JP2007271119A - Reservoir type hot water supply system - Google Patents

Reservoir type hot water supply system Download PDF

Info

Publication number
JP2007271119A
JP2007271119A JP2006094800A JP2006094800A JP2007271119A JP 2007271119 A JP2007271119 A JP 2007271119A JP 2006094800 A JP2006094800 A JP 2006094800A JP 2006094800 A JP2006094800 A JP 2006094800A JP 2007271119 A JP2007271119 A JP 2007271119A
Authority
JP
Japan
Prior art keywords
hot water
water storage
temperature
boiling
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006094800A
Other languages
Japanese (ja)
Other versions
JP4430030B2 (en
Inventor
Shiro Kazama
史郎 風間
Tetsuya Matsuyama
哲也 松山
Koichi Horikoshi
康一 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006094800A priority Critical patent/JP4430030B2/en
Publication of JP2007271119A publication Critical patent/JP2007271119A/en
Application granted granted Critical
Publication of JP4430030B2 publication Critical patent/JP4430030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a user-friendly reservoir type hot water supply system capable of carrying out boiling with consideration to a lost heat quantity during hot water storage. <P>SOLUTION: The reservoir type hot water supply system 100 boils hot water in a hot water reservoir 10 to a predetermined hot water storage temperature. In a controller 14, after finishing boiling of the hot water in the hot water reservoir 10 in a midnight power time zone by a heat pump 12, a hot water storage temperature Ts in the hot water reservoir 10 is detected by hot water storage temperature sensors 34a-34e, a temperature difference ΔT between the hot water storage temperature Ts and a hot water boiling temperature Tm' of the heat pump 12 detected by a boiling temperature sensor 32 is stored, and in boiling of the stored hot water in the hot water reservoir 10 in a next midnight power time zone, the hot water boiling temperature Tm' of the heat pump 12 is adjusted by using the stored temperature difference ΔT as a parameter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、貯湯タンク及びヒートポンプを備え、深夜電力時間帯に貯湯タンクの湯を沸き上げる貯湯式給湯システムに関するものである。   The present invention relates to a hot water storage type hot water supply system that includes a hot water storage tank and a heat pump and boils hot water in the hot water storage tank in the late-night power hours.

従来の貯湯式給湯システムとして、給湯用の水を加熱する加熱器(ヒートポンプ)と、前記加熱器にて加熱された水を保温貯蔵する貯湯タンクと、前記加熱器と前記貯湯タンクとを繋ぐ水配管内に水が流れるときに、この水から放熱される熱量を検出する放熱量検出手段と、少なくとも前記放熱量検出手段が検出した放熱量に基づいて、前記加熱器にて加熱されて前記貯湯タンクに流入する水の温度を制御する制御手段とを備え、配管での熱損失量をパラメータとして把握し、沸き上げ目標温度を決定して水を加熱し、給湯能力の不足、又は消費エネルギーの増大を未然に防止しながら所定温度の温水を得るようにしたものがある(例えば、特許文献1参照)。   As a conventional hot water storage type hot water supply system, a heater (heat pump) for heating hot water, a hot water storage tank for storing water heated by the heater, and water connecting the heater and the hot water storage tank When the water flows in the pipe, the heat dissipation amount detecting means for detecting the amount of heat radiated from the water, and at least the heat dissipation amount detected by the heat dissipation amount detection means is heated by the heater and the hot water storage Control means for controlling the temperature of the water flowing into the tank, grasping the amount of heat loss in the piping as a parameter, heating the water by determining the boiling target temperature, or lack of hot water supply capacity or energy consumption There is one that obtains hot water at a predetermined temperature while preventing an increase (see, for example, Patent Document 1).

特開2003−279137号公報(第2頁、図1、図2)Japanese Patent Laying-Open No. 2003-279137 (second page, FIGS. 1 and 2)

一般的に、貯湯式給湯システムは、深夜電力時間帯(通常、23時〜翌朝7時)に沸き上げと貯湯を行ない、給湯利用は、深夜電力時間帯終了後(昼間など)が主となるので、貯湯タンクで貯湯中における放熱損失、温度低下を無視することができない。   In general, a hot water storage type hot water supply system performs boiling and hot water storage in the late-night power hours (usually from 23:00 to 7:00 the next morning), and the use of hot water is mainly after the end of the late-night power hours (such as daytime). Therefore, heat dissipation loss and temperature drop during hot water storage in the hot water storage tank cannot be ignored.

しかしながら、上記従来の技術によれば、加熱器(ヒートポンプ)と貯湯タンク間の配管で発生する放熱損失については、加熱器での沸き上げ温度に反映させることができるが、貯湯タンクで貯湯中における放熱損失については反映させることができない。   However, according to the above-described conventional technology, the heat radiation loss that occurs in the pipe between the heater (heat pump) and the hot water storage tank can be reflected in the boiling temperature in the heater, but during the hot water storage in the hot water storage tank Heat dissipation loss cannot be reflected.

それ故、上記従来の技術によれば、深夜電力時間帯に徐々に沸き上げたお湯は、実際に使用する時刻(通常、朝7時〜)になると、沸き上げを始めた時点から段階的に8時間〜0時間経過しており、貯湯温度が沸き上げ温度よりも低くなっていて使い勝手が悪いという問題がある。   Therefore, according to the above-mentioned conventional technology, when the hot water gradually boiled in the late-night power hours is at the time of actual use (usually from 7 o'clock in the morning), the hot water gradually begins to boil from the beginning. Since 8 hours to 0 hours have passed, there is a problem that the hot water storage temperature is lower than the boiling temperature and the usability is poor.

本発明は、上記に鑑みてなされたものであって、貯湯中の損失熱量を加味した沸き上げを行なうことができる使い勝手のよい貯湯式給湯システムを得ることを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at obtaining the hot water storage type hot-water supply system which can perform the boiling which considered the amount of heat loss in hot water storage.

