JP2007271372A - Rotation sensor - Google Patents

Rotation sensor Download PDF

Info

Publication number
JP2007271372A
JP2007271372A JP2006095369A JP2006095369A JP2007271372A JP 2007271372 A JP2007271372 A JP 2007271372A JP 2006095369 A JP2006095369 A JP 2006095369A JP 2006095369 A JP2006095369 A JP 2006095369A JP 2007271372 A JP2007271372 A JP 2007271372A
Authority
JP
Japan
Prior art keywords
rotating body
measuring
rotation
rotator
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006095369A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawamura
佳弘 川村
Hisato Kobayashi
久人 小林
Akira Noguchi
晃 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006095369A priority Critical patent/JP2007271372A/en
Publication of JP2007271372A publication Critical patent/JP2007271372A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Steering Controls (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotation sensor capable of preventing detection from being affected by the backlash of gears or the like as much as possible, and excellent in detection precision. <P>SOLUTION: The rotation sensor measures a rotation angle of a rotator 50 to be measured by using measuring rotors other than the rotator, and is provided with a first measuring rotator 10 which rotates with a number of revolutions approximately the same as that of the rotator to be measured, and a second measuring rotator 20 which rotates being interlocked with the first body by a number of revolutions smaller than that of the first body. The rotator to be measured and the first measuring rotator are united with gears, the first measuring rotator and the second rotator are united with gears, and the second measuring rotator intermittently rotates with the rotation of the first measuring rotator. In each measuring rotor, a permanent magnet having a radial magnetic field is arranged at the center, and moreover a predetermined number of magnetic field detecting elements are arranged respectively at spots where changes in the radial direction in a magnetic field generated by each magnet can be detected, independently of the rotation of the measuring rotators. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転体の回転角度を検出するのに使用される回転センサに関する。   The present invention relates to a rotation sensor used for detecting a rotation angle of a rotating body.

例えば、自動車のステアリングシャフトなどの回転シャフトに取付けてこのシャフトと一体になったハンドルの回転角度を検出するのにいわゆる回転センサが使用される。   For example, a so-called rotation sensor is used to detect a rotation angle of a handle attached to a rotating shaft such as a steering shaft of an automobile and integrated with the shaft.

そして、360°以上回転する対象物の回転角度を、当該対象物以外の2つの回転体を用いて測定する技術は、例えば特許文献1に開示されている。   And the technique which measures the rotation angle of the target object rotated 360 degrees or more using two rotary bodies other than the said target object is disclosed by patent document 1, for example.

かかる回転センサは、歯数の多い主回転体と、この主回転体より歯数が少なくかつ互いの歯数の差が1つである2つの副回転体を備えている。また、回転角度検出のためのセンサが各副回転体に設けられ、2つの副回転体の回転角度をそれぞれ測定するようになっている。そして、センサで検出された各副回転体の回転角度から主回転体の回転角度を求めている。
特表平11−500828号公報(第6−7頁、図1)
Such a rotation sensor includes a main rotating body having a large number of teeth and two sub-rotating bodies having a smaller number of teeth than the main rotating body and one difference in the number of teeth. In addition, a sensor for detecting the rotation angle is provided in each sub-rotor, and the rotation angles of the two sub-rotators are respectively measured. Then, the rotation angle of the main rotor is obtained from the rotation angle of each sub-rotator detected by the sensor.
Japanese National Patent Publication No. 11-500828 (page 6-7, FIG. 1)

特許文献1に記載された回転センサは、対象物の回転角度を当該対象物と歯車で噛合せた2つの回転体の位相差により検出するようになっている。具体的には、各副回転体に備わった角度センサに基づいて第1の副回転体の回転角度と第2の副回転体の回転角度を測定する。そして、角度センサの周期性、第1の副回転体の歯数、第1の副回転体の歯数と一つだけ異なる第2の副回転体の歯数、及びこれらの定数によって所定の係数を求めて、この係数、定数、測定値から主回転体の回転角度を求めるようになっている。しかしながら、このようなそれぞれがギアを介して噛合わされると共に、主回転体と3つの回転体間の位相差で主回転体の回転角度を検出する回転センサでは、歯車のバックラッシが、主回転体と第1の副回転体との間、主回転体と第2の副回転体との間で起こり、それぞれが回転角度の誤差として影響しあう。即ち、3つの回転体間の歯車のバックラッシが重畳して主回転体の検出精度に影響を与え易くなるため、検出精度を高くすることが難しくなる。   The rotation sensor described in Patent Document 1 detects the rotation angle of an object based on a phase difference between two rotating bodies that mesh with the object with a gear. Specifically, the rotation angle of the first sub-rotor and the rotation angle of the second sub-rotor are measured based on an angle sensor provided in each sub-rotor. The predetermined coefficient is determined by the periodicity of the angle sensor, the number of teeth of the first sub-rotating body, the number of teeth of the second sub-rotating body that differs from the number of teeth of the first sub-rotating body by one, and these constants. And the rotation angle of the main rotor is obtained from the coefficient, constant, and measured value. However, in such a rotation sensor that meshes with each other via a gear and detects the rotation angle of the main rotor by the phase difference between the main rotor and the three rotors, the backlash of the gear is Between the main rotating body and the first sub-rotating body, and between the main rotating body and the second sub-rotating body, and each affects as a rotation angle error. That is, since the gear backlash between the three rotating bodies is superimposed and it is easy to affect the detection accuracy of the main rotating body, it is difficult to increase the detection accuracy.

