 2B, it is presumed that there is a difference in the slope of the straight line. If the absolute value of the crystal defect amount is measured by the method described in Non-Patent Document 4 for a small number of reference samples and the inclination is obtained for each crystal, the absolute value of the crystal defect amount is obtained by the evaluation method according to the present invention. I can know.

(実施例2)1270nm発光量と結晶化度(比表面積)との関係
実施例1で使用した被測定試料(基準試料)について、その比表面積をBET法により求めた(表1を参照。)。図2C及び図2Dは、1270nm発光量と比表面積との関係をプロットしたものであり、図2Cがアナタース型酸化チタン、図2Dがルチル型酸化チタンに関するものである。ここで比表面積は、77Kにおける窒素吸着量からBET式に基づいて算出した。
(Example 2) Relationship between 1270 nm emission amount and crystallinity (specific surface area) The specific surface area of the sample to be measured (reference sample) used in Example 1 was determined by the BET method (see Table 1). . 2C and 2D are plots of the relationship between the amount of emitted light at 1270 nm and the specific surface area. FIG. 2C relates to anatase-type titanium oxide, and FIG. 2D relates to a rutile-type titanium oxide. Here, the specific surface area was calculated based on the BET equation from the nitrogen adsorption amount at 77K.

図2C及び図2Dより、アナタース型酸化チタンに関しては1270nmにおける発光量と比表面積との間に相関関係は認められないが、ルチル型酸化チタンに関しては1270nm発光量と比表面積との間に相関関係があり、1270nm発光量が高いほど比表面積が小さい(すなわち、粒径が大きく結晶化度が高い)ことが確認された。従って、比表面積が既知である少数の基準試料について特定波長における発光量を測定し、図2C及び図2Dに見られるような、基準試料の比表面積と発光量との対応関係が得られれば、これとの比較により、発光測定という簡便な方法により比表面積の程度が未知である被測定試料の比表面積、ひいては結晶化度を評価することが可能となる。

Figure 2007271553
From FIG. 2C and FIG. 2D, there is no correlation between the emission amount at 1270 nm and the specific surface area for the anatase type titanium oxide, but there is a correlation between the emission amount of 1270 nm and the specific surface area for the rutile type titanium oxide. It was confirmed that the higher the 1270 nm emission amount, the smaller the specific surface area (that is, the larger the particle size and the higher the crystallinity). Therefore, if the light emission amount at a specific wavelength is measured for a small number of reference samples whose specific surface area is known, and the correspondence between the specific surface area of the reference sample and the light emission amount as seen in FIGS. 2C and 2D is obtained, By comparison with this, it is possible to evaluate the specific surface area of the sample to be measured whose degree of specific surface area is unknown, and hence the degree of crystallinity, by a simple method of luminescence measurement.
Figure 2007271553

(実施例3)1270nm発光量の経時変化と結晶化度(比表面積)との関係
発光測定において検出される発光量は測定時間により変化し、更にその発光量の変化量は測定試料により異なることから、本実施例では、測定開始直後から150秒後における1270nm発光量の変化量を測定し(図3A、表2)、該変化量と比表面積(BET)との関係を求めた(図3B)。発光測定は、実施例1で使用した本発明に係る物性評価装置を使用し、照射出力を10mWに変更した以外は実施例1と同様の測定条件で行った。
(Example 3) Relationship between 1270 nm luminescence amount with time and crystallinity (specific surface area) The luminescence amount detected in the luminescence measurement varies depending on the measurement time, and the variation in the luminescence amount varies depending on the measurement sample. Thus, in this example, the amount of change in the amount of emitted light at 1270 nm 150 seconds after the start of measurement was measured (FIG. 3A, Table 2), and the relationship between the amount of change and the specific surface area (BET) was determined (FIG. 3B). ). Luminescence measurement was performed under the same measurement conditions as in Example 1 except that the physical property evaluation apparatus according to the present invention used in Example 1 was used and the irradiation output was changed to 10 mW.