上述した課題を解決し、目的を達成するために、本発明は、常に満水状態となるように下部から所定圧力の水が供給される貯湯タンクと、前記貯湯タンク下部の湯水を吸込んで沸き上げ、沸き上げた湯を貯湯タンク上部に戻すヒートポンプと、前記貯湯タンクの目標沸き上げ温度Tmを設定する操作部と、前記ヒートポンプの吸込み温度を検出する吸込み温度センサと、前記ヒートポンプの湯の沸き上げ温度Tm´を検出する沸き上げ温度センサと、前記貯湯タンク内の貯湯の温度Tsを検出する貯湯温度センサと、前記操作部、吸込み湯温センサ、沸き上げ温度センサ及び貯湯温度センサからの温度信号に基づいて前記ヒートポンプを運転制御する制御装置と、を備え、前記貯湯タンク内の湯を所定の貯湯温度に沸き上げる貯湯式給湯システムにおいて、前記制御装置は、前記ヒートポンプによる深夜電力時間帯での前記貯湯タンク内の貯湯の沸き上げ終了後に、前記貯湯温度センサにより前記貯湯タンク内の貯湯温度Tsを検出し、前記沸き上げ温度センサにより検出した前記ヒートポンプの湯の沸き上げ温度Tm´と前記貯湯温度Tsとの温度差ΔTを記憶し、次回深夜電力時間帯での前記貯湯タンク内の貯湯の沸き上げ時には、前記ヒートポンプの湯の沸き上げ温度Tm´を、前記記憶した温度差ΔTをパラメータとして調整することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention includes a hot water storage tank to which water of a predetermined pressure is supplied from the lower part so that the water is always full, and the hot water in the lower part of the hot water tank is sucked and boiled up. A heat pump for returning the heated water to the upper part of the hot water storage tank, an operation unit for setting a target boiling temperature Tm of the hot water storage tank, a suction temperature sensor for detecting the suction temperature of the heat pump, and boiling of the hot water of the heat pump A boiling temperature sensor for detecting the temperature Tm ′, a hot water storage temperature sensor for detecting the temperature Ts of the hot water in the hot water storage tank, and temperature signals from the operation unit, the suction hot water temperature sensor, the boiling temperature sensor, and the hot water temperature sensor And a control device for controlling the operation of the heat pump based on the hot water storage hot water supply system for boiling the hot water in the hot water storage tank to a predetermined hot water storage temperature. In the system, the control device detects the hot water storage temperature Ts in the hot water storage tank by the hot water storage temperature sensor after the boiling of the hot water storage in the hot water storage tank in the midnight power time zone by the heat pump, and the boiling temperature A temperature difference ΔT between the hot water boiling temperature Tm ′ of the heat pump detected by the sensor and the hot water storage temperature Ts is stored, and the hot water of the heat pump is heated when the hot water in the hot water storage tank is heated at the next midnight power time zone. The boiling temperature Tm ′ is adjusted using the stored temperature difference ΔT as a parameter.

この発明によれば、貯湯中の損失熱量を加味した沸き上げを行なうことができる使い勝手のよい貯湯式給湯システムが得られる、という効果を奏する。   According to the present invention, there is an effect that an easy-to-use hot water storage hot water supply system capable of boiling up in consideration of the amount of heat lost during hot water storage can be obtained.

以下に、本発明にかかる貯湯式給湯システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, an embodiment of a hot water storage type hot water supply system according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかる貯湯式給湯システムの実施の形態1を示す図であり、図2〜図4は、貯湯タンク内の湯温を示す図であり、図5は、制御装置による実施の形態1の沸き上げ制御のフローチャートである。
Embodiment 1 FIG.
FIG. 1 is a diagram showing Embodiment 1 of a hot water storage hot water supply system according to the present invention, FIGS. 2 to 4 are diagrams showing hot water temperature in a hot water storage tank, and FIG. 5 is an implementation by a control device. It is a flowchart of the boiling control of the form 1 of.

図1に示すように、実施の形態1の貯湯式給湯システム100は、円筒状の胴部10aと半球状の下部10b及び上部10cとから成る縦長の貯湯タンク10と、貯湯タンク10内の湯を循環させながら沸き上げるヒートポンプ12と、ヒートポンプ12を運転制御する制御装置14と、を備えている。貯湯タンク10及び制御装置14は、タンクユニット18内に収容されている。ヒートポンプ12の冷媒には、二酸化炭素が用いられている。   As shown in FIG. 1, a hot water storage hot water supply system 100 according to Embodiment 1 includes a vertically long hot water storage tank 10 including a cylindrical body 10a, a hemispherical lower part 10b, and an upper part 10c, and hot water in the hot water storage tank 10. And a control device 14 that controls the operation of the heat pump 12. The hot water storage tank 10 and the control device 14 are accommodated in a tank unit 18. Carbon dioxide is used as the refrigerant of the heat pump 12.

給水管20が貯湯タンク10の下部10bに接続され、所定圧力の水道水を貯湯タンク10内に供給する。貯湯タンク10の上部10cには、給湯管22が接続され、貯湯タンク10内の湯が給湯管22から住宅配管に給湯される。   A water supply pipe 20 is connected to the lower part 10 b of the hot water storage tank 10 to supply tap water of a predetermined pressure into the hot water storage tank 10. A hot water supply pipe 22 is connected to the upper part 10 c of the hot water storage tank 10, and hot water in the hot water storage tank 10 is supplied from the hot water supply pipe 22 to the residential piping.

貯湯タンク10の下部10bとヒートポンプ10の吸込口12aとの間は、低温管24で接続され、貯湯タンク10下部の湯がヒートポンプ12内へ吸込まれる。貯湯タンク10の上部10cとヒートポンプ12の吐出口12bとの間は、高温管26で接続され、ヒートポンプ12で沸き上げられた高温湯が貯湯タンク10の上部10cへ戻される。   The lower part 10 b of the hot water storage tank 10 and the suction port 12 a of the heat pump 10 are connected by a low-temperature pipe 24, and hot water at the lower part of the hot water storage tank 10 is sucked into the heat pump 12. The upper part 10c of the hot water storage tank 10 and the discharge port 12b of the heat pump 12 are connected by a high temperature pipe 26, and the hot water heated by the heat pump 12 is returned to the upper part 10c of the hot water storage tank 10.