本発明の目的は、歯車のバックラッシ等の影響を極力受けず、検出精度に優れた回転センサを提供することにある。   An object of the present invention is to provide a rotation sensor that is not affected by the backlash of a gear as much as possible and has excellent detection accuracy.

上述の課題を解決するために、本発明にかかる回転センサは、被測定用回転体の回転角度を当該被測定用回転体以外の測定用回転体を用いて測定する回転センサにおいて、
前記被測定用回転体と連動して当該被測定用回転体とほぼ同一の回転数で回転する第1の測定用回転体と、前記第1の測定用回転体と連動して回転し、回転数が当該第1の測定用回転体より小さい第2の測定用回転体を備え、
前記被測定用回転体と第1の測定用回転体が歯車で連結され、
前記第2の測定用回転体はゼネバ歯車からなり、前記第1の測定用回転体の回転に伴って間欠的に回転し、
前記第1の測定用回転体及び第2の測定用回転体には、径方向磁界を有する永久磁石がそれぞれの中心に配置され、更に各永久磁石が発生する磁界の径方向の変化を検出可能な箇所に所定数の磁界検出素子が前記第1及び第2の測定用回転体の回転と独立してそれぞれ配置され、
前記磁界検出素子の出力を用いて前記第1の測定用回転体の回転角度及び第2の測定用回転体の回転数を検出することにより被測定用回転体の回転角度を測定することを特徴としている。
In order to solve the above-mentioned problems, a rotation sensor according to the present invention is a rotation sensor that measures a rotation angle of a rotating body to be measured using a measuring rotating body other than the rotating body to be measured.
A first measurement rotating body that rotates at approximately the same rotational speed as the measurement rotating body in conjunction with the measurement rotating body, and a rotation that rotates in conjunction with the first measurement rotating body. A second measuring rotator whose number is smaller than the first measuring rotator,
The rotating body for measurement and the first rotating body for measurement are connected by a gear,
The second measuring rotator is composed of a Geneva gear, and rotates intermittently with the rotation of the first measuring rotator.
A permanent magnet having a radial magnetic field is arranged at the center of each of the first measuring rotating body and the second measuring rotating body, and further, a change in the radial direction of the magnetic field generated by each permanent magnet can be detected. A predetermined number of magnetic field detection elements are respectively arranged at different positions independently of the rotation of the first and second rotating bodies for measurement,
The rotation angle of the rotation body to be measured is measured by detecting the rotation angle of the first measurement rotation body and the rotation number of the second measurement rotation body using the output of the magnetic field detection element. It is said.

また、本発明の請求項2に記載の回転センサは、請求項1に記載の回転センサにおいて、前記磁気検出素子は、ホール素子であることを特徴としている。   A rotation sensor according to a second aspect of the present invention is the rotation sensor according to the first aspect, wherein the magnetic detection element is a Hall element.

また、本発明の請求項3に記載の回転センサは、請求項1又は請求項2に記載の回転センサにおいて、前記磁気検出素子は、磁気抵抗素子(MR素子)であることを特徴としている。   The rotation sensor according to claim 3 of the present invention is the rotation sensor according to claim 1 or 2, wherein the magnetic detection element is a magnetoresistive element (MR element).

このような回転センサを用いることで、従来型の回転センサのように3つの回転体間の位相差で回転数を検出する方法を取らずに済み、かつ歯車のバックラッシの影響を極力受けることなく、検出精度の高い回転センサとすることができる。   By using such a rotation sensor, it is not necessary to take a method of detecting the rotation speed by the phase difference between the three rotating bodies as in the conventional rotation sensor, and without being affected by the backlash of the gear as much as possible. Thus, a rotation sensor with high detection accuracy can be obtained.

また、磁気検出素子をホール素子または磁気抵抗素子(MR素子)とすることで、検出精度の高い回転センサを容易に実現することができる。   In addition, by using a Hall element or a magnetoresistive element (MR element) as the magnetic detection element, a rotation sensor with high detection accuracy can be easily realized.

本発明によると、歯車のバックラッシ等の影響を極力受けず、検出精度に優れた回転センサを提供することができる。   According to the present invention, it is possible to provide a rotation sensor that is not affected by gear backlash as much as possible and has excellent detection accuracy.

以下、本発明の一実施形態にかかる回転センサを図面に基いて説明する。なお、本説明においては自動車のステアリング装置においてこの回転センサをステアリングシャフトに取付けてハンドルの回転角度を検出する場合について説明する。従って、ステアリングシャフトの回転範囲である−900°〜+900°のうちの絶対回転角度を本実施形態にかかる回転センサで求める。   Hereinafter, a rotation sensor according to an embodiment of the present invention will be described with reference to the drawings. In this description, a case will be described in which a rotation angle of a steering wheel is detected by attaching the rotation sensor to a steering shaft in an automobile steering device. Therefore, the absolute rotation angle in the range of −900 ° to + 900 ° that is the rotation range of the steering shaft is obtained by the rotation sensor according to the present embodiment.

図1は、本発明の一実施形態にかかる回転センサの内部構造を概略的に示した平面図である。また、図2は本実施形態における回転センサの概略ブロック構成を示している。   FIG. 1 is a plan view schematically showing the internal structure of a rotation sensor according to an embodiment of the present invention. FIG. 2 shows a schematic block configuration of the rotation sensor in the present embodiment.

