JP2007270932A - Thrust bearing mechanism, raceway ring therefor, and method for manufacturing intermediate ring - Google Patents

Thrust bearing mechanism, raceway ring therefor, and method for manufacturing intermediate ring Download PDF

Info

Publication number
JP2007270932A
JP2007270932A JP2006096259A JP2006096259A JP2007270932A JP 2007270932 A JP2007270932 A JP 2007270932A JP 2006096259 A JP2006096259 A JP 2006096259A JP 2006096259 A JP2006096259 A JP 2006096259A JP 2007270932 A JP2007270932 A JP 2007270932A
Authority
JP
Japan
Prior art keywords
ring
receiving mechanism
thrust receiving
race
intermediate ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006096259A
Other languages
Japanese (ja)
Inventor
Kosuke Obayashi
光介 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006096259A priority Critical patent/JP2007270932A/en
Publication of JP2007270932A publication Critical patent/JP2007270932A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons

Landscapes

  • Rotary Pumps (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thrust bearing mechanism provided with quality applicable under a lean lubrication condition and a high load condition, and capable of being manufactured at low cost. <P>SOLUTION: A plurality of first rollers 12 are arranged between an intermediate ring 11 and a first raceway ring 9 fixed on a first member 3 via a first retainer 13. A plurality of second rollers 14 are arranged between the intermediate ring 11 and a second raceway ring 10 fixed on a second member 4 via a second retainer 14. A rolling axis center of the first rollers 12 and a rolling axis center of the second rollers 14 are arranged to cross at right angles. In this thrust bearing mechanism 8 high frequency heat treatment is applied on at least one of the ring bodies of the raceway rings 9, 10 and the intermediate ring 11, and area closed by old austenite grain boundary is 10% or less of whole visual field. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、スラスト受け機構に関し、例えば、スクロール圧縮機における旋回スクロール部材と静止スクロール部材等のように、相互間で偏心回転運動を行う二つの部材間でスラスト荷重を支持するスラスト受け機構に関する。   The present invention relates to a thrust receiving mechanism, and more particularly to a thrust receiving mechanism that supports a thrust load between two members that perform eccentric rotational motion between each other, such as a turning scroll member and a stationary scroll member in a scroll compressor.

スクロール圧縮機は、ヒートポンプ式給湯機等に多く使用されている。このようなスクロール圧縮機には、特許文献1ないし特許文献3に開示されたようなスラスト受け機構が用いられる。この種のスラスト受け機構は、相互間で偏心回転運動を行う第一の部材と第二の部材との間に介在してスラスト荷重を支持するスラスト受け機構であって、第一の部材に固定した第一の軌道輪と、第二の部材に固定した第二の軌道輪と、第一の軌道輪と第二の軌道輪との間に配置した中間輪と、第一の軌道輪と中間輪との間に配置した複数の第一のころと、第一のころを転動軸心が互いに平行になるように保持するための複数のポケットを有する第一の保持器と、第二の軌道輪と中間輪との間に配置した複数の第二のころと、第二のころを転動軸心が互いに平行になるように保持するための複数のポケットを有する第二の保持器とを具備し、第一のころの転動軸心と第二のころの転動軸心とが直交するよう構成されたスラスト受け機構からなるものが一例として挙げられる。   Scroll compressors are often used in heat pump hot water heaters and the like. For such a scroll compressor, a thrust receiving mechanism as disclosed in Patent Documents 1 to 3 is used. This type of thrust receiving mechanism is a thrust receiving mechanism that supports the thrust load by interposing between the first member and the second member that perform eccentric rotational movement between each other, and is fixed to the first member. The first race ring, the second race ring fixed to the second member, the intermediate ring disposed between the first race ring and the second race ring, and the first race ring and the middle A plurality of first rollers disposed between the wheels, a first retainer having a plurality of pockets for holding the first rollers such that their rolling axes are parallel to each other, and a second A plurality of second rollers disposed between the bearing ring and the intermediate ring, and a second cage having a plurality of pockets for holding the second rollers such that the rolling axes are parallel to each other; And a thrust receiving mechanism configured such that the rolling axis of the first roller and the rolling axis of the second roller are orthogonal to each other. It can be listed as an example.

上記軌道輪或いは中間輪の製造工程としては、図6(B)に一例を示すように、鋼板を成形した後、表面硬化等のために熱処理し、タンブラー加工して仕上げる。鋼板には例えばJIS規格のSCM415やSUJ2等が用いられている。熱処理としては、SCM415等の炭素含有量の低い鋼の場合、浸炭熱処理や浸炭窒化熱処理が採用され、焼戻しの後、反りやうねり矯正のためにプレステンパーが行われる。SUJ2等の炭素含有量が高い鋼の場合は、浸炭熱処理の代わりに光輝熱処理が採用される。これら浸炭熱処理、浸炭窒化熱処理または光輝熱処理と焼戻しは、連続炉で行われる。
特開2002−242857号公報 特開2002−242939号公報 特開2002−242940号公報
As an example of the manufacturing process of the raceway ring or the intermediate ring, as shown in FIG. 6B, after forming a steel plate, it is heat-treated for surface hardening and finished by tumbling. For example, JIS standard SCM415 or SUJ2 is used for the steel plate. As the heat treatment, in the case of steel with a low carbon content such as SCM415, carburizing heat treatment or carbonitriding heat treatment is adopted, and after tempering, press tempering is performed to correct warpage and waviness. In the case of steel with a high carbon content such as SUJ2, bright heat treatment is employed instead of carburizing heat treatment. These carburizing heat treatment, carbonitriding heat treatment or bright heat treatment and tempering are performed in a continuous furnace.
JP 2002-242857 A JP 2002-242939 A JP 2002-242940 A

近年、ヒートポンプ式給湯機等の高機能化および低コスト化に伴い、スクロール圧縮機に使用されるスラスト受け機構の長寿命化、低コスト化、高品質化が要求されている。
また、自然冷媒(CO2)を採用するスクロール圧縮機等に使用されるスラスト受け機構は、希薄潤滑下および高荷重下で使用される。希薄潤滑下、高荷重下という厳しい条件下で使用されるため、摩耗や表面起点型剥離などの表面損傷での早期破損に対して抑制効果があり、また通常の荷重依存型の転動疲れによる内部起点型剥離にも抑制効果がある長寿命なスラスト受け機構が求められている。
2. Description of the Related Art In recent years, along with higher functionality and cost reduction of heat pump water heaters and the like, longer life, lower cost, and higher quality of a thrust receiving mechanism used in a scroll compressor are required.
A thrust receiving mechanism used in a scroll compressor or the like that employs natural refrigerant (CO2) is used under lean lubrication and high load. Because it is used under severe conditions such as dilute lubrication and high load, it has an effect of suppressing early breakage due to surface damage such as wear and surface-induced peeling, and also due to normal load-dependent rolling fatigue There is a need for a long-life thrust receiving mechanism that has an effect of suppressing internal origin type peeling.

詳しく説明すると、ヒートポンプ式給湯機のスラスト受け機構に使用されている潤滑用のオイルは低粘度である上に、更にスクロール圧縮機の冷却能力を向上させるため、オイル量を削減している。そして、地球温暖化への影響を考慮し、自然冷媒(CO2)を採用していることから、圧縮機内の高圧化が進み、さらに一層希薄潤滑下でスラスト受け機構が使用されることになる。これらのため、ころと軌道輪或いは中間輪間において、油膜切れを起こし金属接触となることがある。そのため、接触部が発熱し、摩耗や表面起点型の剥離などの表面損傷が発生し易くなる。   More specifically, the lubricating oil used in the thrust receiving mechanism of the heat pump type hot water heater has a low viscosity and further reduces the amount of oil to improve the cooling capacity of the scroll compressor. And since natural refrigerant (CO2) is adopted in consideration of the influence on global warming, the pressure inside the compressor is increased, and the thrust receiving mechanism is used under further lean lubrication. For these reasons, an oil film breakage may occur between the roller and the race or intermediate ring, resulting in metal contact. For this reason, the contact portion generates heat, and surface damage such as wear and surface-origin peeling tends to occur.

また、軸受の使用条件として、高荷重化への傾向が見られ、通常の荷重依存型の転動疲れによる内部起点型剥離も発生する。このような状況下で、客先要望としては、摩耗や表面起点型剥離などの表面損傷での早期破損に対して効果があり、通常の荷重依存型の転動疲れによる内部起点型剥離にも効果がある長寿命なスラスト受け機構が求められている。   In addition, as a use condition of the bearing, there is a tendency to increase the load, and internal origin type separation due to normal load-dependent rolling fatigue also occurs. Under such circumstances, customer requests are effective for early breakage due to surface damage such as wear and surface-induced debonding, and also for internal-origin delamination due to normal load-dependent rolling fatigue. There is a need for a long-life thrust receiving mechanism that is effective.

従来の浸炭熱処理、浸炭窒化熱処理、光輝熱処理等で熱処理したスラスト受け機構の軌道輪或いは中間輪は、表面硬度はHV653以上となるが、SCM415等の炭素含有量の低い鋼を用いた場合の内部硬度はHV400程度であり、内部硬度が不足して、通常の荷重依存型の転動疲れによる内部起点型剥離に対して十分ではない。また、SUJ2等の炭素含有量が高い鋼を用い、光輝熱処理や浸炭窒化熱処理をした場合、表面硬度、内部硬度ともにHV653以上となるが、浸炭熱処理、浸炭窒化熱処理、光輝熱処理等の雰囲気熱処理を施した軌道輪は、熱処理時の加熱時間が長くなるため、表面の旧オーステナイト結晶粒界の生成が進み、この結晶粒界は、はっきりとした粒状となる。この粒状の結晶粒界は、周囲の鋼組織と比べて著しく硬さが異なるため、摩耗や亀裂発生の起点となる恐れがあり、摩耗や亀裂の進展に対する抵抗性が小さい。そのため、結晶粒界が上記のように形成されると、希薄潤滑下でのころと軌道輪或いは中間輪間の油膜切れ(金属接触)により接触部が発熱し、摩耗や表面亀裂が発生することがある。   The bearing ring or intermediate ring of the thrust receiving mechanism heat-treated by conventional carburizing heat treatment, carbonitriding heat treatment, bright heat treatment, etc., has a surface hardness of HV653 or more, but the inner part when steel with low carbon content such as SCM415 is used. The hardness is about HV400, the internal hardness is insufficient, and it is not sufficient for the internal origin type peeling due to the usual load-dependent rolling fatigue. In addition, when steel with a high carbon content such as SUJ2 is used and bright heat treatment or carbonitriding heat treatment is performed, both surface hardness and internal hardness become HV653 or more, but atmospheric heat treatment such as carburizing heat treatment, carbonitriding heat treatment, bright heat treatment, etc. Since the applied ring has a longer heating time during the heat treatment, the generation of surface austenite grain boundaries on the surface proceeds, and the grain boundaries become distinct grain. Since the grain boundaries of the grains are remarkably different in hardness from the surrounding steel structure, there is a risk that they may become the starting point of wear and cracks, and resistance to the progress of wear and cracks is small. Therefore, when the grain boundary is formed as described above, the contact portion generates heat due to the oil film breakage (metal contact) between the roller and the raceway ring or the intermediate ring under lean lubrication, and wear and surface cracks occur. There is.