低温管24には、ヒートポンプ12の吸込み温度を検出する吸込み温度センサ30が設置され、高温管26の吐出口12b近傍には、ヒートポンプ12での湯の沸き上げ温度を検出する沸き上げ温度センサ32が設置され、吸込み温度センサ30及び沸き上げ温度センサ32の検出信号は、制御装置14に入力される。   A suction temperature sensor 30 for detecting the suction temperature of the heat pump 12 is installed in the low temperature pipe 24, and a boiling temperature sensor 32 for detecting the boiling temperature of hot water in the heat pump 12 is provided in the vicinity of the discharge port 12 b of the high temperature pipe 26. The detection signals of the suction temperature sensor 30 and the boiling temperature sensor 32 are input to the control device 14.

また、貯湯タンク10には、貯湯タンク10内の各高さ位置の貯湯温度を検出する5つの貯湯温度センサ34a、34b、34c、34d、34eが、貯湯タンク10の高さ方向に互いに離間して設置され、貯湯温度センサ34a〜34eの検出信号は、制御装置14に入力される。   Further, in the hot water storage tank 10, five hot water storage temperature sensors 34 a, 34 b, 34 c, 34 d, 34 e for detecting the hot water storage temperature at each height position in the hot water storage tank 10 are separated from each other in the height direction of the hot water storage tank 10. The detection signals of the hot water storage temperature sensors 34 a to 34 e are input to the control device 14.

ヒートポンプ12は、制御装置14の指令により運転制御され、図示しない循環ポンプにより、貯湯タンク10内の湯を、矢印aで示すようにヒートポンプ12と貯湯タンク10との間で循環させ、ヒートポンプサイクルによって外気との熱交換による湯の沸き上げを行い、制御装置14に接続された操作部16でユーザーにより予め設定された目標沸き上げ温度になるように加熱する。   The operation of the heat pump 12 is controlled by a command from the control device 14, and the hot water in the hot water storage tank 10 is circulated between the heat pump 12 and the hot water storage tank 10 as shown by an arrow a by a circulation pump (not shown). The hot water is boiled by heat exchange with the outside air, and heated by the operation unit 16 connected to the control device 14 so as to reach a target boiling temperature preset by the user.

制御装置14は、判断部14a及び記憶部14bを備え、操作部16で設定された目標沸き上げ温度信号、並びに、貯湯温度センサ34a〜34e、吸込み温度センサ30及び沸き上げ温度センサ32の検出温度信号に基づいて、ヒートポンプ12などシステム全体を運転制御する。また、制御部14は時計を内蔵し、時刻に応じてシステム全体を運転制御する。   The control device 14 includes a determination unit 14 a and a storage unit 14 b, and the target boiling temperature signal set by the operation unit 16 and the detected temperatures of the hot water storage temperature sensors 34 a to 34 e, the suction temperature sensor 30, and the boiling temperature sensor 32. The entire system such as the heat pump 12 is controlled based on the signal. The control unit 14 has a built-in clock and controls the operation of the entire system according to the time.

次に、実施の形態1の貯湯式給湯システム100の全体動作について説明する。まず、給水管20からの水は、図示しない減圧弁により所定圧力に減圧され、貯湯タンク10に給水される。貯湯タンク10は、常に、所定圧力の満水状態となっている。   Next, the overall operation of the hot water storage type hot water supply system 100 of the first embodiment will be described. First, water from the water supply pipe 20 is reduced to a predetermined pressure by a pressure reducing valve (not shown) and supplied to the hot water storage tank 10. The hot water storage tank 10 is always filled with a predetermined pressure.

貯湯タンク10内の水及び湯の沸き上げは、主に、深夜電力時間帯(一般に、23時から翌朝7時までの時間帯)に行われる。貯湯タンク10内の水及び湯は、制御装置14からの沸き上げ指令を受けたヒートポンプ12の循環ポンプにより、矢印aで示すように、貯湯タンク10の下部10bから低温管24を通ってヒートポンプ12内に吸込まれて熱交換され、設定された沸き上げ温度(例えば、80℃:沸き上げ温度センサ32で検出)になるように加熱され、高温管26を通って貯湯タンク10の上部10cに戻される。この沸き上げ動作(運転)により、貯湯タンク10の上部10cから高温湯が少量ずつ貯湯され、約8時間(23時〜7時)かけて貯湯タンク10に貯湯されていく。   The boiling of the water and hot water in the hot water storage tank 10 is performed mainly in the late-night power time zone (generally, the time zone from 23:00 to 7:00 the next morning). The water and hot water in the hot water storage tank 10 are fed from the lower part 10b of the hot water storage tank 10 through the cryogenic pipe 24 by the circulation pump of the heat pump 12 that has received a boiling command from the control device 14, as shown in the arrow a. It is sucked into the inside and heat-exchanged, heated to a set boiling temperature (for example, 80 ° C .: detected by the boiling temperature sensor 32), returned to the upper portion 10c of the hot water storage tank 10 through the high temperature pipe 26. It is. By this boiling operation (operation), high temperature hot water is stored little by little from the upper part 10c of the hot water storage tank 10, and is stored in the hot water storage tank 10 over about 8 hours (23:00 to 7:00).

なお、このときヒートポンプ12からタンクユニット18までの間の高温管26では、循環される高温湯は、外気との温度差による放熱により温度が低下する。高温管26の長さや断熱状態によるが、通常、高温管26の長さ5m、断熱材厚さ10mmで、外気温度7℃のとき、約2℃温度低下する。   At this time, in the high-temperature pipe 26 between the heat pump 12 and the tank unit 18, the temperature of the circulated hot water decreases due to heat radiation due to a temperature difference from the outside air. Although depending on the length of the high-temperature pipe 26 and the heat insulation state, when the temperature of the high-temperature pipe 26 is 5 m and the thickness of the heat insulating material is 10 mm, and the outside air temperature is 7 ° C., the temperature decreases by about 2 ° C.