本発明の一実施形態にかかる回転センサ1は、図1及び図2に示すように、回転するシャフトSに取付けられ、周囲に1次歯車が形成された主回転体50と、主回転体50と同一の回転数で回転するように主回転体50の歯数と等しい歯数の歯車が全周に形成され、かつこの歯車と主回転体50の歯車が常に噛み合った第1の測定用回転体10と、第1の測定用回転体10の回転数を測定するゼネバ歯車で構成された第2の測定用回転体20と、これらの回転体10,20,50を収容保持するとともに外部からの磁界の影響を遮断するケース30を備えている。そして、第1の測定用回転体10と第2の測定用回転体20には、各回転体10,20の径方向に磁界を生じかつ回転体の周方向に磁界の強さが変化するようになった永久磁石15,25がそれぞれの測定用回転体10,20の中心に配置されている。   As shown in FIGS. 1 and 2, a rotation sensor 1 according to an embodiment of the present invention is attached to a rotating shaft S, and a main rotor 50 having a primary gear formed around it, and a main rotor 50. A gear having the same number of teeth as the number of teeth of the main rotor 50 is formed on the entire circumference so as to rotate at the same number of rotations, and the first rotation for measurement in which this gear and the gear of the main rotor 50 are always meshed. A body 10, a second measuring rotor 20 composed of a Geneva gear for measuring the number of revolutions of the first measuring rotor 10, and housing and holding these rotors 10, 20, 50 and from the outside The case 30 is provided to block the influence of the magnetic field. The first measurement rotator 10 and the second measurement rotator 20 generate a magnetic field in the radial direction of each of the rotators 10 and 20 and the strength of the magnetic field changes in the circumferential direction of the rotator. The permanent magnets 15 and 25 are arranged at the centers of the respective measurement rotating bodies 10 and 20.

更に、ケース30には磁界検出素子配置用基板40が固定され、ケース上の所定位置には、第1の測定用回転体10及び第2の測定用回転体20に配置された永久磁石15,25が発生する磁界の径方向の変化をそれぞれ検出可能な磁界検出素子31〜34,36〜39が各測定用回転体10,20の周方向に4個ずつ隣接する磁界検出素子がそれぞれ90°の角度をなすように配置されている。この磁界検出素子31〜34,36〜39として、ホール素子、磁気抵抗素子(MR素子)などを用いることができる。実際にはどちらを用いてもよいが、ホール素子を用いた場合は、素子自体で磁界の大きさの成分だけでなく向きの成分も検出可能となるため、素子の数を減らすことができるなどの利点もある。以下、本実施形態では、磁界検出素子としてホール素子を用いた場合について説明する。   Further, a magnetic field detection element arrangement substrate 40 is fixed to the case 30, and the permanent magnets 15 arranged on the first measurement rotary body 10 and the second measurement rotary body 20 are disposed at predetermined positions on the case. Magnetic field detection elements 31 to 34 and 36 to 39 each capable of detecting a change in the radial direction of the magnetic field generated by each of the four magnetic field detection elements adjacent to each other in the circumferential direction of each of the measurement rotating bodies 10 and 20 are each 90 °. It is arranged to make an angle. As the magnetic field detection elements 31 to 34 and 36 to 39, Hall elements, magnetoresistive elements (MR elements), or the like can be used. In practice, either one can be used. However, when a Hall element is used, the element itself can detect not only the magnitude component of the magnetic field but also the direction component, so the number of elements can be reduced. There are also advantages. Hereinafter, in the present embodiment, a case where a Hall element is used as the magnetic field detection element will be described.

即ち、本実施形態の回転センサ1の第1の測定用回転体10は、主回転体50の1次歯車(図示せず)とほぼ1:1の回転比で回転する2次歯車(図示せず)を有している。この構成による回転伝達誤差は、主に歯車間のバックラッシによって生じるものであるが、本実施形態の回転センサ1においては、歯車間のバックラッシは1次歯車と2次歯車との間のみで発生し、他の歯車間のバックラッシの影響を受けないため、結果として特許文献1に記載された回転センサほどバックラッシの影響を受けることはない。   That is, the first measuring rotating body 10 of the rotation sensor 1 of the present embodiment is rotated with a primary gear (not shown) of the main rotating body 50 at a rotation ratio of approximately 1: 1 with a secondary gear (not shown). Z). The rotation transmission error due to this configuration is mainly caused by the backlash between the gears. However, in the rotation sensor 1 of the present embodiment, the backlash between the gears occurs only between the primary gear and the secondary gear. Since it is not affected by the backlash between the other gears, as a result, it is not as affected by the backlash as the rotation sensor described in Patent Document 1.

また、第1の測定用回転体10の中央には当該回転体の径方向に磁界を生じかつ回転体の周方向に磁界の強さが変化するようになった永久磁石15を備え、基板上に配置されている4つのホール素子31〜34の出力信号をマイコン(図示せず)で処理し、第1の測定用回転体10、即ち被測定用回転体50の0゜〜360゜の小角度を要求される分解能(例えば0.1゜,0.5°など)で検出するようになっている。   Further, the center of the first measuring rotator 10 is provided with a permanent magnet 15 which generates a magnetic field in the radial direction of the rotator and whose magnetic field strength changes in the circumferential direction of the rotator. The output signals of the four Hall elements 31 to 34 arranged in the circuit are processed by a microcomputer (not shown), and the first measuring rotating body 10, that is, the rotating body 50 to be measured, has a small angle of 0 ° to 360 °. The angle is detected with a required resolution (for example, 0.1 °, 0.5 °, etc.).