また、上記のようなスラスト受け機構の機能を低下させる要因の一つに、スラスト受け軌道輪或いは中間輪の反り・うねりがある。スラスト受け機構において、軌道輪或いは中間輪の反り・うねりが大きいと、転動体であるころの転走面が平坦ではなく、ころと軌道輪或いは中間輪との間で片当りが生じる。この片当りが生じることによって、油膜切れを起こし金属接触となり、接触部が発熱し、摩耗や表面起点型の剥離などの表面損傷が生じ易くなる。また、局部的に接触面圧が高くなり、内部起点型の剥離も発生し易くなる。さらに、軌道輪或いは中間輪の反り・うねりが大きいと騒音・振動等も大きくなってしまう。この反り・うねりを抑えるためには、機械加工(切削加工等)を追加したり、変形(反り・うねり)矯正の工程を追加する必要があることから、生産コスト高の原因にもなっている。   Further, as one of the factors that deteriorate the function of the thrust receiving mechanism as described above, there is warp / swell of the thrust receiving raceway ring or the intermediate ring. In the thrust receiving mechanism, if the raceway or intermediate ring is greatly warped or swelled, the rolling surface of the roller, which is a rolling element, is not flat, and a single contact occurs between the roller and the raceway or intermediate ring. When this piece contact occurs, the oil film is cut and metal contact occurs, the contact portion generates heat, and surface damage such as wear and surface-origin peeling tends to occur. Further, the contact surface pressure locally increases, and internal origin type peeling is likely to occur. Furthermore, if the raceway or intermediate wheel is greatly warped or swelled, noise, vibration, etc. will increase. In order to suppress this warpage and waviness, it is necessary to add machining (cutting, etc.) and a process for correcting deformation (warping and waviness), which also causes high production costs. .

さらに、従来の浸炭熱処理、光輝熱処理等の雰囲気熱処理を行うものは、スラスト受け機構の生産ライン中に熱処理工程部が配置できず、生産性の向上、およびその生産性向上によるコスト低下が難しい。熱処理工程のインライン化ができないため、個々の軌道輪或いは中間輪毎の品質管理が難しく、高品質化実現の妨げとなっている。   Furthermore, in the case of conventional atmospheric heat treatment such as carburizing heat treatment and bright heat treatment, the heat treatment process section cannot be arranged in the production line of the thrust receiving mechanism, and it is difficult to improve the productivity and reduce the cost by improving the productivity. Since the heat treatment process cannot be inlined, it is difficult to control the quality of each track or intermediate wheel, which hinders the achievement of high quality.

この発明の目的は、希薄潤滑下、高荷重下で使用されても、摩耗や表面起点型剥離などの表面損傷での早期破損が生じ難く、また通常の荷重依存型の転動疲れによる内部起点型剥離も生じ難くて長寿命化が実現でき、さらに軌道輪或いは中間輪の反り・うねりを少なくして低騒音化も実現でき、かつ生産性の向上、生産設備の簡素化による低コスト化や、個別品質管理の容易化による高品質化が実現できるスラスト受け機構を提供することである。   The object of the present invention is that, even when used under dilute lubrication and high load, early breakage due to surface damage such as wear and surface-origin separation is unlikely to occur, and internal origin due to normal load-dependent rolling fatigue Mold release is unlikely to occur, and it is possible to realize a long service life. Further, it is possible to reduce the noise by reducing the warpage and undulation of the race ring or intermediate ring, and to improve the productivity and reduce the cost by simplifying the production facility. Another object is to provide a thrust receiving mechanism that can realize high quality by facilitating individual quality control.

この発明のスラスト受け機構は、相互間で偏心回転運動を行う第一の部材と第二の部材との間に介在してスラスト荷重を支持するスラスト受け機構であって、第一の部材に固定した第一の軌道輪と、第二の部材に固定した第二の軌道輪と、第一の軌道輪と第二の軌道輪との間に配置した中間輪と、第一の軌道輪と中間輪との間に配置した複数の第一のころと、第一のころを転動軸心が互いに平行になるように保持するための複数のポケットを有する第一の保持器と、第二の軌道輪と中間輪との間に配置した複数の第二のころと、第二のころを転動軸心が互いに平行になるように保持するための複数のポケットを有する第二の保持器とを具備し、第一のころの転動軸心と第二のころの転動軸心とが直交し、且つ第一の部材から第一の軌道輪および第一の保持器を貫通して中間輪まで延在する第一のガイドピン、ならびに、第二の部材から第二の軌道輪および第二の保持器を貫通して中間輪まで延在する第二のガイドピンを具備し、第一のガイドピンが第一のころの転動軸線と直交する方向に、第一の保持器および中間輪の規制範囲内において移動可能で、第二のガイドピンが第二のころの転動軸線と直交する方向に、第二の保持器および中間輪の規制範囲内において移動可能としたことを特徴とするスラスト受け機構において、
それぞれ輪体である前記第一、第二の軌道輪および中間輪のうちの少なくとも一つの輪体が、高周波熱処理によって焼入硬化し、焼戻しされたものであって、この輪体の転走面に垂直な断面を鏡面研磨し、ピクリン酸飽和水溶液に界面活性剤を加えた腐食液に浸漬して前記鏡面研磨した面を腐食させ、光学顕微鏡による400倍の倍率で前記断面の中央部を観察した場合に、旧オーステナイト結晶粒界で閉じられた領域が視野全体の10%以下であることを特徴とする。上記輪体の表層および内部の双方において、この結晶粒界で閉じられた領域が視野全体の10%以下となっていることが好ましい。
The thrust receiving mechanism according to the present invention is a thrust receiving mechanism that supports the thrust load by interposing between the first member and the second member that perform eccentric rotational movement between each other, and is fixed to the first member. The first race ring, the second race ring fixed to the second member, the intermediate ring disposed between the first race ring and the second race ring, and the first race ring and the middle A plurality of first rollers disposed between the wheels, a first retainer having a plurality of pockets for holding the first rollers such that their rolling axes are parallel to each other, and a second A plurality of second rollers disposed between the bearing ring and the intermediate ring, and a second cage having a plurality of pockets for holding the second rollers such that the rolling axes are parallel to each other; The rolling axis of the first roller and the rolling axis of the second roller are orthogonal to each other, and from the first member to the first track ring and A first guide pin extending through the first cage to the intermediate wheel, and a first guide pin extending from the second member through the second race and the second cage to the intermediate wheel. A second guide pin having two guide pins, the first guide pin being movable in a direction perpendicular to the rolling axis of the first roller within a regulation range of the first cage and the intermediate wheel. In a thrust receiving mechanism, characterized in that, in a direction perpendicular to the rolling axis of the second roller, it is movable within the restricted range of the second cage and the intermediate wheel,
At least one of the first and second race rings and the intermediate ring, each of which is a ring body, is hardened and hardened by induction heat treatment and tempered. The cross section perpendicular to the surface is mirror-polished, and the mirror-polished surface is corroded by immersion in a corrosive solution obtained by adding a surfactant to a saturated aqueous picric acid solution, and the central portion of the cross section is observed at a magnification of 400 times using an optical microscope. In this case, the region closed by the prior austenite grain boundary is 10% or less of the entire visual field. It is preferable that the area closed by the crystal grain boundary is 10% or less of the entire visual field in both the surface layer and the inside of the ring body.

この構成によると、上記輪体の熱処理を高周波熱処理としたため、浸炭熱処理、浸炭窒化熱処理、光輝熱処理等の雰囲気熱処理を施した輪体に比べ昇温時間および加熱時間を短くすることができる。そのため、冷却前のオーステナイト結晶粒界の形成が完全に行われず、結晶粒界が明瞭に形成されない。旧オーステナイト結晶粒界で閉じられた領域は視野全体の10%以下となる。このように結晶粒界が明瞭に形成されないため、摩耗や亀裂発生、進展に対する抵抗性が非常に大きくなる。さらに、内部起点型剥離の亀裂に対しても、長寿命化が図れる。これらのため、希薄潤滑下、高荷重下で使用されても、摩耗や表面起点型剥離などの表面損傷での早期破損が生じ難く、また通常の荷重依存型の転動疲れによる内部起点型剥離も生じ難くて長寿命化が実現できる。
また、高周波熱処理によるため、クリーンな電気エネルギーを用いた加熱であることから、運転効率が良く熱処理工程部のインライン化が容易で、生産性の向上にも役立つため、更なるコスト低減も可能である。すなわち、高周波熱処理による熱処理工程のインライン化により、製品の製造サイクルタイムが短縮でき、仕掛り在庫を持つ必要がなく、設備も簡素なものとできて、低コスト化が実現できる。また、熱処理工程をインライン化することにより、個々の輪体毎の品質管理、いわゆるピースバイピースの品質管理が可能となり、高品質化が実現できる。
According to this configuration, since the heat treatment of the ring body is a high-frequency heat treatment, the temperature raising time and the heating time can be shortened as compared with a ring body subjected to atmospheric heat treatment such as carburizing heat treatment, carbonitriding heat treatment, and bright heat treatment. Therefore, the austenite grain boundary before cooling is not completely formed, and the crystal grain boundary is not clearly formed. The area closed by the prior austenite grain boundary is 10% or less of the entire visual field. Since the crystal grain boundaries are not clearly formed in this way, the resistance to wear, crack generation, and propagation becomes very large. Furthermore, it is possible to extend the life against cracks caused by internal origin separation. For these reasons, even when used under dilute lubrication or under heavy loads, premature failure due to surface damage such as wear or surface-initiated delamination is unlikely to occur, and internal origin-type delamination due to normal load-dependent rolling fatigue It is also difficult to produce a long service life.
In addition, because it uses high-frequency heat treatment and is heated using clean electrical energy, it is easy to inline the heat treatment process section with good operating efficiency and helps improve productivity, so further cost reduction is possible. is there. In other words, the in-line heat treatment process using high-frequency heat treatment can shorten the product manufacturing cycle time, eliminates the need for in-process inventory, simplifies the equipment, and realizes cost reduction. Further, by in-lining the heat treatment process, quality control for each individual ring body, that is, so-called piece-by-piece quality control can be performed, and high quality can be realized.

この発明において、前記第一、第二の軌道輪および中間輪のうちの前記少なくとも一つの輪体を、前記焼戻し後に旋削加工や研削加工を行うことなく使用されるものとし、表層部の粒界酸化層の厚さを1μm以下としても良い。
高周波熱処理を用いることにより、浸炭熱処理、浸炭窒化熱処理、光輝熱処理等の雰囲気熱処理を施した輪体に比べ昇温時間および加熱時間を短くすることができるので、雰囲気による輪体表面の粒界酸化を抑制でき、表面の粒界酸化層の厚さは1μm以下となり、ほとんど発生しないに等しい。よって、摩耗や表面亀裂の発生を抑制することができる。雰囲気熱処理の場合、表面の粒界酸化層は、熱処理によって異なるが2〜10μm程度発生する。熱処理後に旋削加工工程や研削加工工程等の切削加工工程がある場合は、輪体の表面を旋削加工や研削加工等の切削加工をすることにより、粒界酸化層は取り除かれるが、これらの加工工程がない場合は粒界酸化層が残ってしまうことになる。しかし、この構成によれば、粒界酸化層の発生がほとんどないに等しいから、熱処理後の旋削加工工程や研削加工工程等の切削加工工程がなくても、粒界酸化層が残ってしまう懸念がない。
In this invention, the at least one of the first and second race rings and the intermediate ring is used without performing turning or grinding after the tempering, and the grain boundary of the surface layer portion. The thickness of the oxide layer may be 1 μm or less.
By using high-frequency heat treatment, the temperature rise time and heating time can be shortened compared to rings subjected to atmospheric heat treatment such as carburizing heat treatment, carbonitriding heat treatment, and bright heat treatment. The thickness of the surface grain boundary oxide layer is 1 μm or less, which is equivalent to hardly occurring. Therefore, generation | occurrence | production of abrasion and a surface crack can be suppressed. In the case of atmospheric heat treatment, the grain boundary oxide layer on the surface is generated about 2 to 10 μm, although it varies depending on the heat treatment. If there is a cutting process such as a turning process or a grinding process after the heat treatment, the grain boundary oxide layer is removed by performing a cutting process such as turning or grinding on the surface of the ring body. If there is no process, the grain boundary oxide layer will remain. However, according to this configuration, since there is almost no generation of a grain boundary oxide layer, there is a concern that the grain boundary oxide layer may remain even without a cutting process such as a turning process or a grinding process after the heat treatment. There is no.