図3Bより、酸化チタン粒子において、1270nm発光量の変化量と比表面積との間には負の相関関係があり、比表面積が大きい(すなわち、結晶化度が低い)ものほど発光量の変化は小さいことが確認された。従って、比表面積が既知である少数の基準試料について特定波長における所定時間の発光量の変化を測定し、図3B見られるような、基準試料の比表面積と発光量の経時変化量との対応関係が得られれば、これとの比較により、発光測定という簡便な方法により比表面積の程度が未知である被測定試料の比表面積、ひいては結晶化度を評価することが可能となる。

Figure 2007271553
From FIG. 3B, in the titanium oxide particles, there is a negative correlation between the amount of change in the amount of emitted light at 1270 nm and the specific surface area, and the larger the specific surface area (that is, the lower the degree of crystallinity), the more the amount of emitted light changes. It was confirmed to be small. Therefore, the change in the amount of luminescence for a predetermined time at a specific wavelength is measured for a small number of reference samples whose specific surface area is known, and the correspondence between the specific surface area of the reference sample and the amount of change over time of the luminescence amount as seen in FIG. 3B. Thus, by comparison with this, it is possible to evaluate the specific surface area of the sample to be measured whose degree of specific surface area is unknown, and thus the degree of crystallinity, by a simple method of luminescence measurement.
Figure 2007271553

(実施例4)結晶構成成分と発光スペクトルのピーク比との関係
被測定試料(基準試料)として、アナタース型とルチル型の各種酸化チタン粒子TiO各々2gを用意し(図4A、表1を参照。)、実施例1で使用した本発明に係る物性評価機構を具備し、測定波長の異なる検出デバイスを組合わせた装置を使用し、分光フィルターを替えた以外は実施例1と同様の測定条件(408nmレーザー励起)で発光測定を行い、図4に示す発光スペクトルを得た。
Example 4 Relationship between Crystal Component and Peak Ratio of Emission Spectrum 2 g of anatase and rutile type titanium oxide particles TiO 2 were prepared as samples to be measured (reference samples) (FIG. 4A, Table 1). Reference :), measurement similar to that of Example 1 except that the physical property evaluation mechanism according to the present invention used in Example 1 is used, a device in which detection devices having different measurement wavelengths are combined, and the spectral filter is changed. Luminescence was measured under the conditions (408 nm laser excitation) to obtain an emission spectrum shown in FIG.

図4に示される各発光スペクトルにおいて、420nmの発光ピークは光源由来のものと考えられるが、その特徴としていずれの試料においても560nm−580nm及び620nm−640nmにサンプル由来の発光ピークが見られるものの、試料により560nm−580nmピークと620nm−640nmピークにおける発光量の比が異なっていることが挙げられる。   In each emission spectrum shown in FIG. 4, the emission peak at 420 nm is considered to be derived from the light source. As a feature, although the emission peaks derived from the sample are seen at 560 nm-580 nm and 620 nm-640 nm, It is mentioned that the ratio of the light emission amount at the 560 nm-580 nm peak and the 620 nm-640 nm peak differs depending on the sample.

各測定試料の発光スペクトルについて、560nm−580nmピークの発光量と620nm−640nmピークの発光量の比を求め、該比率を試料の構成成分(結晶型)にと共に図5に示した。   Regarding the emission spectrum of each measurement sample, the ratio of the emission amount of the 560 nm-580 nm peak and the emission amount of the 620 nm-640 nm peak was determined, and this ratio was shown in FIG. 5 together with the constituent components (crystal type) of the sample.

図5より、酸化チタン粒子の結晶型と、発光スペクトルの560nm−580nmピークと620nm−640nmピークにおける発光量比率との間には相関関係があり、ルチル型とアナタース型とでは、アナタース型の比率が高くなるほど620−640nm発光量/560nm−580nm発光量の比率が高くなることが確認された。従って、結晶型が既知である少数の基準試料について発光スペクトルを検出し、図5に見られるような、基準試料の結晶型と発光量比との対応関係が得られれば、これとの比較により、発光測定という簡便な方法により結晶の構成成分が未知である被測定試料の結晶成分を評価することが可能となる。   From FIG. 5, there is a correlation between the crystal form of the titanium oxide particles and the light emission ratio at the 560 nm-580 nm peak and the 620 nm-640 nm peak of the emission spectrum, and the ratio of the anatase type between the rutile type and the anatase type It was confirmed that the ratio of 620-640 nm emission amount / 560 nm-580 nm emission amount increased as the value increased. Therefore, if the emission spectrum is detected for a small number of reference samples whose crystal types are known, and the correspondence between the crystal type of the reference samples and the emission amount ratio as shown in FIG. Thus, it is possible to evaluate the crystal component of the sample to be measured in which the constituent component of the crystal is unknown by a simple method of luminescence measurement.