また、第1の測定用回転体10の円周方向所定位置には後述する第2の測定用回転体20であるゼネバ歯車(図1では概略的に図示)の周囲に形成された切り欠き部20a〜20eに間欠的に係合する送りピン11が備わり、図1に示すように第1の測定用回転体10の各回転に応じてゼネバ歯車である第2の測定用回転体20を間欠的に送るようになっている。   Further, a notch portion formed around a Geneva gear (schematically shown in FIG. 1), which is a second measuring rotating body 20 described later, at a predetermined circumferential position of the first measuring rotating body 10. A feed pin 11 that intermittently engages with 20a to 20e is provided, and the second measuring rotating body 20 that is a Geneva gear is intermittently provided according to each rotation of the first measuring rotating body 10 as shown in FIG. To be sent.

なお、第1の測定用回転体10において上述の実施形態の代わりに2つのホール素子だけを備えてこれらの差動信号を利用し、検出精度確保のため、正弦波信号の直流レベル及び温度による変動をできるだけ小さく抑えることで第1の測定用回転体10の小角度を算出することも可能である。   Note that the first measurement rotator 10 includes only two Hall elements instead of the above-described embodiment, uses these differential signals, and depends on the DC level and temperature of the sine wave signal to ensure detection accuracy. It is also possible to calculate the small angle of the first measurement rotating body 10 by suppressing the fluctuation as small as possible.

従って、第1の測定用回転体10の周囲には、少なくとも2つのホール素子を180°の対向配置を除く周方向所定間隔隔てて配置すれば良く、必ずしも本実施形態のように周方向4つのホール素子を配置する必要はない。この場合、磁界検出素子としてホール素子の他、磁気抵抗素子(MR素子)なども同様に利用することができる。   Accordingly, at least two Hall elements may be arranged around the first measurement rotating body 10 at a predetermined interval in the circumferential direction excluding the opposing arrangement of 180 °, and there are not necessarily four circumferential directions as in the present embodiment. There is no need to arrange a Hall element. In this case, a magnetoresistive element (MR element) or the like can be used in the same manner as the magnetic field detecting element.

また、第2の測定用回転体20は上述したように、ゼネバ歯車で構成された周方向に第1の測定用回転体10の送りピン11と係合する切り欠き部20a〜20eが5箇所形成されている。   Further, as described above, the second measurement rotating body 20 has five notches 20a to 20e that engage with the feed pin 11 of the first measurement rotating body 10 in the circumferential direction constituted by the Geneva gear. Is formed.

また、第2の測定用回転体20には中心に上述した特性の磁石を備えたゼネバ歯車を用い、このゼネバ歯車の周囲のケース上に4個のホール素子を配置している。   The second measuring rotator 20 uses a Geneva gear having the above-mentioned magnet at the center, and four Hall elements are arranged on a case around the Geneva gear.

これによって、第2の測定用回転体20の中央に回転体の径方向に磁界を生じかつ回転体の周方向に磁界の強さが変化するようになった永久磁石25を備え、基板上に配置されている4つのホール素子36〜39の出力信号をマイコン(図示せず)で処理し、第2の測定用回転体20の回転角度から第1の測定用回転体10、即ち被測定用回転体50の回転数を検出するようになっている。   As a result, a permanent magnet 25 that generates a magnetic field in the radial direction of the rotating body and changes the strength of the magnetic field in the circumferential direction of the rotating body at the center of the second measuring rotating body 20 is provided on the substrate. The output signals of the four hall elements 36 to 39 arranged are processed by a microcomputer (not shown), and the first measuring rotating body 10, that is, the object to be measured is determined from the rotation angle of the second measuring rotating body 20. The number of rotations of the rotating body 50 is detected.

具体的には、図4下段に示すように、第2の測定用回転体20が間欠的に送られることで、ホール素子36〜39の出力が段階的に変化するようになるが、このような出力の段階的変化によって主回転体50が−900°〜+900°のうち第1回転から第5回転の何れかの回転数に属しているかを検出することが可能となる。   Specifically, as shown in the lower part of FIG. 4, the output of the Hall elements 36 to 39 changes stepwise by intermittently sending the second measurement rotating body 20. It is possible to detect whether the main rotator 50 belongs to any rotation number from the first rotation to the fifth rotation among −900 ° to + 900 ° by the step change of the output.

なお、この第2の測定用回転体20とホール素子36〜39による被測定用回転体50の回転数検出にあたっても、2つのホール素子を180°の対向位置以外の第2の測定用回転体の周方向所定位置に備えてこれらの差動信号を利用し、検出精度確保のため、段階的信号の直流レベル及び温度による変動をできるだけ小さく抑えることで第1の測定用回転体10の回転数、即ち被測定用回転体50の回転数を算出することも可能である。   It should be noted that, in detecting the number of rotations of the rotating body to be measured 50 by the second measuring rotating body 20 and the Hall elements 36 to 39, the two measuring elements other than the 180 ° opposing positions are used as the second measuring rotating body. In order to ensure detection accuracy by using these differential signals at predetermined positions in the circumferential direction, the rotational speed of the first measuring rotating body 10 is suppressed by minimizing fluctuations due to the DC level and temperature of the stepwise signal. That is, it is also possible to calculate the rotation speed of the rotating body 50 to be measured.