この発明において、前記第一、第二の軌道輪および中間輪のうちの前記少なくとも一つの輪体を、前記焼戻し後に旋削加工や研削加工を行うことなく使用されるものとし、これら複数の輪体の群から無作為に抽出した輪体の反り・うねりを測定した場合の平均値に、反り・うねりの標準偏差の3倍を加えた値が40μm以下である輪体の群からとられたものとしても良い。このような反り・うねり値は、従来のものに比べて極めて小さい。従って、従来のように、ころと輪体との間で生じる片当りによって、油膜切れを起こし金属接触となり、接触部が発熱し摩耗や表面起点型の剥離などの表面損傷が生じたり、局部的に接触面圧が高くなり、内部起点型の剥離が発生したりすることがない。更には、輪体の反り・うねりが大きいことにより、軸受使用時において、騒音・振動等も大きくなるようなことがなく、高精度・高機能化(長寿命、低騒音)が実現できる。   In this invention, it is assumed that the at least one of the first and second race rings and the intermediate ring is used without performing turning or grinding after the tempering. Taken from a group of rings with an average value obtained by adding 3 times the standard deviation of warpage / waviness to an average value when measuring the warpage / waviness of a ring extracted randomly from the group It is also good. Such warp / waviness values are extremely small compared to the conventional one. Therefore, as in the past, due to contact between the roller and the ring body, the oil film is cut and metal contact occurs, the contact part generates heat, and surface damage such as wear or surface-origin peeling occurs locally. In addition, the contact surface pressure becomes high and internal origin type peeling does not occur. Furthermore, since the warping and undulation of the ring body is large, noise and vibration are not increased when the bearing is used, and high accuracy and high functionality (long life, low noise) can be realized.

この発明において、前記第一、第二の軌道輪および中間輪のうちの前記少なくとも一つの輪体を、前記焼戻し後に旋削加工や研削加工を行うことなく使用されるものとし、これら複数の輪体の群から無作為に抽出した輪体の反り・うねりを測定した場合に、反り・うねりが40μm以上の輪体が検出される確率が0.1%以下である輪体の群からとられたものとしても良い。このように、反り・うねりが40μm以上の輪体が検出される確率が0.1%以下と極めて低いので、上記の高精度・高機能化(長寿命、低騒音)がより確実に実現できる。   In this invention, it is assumed that the at least one of the first and second race rings and the intermediate ring is used without performing turning or grinding after the tempering. When the warpage / waviness of a ring extracted at random from the group was measured, the probability that a ring with a warp / waviness of 40 μm or more was detected was taken from a group of the ring bodies of 0.1% or less. It is good as a thing. As described above, since the probability that a ring body having a warp / waviness of 40 μm or more is detected is as low as 0.1% or less, the above-described high accuracy and high functionality (long life, low noise) can be realized more reliably. .

この発明において、軌道輪および中間輪の表面硬度および内部硬度を、ビッカース硬さでHV653以上としても良い。軌道輪および中間輪の硬度は、スラスト受け機構として機能するための最も重要な要素の一つである。スラスト受け機構では、軌道輪および中間輪の転走面の表面硬度がHV653以上であることが望ましく、表面硬度がHV653未満では、転動疲労寿命が低下する。表面硬度をHV653以上とすることで、転動疲労寿命の低下を回避することができる。さらに、表面だけでなく軌道輪および中間輪の内部硬度もHV653以上とすることで、表面のみHV653以上である軌道輪および中間輪に比べて、軌道輪および中間輪に塑性変形が生じ難くなり、より転動疲労寿命が向上する。
ここで、表面硬度とは、軌道輪および中間輪においてころと接触する部分(すなわち転走面)の硬さを言う。また、内部硬度とは、軌道輪および中間輪においてころと接触する側の面に垂直な断面の中央部の硬さを言う。
In the present invention, the surface hardness and the internal hardness of the raceway ring and the intermediate ring may be HV653 or higher in terms of Vickers hardness. The hardness of the bearing ring and the intermediate ring is one of the most important factors for functioning as a thrust receiving mechanism. In the thrust receiving mechanism, it is desirable that the surface hardness of the raceway surface and the intermediate wheel rolling surface is HV653 or more, and if the surface hardness is less than HV653, the rolling fatigue life is reduced. By setting the surface hardness to HV653 or more, it is possible to avoid a decrease in rolling fatigue life. Furthermore, not only the surface but also the internal hardness of the bearing ring and the intermediate ring is set to HV653 or more, so that compared to the bearing ring and the intermediate ring whose surface is only HV653 or more, plastic deformation is less likely to occur in the bearing ring and the intermediate ring. The rolling fatigue life is further improved.
Here, the surface hardness refers to the hardness of a portion (that is, a rolling surface) in contact with the roller in the race and intermediate rings. The internal hardness refers to the hardness of the central portion of the cross section perpendicular to the surface in contact with the rollers in the race and intermediate rings.

また、この発明において、前記軌道輪および中間輪の材料を、炭素0.4質量%以上を含む鋼としても良い。炭素を0.4質量%以上を含む鋼とすると、容易にHV653以上の硬度を得ることができる。   Moreover, in this invention, it is good also considering the material of the said bearing ring and an intermediate | middle ring as steel containing 0.4 mass% or more of carbon. If the steel contains 0.4% by mass or more of carbon, a hardness of HV653 or more can be easily obtained.

さらに、この発明において、軌道輪および中間輪を、鋼板をプレス加工したものとしても良い。鋼板をプレス加工したものとすることにより、旋削等の方法で形成した部材を用いるよりも、低コストな軌道輪および中間輪とすることができる。   Furthermore, in this invention, the raceway ring and the intermediate ring may be formed by pressing a steel plate. By using a steel plate that has been press-worked, it is possible to obtain a low-cost track ring and intermediate ring as compared to using a member formed by a method such as turning.

この発明におけるスラスト受け機構は、軌道輪および中間輪が、CO2冷媒とPAGオイル(ポリアルキレングリコール)環境下で使用されるものであっても良い。自然冷媒を採用した圧縮機等においては、圧縮機内の高圧化が進み、また冷却能力向上のためにPAGオイル等を混在させた希薄潤滑下で使用される。しかし、この発明のスラスト受け機構は、軌道輪および中間輪のうちの少なくとも一つの輪体が、高周波焼入によって熱硬化されたものであって、旧オーステナイト結晶粒界で閉じられた領域が視野全体の10%以下とし、さらには表面の粒界酸化層の厚さを1μm以下としたことにより、摩耗や表面および内部起点型剥離が生じ難くて長寿命化が得られるため、自然冷媒とPAGオイル環境下で使用される圧縮機の場合に、上記の長寿命化の効果がより一層有効に発揮される。   In the thrust receiving mechanism according to the present invention, the raceway ring and the intermediate ring may be used in a CO2 refrigerant and PAG oil (polyalkylene glycol) environment. In a compressor or the like that employs a natural refrigerant, the pressure inside the compressor is increased, and the compressor is used under lean lubrication mixed with PAG oil or the like in order to improve the cooling capacity. However, the thrust receiving mechanism of the present invention is such that at least one of the raceway ring and the intermediate ring is heat-cured by induction hardening, and the region closed by the prior austenite grain boundary is viewed. By setting the thickness to 10% or less of the total, and further the thickness of the surface grain boundary oxide layer to 1 μm or less, wear, surface and internal origin type peeling hardly occur, and a long life can be obtained. In the case of a compressor used in an oil environment, the above-mentioned effect of extending the life is more effectively exhibited.

この発明のスラスト受け機構の軌道輪または中間輪の製造方法は、材料に塑性加工を施して所定の形状に成形するプレス加工工程と、前記プレス加工工程で成形されたワークを変形しないよう保持した状態で高周波焼入れを行う焼入工程とを備える。
この発明のスラスト受け機構の軌道輪または中間輪の製造方法において、前記焼入工程でワークを保持した状態を保ちつつ、高周波焼戻しを行う焼戻工程をさらに備えるものとしてもよい。
この製造方法によれば、スラスト受け機構の軌道輪または中間輪の反り・うねりを小さくすることができる。
The method of manufacturing the bearing ring or intermediate ring of the thrust receiving mechanism according to the present invention includes a pressing process in which a material is subjected to plastic processing to form a predetermined shape, and the workpiece formed in the pressing process is held so as not to be deformed. A quenching step of performing induction hardening in a state.
In the method of manufacturing the raceway ring or the intermediate ring of the thrust receiving mechanism according to the present invention, the method may further include a tempering step of performing induction tempering while maintaining a state where the workpiece is held in the quenching step.
According to this manufacturing method, it is possible to reduce warpage and undulation of the race ring or the intermediate ring of the thrust receiving mechanism.

この発明のスラスト受け機構は、希薄潤滑下、高荷重下で使用されても、摩耗や表面起点型剥離などの表面損傷での早期破損が生じ難く、通常の荷重依存型の転動疲れによる内部起点型剥離も生じ難くて長寿命化が実現できる。また、作動に伴う騒音が低減される。さらに、熱処理工程のインライン化が可能で、生産性の向上、生産設備の簡素化による低コスト化、個別の軌道輪および中間輪の品質管理の容易化による高品質化が実現できる。   The thrust receiving mechanism of the present invention is less susceptible to premature breakage due to surface damage such as wear and surface-origin peeling even when used under lean lubrication and high load. Starting-type peeling is unlikely to occur and a long life can be realized. Moreover, the noise accompanying the operation is reduced. Furthermore, the heat treatment process can be inlined, improving productivity, reducing costs by simplifying production facilities, and improving quality by facilitating quality control of individual track rings and intermediate wheels.