(実施例5)620nm発光量と結晶欠陥量並びに結晶化度(比表面積)との関係
本実施例では、実施例1及び2における測定波長1270nmに対し、測定波長620nmにおける発光量と結晶欠陥量、並びに結晶化度(比表面積)との関係について発光測定を行った。被測定試料(基準試料)として実施例1及び2と同じアナタース型とルチル型の酸化チタン粒子TiO各々2gを用意し(図6、表1を参照。)、実施例1及び2と同じ本発明の物性評価装置を用い、測定波長以外は実施例1及び2と同様の測定条件において行った。
(Example 5) Relationship between 620 nm light emission amount, crystal defect amount, and crystallinity (specific surface area) In this example, the light emission amount and crystal defect amount at a measurement wavelength of 620 nm with respect to the measurement wavelength of 1270 nm in Examples 1 and 2. As well as the relationship with crystallinity (specific surface area), luminescence measurement was performed. As the sample to be measured (reference sample), 2 g each of the same anatase type and rutile type titanium oxide particles TiO 2 as in Examples 1 and 2 were prepared (see FIG. 6 and Table 1), and the same book as in Examples 1 and 2 Using the physical property evaluation apparatus of the invention, the measurement was performed under the same measurement conditions as in Examples 1 and 2 except for the measurement wavelength.

図6A及び図6Cより、アナタース型酸化チタンの場合、測定波長620nmにおける発光特性は測定波長1270nmにおける発光特性と正の相関にあり、測定波長1270nmにおける場合と同様に620nm発光量が高いほど結晶欠陥量が少なく、一方620nm発光量が高いほど比表面積が小さい(すなわち、結晶化度が高い)ことが確認された。   6A and 6C, in the case of anatase type titanium oxide, the emission characteristic at the measurement wavelength of 620 nm is positively correlated with the emission characteristic at the measurement wavelength of 1270 nm, and the crystal defect becomes higher as the emission amount of 620 nm is higher as in the case of the measurement wavelength of 1270 nm. It was confirmed that the specific surface area was smaller (that is, the degree of crystallinity was higher) as the amount was smaller and the light emission amount at 620 nm was higher.

これに対し、図6B及び図6Dより、ルチル型酸化チタンの場合、測定波長620nmにおける発光特性は測定波長1270nmにおける発光特性と負の相関にあることがわかった。従って、ルチル型酸化チタンの場合、620nmにおける発光は一重光酸素とは別の要因に由来することが考えられるが、620nm発光量が高いほど結晶欠陥量が多く、一方620nm発光量が高いほど比表面積が大きい(すなわち、結晶化度が低い)ことが確認された。   On the other hand, from FIGS. 6B and 6D, it was found that in the case of rutile type titanium oxide, the emission characteristics at the measurement wavelength of 620 nm are negatively correlated with the emission characteristics at the measurement wavelength of 1270 nm. Therefore, in the case of rutile-type titanium oxide, the emission at 620 nm is considered to originate from a factor different from single photooxygen. However, the higher the 620 nm emission amount, the more the crystal defect amount, while the higher the 620 nm emission amount, the higher the ratio. It was confirmed that the surface area was large (that is, the crystallinity was low).

従って、アナタース型及びルチル型いずれの酸化ルチルについても、測定波長620nmにおいて少数基準試料から図6A〜Dに見られるような対応関係を得ることにより、これとの比較により、発光測定という簡便な方法により結晶欠陥量又は結晶化度が未知の被測定試料についての評価が可能である。   Therefore, for both the anatase type and the rutile type rutile oxide, a correspondence method as shown in FIGS. 6A to D is obtained from a minority reference sample at a measurement wavelength of 620 nm. Thus, it is possible to evaluate a sample to be measured whose crystal defect amount or crystallinity is unknown.