従って、第2の測定用回転体20の周囲には、間欠送りのための切り欠き部が周方向全体にわたって所定間隔で形成されている場合、少なくとも2つのホール素子を周方向所定間隔隔てて配置すれば良く、必ずしも本実施形態のように周方向4つのホール素子を配置する必要はない。   Accordingly, when notches for intermittent feeding are formed at predetermined intervals around the entire circumference in the periphery of the second measurement rotating body 20, at least two Hall elements are arranged at predetermined intervals in the circumferential direction. There is no need to arrange the four Hall elements in the circumferential direction as in this embodiment.

続いて、以上の構成を有する回転センサ1による被測定用回転体50の絶対回転角度の検出方法について説明する。なお、図3は上述の実施形態における被測定用回転体50の絶対回転角度算出用のフローチャートである。   Next, a method for detecting the absolute rotation angle of the rotating body to be measured 50 by the rotation sensor 1 having the above configuration will be described. FIG. 3 is a flowchart for calculating the absolute rotation angle of the rotating body to be measured 50 in the above-described embodiment.

本実施形態の回転センサは、図1に示すように1次歯車を備えたロータが主回転体50として回転シャフトSに直接嵌め込まれて被測定用回転体50を構成しているため、1次歯車は完全にシャフトSの回転と同期できる。   As shown in FIG. 1, the rotation sensor of the present embodiment constitutes a rotating body for measurement 50 because a rotor having a primary gear is directly fitted into a rotating shaft S as a main rotating body 50. The gear can be completely synchronized with the rotation of the shaft S.

被測定用回転体50である主回転体の絶対回転角度を求めるにあたって、まず、主回転体50と同一の回転数で回転する第1の測定用回転体10に備わった磁石15とホール素子31〜34から、主回転体50の0゜〜+360゜の小角度範囲の回転角度検出を行う。   In obtaining the absolute rotation angle of the main rotating body that is the rotating body 50 to be measured, first, the magnet 15 and the Hall element 31 provided in the first measuring rotating body 10 that rotates at the same rotational speed as the main rotating body 50. From 34, the rotation angle of the main rotating body 50 in the small angle range of 0 ° to + 360 ° is detected.

なお、360゜周期を有し、かつ互いに90゜の位相差を有する4つの正弦波信号から図4上段に示す360゜の絶対角度信号を算出する方法は既に多く実用化されている。   Many methods for calculating a 360 ° absolute angle signal shown in the upper part of FIG. 4 from four sine wave signals having a period of 360 ° and having a phase difference of 90 ° are already in practical use.

本実施形態においては、この方法を実施するための一形態であるホール素子31〜34を第1の測定用回転体10の周方向に90°の角度をなして等間隔に基板40に配置しているので、互いに90°の位相差を有する4つの正弦波信号が第1の測定用回転体10の回転によって得られる。   In the present embodiment, Hall elements 31 to 34, which are one form for carrying out this method, are arranged on the substrate 40 at equal intervals at an angle of 90 ° in the circumferential direction of the first measurement rotating body 10. Therefore, four sine wave signals having a phase difference of 90 ° are obtained by the rotation of the first measurement rotating body 10.

そして、互いに90°の位相差を有する4つの正弦波信号のプラスの立ち上がり部分を用いるとともに、各正弦波信号の大小関係を比較して、各正弦波信号の立ち上がり部分をジョイントした図4上段に示すような直線上の0°〜+360°の回転角度検出用出力を得る。そして、これにより被測定用回転体の0°〜+360°のうちの小角度を算出する(ステップS1)。   Then, while using the positive rising portions of the four sine wave signals having a phase difference of 90 ° from each other, the magnitude relation of each sine wave signal is compared, and the upper portion of FIG. A rotation angle detection output of 0 ° to + 360 ° on a straight line as shown is obtained. Then, a small angle is calculated from 0 ° to + 360 ° of the rotating body to be measured (step S1).

なお、この段階では、主回転体50が−900°〜+900°のうち、何回転目にあるかを把握できない。従って、ゼネバ歯車からなる第2の測定用回転体20とホール素子36〜39を用いて主回転体50の回転数が何回転目にあるかを検出する。   Note that at this stage, it is not possible to grasp how many rotations the main rotor 50 is in the range of −900 ° to + 900 °. Therefore, it is detected how many rotations of the main rotating body 50 are using the second measuring rotating body 20 formed of a Geneva gear and the Hall elements 36 to 39.

なお、図4下段の段階的信号は、ゼネバ歯車からなる第2の測定用回転体20の間欠的回転に伴うホール素子36〜39のうち例えば互いに周方向180°の角度をなして対向配置されていない2つのホール素子の組み合わせから得られた出力信号を示している。図4下段に示される出力信号は電圧として示され、0.5V〜4.5Vの間で1V単位で変化する波形が示されるが、それ以外の波形となるようにしてもよい。   Note that the stepped signals in the lower stage of FIG. 4 are arranged to face each other, for example, at an angle of 180 ° in the circumferential direction among the Hall elements 36 to 39 accompanying the intermittent rotation of the second measuring rotating body 20 formed of a Geneva gear. An output signal obtained from a combination of two Hall elements that is not shown. The output signal shown in the lower part of FIG. 4 is shown as a voltage, and shows a waveform that changes in units of 1 V between 0.5 V and 4.5 V. However, other waveforms may be used.