この発明の実施形態を図1ないし図4と共に説明する。図1は図2のA〜F線に沿った断面図である。このスラスト受け機構8は、相互間で偏心回転運動を行う第一の部材3と第二の部材4との間に介在してスラスト荷重を支持する機構である。この例では、第二の部材4が固定側の部材、第一の部材3が偏心回転側の部材であり、第一の部材3は、その中心C1が第二の部材4の中心C2に対して偏心量eだけ偏心した状態で偏心回転運動を行う。
このスラスト受け機構8は、第一の部材3に固定された第一の軌道輪9と、第二の部材4に固定された第二の軌道輪10と、第一の軌道輪9と第二の軌道輪10との間に配置した中間輪11と、第一の軌道輪9と中間輪11との間に配置した複数の第一のころ12…と、第一のころ12…を転動軸心が互いに平行になるように保持するための複数のポケット13a…を有する第一の保持器13と、第二の軌道輪10と中間輪11との間に配置した複数の第二のころ14…と、第二のころ14…を転動軸心が互いに平行になるように保持するための複数のポケット15a…を有する第二の保持器15とを具備する。これらが第一のころ12…の転動軸心と第二のころ14…の転動軸心とが直交するように上下に積層されている。
An embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view taken along the line A to F in FIG. The thrust receiving mechanism 8 is a mechanism that is interposed between the first member 3 and the second member 4 that perform eccentric rotational movement between each other and supports a thrust load. In this example, the second member 4 is a member on the fixed side, the first member 3 is a member on the eccentric rotation side, and the center C1 of the first member 3 is relative to the center C2 of the second member 4. Thus, the eccentric rotational motion is performed in the state of being eccentric by the eccentric amount e.
The thrust receiving mechanism 8 includes a first race ring 9 fixed to the first member 3, a second race ring 10 fixed to the second member 4, the first race ring 9 and the second race ring 9. Rolling an intermediate ring 11 disposed between the first and second race rings 10, a plurality of first rollers 12 disposed between the first race ring 9 and the intermediate ring 11, and the first rollers 12. A first retainer 13 having a plurality of pockets 13a for holding the shafts in parallel with each other, and a plurality of second rollers disposed between the second race ring 10 and the intermediate ring 11. 14 and a second cage 15 having a plurality of pockets 15a for holding the second rollers 14 so that their rolling axes are parallel to each other. These are laminated vertically so that the rolling axis of the first rollers 12 and the rolling axis of the second rollers 14 are orthogonal to each other.

第一の軌道輪9は、第一の部材3の下面に接し、第一の部材3に植え込まれた2本のガイドピン16,16によって位置決めおよび回り止めがなされている。また、第二の軌道輪10は、第二の部材4の上面に接し、第二の部材4に植え込まれた2本のガイドピン17,17によって位置決めおよび回り止めがなされている。第一の軌道輪9および第二の軌道輪10は、例えば鋼板をプレス加工して同一の形状・寸法のリング状に成形したもので、それぞれの径方向対向位置には、2個のピン孔9a,9aおよび10a,10aが設けられている。各ピン孔9a,9aおよび10a,10aは、上記ガイドピン16,16および17,17とほぼ同径とされ、各2本のガイドピン16,16および17,17は、それぞれ第一の軌道輪9および第二の軌道輪10の径方向対向関係に位置し、かつその径方向は互いに直交する関係とされて、ピン孔9a,9aおよび10a,10aに挿通されている。   The first track ring 9 is in contact with the lower surface of the first member 3, and is positioned and stopped by two guide pins 16, 16 implanted in the first member 3. The second race 10 is in contact with the upper surface of the second member 4 and is positioned and stopped by two guide pins 17, 17 implanted in the second member 4. The first raceway ring 9 and the second raceway ring 10 are formed, for example, by pressing a steel plate into a ring shape having the same shape and dimensions, and two pin holes at each radially opposed position. 9a, 9a and 10a, 10a are provided. The pin holes 9a, 9a and 10a, 10a have substantially the same diameter as the guide pins 16, 16, 17 and 17, and each of the two guide pins 16, 16 and 17, 17 has a first raceway ring. 9 and the second race ring 10 are located in a radially opposing relationship, and their radial directions are orthogonal to each other, and are inserted into the pin holes 9a, 9a and 10a, 10a.

また、中間輪11も上記同様鋼板をプレス加工してリング状に成形したもので、周方向に等間隔で4個のピン孔11a…が設けられている。これらピン孔11a…は、いずれも中間輪11の径方向に延びる長孔とされており、その幅は上記ガイドピン16,16および17,17の径よりやや大とされ、上記ガイドピン16,16および17,17の先側部分がこれらピン孔11a…に挿入されて、孔内をその長手方向に沿って相対摺動可能とされている。   Further, the intermediate wheel 11 is also formed by pressing a steel plate into a ring shape, and is provided with four pin holes 11a at equal intervals in the circumferential direction. Each of these pin holes 11a is a long hole extending in the radial direction of the intermediate ring 11, and the width thereof is slightly larger than the diameter of the guide pins 16, 16 and 17, 17, and the guide pins 16, The front side portions 16, 17, and 17 are inserted into these pin holes 11 a... So that they can slide relative to each other along the longitudinal direction.

第一の保持器13および第二の保持器15の案内はころ案内とする。第一の保持器13および第二の保持器15は、軌道輪9,10および中間輪と同一形状・寸法のリング状であり、合成樹脂の成型体からなる。各保持器13,15は、周方向に配列した複数のポケット13a…,15a…を有し、それぞれのポケット13a…,15a…には、円筒状ころ12…,14…が収容保持されている。保持器13および15におけるそれぞれのポケット13a…および15a…は互いに平行に形成され、従って、ポケット13a…および15a…に保持されたころ12…および14…の転動軸線が平行となる。各保持器13,15は、径方向で対向する位置に、一対のピン孔13b,13bおよび15a,15aが設けられている。これらピン孔13b,13bおよび15b,15bは、保持器13および15の径方向に延びる長孔とされ、ピン孔13b,13bおよび15b,15bの長手方向軸線は互いに直交関係とされている。ピン孔13b,13bおよび15b,15bの幅寸法は、上記ガイドピン16,16および17,17の径よりやや大とされ、それぞれにガイドピン16,16および17,17がその長手方向に沿って摺動可能に挿通されている。   The guides of the first cage 13 and the second cage 15 are roller guides. The first retainer 13 and the second retainer 15 have a ring shape having the same shape and dimensions as the race rings 9 and 10 and the intermediate ring, and are made of a synthetic resin molding. Each retainer 13, 15 has a plurality of pockets 13 a, 15 a,... Arranged in the circumferential direction, and cylindrical rollers 12, 14,. . The respective pockets 13a ... and 15a ... in the cages 13 and 15 are formed in parallel with each other, so that the rolling axes of the rollers 12 ... and 14 ... held in the pockets 13a ... and 15a ... are parallel. Each retainer 13 and 15 is provided with a pair of pin holes 13b and 13b and 15a and 15a at positions facing each other in the radial direction. These pin holes 13b, 13b and 15b, 15b are elongated holes extending in the radial direction of the cages 13 and 15, and the longitudinal axes of the pin holes 13b, 13b and 15b, 15b are orthogonal to each other. The width dimensions of the pin holes 13b, 13b and 15b, 15b are set to be slightly larger than the diameters of the guide pins 16, 16, 17 and 17, and the guide pins 16, 16 and 17, 17 are respectively provided along the longitudinal direction thereof. It is slidably inserted.

ころ12,14の径は、図4に示すように、保持器13および15の厚みよりやや大とされ、ポケット13aおよび15aの内側部には、ころ12,14を保持器13および15の厚み方向中央部に保持し得るよう、内向きの突起13c,15cが形成されている。ころ12,14は、突起13c,15cの弾性変形を伴い挿入することにより、ポケット13aおよび15a内に脱落不能に保持される。ころ12,14が保持器13および15の厚み方向中央部に保持されることによって、保持器13および15の上下両面にころ12,14の一部が突出し、この突出によって、軌道輪9と保持器13との間、保持器13と中間輪11との間、中間輪11と保持器15との間および保持器15と軌道輪10との間に一定の隙間が確保されることになる。   As shown in FIG. 4, the diameters of the rollers 12 and 14 are slightly larger than the thicknesses of the cages 13 and 15, and the rollers 12 and 14 are disposed on the inner sides of the pockets 13 a and 15 a. Inward projections 13c and 15c are formed so as to be held at the center in the direction. The rollers 12 and 14 are held in the pockets 13a and 15a so as not to fall off by being inserted with elastic deformation of the protrusions 13c and 15c. When the rollers 12 and 14 are held at the central portions of the cages 13 and 15 in the thickness direction, a part of the rollers 12 and 14 protrudes from both upper and lower surfaces of the cages 13 and 15, and the projections hold the bearing rings 9 and 14. A certain clearance is secured between the cage 13, between the cage 13 and the intermediate ring 11, between the intermediate ring 11 and the cage 15, and between the cage 15 and the raceway ring 10.

図5は、このスラスト受け機構8を備えたスクロール圧縮機の縦断面図である。旋回スクロール部材3と、これに対向して配置される固定スクロール部材4Aとに螺旋状隔壁5,6を各々設け、両隔壁5,6間に形成される圧縮室7を、旋回スクロール部材3の偏芯回転に伴って容積変化させることによって圧縮室内の流体を圧縮させるものである。上記流体としては自然冷媒(例えば、CO2)を用いている。
上記旋回スクロール部材3と、固定スクロール部材4Aに一体に固定された固定フレームである第二の部材4との間に、図1〜図4の実施形態にかかるスラスト受け機構8が介装されている。旋回スクロール部材3は、上記第一の部材となる。
FIG. 5 is a longitudinal sectional view of a scroll compressor provided with the thrust receiving mechanism 8. Spiral partition walls 5 and 6 are respectively provided on the orbiting scroll member 3 and the fixed scroll member 4A disposed opposite thereto, and the compression chamber 7 formed between the both partition walls 5 and 6 is disposed on the orbiting scroll member 3. The fluid in the compression chamber is compressed by changing the volume along with the eccentric rotation. A natural refrigerant (for example, CO2) is used as the fluid.
A thrust receiving mechanism 8 according to the embodiment of FIGS. 1 to 4 is interposed between the orbiting scroll member 3 and the second member 4 which is a fixed frame fixed integrally to the fixed scroll member 4A. Yes. The orbiting scroll member 3 is the first member.

上記旋回スクロール部材3の軸心C1は、上記出力軸の軸心C2に対して、所定の偏心量(公転半径)eだけ偏心しており、駆動モータ1が作動すると、旋回スクロール部材3が偏心量eに等しい公転半径で偏心回転する。中間輪11、第一および第二の保持器13,15に設けたピン孔11a,13b,15bの長手方向の長さは、ガイドピン16、17がこれらピン孔11a,13b,15bの長手方向一端から他端まで移動し得る距離と、上記偏心量eとが等しくなるよう設定されている。従って、第一のころ12の転動軸心と第二のころ14の転動軸心とが互いに直交していること、および上記ガイドピン16、17がピン孔11a,13b,15bの長手方向一端から他端まで移動する距離と偏心量eとの関係によって、駆動モータ1が作動すると、ころ12および14が軌道溝9と中間輪11との間および軌道輪10と中間輪11との間を転動し、旋回スクロール部材3の偏心量eに等しい公転半径での偏心回転がなされる。   The axis C1 of the orbiting scroll member 3 is eccentric by a predetermined eccentricity (revolution radius) e with respect to the axis C2 of the output shaft. When the drive motor 1 is operated, the orbiting scroll member 3 is eccentric. It rotates eccentrically with a revolution radius equal to e. The longitudinal lengths of the pin holes 11a, 13b, and 15b provided in the intermediate ring 11, the first and second cages 13 and 15 are such that the guide pins 16 and 17 are in the longitudinal direction of the pin holes 11a, 13b, and 15b. The distance that can move from one end to the other end is set to be equal to the amount of eccentricity e. Therefore, the rolling axis of the first roller 12 and the rolling axis of the second roller 14 are orthogonal to each other, and the guide pins 16, 17 are in the longitudinal direction of the pin holes 11a, 13b, 15b. When the drive motor 1 is operated according to the relationship between the distance from one end to the other end and the eccentricity e, the rollers 12 and 14 move between the raceway groove 9 and the intermediate ring 11 and between the raceway ring 10 and the intermediate ring 11. , And an eccentric rotation with a revolution radius equal to the eccentric amount e of the orbiting scroll member 3 is performed.