本発明の半導体材料の物性評価装置の一態様を模式的に示す図。The figure which shows typically the one aspect | mode of the physical-material evaluation apparatus of the semiconductor material of this invention. アナタース型TiOの1270nm発光量と結晶欠陥量との関係を示すグラフ。Graph showing the relationship between 1270nm light emission amount of anatase TiO 2 and the crystal defect amount. ルチル型TiOの1270nm発光量と結晶欠陥量との関係を示すグラフ。Graph showing the relationship between 1270nm light emission amount and the crystal defects of rutile TiO 2. アナタース型TiOの1270nm発光量と比表面積との関係を示すグラフ。Graph showing the relationship between 1270nm light emission amount and the specific surface area of the anatase type TiO 2. ルチル型TiOの1270nm発光量と比表面積との関係を示すグラフ。Graph showing the relationship between 1270nm light emission amount and the specific surface area of the rutile TiO 2. TiOの1270nm発光量の経時変化を示すグラフ。Graph showing the temporal change of the 1270nm light emission amount of TiO 2. TiOの1270nm発光量の変化量(150秒後)と比表面積との関係を示すグラフ。Graph showing the relationship between specific surface area and the 1270nm light emission amount of the change amount of TiO 2 (after 150 seconds). 各酸化チタンの408nmレーザー励起時の発光スペクトルを示す図。The figure which shows the emission spectrum at the time of 408 nm laser excitation of each titanium oxide. TiOの結晶構成成分と発光スペクトルのピーク比との関係を示すグラフ。Graph showing the relationship between the crystal components of TiO 2 and the peak ratio of the emission spectrum. アナタース型TiOの620nm発光量と結晶欠陥量との関係を示すグラフ。Graph showing the relationship between 620nm emission amount of anatase TiO 2 and the crystal defect amount. ルチル型TiOの620nm発光量と結晶欠陥量との関係を示すグラフ。Graph showing the relationship between the crystal defect amount 620nm emission amount of rutile TiO 2. アナタース型TiOの620nm発光量と比表面積との関係を示すグラフ。620nm emission amount of anatase TiO 2 and graph showing the relationship between the specific surface area. ルチル型TiOの620nm発光量と比表面積との関係を示すグラフ。Graph showing the relationship between 620nm emission amount and the specific surface area of the rutile TiO 2.

符号の説明Explanation of symbols

1・・・試料セル、2・・・試料室、3・・・ガス入口、4・・・ガス出口、10・・・光照射手段、11・・・発光測定手段、12・・・光学フィルター、13・・・加熱手段 DESCRIPTION OF SYMBOLS 1 ... Sample cell, 2 ... Sample chamber, 3 ... Gas inlet, 4 ... Gas outlet, 10 ... Light irradiation means, 11 ... Luminescence measuring means, 12 ... Optical filter 13, heating means

Claims (15)