この段階的信号を利用して、第2の測定用回転体20とホール素子36〜39とから第1の測定用回転体10、即ち主回転体50が絶対回転角度−900°〜+900°で規定される1回転〜5回転のうちのどの回転数に属するかを検出する。   By using this stepwise signal, the first measurement rotator 10, that is, the main rotator 50, has an absolute rotation angle of −900 ° to + 900 ° from the second measurement rotator 20 and the Hall elements 36 to 39. The number of rotations belonging to the specified 1 to 5 rotations is detected.

具体的には、この主回転体50の回転数検出にあたって、本実施形態の場合、第1の測定用回転体10の回転を間欠的に回転させるゼネバ歯車で形成された第2の測定用回転体20の回転角度を第1の測定用回転体10と同様の方法で4つのホール素子36〜39のうち必要な数のホール素子の組み合わせから測定する。   Specifically, in detecting the number of rotations of the main rotating body 50, in the case of the present embodiment, the second measuring rotation formed by a Geneva gear that intermittently rotates the rotation of the first measuring rotating body 10. The rotation angle of the body 20 is measured from a combination of a required number of Hall elements among the four Hall elements 36 to 39 in the same manner as the first measurement rotating body 10.

即ち、径方向磁界を有する永久磁石25を回転させ、永久磁石25の周囲に90°間隔に配置した4個のホール素子36〜39のうちの必要な数の組み合わせの出力によって本実施形態の場合360゜周期を持つ4つの段階的信号を出力する。   That is, in the case of the present embodiment, the permanent magnet 25 having a radial magnetic field is rotated, and a necessary number of combinations of the four Hall elements 36 to 39 arranged at intervals of 90 ° around the permanent magnet 25 are output. It outputs four step signals with a 360 ° period.

そして、第1の測定用回転体10よりも減速された第2の測定用回転体20の回転に伴うホール素子36〜39を利用して、−900゜〜+900゜の角度範囲のうち、第1回転から第5回転の何れかに主回転体が属しているか、即ち主回転体50のいずれの回転数にあるかを5段階で算出する(ステップS2)。   Then, by using the Hall elements 36 to 39 accompanying the rotation of the second measuring rotating body 20 that is decelerated from the first measuring rotating body 10, out of the angular range of −900 ° to + 900 °, Whether the main rotating body belongs to any one of the first to fifth rotations, that is, the number of rotations of the main rotating body 50 is calculated in five stages (step S2).

そして、この主回転体50の回転数信号と既に算出した主回転体50の0°〜+360°のうちの小角度信号の検出結果を組み合わせることで、主回転体50が−900°〜+900°のうち、第1回転から第5回転のいずれの回転数にあるかと、その回転数における0°〜360°の何れかの小角度にあるのかを求める。これによって、被測定用回転体50の絶対回転角度を算出することができる(ステップS3)。   Then, by combining the rotation number signal of the main rotor 50 and the detection result of the small angle signal of 0 ° to + 360 ° of the main rotor 50 that has already been calculated, the main rotor 50 is −900 ° to + 900 °. Among these, it is determined whether the rotation speed is from the first rotation to the fifth rotation and the small rotation angle of 0 ° to 360 ° at the rotation speed. Thereby, the absolute rotation angle of the rotating body 50 to be measured can be calculated (step S3).

なお、ホール素子31〜34,36〜39は、第1の測定用回転体10である同速歯車、第2の測定用回転体20であるゼネバ歯車とも2個乃至4個配置される。そして、2個又は4個の場合は周方向の90゜の角度をなして配置することが望ましい。   Two to four Hall elements 31 to 34 and 36 to 39 are arranged for the same speed gear as the first measurement rotating body 10 and the Geneva gear as the second measurement rotating body 20. In the case of two or four, it is desirable to arrange them at an angle of 90 ° in the circumferential direction.

ホール素子が例えば2個だけ周方向90°の角度をなして配置される場合は、各ホール素子の正弦波信号の出力を反転させることで、合計4つの正弦波信号を得、これらの正弦波信号の出力の組み合わせから第1の測定用回転体10とホール素子31〜34の出力0°〜360°の小角度や第2の測定用回転体20とホール素子36〜39の出力から主回転体50の第1回転から第5回転のうちのいずれの回転数にあるかを求めることができる。   For example, when only two Hall elements are arranged at an angle of 90 ° in the circumferential direction, a total of four sine wave signals are obtained by inverting the output of the sine wave signal of each Hall element. From the combination of signal outputs, the main rotation is determined from the small output of 0 ° to 360 ° of the first measuring rotator 10 and the Hall elements 31 to 34 and the output of the second measuring rotator 20 and the Hall elements 36 to 39. It can be determined which of the first to fifth rotations of the body 50 is present.

以上、説明したように本発明による回転センサを用いることで、従来型の回転センサのように3つの回転体間の位相差で回転数を検出する方法を取らずに済み、かつ、歯車のバックラッシの影響を極力受けず、検出精度を高めることができる。   As described above, by using the rotation sensor according to the present invention, it is not necessary to take a method of detecting the rotation speed by the phase difference between the three rotating bodies as in the conventional rotation sensor, and the backlash of the gear is eliminated. As a result, the detection accuracy can be improved.