これにより、旋回スクロール部材3の固定フレームである第二の部材4に対する偏芯回転運動の規制がなされる。上記偏心回転の際、旋回スクロール部材3には、これを自転させようとする力が働き、また、流体(冷媒)の圧縮動作に伴うスラスト荷重が負荷される。スラスト受機構8は、旋回スクロール部材3の偏心回転に伴うころ12および14の上記転動によって、旋回スクロール部材3の自転を防止すると共に、スラスト荷重を支持するべく機能する。そして、旋回スクロール部材3と、固定スクロール部材4Aとに設けられた螺旋状隔壁5,6間に形成された圧縮室7を、旋回スクロール部材3の偏芯回転に伴って容積変化させることによって、圧縮室内の流体(CO2等の自然冷媒にPAGオイルが混在)が圧縮される。   Thereby, the eccentric rotational motion of the second member 4 which is the fixed frame of the orbiting scroll member 3 is restricted. At the time of the eccentric rotation, the orbiting scroll member 3 is subjected to a force for rotating the orbiting scroll member 3, and a thrust load accompanying a compression operation of the fluid (refrigerant) is applied. The thrust receiving mechanism 8 functions to prevent rotation of the orbiting scroll member 3 and to support a thrust load by the rolling of the rollers 12 and 14 accompanying the eccentric rotation of the orbiting scroll member 3. Then, by changing the volume of the compression chamber 7 formed between the spiral partition walls 5 and 6 provided in the orbiting scroll member 3 and the fixed scroll member 4A with the eccentric rotation of the orbiting scroll member 3, The fluid in the compression chamber (PAG oil is mixed with natural refrigerant such as CO2) is compressed.

CO2を冷媒とするスクロール圧縮機のスラスト受け機構に適用させる場合、CO2とPAGオイルとが混在した流体で潤滑されることになるが、この流体は水分を吸収しやすく、そのため、保持器13,15の材質は加水分解が生じないような耐薬品性を備えていることが必要である。   When applied to a thrust receiving mechanism of a scroll compressor using CO2 as a refrigerant, it is lubricated with a fluid in which CO2 and PAG oil are mixed. However, this fluid easily absorbs moisture. The material of 15 is required to have chemical resistance such that hydrolysis does not occur.

図6(A)は、上記スラスト受け機構8の軌道輪9、10および中間輪11の製造工程の一例を示す。この軌道輪9、10および中間輪11に採用される鋼板の材質は、炭素を0.4質量%以上含むものであり、例えば、S40C〜S55C(機械構造用炭素鋼)、SCM440〜SCM445(機械構造用合金鋼)、SMN443(機械構造用マンガン鋼)、SK5(炭素工具鋼)、SUJ2、SAE1070等が使用される。これら鋼板をプレス加工にて上記のような所定の形状に加工する。これを拘束した状態で高周波熱処理として、高周波焼入れを施し、引き続き高周波焼戻しを行う。この高周波焼戻しの際も上記拘束状態を維持することが望ましい。   FIG. 6A shows an example of the manufacturing process of the race rings 9 and 10 and the intermediate ring 11 of the thrust receiving mechanism 8. The material of the steel plate employed for the races 9, 10 and the intermediate ring 11 contains 0.4 mass% or more of carbon. For example, S40C to S55C (carbon steel for machine structure), SCM440 to SCM445 (machine Alloy steel for structure), SMN443 (manganese steel for machine structure), SK5 (carbon tool steel), SUJ2, SAE1070, etc. are used. These steel plates are processed into a predetermined shape as described above by press working. In a state where this is constrained, induction hardening is performed as induction heat treatment, and induction tempering is subsequently performed. It is desirable to maintain the constrained state during the induction tempering.

この場合、高周波焼入工程における加熱時間が、一般的焼入硬化処理である浸炭熱処理や、浸炭窒化熱処理、あるいは光輝熱処理等の雰囲気熱処理に比較して極めて短いため、冷却前のオーステナイト結晶粒界の形成が完全に行われない。そのため、旧オーステナイト結晶粒界で閉じられた領域を、視野全体の10%以下とできる。
また、高周波焼入工程で軌道輪および中間輪を拘束しているから、反りやうねりの発生が抑制される。高周波焼戻工程においても、軌道輪および中間輪を拘束する場合、反りやうねりの発生がより抑制される。さらに、軌道輪および中間輪の表面硬度および内部硬度は、いずれもビッカース硬度でHV653以上となる。次に、旋削加工や研削加工等の切削加工を行うことなく、例えば、タンブラーにより仕上げがなされる。
In this case, the heating time in the induction hardening process is extremely short as compared to the atmospheric heat treatment such as carburizing heat treatment, carbonitriding heat treatment, or bright heat treatment, which is a general quench hardening treatment, so the austenite grain boundaries before cooling Is not completely formed. Therefore, the region closed by the prior austenite grain boundary can be made 10% or less of the entire visual field.
Further, since the raceway ring and the intermediate ring are restrained in the induction hardening process, the occurrence of warpage and undulation is suppressed. Even in the induction tempering process, when the race ring and the intermediate ring are restrained, the occurrence of warpage and undulation is further suppressed. Furthermore, the surface hardness and the internal hardness of the raceway ring and the intermediate ring are both HV653 or higher in terms of Vickers hardness. Next, a finish is made by, for example, a tumbler without performing a cutting process such as a turning process or a grinding process.

上記製造工程によれば、冷却前のオーステナイト結晶粒界の形成が完全に行われないので、この軌道輪および中間輪を上記のようなスラスト受け機構8に適用した場合、希薄潤滑下で、ころ12と軌道輪9および中間輪11との間、あるいはころ14と軌道輪10および中間輪11との間の油膜切れ(金属接触)があっても、摩耗や亀裂発生、進展に対する抵抗性が非常に大きくなる。よって、摩耗や表面起点型剥離などの表面損傷、内部起点型剥離にも効果があり、長寿命化が図られる。
高周波熱処理設備は比較的小規模であり、しかも、取扱に注意が必要な浸炭ガス等も使用しないため、熱処理設備をインライン化して、加工工程と共に1つのラインを構成することができる。そのため、熱処理前および熱処理後の仕掛品が発生せず、これにより製造コストの低減化が図られる。また、製品の管理も容易となるため、ピースバイピースの品質管理を行うことができ、製品の高品質化が実現される。さらに、通常の雰囲気熱処理の場合は、焼戻工程終了時において軌道輪および中間輪の反りやうねりを生じ易いため、矯正のためのプレステンパー工程を必要とするが、高周波熱処理を採用した製造工程では、このような反りやうねりが生じ難いため、プレステンパーの工程は不要となり、これによっても製造コストの低減化が図られる。
According to the above manufacturing process, the formation of the austenite grain boundaries before cooling is not completely performed. Therefore, when this raceway ring and intermediate ring are applied to the thrust receiving mechanism 8 as described above, the roller is subjected to dilute lubrication. Even if there is an oil film breakage (metal contact) between 12 and the raceway ring 9 and the intermediate ring 11 or between the roller 14 and the raceway ring 10 and the intermediate ring 11, resistance to wear, cracking and progress is extremely high. Become bigger. Therefore, it is also effective for surface damage such as abrasion and surface-origin type peeling, and internal origin-type peeling, and the life can be extended.
Since the high-frequency heat treatment equipment is relatively small and does not use carburizing gas or the like that requires attention to handling, the heat treatment equipment can be inlined to form one line together with the processing steps. Therefore, work in progress before and after heat treatment does not occur, thereby reducing the manufacturing cost. Further, since product management becomes easy, quality control of piece-by-piece can be performed, and high quality of the product is realized. Furthermore, in the case of normal atmospheric heat treatment, since it tends to cause warpage and undulation of the race and intermediate wheels at the end of the tempering process, a press temper process for correction is required, but a manufacturing process that employs high frequency heat treatment Then, since such warpage and undulation are unlikely to occur, the press tempering process becomes unnecessary, and this also reduces the manufacturing cost.

一般に、焼入のための加熱工程の初期では、温度を加えることによる加工応力、ひずみの開放による変形と自重とによる変形があり、また、その後の加熱工程では、金属組織がフェライト+セメンタイトからオーステナイト+セメンタイトへの変態による変形と自重とによる変形、さらにはオーステナイト+セメンタイトからマルテンサイト+セメンタイトへの変態による変形がある。従来は、これを矯正するために、冷却工程でプレスクエンチの工程を追加している。また、焼戻工程では、残留応力の開放による変形と焼入マルテンサイトから焼戻マルテンサイトへの変態や残留オーステナイトから焼戻マルテンサイト+セメンタイトへの変態による変形があり、これを矯正するため、従来は図6(B)に示すように、プレステンパーの工程を追加している。この発明は、このような矯正のための工程を不要としている。   Generally, in the initial stage of the heating process for quenching, there are deformation due to processing stress due to application of temperature, strain release and deformation due to its own weight, and in the subsequent heating process, the metal structure changes from ferrite + cementite to austenite. There is deformation due to transformation to + cementite and deformation due to its own weight, and further deformation due to transformation from austenite + cementite to martensite + cementite. Conventionally, in order to correct this, a step of press quenching is added in the cooling step. Also, in the tempering process, there are deformation due to release of residual stress and transformation from quenched martensite to tempered martensite and transformation from retained austenite to tempered martensite + cementite, in order to correct this, Conventionally, as shown in FIG. 6B, a press tempering process is added. The present invention eliminates such a correction process.

図7〜図9は、この実施の形態における軌道輪9,10および中間輪11の製造工程で使用される高周波熱処理装置の例を示す。図7において、高周波熱処理装置18は、高周波コイル19と、下部拘束用治具20と、上部拘束用治具21と、中心軸22と、治具押さえナット23とを備えている。高周波コイル19は、冷却水を矢示のように吐出するための複数の冷却水吐出口19a…を有している。   7 to 9 show examples of the high-frequency heat treatment apparatus used in the manufacturing process of the race rings 9 and 10 and the intermediate ring 11 in this embodiment. In FIG. 7, the high-frequency heat treatment apparatus 18 includes a high-frequency coil 19, a lower restraining jig 20, an upper restraining jig 21, a central shaft 22, and a jig holding nut 23. The high frequency coil 19 has a plurality of cooling water discharge ports 19a for discharging cooling water as indicated by arrows.