ヒートポンプ12による沸き上げ動作は、吸込み温度センサ30の検出する温度が所定温度(例えば、70℃)以上になったら、貯湯タンク10内が全量沸き上がったと判断して終了される。沸き上げ中及び沸き上げが終了した後、貯湯タンク10内に蓄えられた高温度の湯は、給湯管22から給湯されて利用される一方、時間経過とともに徐々に放熱(一般に、1時間当たり約1℃)し、温度低下してゆく。   When the temperature detected by the suction temperature sensor 30 becomes equal to or higher than a predetermined temperature (for example, 70 ° C.), the boiling operation by the heat pump 12 is judged to have been heated up in the hot water storage tank 10 and finished. Hot water stored in the hot water storage tank 10 is heated and used from the hot water supply pipe 22 while being heated and after the boiling is completed, and gradually radiates heat over time (generally, about 1 hour per hour). 1 ° C) and the temperature decreases.

次に、操作部16で設定された目標沸き上げ温度Tmを基準とし、主に、深夜電力時間帯に沸き上げた湯を貯湯して所望量の給湯を賄うための実施の形態1の貯湯式給湯システム100の沸き上げ動作(運転)について、図1〜図5を参照して説明する。   Next, with reference to the target boiling temperature Tm set by the operation unit 16, the hot water storage system according to the first embodiment for mainly supplying hot water boiled in the late-night power hours to supply a desired amount of hot water. The boiling operation (operation) of the hot water supply system 100 will be described with reference to FIGS.

図2は、深夜電力による沸き上げ動作終了後の貯湯タンク10内の貯湯を、沸き上げ動作1時間毎の貯湯層に分け、各々の貯湯層の放熱による温度低下を模式的に示す図である。   FIG. 2 is a diagram schematically showing the temperature drop due to heat dissipation of each hot water layer, dividing hot water in the hot water storage tank 10 after completion of the boiling operation by midnight power into hot water storage layers every hour of the boiling operation. .

図2に示すように、沸き上げ動作中は、高温管26内で約2℃、貯湯タンク10内で1時間当たり約1℃、温度低下する。目標沸き上げ温度Tmを80℃に設定しているとき、沸き上げ温度センサ32の検出温度を80℃とするように制御装置14がヒートポンプ12を運転制御しても、貯湯タンク10への送湯に伴なう放熱で2℃温度低下するので、貯湯タンク10の上部10cには78℃の湯が供給される。   As shown in FIG. 2, during the boiling operation, the temperature decreases by about 2 ° C. in the high-temperature pipe 26 and by about 1 ° C. per hour in the hot water storage tank 10. When the target boiling temperature Tm is set to 80 ° C., even if the control device 14 controls the operation of the heat pump 12 so that the temperature detected by the boiling temperature sensor 32 is 80 ° C., the hot water supply to the hot water storage tank 10 is performed. Since the temperature is lowered by 2 ° C. due to heat radiation accompanying the hot water, 78 ° C. hot water is supplied to the upper portion 10c of the hot water storage tank 10.

さらに、1時間当たり貯湯タンク10の全容量の1/8ずつが貯湯されつつ1時間に1℃ずつ温度低下すると、最初の1時間で78℃→77℃、以降76℃、75℃と温度低下し、8時間後には、70℃〜78℃の湯が貯湯タンク10内で混ざり合うことになる。その結果、貯湯タンク10内の平均湯温は、沸き上げ終了直後でも74℃(=78℃〜70℃の平均温度)となり、図3に示すような状態となる。   Furthermore, when 1/8 of the total capacity of the hot water storage tank 10 per hour is stored, the temperature drops by 1 ° C. per hour, and the temperature drops from 78 ° C. to 77 ° C. in the first hour, and thereafter from 76 ° C. to 75 ° C. After 8 hours, hot water of 70 ° C. to 78 ° C. is mixed in the hot water storage tank 10. As a result, the average hot water temperature in the hot water storage tank 10 is 74 ° C. (= average temperature of 78 ° C. to 70 ° C.) even immediately after the completion of boiling, and is in the state shown in FIG.

上述の従来技術の沸き上げ制御により沸き上げを行なうと、貯湯タンク上部に設置した貯湯温度センサなどにより、沸き上げ中に貯湯温度(高温管放熱により、78℃)を検出し、制御装置の制御により沸き上げ温度を高温管放熱による温度低下分だけ上昇させ、約82℃(80℃+2℃)に調整する。そのため、貯湯タンク内の湯温は、平均2度上昇し、約76℃となる。   When boiling is performed by the above-described conventional boiling control, the hot water storage temperature (78 ° C due to high-temperature pipe heat dissipation) is detected during boiling by using a hot water temperature sensor installed at the top of the hot water tank, and the control of the control device To raise the boiling temperature by the temperature drop due to the heat radiation of the hot tube and adjust it to about 82 ° C. (80 ° C. + 2 ° C.). Therefore, the hot water temperature in the hot water storage tank rises by an average of 2 degrees to about 76 ° C.

この場合、操作部16で設定した目標沸き上げ温度が80℃であるのに対し、実際に沸き上げ終了直後の貯湯タンク内の湯温は76℃であるから、目標沸き上げ温度80℃に対して低温であり、貯湯熱量が目標値よりも低くなってしまい、湯切れになる可能性が高い。また、ユーザーは、設定した湯温になっていないというシステム不具合の疑念を持つことになる。   In this case, while the target boiling temperature set by the operation unit 16 is 80 ° C., the hot water temperature in the hot water storage tank immediately after the boiling is actually 76 ° C., the target boiling temperature is 80 ° C. The temperature is low and the amount of stored hot water is lower than the target value, so there is a high possibility of running out of hot water. In addition, the user has a suspicion of a system failure that the set hot water temperature is not reached.