なお、上述した実施形態においてはゼネバ歯車にホール素子を4個配置したが、例えば、ゼネバ歯車の周方向180°以内に第1の回転体の回転数を検出するのに十分な数のゼネバ歯車間欠送り用切り欠き部が周方向所定間隔で形成されていれば、1つのホール素子だけを配置してゼネバ歯車の180度以内の回転角度を検出することで第1の測定用回転体の回転数を検出することも可能である。   In the above-described embodiment, four Hall elements are arranged in the Geneva gear. For example, a sufficient number of Geneva gears to detect the number of rotations of the first rotating body within 180 ° in the circumferential direction of the Geneva gear. If the notch portions for intermittent feeding are formed at predetermined intervals in the circumferential direction, the rotation of the first measuring rotating body can be performed by detecting the rotation angle within 180 degrees of the Geneva gear by arranging only one Hall element. It is also possible to detect the number.

また、本実施形態のようにゼネバ歯車の周方向に第1の測定用回転体の回転数を検出するのに十分な数のゼネバ歯車間欠送り用切り欠き部が周方向所定間隔で形成されているのであれば、周方向180度をなす互いに対向する位置以外に2つのホール素子を配置するだけでも、ゼネバ歯車の360度の回転角度を検出することができ、これによって第1の測定用回転体の回転数を検出することが可能となる。この場合、磁界検出素子としてホール素子の他、磁気抵抗素子(MR素子)なども同様に利用することができる。   Further, as in this embodiment, a sufficient number of Geneva gear intermittent feed notches for detecting the rotational speed of the first measuring rotor in the circumferential direction of the Geneva gear are formed at predetermined intervals in the circumferential direction. If it is, the rotation angle of 360 degrees of the Geneva gear can be detected only by arranging two Hall elements other than the mutually opposing positions forming the circumferential direction of 180 degrees. It becomes possible to detect the number of rotations of the body. In this case, a magnetoresistive element (MR element) or the like can be used in the same manner as the magnetic field detecting element.

本発明にかかる回転センサは、振動の影響をかなり受け易い車両用ステアリング装置の回転角度検出に特に適している。しかしながら、本発明にかかる回転センサは、例えば、ロボットアームのように振動しながら回転する回転軸間の相対回転角度や回転トルクを求めるものであれば、どのようなものにも適用可能である。   The rotation sensor according to the present invention is particularly suitable for detecting the rotation angle of a vehicle steering apparatus that is quite susceptible to vibration. However, the rotation sensor according to the present invention can be applied to any sensor as long as it obtains the relative rotation angle and rotation torque between rotating shafts that rotate while vibrating, such as a robot arm.

本発明の一実施形態にかかる回転センサの内部構造を概略的に示した平面図である。It is the top view which showed roughly the internal structure of the rotation sensor concerning one Embodiment of this invention. 本発明の実施形態における概略ブロック図を示した図である。It is the figure which showed the schematic block diagram in embodiment of this invention. 本発明の実施形態における絶対回転角度算出用のフローチャートを示した図である。It is the figure which showed the flowchart for absolute rotation angle calculation in embodiment of this invention. 図1に示した回転センサの主回転体の絶対回転角度の検出方法を説明する図である。It is a figure explaining the detection method of the absolute rotation angle of the main rotary body of the rotation sensor shown in FIG.

符号の説明Explanation of symbols

1 回転センサ
10 第1の測定用回転体
11 送りピン
15 永久磁石
20 第2の測定用回転体
20a〜20e 切り欠き部
25 永久磁石
30 ケース
31〜34,36〜39 磁界検出素子
40 基板
50 被測定用回転体(主回転体)
S シャフト
DESCRIPTION OF SYMBOLS 1 Rotation sensor 10 1st measurement rotary body 11 Feed pin 15 Permanent magnet 20 2nd measurement rotary body 20a-20e Notch 25 Permanent magnet 30 Case 31-34, 36-39 Magnetic field detection element 40 Substrate 50 Covered Rotating body for measurement (main rotating body)
S shaft

Claims (3)