この高周波熱処理装置18における高周波熱処理の手順を説明する。先ず、下部拘束用治具20に下方より中心軸22を挿入し、中心軸22にリング状軌道輪9,10あるいは中間輪11(以下、図7〜図9の説明において輪体と言う)を上から同心に複数個嵌め入れ、下部拘束用治具20の平滑な上面に配置する。配置される輪体9(10,11)は、1枚でも良いが、高周波熱処理の効率向上の観点から複数枚であることが望ましい。複数枚を同時に高周波熱処理を行う場合、輪体9(10,11)は、中心軸22を挟む両側に配置された高周波コイル19による加熱が可能な範囲で、積み重ねて配置される。次いで、上部拘束用治具21を、その平滑な下面が、積み重ねられた最上層の輪体9(10,11)の上面に接触するよう配置する。治具押さえナット23を中心軸22の上部に形成された雄ねじ部22aに所定のトルクで締め付け、これにより、輪体9(10,11)は、それぞれの転走面を押圧する向きの応力を転走部分全体に負荷される。   The procedure of the high frequency heat treatment in the high frequency heat treatment apparatus 18 will be described. First, the center shaft 22 is inserted into the lower restraining jig 20 from below, and the ring-shaped track rings 9 and 10 or the intermediate wheel 11 (hereinafter referred to as a ring body in the description of FIGS. 7 to 9) is inserted into the center shaft 22. A plurality of them are fitted concentrically from above and arranged on the smooth upper surface of the lower restraining jig 20. Although one ring body 9 (10, 11) may be arranged, it is desirable that there are a plurality of rings from the viewpoint of improving the efficiency of the high-frequency heat treatment. In the case where a plurality of sheets are subjected to high-frequency heat treatment at the same time, the rings 9 (10, 11) are stacked in a range that can be heated by the high-frequency coils 19 disposed on both sides of the central shaft 22. Next, the upper restraining jig 21 is arranged so that the smooth lower surface thereof is in contact with the upper surface of the uppermost ring body 9 (10, 11) that is stacked. The jig holding nut 23 is fastened to the male screw portion 22a formed on the upper portion of the central shaft 22 with a predetermined torque, whereby the ring bodies 9 (10, 11) are subjected to stress in a direction to press the respective rolling surfaces. The entire rolling part is loaded.

高周波コイル19に高周波電流を通電すると輪体9(10,11)は、高周波誘導加熱される。輪体9(10,11)は、鋼がフェライトからオーステナイトに変態を開始する温度以上の温度で高周波焼入加熱され、この加熱状態で所定時間保持される(加熱工程)。その後、通電が停止されると共に高周波コイル19の冷却水吐出口19aを通して冷却水が輪体9(10,11)に吹き付けられる。これにより、輪体9(10,11)は、オーステナイト化した鋼がマルテンサイト化を開始する温度にまで急速に冷却される(冷却工程)。以上の手順により、輪体9(10,11)は転走面を押圧する向きの応力を負荷された状態で、焼入硬化される。この焼入工程における加熱時間は一般的焼入硬化処理である浸炭熱処理や浸炭窒化処理、あるいは光輝熱処理等の雰囲気熱処理と比較して極めて短いため、粒界酸化層はほとんど形成されない。この高周波加熱処理の際、一様に加熱および冷却を行うため、回転矢印で示すように高周波加熱処理装置18のうち高周波コイル19以外の部分を、中心軸22を回転軸として高周波コイル19に対して相対的に回転させることが好ましい。   When a high-frequency current is passed through the high-frequency coil 19, the ring body 9 (10, 11) is heated by high-frequency induction. The ring body 9 (10, 11) is induction-hardened and heated at a temperature equal to or higher than the temperature at which the steel starts to transform from ferrite to austenite, and is held for a predetermined time in this heating state (heating step). Thereafter, energization is stopped and cooling water is sprayed onto the ring body 9 (10, 11) through the cooling water discharge port 19a of the high-frequency coil 19. Thereby, the ring body 9 (10, 11) is rapidly cooled to a temperature at which the austenitized steel starts to martensite (cooling step). According to the above procedure, the ring bodies 9 (10, 11) are hardened and hardened in a state where a stress in a direction to press the rolling surface is applied. Since the heating time in this quenching process is extremely short as compared with atmospheric heat treatment such as carburizing heat treatment, carbonitriding treatment, or bright heat treatment, which is a general quench hardening treatment, the grain boundary oxide layer is hardly formed. In order to perform heating and cooling uniformly at the time of this high-frequency heat treatment, a portion other than the high-frequency coil 19 in the high-frequency heat treatment device 18 is arranged with respect to the high-frequency coil 19 with the central axis 22 as the rotation axis, as indicated by a rotation arrow. It is preferable to rotate relatively.

さらに、再度高周波コイル19には高周波電流が通電され、輪体9(10,11)は、上記鋼がフェライトからオーステナイトに変態を開始する温度以下の温度に加熱される。その後輪体9(10,11)は所定の時間、所定の温度で保持された後、加熱が中止されることで冷却される(焼戻工程)。以上の手順により輪体9(10,11)は転走面を押圧する向きの応力を負荷された状態で焼戻しされる。このとき、一様に加熱を行うため、上記同様矢印で示すように高周波コイル19以外の部分を中心軸22を回転軸として軸回転させることが好ましい。   Further, the high frequency coil 19 is again energized with a high frequency current, and the ring body 9 (10, 11) is heated to a temperature below the temperature at which the steel starts to transform from ferrite to austenite. Thereafter, the ring body 9 (10, 11) is held at a predetermined temperature for a predetermined time, and then cooled by stopping heating (tempering step). By the above procedure, the ring body 9 (10, 11) is tempered in a state where a stress in a direction to press the rolling surface is applied. At this time, in order to perform heating uniformly, it is preferable that the portion other than the high-frequency coil 19 is rotated about the central axis 22 as a rotation axis, as indicated by an arrow as described above.

以上の工程により、輪体9(10,11)は、粒界酸化層がほとんど形成されることなく、かつ転走面を押圧する向きの応力が、少なくとも輪体9(10,11)の転走部分全体に対して負荷されながら焼入れおよび焼戻しされる。なお、上記拘束治具20,21による拘束応力は、焼戻工程においては必ずしも負荷し続ける必要はなく、必要に応じて解除することができるが、変形を抑制する観点および工程数を少なくする観点から、熱処理開始前に輪体9(10,11)を拘束し、かつ熱処理終了(焼戻工程の終了)まで拘束し続けることが望ましい。
この高周波加熱処理方法によれば、焼入硬化し、焼戻しされた後に旋削加工や研削加工等の切削加工を行うことなく使用される輪体9(10,11)の表層部の粒界酸化層の厚さを1μm以下とすることができ、反り・うねりも小さくすることができる。
Through the above-described steps, the ring body 9 (10, 11) has almost no grain boundary oxide layer formed, and the stress in the direction to press the rolling surface is at least rolling of the ring body 9 (10, 11). It is quenched and tempered while being loaded on the entire running part. The restraining stress due to the restraining jigs 20 and 21 does not necessarily need to be continuously applied in the tempering process and can be released as necessary, but the viewpoint of suppressing deformation and the viewpoint of reducing the number of processes. Therefore, it is desirable to restrain the ring body 9 (10, 11) before the start of the heat treatment and continue to restrain until the end of the heat treatment (end of the tempering step).
According to this high-frequency heat treatment method, the grain boundary oxide layer of the surface layer portion of the ring body 9 (10, 11) that is used without being subjected to cutting such as turning or grinding after being quenched and hardened and tempered. Can be made 1 μm or less in thickness, and warpage and undulation can be reduced.

図8は高周波熱処理装置の第一の変形例を示す。この高周波熱処理装置24は、図7に示す高周波熱処理装置18と基本的に同様の構成とされているが、上記のような中心軸22およびこれに噛み合う治具押えナット23を有さず、また、高周波コイル19に加えて、焼戻工程の内径側に、高周波コイル25が配置されている点で図7の誘導熱処理装置18と異なっている。この内径側に配置される高周波コイル25にも上記と同様の冷却水吐出口25a…が設けられている。さらに、下部拘束治具26上に配置された輪体9(10,11)に対して、上部拘束用治具27が、たとえば油圧シリンダなどにより圧力を負荷される。これにより、転走面を押圧する向きの応力が、少なくとも輪体9(10,11)の転走部分全体に対して負荷される。そして、高周波加熱による焼入れおよび焼戻しは、輪体9(10,11)の外径側からだけでなく、内径側からも行われる。この第1の変形例の高周波熱処理装置24によれば、輪体9(10,11)は、より均一に加熱される。そのため、反り・うねりの抑制に有利である。   FIG. 8 shows a first modification of the induction heat treatment apparatus. This high-frequency heat treatment apparatus 24 has basically the same configuration as the high-frequency heat treatment apparatus 18 shown in FIG. 7, but does not have the center shaft 22 and the jig press nut 23 that meshes with the center shaft 22 as described above. 7 is different from the induction heat treatment apparatus 18 of FIG. 7 in that a high frequency coil 25 is disposed on the inner diameter side of the tempering process in addition to the high frequency coil 19. The high-frequency coil 25 disposed on the inner diameter side is also provided with cooling water discharge ports 25a. Further, the upper restraining jig 27 is loaded with pressure on the ring body 9 (10, 11) disposed on the lower restraining jig 26 by, for example, a hydraulic cylinder. Thereby, the stress of the direction which presses a rolling surface is loaded with respect to the whole rolling part of the ring body 9 (10, 11) at least. And quenching and tempering by high frequency heating are performed not only from the outer diameter side of the ring body 9 (10, 11) but also from the inner diameter side. According to the high frequency heat treatment apparatus 24 of the first modification, the ring body 9 (10, 11) is heated more uniformly. Therefore, it is advantageous for suppressing warpage and swell.

図9は高周波熱処理装置の第二の変形例を示す。この高周波熱処理装置28も、図7に示す高周波熱処理装置18と基本的に同様の構成とされているが、高周波コイル19に代えて、焼入用高周波コイル29と焼戻用高周波コイル30とがそれぞれ中心軸31を挟む両側に配置されている点で図7の高周波熱処理装置18と異なる。また、焼入用高周波コイル29は第一の焼入用高周波コイル29aと、第一の焼入用高周波コイル29aに隣接し、かつ焼戻用高周波コイル30との間に配置された第二の焼入用高周波コイル29bとからなっている。第二の焼入用高周波コイル29bは冷却水吐出口29cを有している。また、図7の高周波熱処理装置18では配置されたすべての輪体9(10,11)が同時に加熱可能に構成されているのに対し、この変形例では一部の輪体9(10,11)のみが加熱可能に構成されている。具体的には、一部の輪体9(10,11)の端面にのみ対向することができるように、高周波コイル29,30の高さはセットされた複数の輪体9(10,11)の高さよりも小さくなっている。さらに、高周波コイル29,30および中心軸31の一方または両方が中心軸31の軸方向に移動可能であることにより、中心軸31が高周波コイル29,30に対して相対的に移動可能な構成となっている。   FIG. 9 shows a second modification of the induction heat treatment apparatus. This high-frequency heat treatment apparatus 28 is also basically configured in the same manner as the high-frequency heat treatment apparatus 18 shown in FIG. 7, but instead of the high-frequency coil 19, a high-frequency coil 29 for quenching and a high-frequency coil 30 for tempering are provided. 7 is different from the high-frequency heat treatment apparatus 18 of FIG. 7 in that they are arranged on both sides of the central axis 31. Further, the quenching high-frequency coil 29 is a second quenching high-frequency coil 29 a and a second quenching high-frequency coil 29 a that is adjacent to the first quenching high-frequency coil 29 a and disposed between the second quenching high-frequency coil 30. It consists of a quenching high frequency coil 29b. The second quenching high frequency coil 29b has a cooling water discharge port 29c. Further, in the high-frequency heat treatment apparatus 18 of FIG. 7, all the arranged ring bodies 9 (10, 11) can be heated at the same time, whereas in this modification, some of the ring bodies 9 (10, 11). Only) is configured to be heatable. Specifically, the heights of the high-frequency coils 29 and 30 are set to be a plurality of ring bodies 9 (10 and 11) set so that only the end faces of some of the ring bodies 9 (10 and 11) can face each other. It is smaller than the height. Furthermore, one or both of the high frequency coils 29 and 30 and the central shaft 31 are movable in the axial direction of the central shaft 31, so that the central shaft 31 can move relative to the high frequency coils 29 and 30. It has become.