試料に励起光を照射し、該励起光の照射により発生する特定波長における発光量を測定する試料の物性評価方法であって、評価対象となる物性が既知である基準試料の特定波長における発光量を測定し、前記基準試料の物性と前記測定された発光量との対応関係を予め得ておき、評価対象となる物性が未知である被測定試料の特定波長における発光量を測定し、前記測定された被測定試料の発光量と前記基準試料について得られた対応関係とを比較することにより該被測定試料の物性を評価することを特徴とする、試料の物性評価方法。   A sample physical property evaluation method for irradiating a sample with excitation light and measuring a light emission amount at a specific wavelength generated by the irradiation of the excitation light, the light emission amount at a specific wavelength of a reference sample whose physical property to be evaluated is known Measuring the luminescence amount at a specific wavelength of the sample to be measured whose physical property to be evaluated is unknown, obtaining the correspondence between the physical property of the reference sample and the measured luminescence amount in advance, A physical property evaluation method for a sample, characterized in that the physical property of the sample to be measured is evaluated by comparing a light emission amount of the measured sample with a correspondence relationship obtained for the reference sample. 前記評価対象となる物性が、結晶欠陥量、結晶化度、または結晶型及び/又は非結晶型からなる構成成分並びにその含有率の少なくとも一つである、請求項1に記載の試料の物性評価方法。   The physical property evaluation of the sample according to claim 1, wherein the physical property to be evaluated is at least one of a crystal defect amount, a crystallinity, a constituent component composed of a crystalline type and / or an amorphous type, and a content ratio thereof. Method. 前記試料が粉末又は固体状の半導体材料である、請求項1又は2に記載の試料の物性評価方法。   The method for evaluating physical properties of a sample according to claim 1 or 2, wherein the sample is a powder or solid semiconductor material. 前記半導体材料が酸化チタンTiOである、請求項3に記載の試料の物性評価方法。 The sample physical property evaluation method according to claim 3, wherein the semiconductor material is titanium oxide TiO 2 . 前記評価対象となる物性が結晶欠陥量又は結晶化度であり、前記特定波長が1250〜1290nmに中心波長を有する光である、請求項1乃至4のいずれか1項に記載の試料の物性評価方法。   The physical property evaluation of the sample according to any one of claims 1 to 4, wherein the physical property to be evaluated is a crystal defect amount or crystallinity, and the specific wavelength is light having a central wavelength at 1250 to 1290 nm. Method. 前記評価対象となる物性が結晶欠陥量又は結晶化度であり、前記特定波長が600〜640nmに中心波長を有する光である、請求項1乃至4のいずれか1項に記載の試料の物性評価方法。   The physical property evaluation of the sample according to any one of claims 1 to 4, wherein the physical property to be evaluated is a crystal defect amount or crystallinity, and the specific wavelength is light having a central wavelength at 600 to 640 nm. Method. 請求項1に記載の試料の物性評価方法において、評価対象となる物性が結晶型及び/又は非結晶型からなる構成成分であり、前記特定波長が結晶型及び/又は非結晶型からなる構成成分が既知である基準試料由来の2つの発光ピーク波長1及び2であり、該発光ピーク波長1及び2における発光量の比と、結晶型及び/又は非結晶型からなる構成成分並びにその含有率との対応関係を予め得ておき、結晶型及び/又は非結晶型の構成成分が未知である被測定試料の発光ピーク波長1及び2における発光量の比を測定し、得られた被測定試料の発光量の比と前記基準試料について得られた対応関係とを比較することにより該被測定試料の結晶型及び/又は非結晶型からなる構成成分並びにその含有率を評価することを特徴とする、請求項1に記載の物性評価方法。   2. The physical property evaluation method for a sample according to claim 1, wherein the physical property to be evaluated is a structural component of a crystalline type and / or an amorphous type, and the specific wavelength is a structural component of a crystalline type and / or an amorphous type. Are the two emission peak wavelengths 1 and 2 derived from a reference sample, and the ratio of the light emission amount at the emission peak wavelengths 1 and 2, the constituent component consisting of the crystalline type and / or the amorphous type, and the content thereof, Is obtained in advance, and the ratio of the emission amounts at the emission peak wavelengths 1 and 2 of the sample to be measured in which the crystalline and / or amorphous components are unknown is measured. By comparing the ratio of the luminescence amount and the corresponding relationship obtained for the reference sample, the constituent component consisting of the crystal type and / or the amorphous type of the sample to be measured and the content thereof are characterized. Claim 1 Physical properties evaluation method. 前記測定試料が酸化チタンTiOからなる半導体材料であり、前記二つの発光ピーク波長1及び2が、560−580nm及び620−640nmの波長域にある、請求項7に記載の物性評価方法。 The physical property evaluation method according to claim 7, wherein the measurement sample is a semiconductor material made of titanium oxide TiO 2 , and the two emission peak wavelengths 1 and 2 are in a wavelength range of 560-580 nm and 620-640 nm. 請求項1乃至8のいずれか1項に記載の物性評価方法において使用される物性評価装置であって、特定波長の光照射手段と、微弱発光測定手段と、を具備する物性評価装置。   A physical property evaluation apparatus used in the physical property evaluation method according to claim 1, comprising a light irradiation unit having a specific wavelength and a weak light emission measurement unit. 請求項1乃至8のいずれか1項に記載の物性評価方法において使用される物性評価装置であって、試料セルと、前記試料セルを収容する試料室と、前記試料セルに収容されるべき試料に光を照射するための光照射手段と、前記試料から発生する発光強度を測定する発光強度測定手段と、前記試料室と前記発光強度測定手段との間に設けられた分光機構と、を具備する物性評価装置。   A physical property evaluation apparatus used in the physical property evaluation method according to any one of claims 1 to 8, wherein the sample cell, a sample chamber for storing the sample cell, and a sample to be stored in the sample cell A light irradiating means for irradiating light, a luminescence intensity measuring means for measuring luminescence intensity generated from the sample, and a spectroscopic mechanism provided between the sample chamber and the luminescence intensity measuring means. Physical property evaluation device. 前記分光機構として光学フィルター、分光器、又は受光素子を具備する、請求項9又は10に記載の物性評価装置。   The physical property evaluation apparatus according to claim 9 or 10, comprising an optical filter, a spectroscope, or a light receiving element as the spectroscopic mechanism. 前記試料セル及び/又は試料室が、照射される光により励起される物質を含まない材料から形成されている、請求項9乃至11のいずれか1項に記載の物性評価装置。   The physical property evaluation apparatus according to claim 9, wherein the sample cell and / or the sample chamber is formed of a material that does not include a substance excited by irradiated light. 前記試料室が、前記試料セル中に収容されるべき試料の雰囲気を不活性ガス雰囲気に置換するためのガス入口及びガス出口を備えている、請求項9乃至12のいずれか1項に記載の物性評価装置。   The said sample chamber is equipped with the gas inlet and gas outlet for substituting the atmosphere of the sample which should be accommodated in the said sample cell with an inert gas atmosphere. Physical property evaluation device. 光照射手段としてレーザー光源を使用している、請求項10乃至13のいずれか1項に記載の物性評価装置。   The physical property evaluation apparatus according to claim 10, wherein a laser light source is used as the light irradiation unit. レーザー光源を300〜450nmとする、請求項14に記載の物性評価装置。   The physical property evaluation apparatus according to claim 14, wherein the laser light source is 300 to 450 nm.
JP2006100163A 2006-03-31 2006-03-31 Physical property evaluation method of sample, and physical property evaluating device of semiconductor material Pending JP2007271553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100163A JP2007271553A (en) 2006-03-31 2006-03-31 Physical property evaluation method of sample, and physical property evaluating device of semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100163A JP2007271553A (en) 2006-03-31 2006-03-31 Physical property evaluation method of sample, and physical property evaluating device of semiconductor material