被測定用回転体の回転角度を当該被測定用回転体以外の測定用回転体を用いて測定する回転センサにおいて、
前記被測定用回転体と連動して当該被測定用回転体とほぼ同一の回転数で回転する第1の測定用回転体と、前記第1の測定用回転体と連動して回転し、回転数が当該第1の測定用回転体より小さい第2の測定用回転体を備え、
前記被測定用回転体と前記第1の測定用回転体が歯車で連結され、
前記第1の測定用回転体と前記第2の測定用回転体が歯車で連結され、前記第2の測定用回転体は前記第1の測定用回転体の回転に伴って間欠的に回転し、
前記第1の測定用回転体及び第2の測定用回転体には、径方向磁界を有する永久磁石がそれぞれの中心に配置され、更に各永久磁石が発生する磁界の径方向の変化を検出可能な箇所に所定数の磁界検出素子が前記第1及び第2の測定用回転体の回転と独立してそれぞれ配置され、
前記磁界検出素子の出力を用いて前記第1の測定用回転体の回転角度及び第2の測定用回転体の回転数を検出することにより、被測定用回転体の絶対回転角度を測定することを特徴とする回転センサ。
In the rotation sensor that measures the rotation angle of the rotating body to be measured using a measuring rotating body other than the rotating body to be measured,
A first measurement rotating body that rotates at approximately the same rotational speed as the measurement rotating body in conjunction with the measurement rotating body, and a rotation that rotates in conjunction with the first measurement rotating body. A second measuring rotator whose number is smaller than the first measuring rotator,
The rotating body for measurement and the first rotating body for measurement are connected by a gear,
The first measuring rotating body and the second measuring rotating body are connected by a gear, and the second measuring rotating body rotates intermittently with the rotation of the first measuring rotating body. ,
A permanent magnet having a radial magnetic field is arranged at the center of each of the first measuring rotating body and the second measuring rotating body, and further, a change in the radial direction of the magnetic field generated by each permanent magnet can be detected. A predetermined number of magnetic field detection elements are respectively arranged at different positions independently of the rotation of the first and second rotating bodies for measurement,
By measuring the rotation angle of the first measurement rotating body and the rotation number of the second measurement rotating body using the output of the magnetic field detection element, the absolute rotation angle of the rotating body to be measured is measured. A rotation sensor.
前記磁気検出素子は、ホール素子であることを特徴とする、請求項1に記載の回転センサ。   The rotation sensor according to claim 1, wherein the magnetic detection element is a Hall element. 前記磁気検出素子は、磁気抵抗素子であることを特徴とする、請求項1に記載の回転センサ。   The rotation sensor according to claim 1, wherein the magnetic detection element is a magnetoresistive element.
JP2006095369A 2006-03-30 2006-03-30 Rotation sensor Pending JP2007271372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095369A JP2007271372A (en) 2006-03-30 2006-03-30 Rotation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095369A JP2007271372A (en) 2006-03-30 2006-03-30 Rotation sensor

Publications (1)

Publication Number Publication Date
JP2007271372A true JP2007271372A (en) 2007-10-18

Family

ID=38674333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095369A Pending JP2007271372A (en) 2006-03-30 2006-03-30 Rotation sensor

Country Status (1)

Country Link
JP (1) JP2007271372A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063209A (en) * 2016-10-14 2018-04-19 ミネベアミツミ株式会社 Absolute encoder
JPWO2021206109A1 (en) * 2020-04-08 2021-10-14

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061428A (en) * 2002-07-31 2004-02-26 Koyo Seiko Co Ltd Rotation angle detector
JP2005140557A (en) * 2003-11-04 2005-06-02 Asahi Kasei Electronics Co Ltd Steering angle detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061428A (en) * 2002-07-31 2004-02-26 Koyo Seiko Co Ltd Rotation angle detector
JP2005140557A (en) * 2003-11-04 2005-06-02 Asahi Kasei Electronics Co Ltd Steering angle detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063209A (en) * 2016-10-14 2018-04-19 ミネベアミツミ株式会社 Absolute encoder
JPWO2021206109A1 (en) * 2020-04-08 2021-10-14
WO2021206109A1 (en) * 2020-04-08 2021-10-14 日本精工株式会社 Rotation angle detection device and electric power steering device
CN114206708A (en) * 2020-04-08 2022-03-18 日本精工株式会社 Rotation angle detection device and electric power steering device
US11511803B2 (en) 2020-04-08 2022-11-29 Nsk Ltd. Rotation angle detection device, electric power steering device and method of controlling electric power steering device
US11597436B2 (en) 2020-04-08 2023-03-07 Nsk Ltd. Rotation angle detection device, electric power steering device and method of controlling electric power steering device
JP7334853B2 (en) 2020-04-08 2023-08-29 日本精工株式会社 Rotation angle detector and electric power steering device
CN114206708B (en) * 2020-04-08 2024-01-05 日本精工株式会社 Rotation angle detection device and electric power steering device

Similar Documents

Publication Publication Date Title
TWI650528B (en) Rotation angle detecting device and rotation angle detecting method
JP5081553B2 (en) Rotation detection device and bearing with rotation detection device
US7775129B2 (en) Rotation angle sensor
US6519549B1 (en) Method and device for determining absolute angular position of a rotating body
CN108351197B (en) Angle detection device and electric power steering device
JP5435450B2 (en) Rotation angle detection device and rotation angle detection method
JP2006220529A (en) Detection device for absolute angle of rotation and torque
JP2010269667A (en) Multi-rotation angle detection device
JP2007285799A (en) Rotation angle detector
JP6756035B2 (en) Vehicles with a sensor system that detects the absolute rotation angle of the shaft, a method of detecting the absolute rotation angle of the shaft, and a sensor system
JPWO2011080935A1 (en) Relative angle detection device, rotation angle detection device, relative angle detection method, and rotation angle detection method
JP2005077304A (en) Detecting device for absolute rotation angle and torque
JP2017116549A (en) Sensing device, sensing system and steering system
JP2008224611A (en) Device for detecting rotation angle
JP2005055256A (en) Steering sensor
JP2019219296A (en) Initial setting method and initial setting device
JP4982925B2 (en) Rotation angle detector
JP2009276240A (en) Rotation angle detection device
JP2007271372A (en) Rotation sensor
JP5096399B2 (en) Rotation angle detector
JP2018132357A (en) Rotary encoder
JP4607033B2 (en) Rotation angle detector
JP2007271330A (en) Rotation sensor
JP2005315696A (en) Apparatus for detecting rotation angle of rotating body
JP2004361212A (en) Rotation angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080107

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100517

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100604

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101014

Free format text: JAPANESE INTERMEDIATE CODE: A02