上記中心軸31に対し、下部拘束用治具32、上部拘束用治具33および治具押えナット34が、図7の場合と同様に組合せ構成され、中心軸31にはめ入れられた複数の輪体9(10,11)は、下部拘束用治具32、上部拘束用治具33および治具押えナット34によって締め付けられて拘束状態とされる。これにより、輪体9(10,11)の転走面を押圧する向きの応力が、少なくとも輪体9(10,11)の転走部分全体に対して負荷される。   The lower restraining jig 32, the upper restraining jig 33, and the jig holding nut 34 are combined with the central shaft 31 in the same manner as in FIG. The body 9 (10, 11) is clamped by the lower restraining jig 32, the upper restraining jig 33, and the jig presser nut 34 to be in a restrained state. Thereby, the stress of the direction which presses the rolling surface of the ring body 9 (10, 11) is loaded with respect to the whole rolling part of the ring body 9 (10, 11) at least.

高周波コイル29および30に高周波電流が通電されるとともに、中心軸31は高周波コイル29および30に対して相対的に移動する。これに伴い、輪体9(10,11)は通電された第一の焼入用高周波コイル29aに挟まれる位置に到達する。これにより輪体9(10,11)は、鋼がフェライトからオーステナイトに変態を開始する温度以上の温度に高周波焼入加熱される。そして、加熱された輪体9(10,11)は、第1の焼入用高周波コイル29aに対して相対的に移動しつつ、第二の焼入用高周波コイル29bに挟まれる位置に到達し、その間所定時間上記温度以上の温度に保持される。その後、輪体9(10,11)に対する第二の焼入用高周波コイル29bによる加熱が中止されるとともに、輪体9(10,11)には冷却水吐出口29cから冷却水が吹き付けられ、オーステナイト化した鋼がマルテンサイト化を開始する温度以下の温度に急速に冷却される。以上の手順により、輪体9(10,11)に転走面を押圧する向きの応力を負荷した状態で、焼入れされる。この焼入工程における加熱時間は一般的焼入硬化処理である浸炭熱処理や浸炭窒化処理、あるいは光輝熱処理等の雰囲気熱処理と比較して極めて短いため、粒界酸化層はほとんど形成されない。   A high frequency current is applied to the high frequency coils 29 and 30, and the central shaft 31 moves relative to the high frequency coils 29 and 30. Accordingly, the ring body 9 (10, 11) reaches a position between the energized first quenching high-frequency coil 29a. Thereby, the ring body 9 (10, 11) is induction-hardened and heated to a temperature equal to or higher than the temperature at which the steel starts to transform from ferrite to austenite. Then, the heated ring body 9 (10, 11) reaches a position sandwiched between the second quenching high-frequency coil 29b while moving relative to the first quenching high-frequency coil 29a. In the meantime, the temperature is maintained at the above temperature for a predetermined time. Thereafter, heating of the ring body 9 (10, 11) by the second quenching high-frequency coil 29b is stopped, and cooling water is blown to the ring body 9 (10, 11) from the cooling water discharge port 29c. The austenitized steel is rapidly cooled to a temperature below the temperature at which martensite formation begins. By the above procedure, the ring body 9 (10, 11) is quenched with a stress applied in a direction to press the rolling surface. Since the heating time in this quenching process is extremely short as compared with atmospheric heat treatment such as carburizing heat treatment, carbonitriding treatment, or bright heat treatment, which is a general quench hardening treatment, the grain boundary oxide layer is hardly formed.

さらに輪体9(10,11)は高周波コイル29,30に対して相対的に移動し、焼戻用高周波コイル30に挟まれる位置に到達する。これにより、輪体9(10,11)は、鋼がフェライトからオーステナイトに変態を開始する温度以下の所定の焼戻温度に加熱される。そして、加熱された輪体9(10,11)は、焼戻用高周波コイル30に対して相対的に移動しつつ、所定時間経過後加熱範囲から離脱することで、空冷される。これにより、輪体9(10,11)に転走面を押圧する向きの応力を負荷した状態で焼戻しされる。以上の工程により、輪体9(10,11)は、転走面を押圧する向きの応力が、少なくとも輪体9(10,11)の転走部分全体に対して負荷されながら焼入れおよび焼戻しされる。この変形例によれば、高周波コイル29,30の長さを超えて輪体9(10,11)を積み重ねても、輪体9(10,11)の熱処理を行うことができる。   Further, the ring body 9 (10, 11) moves relative to the high frequency coils 29, 30 and reaches a position sandwiched between the tempering high frequency coils 30. Thereby, the ring body 9 (10, 11) is heated to a predetermined tempering temperature not higher than a temperature at which the steel starts to transform from ferrite to austenite. The heated ring body 9 (10, 11) moves relative to the tempering high-frequency coil 30 and is air-cooled by leaving the heating range after a predetermined time. Thereby, it tempers in the state which loaded the stress of the direction which presses a rolling surface to the ring body 9 (10, 11). Through the above steps, the ring body 9 (10, 11) is quenched and tempered while stress in the direction of pressing the rolling surface is applied to at least the entire rolling portion of the ring body 9 (10, 11). The According to this modification, even if the ring bodies 9 (10, 11) are stacked beyond the length of the high-frequency coils 29, 30, the ring bodies 9 (10, 11) can be heat-treated.

反り・うねりの簡易的な測定(選別)方法としては、図12に示すようなスリットに通す方法がある。すなわち、図12に示す装置は、スリットゲージ35であって、このスリットゲージ35は、幅T1+dのスリット35aを有している。ここで、T1は試験片の厚さであり、dは反り・うねりの上限値である。このスリット35aに試験片を挿入すると、試験片の反り・うねりがd以下であれば、通り抜けることができるが、dを超える場合は通り抜けることができない。これにより、反り・うねりがdを超える試験片を選別することができる。この方法は、多くの軌道輪あるいは中間輪から反り・うねりが所定の値を超えるものを選別する際、特に量産工程において有効であり、適宜採用される。   As a simple method of measuring (selecting) warpage / waviness, there is a method of passing through a slit as shown in FIG. That is, the apparatus shown in FIG. 12 is a slit gauge 35, and the slit gauge 35 has a slit 35a having a width T1 + d. Here, T1 is the thickness of the test piece, and d is the upper limit of warpage / waviness. When a test piece is inserted into the slit 35a, the test piece can pass through if the warp / waviness of the test piece is d or less, but cannot pass through if it exceeds d. As a result, it is possible to select test pieces having warpage and undulation exceeding d. This method is particularly effective in the mass production process and is appropriately employed when selecting a large number of races or intermediate wheels having warpage and undulation exceeding a predetermined value.

上記製造工程に基づきスラスト受け機構用軌道輪あるいは中間輪を作成した。鋼板として、S55C、SAE1070、SK5、SUJ2を用い、プレス加工にて内径25mm、外径40mm、板厚1mmの成形品を得た。図7に示す高周波加熱処理装置18に40枚の試験片を重ねて、拘束用治具20,21にて上下より拘束し、高周波コイル19にて高周波(10kHz)加熱し、成形品全体が加熱された後、水冷し実施例5〜8の試験片を得た。また上記成形品を同様の工程に続けて、上記拘束状態のまま、220〜230℃で10秒間保持し、高周波焼戻し(誘導焼戻し)して実施例1〜4の試験片を得た。
また、SPC、SCM415、SCM420およびSUJ2を、プレス加工して成形品を得、浸炭熱処理(880℃×40分+820℃×10分、160℃×2時間)又は光輝熱処理(850℃×40分)を施し、200℃×1時間のプレステンパー(反り、うねり矯正)を行い比較例1〜4の試験片を作成した。
Based on the above manufacturing process, a bearing ring or intermediate ring for a thrust receiving mechanism was created. S55C, SAE1070, SK5, and SUJ2 were used as steel plates, and a molded product having an inner diameter of 25 mm, an outer diameter of 40 mm, and a plate thickness of 1 mm was obtained by pressing. Forty test pieces are stacked on the high-frequency heat treatment apparatus 18 shown in FIG. 7, restrained from above and below by the restraining jigs 20 and 21, and heated by the high-frequency coil 19 (10 kHz), and the entire molded product is heated. Then, it was cooled with water to obtain test pieces of Examples 5-8. Moreover, following the same process, the said molded article was hold | maintained at 220-230 degreeC for 10 second with the said restraint state, and induction tempering (induction tempering) was performed, and the test piece of Examples 1-4 was obtained.
Further, SPC, SCM415, SCM420 and SUJ2 are pressed to obtain a molded product, and carburized heat treatment (880 ° C. × 40 minutes + 820 ° C. × 10 minutes, 160 ° C. × 2 hours) or bright heat treatment (850 ° C. × 40 minutes) And subjected to press tempering (warp and swell correction) at 200 ° C. for 1 hour to prepare test pieces of Comparative Examples 1 to 4.

Figure 2007270932
Figure 2007270932

表1において、硬度は、ビッカース硬度計(1kgf)を用いて測定した。また、反り・うねりは、真円度測定器(タリロンド265 テーラホブソン社製)を用いて平面度を測定し、内径部より1mm位置、外径部より1mm位置および中央部での反り・うねりを測定し、最大値を反り・うねりの値とした。図10は、試験片の反り・うねりの測定部位を示す概略平面図であり、図11は反り・うねりの測定によって得られるプロフィールの一例を示す図である。図10における破線部分が反り・うねりの測定位置である。また、図11に示すように、測定によって得られた高さのプロフィールから高さの最高点と最低点との差を読みとり、反り・うねりの値とした。   In Table 1, the hardness was measured using a Vickers hardness meter (1 kgf). In addition, for warpage and undulation, the flatness is measured using a roundness measuring instrument (Talirond 265 manufactured by Taylor Hobson), and the warpage and undulation at the 1 mm position from the inner diameter part, the 1 mm position from the outer diameter part, and the central part are measured. The maximum value was measured as the value of warpage / waviness. FIG. 10 is a schematic plan view showing a measurement part of warpage / waviness of a test piece, and FIG. 11 is a view showing an example of a profile obtained by measurement of warpage / waviness. The broken line part in FIG. 10 is a measurement position of warpage / swell. Further, as shown in FIG. 11, the difference between the highest point and the lowest point of the height was read from the height profile obtained by measurement, and used as the value of warpage / waviness.

以下に示す熱処理後の試験片について、転走面に垂直な断面を鏡面研磨し、ピクリン酸飽和水溶液に界面活性剤を加えた腐食液に浸漬して前記鏡面研磨した面を腐食させ、光学顕微鏡による400倍の倍率で前記断面の中央部を観察し、旧オーステナイト結晶粒界で閉じられた領域の視野全体に占める割合を算出したところ、この発明の実施例1〜4の場合、いずれも10%以下であるの対し、比較例1〜4では100%近くに達していることが分かった。   About the test piece after the heat treatment shown below, a cross section perpendicular to the rolling surface is mirror-polished, and the mirror-polished surface is corroded by immersing in a corrosive solution obtained by adding a surfactant to a picric acid saturated aqueous solution. When the central part of the cross section was observed at a magnification of 400 times according to the above, and the ratio of the region closed by the prior austenite grain boundaries to the entire visual field was calculated, all of Examples 1 to 4 of the present invention were 10 It was found that in Comparative Examples 1 to 4, it reached nearly 100%.