Publications (1)

Publication Number Publication Date
JP2007271553A true JP2007271553A (en) 2007-10-18

Family

ID=38674491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100163A Pending JP2007271553A (en) 2006-03-31 2006-03-31 Physical property evaluation method of sample, and physical property evaluating device of semiconductor material

Country Status (1)

Country Link
JP (1) JP2007271553A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231341A (en) * 1988-03-11 1989-09-14 Nippon Telegr & Teleph Corp <Ntt> Device for evaluating semiconductor crystal
JPH01239863A (en) * 1988-03-18 1989-09-25 Agency Of Ind Science & Technol Evaluation of semiconductor and apparatus therefor
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal
JPH09152404A (en) * 1995-09-11 1997-06-10 Sumitomo Metal Mining Co Ltd Method of measuring defect density of semiconductor crystal and method of measuring defect density of half-insulating gaas crystal
JPH10300748A (en) * 1997-04-24 1998-11-13 Toyota Central Res & Dev Lab Inc Crystal structure inspection method of crystal macromolecule
JPH11274257A (en) * 1998-03-18 1999-10-08 Shin Etsu Handotai Co Ltd Method of evaluating defect of semiconductor crystal
JPH11343426A (en) * 1998-06-02 1999-12-14 Toray Ind Inc Photocatalytic coating
JP2005043132A (en) * 2003-07-24 2005-02-17 Tohoku Denshi Sangyo Kk Method and apparatus for measuring degree of oxidation of sample
JP2005337777A (en) * 2004-05-25 2005-12-08 Sumitomo Chemical Co Ltd Quantifying method of crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231341A (en) * 1988-03-11 1989-09-14 Nippon Telegr & Teleph Corp <Ntt> Device for evaluating semiconductor crystal
JPH01239863A (en) * 1988-03-18 1989-09-25 Agency Of Ind Science & Technol Evaluation of semiconductor and apparatus therefor
JPH05281141A (en) * 1992-03-30 1993-10-29 Mitsui Mining & Smelting Co Ltd Method and apparatus for photoluminescence measurement in crystal
JPH09152404A (en) * 1995-09-11 1997-06-10 Sumitomo Metal Mining Co Ltd Method of measuring defect density of semiconductor crystal and method of measuring defect density of half-insulating gaas crystal
JPH10300748A (en) * 1997-04-24 1998-11-13 Toyota Central Res & Dev Lab Inc Crystal structure inspection method of crystal macromolecule
JPH11274257A (en) * 1998-03-18 1999-10-08 Shin Etsu Handotai Co Ltd Method of evaluating defect of semiconductor crystal
JPH11343426A (en) * 1998-06-02 1999-12-14 Toray Ind Inc Photocatalytic coating
JP2005043132A (en) * 2003-07-24 2005-02-17 Tohoku Denshi Sangyo Kk Method and apparatus for measuring degree of oxidation of sample
JP2005337777A (en) * 2004-05-25 2005-12-08 Sumitomo Chemical Co Ltd Quantifying method of crystal