図4及び図5を参照して、実施の形態1の貯湯式給湯システム100の沸き上げ運転制御について説明する。この沸き上げ運転制御は、図3に示す沸き上げ終了直後の貯湯タンク10内の貯湯温度を、操作部16で設定した目標沸き上げ温度Tmに一致させるため、沸き上げ終了後の貯湯タンク10内の貯湯の温度Ts=74℃と目標沸き上げ温度Tm=80℃との温度差ΔT=6℃を、予めヒートポンプ12の沸き上げ温度Tm´に反映させるようにして行なう。   With reference to FIG.4 and FIG.5, the boiling operation control of the hot water storage type hot-water supply system 100 of Embodiment 1 is demonstrated. In the boiling operation control, the hot water storage temperature in the hot water storage tank 10 immediately after the completion of the heating shown in FIG. 3 is made to coincide with the target boiling temperature Tm set by the operation unit 16, so The temperature difference ΔT = 6 ° C. between the hot water storage temperature Ts = 74 ° C. and the target boiling temperature Tm = 80 ° C. is reflected in advance on the boiling temperature Tm ′ of the heat pump 12.

この沸き上げ運転制御を、図5の制御フローチャートを参照して説明する。ステップS0で沸き上げ動作が開始され、ステップS1に進む。ステップS1では、制御装置14の記憶部14bに、前回の深夜電力時間帯でのヒートポンプ12の沸き上げ温度Tm´(沸き上げ温度センサ32で検出)と、貯湯タンク10の貯湯温度センサ34a〜34eで検出した貯湯温度Tsと、の温度差ΔT(=Tm´−Ts)が記憶部14bに記憶されているかどうかを判断部14aで判断し、記憶されている場合はステップS2に進み、記憶されていない場合はステップS3に進む。   This boiling operation control will be described with reference to the control flowchart of FIG. In step S0, the boiling operation is started, and the process proceeds to step S1. In step S1, the storage unit 14b of the control device 14 stores the boiling temperature Tm ′ of the heat pump 12 (detected by the boiling temperature sensor 32) and the hot water storage temperature sensors 34a to 34e of the hot water storage tank 10 in the previous midnight power time zone. The determination unit 14a determines whether or not the temperature difference ΔT (= Tm′−Ts) between the hot water storage temperature Ts detected in step S1 and the storage unit 14b is stored, and if it is stored, the process proceeds to step S2. If not, the process proceeds to step S3.

ステップS2では、制御装置14の記憶部14bから、前記の前回の温度差ΔT(=Tm´−Ts)を読み出し、その温度差ΔTを、操作部16で設定された貯湯タンク10の目標沸き上げ温度Tmに加え、このTm+ΔT=Tm´を、ヒートポンプ12の今回の深夜電力時間帯の沸き上げ温度に設定し、制御装置14により、沸き上げ温度センサ32の検出温度がTm´となるように沸き上げ動作を行い、ステップS4に進む。   In step S <b> 2, the previous temperature difference ΔT (= Tm′−Ts) is read from the storage unit 14 b of the control device 14, and the temperature difference ΔT is set to the target boiling of the hot water storage tank 10 set by the operation unit 16. In addition to the temperature Tm, this Tm + ΔT = Tm ′ is set to the heating temperature of the heat pump 12 in the current midnight power time zone, and the control device 14 performs boiling so that the detected temperature of the boiling temperature sensor 32 becomes Tm ′. The raising operation is performed, and the process proceeds to step S4.

ステップS3では、温度差ΔTの記憶がなく、放熱による温度低下が不明なので、ユーザーにより操作部16で設定された貯湯タンク10の目標沸き上げ温度Tmを、ヒートポンプ12の沸き上げ温度に設定し、制御装置14により、沸き上げ温度センサ32の検出温度がTmとなるように沸き上げ動作を行い、ステップS4に進む。   In step S3, since the temperature difference ΔT is not stored and the temperature drop due to heat dissipation is unknown, the target boiling temperature Tm of the hot water storage tank 10 set by the operation unit 16 by the user is set to the boiling temperature of the heat pump 12, The controller 14 performs a boiling operation so that the temperature detected by the boiling temperature sensor 32 becomes Tm, and the process proceeds to step S4.

ステップS4では、沸き上げ終了条件(例えば、吸込み湯温センサ30が検出する湯温がTm+ΔT−10℃以上)となったか否かを制御装置14の判断部14aで判断し、否のときはステップS4を繰り返し、終了条件となったときは、ステップS5に進んで沸き上げ動作を停止し、ステップS6に進む。   In step S4, it is determined by the determination unit 14a of the control device 14 whether or not the boiling end condition (for example, the hot water temperature detected by the suction hot water temperature sensor 30 is equal to or higher than Tm + ΔT-10 ° C.). When S4 is repeated and the end condition is reached, the process proceeds to step S5 to stop the boiling operation, and the process proceeds to step S6.

ステップS6では、ヒートポンプ12の沸き上げ温度Tm´と、沸き上げ終了後の貯湯温度センサ34a〜34eの検出温度に基づいて計算した貯湯温度Tsと、の温度差ΔT(=Tm´−Ts)を、制御装置14の記憶部14bに記憶する。通常、貯湯温度Tsは、貯湯温度センサ34a〜34eの検出温度の平均値とするが、いずれかの貯湯温度センサ34a〜34eの検出温度が目標沸き上げ温度Tmよりも一定温度以上低いときには、該当の貯湯温度センサの検出温度を平均値の集計から除外したり(沸き上げ動作が中断したり、何らかの原因により沸き上げ動作を停止した場合において、適切な判定を行うため)、貯湯タンク10の中段の貯湯温度センサ34cを代表とみなし、その検出温度をTsに設定してもよい。ステップS6の後、運転制御を終了する。   In step S6, a temperature difference ΔT (= Tm′−Ts) between the boiling temperature Tm ′ of the heat pump 12 and the hot water storage temperature Ts calculated based on the detected temperatures of the hot water storage temperature sensors 34a to 34e after the completion of the boiling is obtained. And stored in the storage unit 14 b of the control device 14. Normally, the hot water storage temperature Ts is an average value of the detection temperatures of the hot water storage temperature sensors 34a to 34e, but when the detected temperature of any of the hot water storage temperature sensors 34a to 34e is lower than the target boiling temperature Tm by a certain temperature or more, The detection temperature of the hot water storage temperature sensor is excluded from the average value (to make an appropriate determination when the boiling operation is interrupted or stopped for some reason), the middle stage of the hot water storage tank 10 The hot water storage temperature sensor 34c may be regarded as a representative, and the detected temperature may be set to Ts. After step S6, the operation control is terminated.

以上説明した制御装置14による運転制御により、毎回の深夜電力時間帯での沸き上げ動作毎に、ヒートポンプ12の沸き上げ温度Tm´と沸き上げ動作終了後の貯湯温度Tsとの温度差ΔTが補正され、温度差ΔTをパラメータとしてヒートポンプ12の沸き上げ温度Tm´を調整し、季節や周囲環境に応じた放熱量を加味した最適な沸き上げ動作を行なうことができる。   By the operation control by the control device 14 described above, the temperature difference ΔT between the boiling temperature Tm ′ of the heat pump 12 and the hot water storage temperature Ts after the completion of the boiling operation is corrected for each heating operation in the midnight power time zone. Then, the boiling temperature Tm ′ of the heat pump 12 is adjusted using the temperature difference ΔT as a parameter, and an optimum boiling operation can be performed in consideration of the heat radiation amount according to the season and the surrounding environment.

実施の形態1では、図4に示すように、ヒートポンプ12による沸き上げ動作で、沸き上げ温度センサ32の検出温度がTm´=Tm(80℃)+ΔT(6℃)=86℃となるようにし、高温管26での温度低下が2℃で、貯湯タンク10の上部10cへの供給湯温が84℃となり、8時間後の貯湯温度は、84℃〜76℃(8時間で84℃から最大8℃温度低下し、84℃−8℃=76℃)の平均で80℃となり、操作部16で設定した目標沸き上げ温度での貯湯を行なうことができる。   In the first embodiment, as shown in FIG. 4, in the heating operation by the heat pump 12, the temperature detected by the boiling temperature sensor 32 is Tm ′ = Tm (80 ° C.) + ΔT (6 ° C.) = 86 ° C. The temperature drop in the high-temperature pipe 26 is 2 ° C., the hot water temperature supplied to the upper portion 10c of the hot water storage tank 10 is 84 ° C., and the hot water storage temperature after 8 hours is 84 ° C. to 76 ° C. (maximum from 84 ° C. in 8 hours). The temperature drops to 8 ° C. and reaches an average of 80 ° C. (84 ° C.−8 ° C. = 76 ° C.), and hot water can be stored at the target boiling temperature set by the operation unit 16.

実施の形態2.
実施の形態1では、沸き上げ動作終了直後に貯湯温度Ts(温度差ΔT)を記憶したが、これを深夜電力時間帯終了直後に記憶したり、深夜電力時間帯と関係のない沸き上げ動作の終了後に記憶したり、また、沸き上げ動作終了直後ではなく、一定時間経過し放熱が行われた後に記憶するようにしてもよい。
Embodiment 2. FIG.
In the first embodiment, the hot water storage temperature Ts (temperature difference ΔT) is stored immediately after the boiling operation ends, but this is stored immediately after the end of the midnight power time period, or the boiling operation that is not related to the midnight power time period. You may make it memorize | store after the completion | finish of heating operation | movement not after immediately after completion | finish of boiling operation but after a fixed time passes.

このような沸き上げ制御の形態について、図6を参照して説明する。図6は、制御装置14による実施の形態2の沸き上げ制御のフローチャートである。図6において、ステップS20〜ステップS25までは、図5に示す実施の形態1のステップS0〜S5と同一であるので、その説明を省略する。   The form of such boiling control is demonstrated with reference to FIG. FIG. 6 is a flowchart of the boiling control according to the second embodiment by the control device 14. In FIG. 6, steps S20 to S25 are the same as steps S0 to S5 of the first embodiment shown in FIG.

ステップS26に進み、深夜電力時間帯が終了したか否かを制御装置14の判断部14aで判断し、否のときはステップS26を繰返す。深夜電力時間帯が終了したときは、ステップS27に進む。   Proceeding to step S26, the determination unit 14a of the control device 14 determines whether or not the midnight power time period has ended, and if not, step S26 is repeated. When the midnight power time period ends, the process proceeds to step S27.

ステップS27では、深夜電力時間帯終了後の貯湯温度センサ34a〜34eの検出温度に基づいて計算した貯湯温度Ts(温度差ΔT)を、制御装置14の記憶部14bに記憶する。通常、貯湯温度Tsは、貯湯温度センサ34a〜34eの検出温度の平均値とするが、いずれかの貯湯温度センサ34a〜34eの検出温度が目標沸き上げ温度Tmよりも一定温度以上低いときは、該当の貯湯温度センサの検出温度を平均値の集計から除外したり(沸き上げ動作が中断したり、何らかの原因により沸き上げ動作を停止した場合において、適切な判定を行うため)、貯湯タンク10の中段の貯湯温度センサ34cを代表とみなし、その検出温度をTsとしてもよい。ステップS27の後、運転制御を終了する。   In step S27, the hot water storage temperature Ts (temperature difference ΔT) calculated based on the temperature detected by the hot water storage temperature sensors 34a to 34e after the end of the midnight power period is stored in the storage unit 14b of the control device 14. Normally, the hot water storage temperature Ts is an average value of the detected temperatures of the hot water storage temperature sensors 34a to 34e, but when the detected temperature of any of the hot water storage temperature sensors 34a to 34e is lower than the target boiling temperature Tm by a certain temperature or more, The temperature detected by the hot water storage temperature sensor is excluded from the average value (to make an appropriate determination when the boiling operation is interrupted or stopped for some reason), The middle hot water storage temperature sensor 34c may be regarded as a representative, and the detected temperature may be Ts. After step S27, the operation control is terminated.