Similar Documents

Publication Publication Date Title
Dillon et al. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@ TiO 2 core–shell nanostructures
Rajput et al. Engineering metal oxide semiconductor nanostructures for enhanced charge transfer: fundamentals and emerging SERS applications
Bedja et al. Photoelectrochemistry of quantized WO3 colloids: electron storage, electrochromic, and photoelectrochromic effects
Gakhar et al. Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds
bo Zhong et al. Improved photocatalytic performance of Pd-doped ZnO
Alexander et al. Metal oxide photoanodes for solar hydrogen production
Yang et al. UV enhancement of the gas sensing properties of nano-TiO2
Sasikala et al. Improved photocatalytic activity of indium doped cadmium sulfide dispersed on zirconia
Xu et al. New insights into Ag-doped BiVO 4 microspheres as visible light photocatalysts
Impellizzeri et al. C ion-implanted TiO2 thin film for photocatalytic applications
Chatti et al. Near-infrared light triggered superior photocatalytic activity from MoS 2–NaYF 4: Yb 3+/Er 3+ nanocomposites
Yang et al. The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films
JP2007532449A (en) Method for surface modification of particles of TiO2 and other ceramic materials
Hsiao et al. Vapor treatment of nanocrystalline WO 3 photoanodes for enhanced photoelectrochemical performance in the decomposition of water
Tanabe et al. The effects of Au nanoparticle size (5–60 nm) and shape (sphere, rod, cube) over electronic states and photocatalytic activities of TiO 2 studied by far-and deep-ultraviolet spectroscopy
Nakajima et al. Influence of platinum loading on photoluminescence of TiO2 powder
Vequizo et al. Role of CoOx cocatalyst on Ta3N5 photocatalysts studied by transient visible to mid-infrared absorption spectroscopy
Shen et al. Optical absorption, photoelectrochemical, and ultrafast carrier dynamic investigations of TiO2 electrodes composed of nanotubes and nanowires sensitized with CdSe quantum dots
Schneider et al. Spectroscopic and kinetic characterization of photogenerated charge carriers in photocatalysts
Diesen et al. Silver enhanced TiO 2 thin films: photocatalytic characterization using aqueous solutions of tris (hydroxymethyl) aminomethane
Cottineau et al. Influence of the anatase/rutile ratio on the charge transport properties of TiO 2-NTs arrays studied by dual wavelength opto-electrochemical impedance spectroscopy
Thambidurai et al. ZnO nanocomposites containing Cd are synthesized with high photodegradation potential for wastewater treatment
Godiwal et al. Synthesis and growth mechanism of ZnO nanocandles using thermal evaporation and their efficient CO sensing performance
Liang et al. Ag 2 V 4 O 11 nanostructures for highly ethanol sensitive performance
Wang et al. Synthesis of free-standing Ta 3 N 5 nanotube membranes and flow-through visible light photocatalytic applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Effective date: 20110228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110920

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A02