実施の形態2の制御によれば、実施の形態1の制御と同等の効果を奏するとともに、沸き上げ動作を停止してから深夜電力時間帯が終了するまでに、時間が空いたときにも、空いた時間での放熱ロス分を加味した制御を行うことができる。   According to the control of the second embodiment, while having the same effect as the control of the first embodiment, even when time is available from the stop of the boiling operation until the end of the midnight power time zone, It is possible to perform control that takes into account the amount of heat loss in the free time.

このように、毎回の深夜電力時間帯での沸き上げ動作毎に、ヒートポンプ12の沸き上げ温度Tm´と沸き上げ動作終了後の貯湯温度Tsとの温度差ΔTが補正され、季節や周囲環境に応じた放熱量を加味した最適な沸き上げ動作を行なうことができ、ユーザーが設定した目標貯湯温度が達成され、使い勝手の良い給湯システムが得られる。   As described above, the temperature difference ΔT between the boiling temperature Tm ′ of the heat pump 12 and the hot water storage temperature Ts after the completion of the boiling operation is corrected for each boiling operation in the midnight power time period, and the season and the surrounding environment An optimum boiling operation can be performed in consideration of the corresponding heat radiation amount, the target hot water storage temperature set by the user is achieved, and an easy-to-use hot water supply system is obtained.

以上のように、本発明にかかる貯湯式給湯システム100は、貯湯タンクの貯湯をユーザーが設定した沸き上げ温度に沸き上げることができ、湯切れを起こし難い貯湯式給湯システムとして有用である。   As described above, the hot water storage hot water supply system 100 according to the present invention is useful as a hot water storage hot water supply system that can raise hot water stored in a hot water storage tank to a boiling temperature set by a user and hardly cause hot water to run out.

本発明にかかる貯湯式給湯システムの実施の形態1を示す図である。It is a figure which shows Embodiment 1 of the hot water storage type hot-water supply system concerning this invention. 貯湯タンク内の湯温分布を示す図である。It is a figure which shows the hot water temperature distribution in a hot water storage tank. 貯湯タンク内の湯温を示す図である。It is a figure which shows the hot water temperature in a hot water storage tank. 貯湯タンク内の湯温を示す図である。It is a figure which shows the hot water temperature in a hot water storage tank. 制御装置による実施の形態1の沸き上げ制御のフローチャートである。It is a flowchart of the boiling control of Embodiment 1 by a control apparatus. 制御装置による実施の形態2の沸き上げ制御のフローチャートである。It is a flowchart of the boiling control of Embodiment 2 by a control apparatus.

符号の説明Explanation of symbols

10 貯湯タンク
10a 胴部
10b 下部
10c 上部
18 タンクユニット
12 ヒートポンプ
12a 吸込口
12b 吐出口
14 制御装置
14a 判断部
14b 記憶部
16 操作部
20 給水管
22 給湯管
24 低温管
26 高温管
30 吸込み温度センサ
32 沸き上げ温度センサ
34a,34b,34c,34d,34e 貯湯温度センサ
100 貯湯式給湯システム
DESCRIPTION OF SYMBOLS 10 Hot water storage tank 10a Body part 10b Lower part 10c Upper part 18 Tank unit 12 Heat pump 12a Suction port 12b Discharge port 14 Controller 14a Judgment part 14b Memory | storage part 16 Operation part 20 Water supply pipe 22 Hot water supply pipe 24 Low temperature pipe 26 High temperature pipe 30 Suction temperature sensor 32 Boiling temperature sensor 34a, 34b, 34c, 34d, 34e Hot water storage temperature sensor 100 Hot water storage type hot water supply system

Claims (6)

常に満水状態となるように下部から所定圧力の水が供給される貯湯タンクと、
前記貯湯タンク下部の湯水を吸込んで沸き上げ、沸き上げた湯を貯湯タンク上部に戻すヒートポンプと、
前記貯湯タンクの目標沸き上げ温度Tmを設定する操作部と、
前記ヒートポンプの吸込み温度を検出する吸込み温度センサと、
前記ヒートポンプの湯の沸き上げ温度Tm´を検出する沸き上げ温度センサと、
前記貯湯タンク内の貯湯温度Tsを検出する貯湯温度センサと、
前記操作部、吸込み温度センサ、沸き上げ温度センサ及び貯湯温度センサからの温度信号に基づいて前記ヒートポンプを運転制御する制御装置と、
を備え、前記貯湯タンク内の湯を所定の貯湯温度に沸き上げる貯湯式給湯システムにおいて、
前記制御装置は、前記ヒートポンプによる深夜電力時間帯での前記貯湯タンク内の貯湯の沸き上げ終了後に、前記貯湯温度センサにより前記貯湯タンク内の貯湯温度Tsを検出し、前記沸き上げ温度センサにより検出した前記ヒートポンプの湯の沸き上げ温度Tm´と前記貯湯温度Tsとの温度差ΔTを記憶し、次回深夜電力時間帯での前記貯湯タンク内の貯湯の沸き上げ時には、前記ヒートポンプの湯の沸き上げ温度Tm´を、前記記憶した温度差ΔTをパラメータとして調整することを特徴とする貯湯式給湯システム。
A hot water storage tank to which water of a predetermined pressure is supplied from the bottom so as to be always full,
A heat pump that sucks and boils hot water at the bottom of the hot water storage tank and returns the hot water to the upper part of the hot water storage tank;
An operation unit for setting a target boiling temperature Tm of the hot water storage tank;
A suction temperature sensor for detecting a suction temperature of the heat pump;
A boiling temperature sensor for detecting a boiling temperature Tm ′ of hot water of the heat pump;
A hot water storage temperature sensor for detecting a hot water storage temperature Ts in the hot water storage tank;
A control device that controls the operation of the heat pump based on temperature signals from the operation unit, the suction temperature sensor, the boiling temperature sensor, and the hot water storage temperature sensor;
A hot water storage hot water supply system that heats the hot water in the hot water storage tank to a predetermined hot water storage temperature,
The control device detects the hot water storage temperature Ts in the hot water storage tank by the hot water storage temperature sensor after the boiling of the hot water storage in the hot water storage tank is completed by the heat pump in the midnight power time zone, and detects by the boiling temperature sensor. The temperature difference ΔT between the hot water boiling temperature Tm ′ of the heat pump and the hot water storage temperature Ts is stored. A hot water storage hot water supply system, wherein the temperature Tm ′ is adjusted using the stored temperature difference ΔT as a parameter.
次回深夜電力時間帯での前記貯湯タンク内の貯湯の沸き上げ時には、前記ヒートポンプの湯の沸き上げ温度Tm´を、Tm´=Tm+ΔTに設定することを特徴とする請求項1に記載の貯湯式給湯システム。   2. The hot water storage system according to claim 1, wherein the boiling temperature Tm ′ of the hot water of the heat pump is set to Tm ′ = Tm + ΔT when boiling the hot water in the hot water storage tank in the next midnight power time zone. Hot water system. 前記貯湯タンク内の貯湯温度Tsの検出は、前記深夜電力時間帯終了後に行なうことを特徴とする請求項1又は2に記載の貯湯式給湯システム。   The hot water storage hot water supply system according to claim 1 or 2, wherein the detection of the hot water storage temperature Ts in the hot water storage tank is performed after the end of the midnight power time period. 前記貯湯温度センサを、前記貯湯タンクの高さ方向に互いに離間させて複数備え、前記貯湯温度Tsを、複数の貯湯温度センサの温度検出値の平均値とすることを特徴とする請求項1〜3のいずれか一つに記載の貯湯式給湯システム。   2. The hot water storage temperature sensor is provided in a plurality spaced apart from each other in the height direction of the hot water storage tank, and the hot water storage temperature Ts is an average value of temperature detection values of the plurality of hot water storage temperature sensors. The hot water storage type hot water supply system according to any one of 3 above. 前記貯湯温度センサを、前記貯湯タンクの高さ方向に互いに離間させて複数備え、前記貯湯温度Tsを、予め設定された所定温度以上の貯湯温度を検出した複数の貯湯温度センサの温度検出値の平均値とすることを特徴とする請求項1〜3のいずれか一つに記載の貯湯式給湯システム。   A plurality of hot water storage temperature sensors are provided spaced apart from each other in the height direction of the hot water storage tank, and the hot water storage temperature Ts is a temperature detection value of a plurality of hot water storage temperature sensors that detect a hot water storage temperature that is equal to or higher than a predetermined temperature. The hot water storage hot water supply system according to any one of claims 1 to 3, wherein an average value is used. 前記貯湯温度センサを、前記貯湯タンクの高さ方向に互いに離間させて複数備え、前記貯湯温度Tsを、複数の貯湯温度センサのいずれか一つの貯湯温度センサの温度検出値とすることを特徴とする請求項1〜3のいずれか一つに記載の貯湯式給湯システム。   A plurality of the hot water storage temperature sensors are provided apart from each other in the height direction of the hot water storage tank, and the hot water storage temperature Ts is set as a temperature detection value of any one of the plurality of hot water storage temperature sensors. The hot water storage type hot water supply system according to any one of claims 1 to 3.
JP2006094800A 2006-03-30 2006-03-30 Hot water storage hot water supply system Active JP4430030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094800A JP4430030B2 (en) 2006-03-30 2006-03-30 Hot water storage hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094800A JP4430030B2 (en) 2006-03-30 2006-03-30 Hot water storage hot water supply system

Publications (2)

Publication Number Publication Date
JP2007271119A true JP2007271119A (en) 2007-10-18
JP4430030B2 JP4430030B2 (en) 2010-03-10

Family

ID=38674116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094800A Active JP4430030B2 (en) 2006-03-30 2006-03-30 Hot water storage hot water supply system

Country Status (1)

Country Link
JP (1) JP4430030B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109404A (en) * 2012-11-30 2014-06-12 Daikin Ind Ltd Hot water supply system
JP2015055389A (en) * 2013-09-11 2015-03-23 三菱重工業株式会社 Hot water system and control method thereof
JP2017223421A (en) * 2016-06-17 2017-12-21 リンナイ株式会社 Heat medium heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109404A (en) * 2012-11-30 2014-06-12 Daikin Ind Ltd Hot water supply system
JP2015055389A (en) * 2013-09-11 2015-03-23 三菱重工業株式会社 Hot water system and control method thereof
JP2017223421A (en) * 2016-06-17 2017-12-21 リンナイ株式会社 Heat medium heating device

Also Published As

Publication number Publication date
JP4430030B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP3918786B2 (en) Hot water storage type heat pump water heater
JP4430030B2 (en) Hot water storage hot water supply system
JP2017083045A (en) Heat pump water heater
JP2017072265A (en) Heat pump water heater
JP5038729B2 (en) Heat pump water heater
JP5329245B2 (en) Water heater
JP2008116130A (en) Bath hot water supply method and device
JP4339297B2 (en) Hot water storage hot water supply system
JP6628643B2 (en) Hot water supply system
JP5215557B2 (en) Hot water storage hot water supply system
JP2004150688A (en) Storage electric water heater
JP2009287794A (en) Heat pump type water heater
JP5413328B2 (en) Water heater
JP2003090606A (en) Heat pump type hot water supplier
JP2003130452A (en) Heat pump type water heater
JP4412419B2 (en) Hot water storage type heating water heater
JP2009063262A (en) Heat pump type water heater
JP3801026B2 (en) Heat pump water heater
JP3992199B2 (en) Hot water heater
JP3841030B2 (en) Heat pump type water heater and its boiling control method
JP2006300383A (en) Hot water storage type water heater
JP5979042B2 (en) Water heater
JP6582966B2 (en) Water heater
JP2017067416A (en) Heat pump water heater
JP3876738B2 (en) Heat pump type water heater and its boiling control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4430030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250