表1から、この発明の実施例1〜4の場合は、表面硬度および内部硬度は、全てHV653以上を確保していることが分かる。また、この発明の実施例1〜4の場合、反り・うねり値の平均が12〜18μm、範囲が2〜26μmであるのに対し、比較例1〜4の場合、反り・うねり値の平均が78〜88μm、範囲が52〜168μmであって、この発明の実施例は比較例の約1/2〜1/84となり、反り・うねりの矯正効果が大きいことが分かる。また、実施例5〜8の反り・うねり値測定を上記と同様に実施した。その結果を併せて表2に示す。これらの発明の実施例の試験片における反り・うねりの発生率を正規分布と仮定すると、測定個数n=500で測定を実施した結果、平均値μ=12〜22μm、標準偏差σ=2〜6μmの正規分布となった。これら複数の試験片から無作為に抽出した試験片の反り・うねり値を測定した場合の平均値に、反り・うねり値の標準偏差の3倍を加えた値が40μm以下となる。また、反り・うねり値が40μm以上の試験片が検出される確率が0.1%以下となることも分かる。   From Table 1, in the case of Examples 1-4 of this invention, it turns out that the surface hardness and internal hardness have ensured HV653 or more all. In the case of Examples 1 to 4 of the present invention, the average of warp / waviness values is 12 to 18 μm and the range is 2 to 26 μm, whereas in the case of Comparative Examples 1 to 4, the average of warp / waviness values is It is 78 to 88 μm and the range is 52 to 168 μm. The embodiment of the present invention is about 1/2 to 1/84 of the comparative example, and it can be seen that the effect of correcting warpage and undulation is large. Moreover, the curvature and the undulation value measurement of Examples 5-8 were implemented similarly to the above. The results are also shown in Table 2. Assuming that the occurrence rate of warpage and waviness in the test pieces of the examples of the present invention is a normal distribution, the measurement was performed with the number of measurement n = 500, and as a result, the average value μ = 12 to 22 μm and the standard deviation σ = 2 to 6 μm. Of normal distribution. A value obtained by adding three times the standard deviation of the warp / waviness value to the average value when the warp / waviness values of the test pieces randomly extracted from the plurality of test pieces is measured is 40 μm or less. It can also be seen that the probability that a specimen having a warp / waviness value of 40 μm or more is detected is 0.1% or less.

参考として、表1の実施例1〜4に対応する材料および製造方法で、内径60mm、外径85mm、板厚1mmの試験片を作製し、反り・うねり値を測定したところ、反り・うねり値の最大値が28μmであって、実施例1〜4の場合と最大値に大差はなかった。   As a reference, when a test piece having an inner diameter of 60 mm, an outer diameter of 85 mm, and a plate thickness of 1 mm was prepared using the materials and manufacturing methods corresponding to Examples 1 to 4 in Table 1, the warpage / waviness value was measured. The maximum value of was 28 μm, and the maximum value was not significantly different from that of Examples 1-4.

Figure 2007270932
Figure 2007270932

表2から、実施例5〜8の試験片の反り・うねり値は40μm以下であるの対し、実施例1〜4の試験片の反り・うねり値は30μm以下となることが分かる。冷却までの焼入工程においては、加工応力・ひずみの開放による変形、自重による変形、相変態による変形が変形要因となるが、実施例5〜8は、焼入工程では、拘束用治具20,21によって拘束されているから、その変形矯正が同時になされる。また、焼戻工程では、残留応力の開放による変形および相変態による変形が変形要因として加わることになるが、実施例1〜4は、この工程の間も上記拘束が継続されているから、変形矯正が同時になされ、その違いが実施例5〜8と実施例1〜4との差となって表れているものと考えられる。なお、硬度の測定も行ったが、実施例5〜8と実施例1〜4とで差がなかったので表2では記載を省略している。   From Table 2, it can be seen that the warp and undulation values of the test pieces of Examples 5 to 8 are 40 μm or less, whereas the warp and undulation values of the test pieces of Examples 1 to 4 are 30 μm or less. In the quenching process until cooling, deformation due to release of processing stress / strain, deformation due to its own weight, and deformation due to phase transformation are deformation factors. In Examples 5 to 8, the restraining jig 20 is used in the quenching process. , 21, the deformation correction is performed at the same time. Further, in the tempering process, deformation due to release of residual stress and deformation due to phase transformation are added as deformation factors. However, since Examples 1 to 4 continue the above-described restraint during this process, Correction is made at the same time, and the difference is considered to be the difference between Examples 5-8 and Examples 1-4. In addition, although the measurement of hardness was also performed, since there was no difference in Examples 5-8 and Examples 1-4, description is abbreviate | omitted in Table 2.

〔許容静転動体荷重試験〕
実施例1〜4と比較例1〜4の試験片をそれぞれ3個(2個を軌道輪、1個を中間輪とする)ずつ使用し、各軌道輪と中間輪との間に転動体であるころと、ころを保持する保持器とを配置し、スラスト受け機構の形で許容静転動体荷重試験を行った。
上記試験片について、アムスラー試験機を用い、転動体(ころ)直径の0.01%の総塑性変形量が発生する荷重を測定した。転がり軸受の分野において許容できる塑性変形の大きさは、転動体の変形量と軌道面の変形量和が転動体直径の0.01%以下であることが経験的に知られている。このような小さい塑性変形ならば、普通の荷重を受ける軸受の滑らかな回転や疲労寿命に対して悪影響を及ぼさない。上記許容静転動体荷重試験結果に基づき、軌道輪および中間輪の材質(材料+熱処理)による安全率を求めた。
[Allowable static rolling element load test]
Three test pieces of each of Examples 1 to 4 and Comparative Examples 1 to 4 are used (two are race rings and one is an intermediate ring), and rolling elements are used between the race rings and the intermediate rings. A certain roller and a cage for holding the roller were arranged, and an allowable static rolling element load test was performed in the form of a thrust receiving mechanism.
About the said test piece, the load which generate | occur | produces the total plastic deformation of 0.01% of a rolling element (roller) diameter was measured using the Amsler testing machine. It is empirically known that the allowable amount of plastic deformation in the field of rolling bearings is that the sum of the deformation amount of the rolling element and the deformation amount of the raceway is 0.01% or less of the diameter of the rolling element. Such small plastic deformation does not adversely affect the smooth rotation and fatigue life of the bearing under normal load. Based on the allowable static rolling element load test result, the safety factor according to the material (material + heat treatment) of the race and intermediate rings was determined.

安全率は次の数式で定義される。安全率の数値は小さい方が望ましい。
=C/P max
(S :許容安全率、C :基本静定格荷重、P max:最大静転動体荷重)
このように求めた各実施例1〜4および比較例1〜4の安全率を表3に示す。
The safety factor is defined by the following formula. A smaller safety factor is desirable.
S 0 = C 0 / P 0 max
(S 0 : allowable safety factor, C 0 : basic static load rating, P 0 max: maximum static rolling element load)
Table 3 shows the safety factors of Examples 1 to 4 and Comparative Examples 1 to 4 thus obtained.

Figure 2007270932
Figure 2007270932

表3の結果から分かるように、この発明の実施例1〜4を比較例1〜3と比較すると、約60%以上許容静転動体荷重が向上し、良好な結果が得られた。
これは、実施例1〜4の場合、軌道輪および中間輪全体(試験片全体)が、高周波加熱硬化処理されるため、表面硬度および内部硬度共にHV653以上となり、軌道輪および中間輪に塑性変形(塑性変形)が発生し難く、その結果、許容静転動体荷重が向上するものと考えられる。
As can be seen from the results in Table 3, when Examples 1 to 4 of the present invention were compared with Comparative Examples 1 to 3, the allowable static rolling element load was improved by about 60% or more, and good results were obtained.
In the case of Examples 1 to 4, since the entire race and intermediate ring (the entire test piece) are subjected to high-frequency heat curing treatment, both the surface hardness and the internal hardness are HV653 or more, and the race and intermediate rings are plastically deformed. It is considered that (plastic deformation) hardly occurs, and as a result, the allowable static rolling element load is improved.

また、実施例4と比較例4とは、同じ材料を使用し、軌道輪および中間輪全体(試験片全体)を加熱硬化処理したものであるが、この加熱硬化処理方法が異なる。実施例4は比較例4に対し、許容静転動体荷重が高くなっている。
これは、この発明の実施例の場合、高周波加熱処理を用いることにより、冷却前のオーステナイト結晶粒界の形成が完全に行われず、結晶粒界が明瞭に形成されないため、変形抵抗があり、許容静転動体荷重が高くなっているものと考えられる。同様に、高周波加熱処理を用いることにより、軌道輪および中間輪の粒界酸化を抑制でき、表面の粒界酸化層は1μm以下となり、ほとんど発生しないため、表層部での変形が抑制され、これによっても許容静転動体荷重が高くなっているものと考えられる。
Further, Example 4 and Comparative Example 4 are obtained by using the same material and heat-curing the entire race and intermediate ring (the entire test piece), but the heat-curing method is different. In Example 4, the allowable static rolling element load is higher than that of Comparative Example 4.
This is because, in the case of the embodiment of the present invention, by using high-frequency heat treatment, the austenite grain boundaries before cooling are not completely formed, and the crystal grain boundaries are not clearly formed. It is considered that the static rolling element load is high. Similarly, by using high-frequency heat treatment, the grain boundary oxidation of the raceway ring and the intermediate ring can be suppressed, and the grain boundary oxide layer on the surface becomes 1 μm or less and hardly occurs, so that deformation at the surface layer portion is suppressed. Therefore, it is considered that the allowable static rolling element load is high.

〔摩耗量確認試験〕
上記実施例4および比較例4に相当する材料および製造方法によって得た試験片(但し、各寸法は上記各実施例や比較例のものとは異なる)を用いて摩耗量確認試験を行った。
試験機は、図17に示すように、相互間で偏心回転運動を行う第一の部材33と第二の部材34との間にスラスト受け機構8を介在させ、第一の部材33にスラスト軸受35、加圧部材36、およびボール37を介してスラスト荷重SFを負荷するものである。スラスト受け機構8の第一の軌道輪9は第一の部材33に固定し、第二の軌道輪10は第二の部材34に固定する。上記試験機における第二の部材34は、基台38に固定されている。基台38に軸受39を介して回転自在に支持された回転軸40の偏心軸部40aに、第一の部材33の下面に突出した筒部33aがニードル軸受41を介して係合しており、回転軸40の回転により第一の部材33が偏心回転運動を行う。
[Abrasion amount confirmation test]
A wear amount confirmation test was performed using test pieces obtained by the materials and manufacturing methods corresponding to Example 4 and Comparative Example 4 (however, the dimensions are different from those of the above Examples and Comparative Examples).
As shown in FIG. 17, the testing machine has a thrust receiving mechanism 8 interposed between a first member 33 and a second member 34 that perform eccentric rotational movement between each other, and the first member 33 has a thrust bearing. A thrust load SF is applied via the pressure member 35, the pressure member 36, and the ball 37. The first race ring 9 of the thrust receiving mechanism 8 is fixed to the first member 33, and the second race ring 10 is fixed to the second member 34. The second member 34 in the testing machine is fixed to the base 38. A cylindrical portion 33a protruding from the lower surface of the first member 33 is engaged via a needle bearing 41 with an eccentric shaft portion 40a of a rotary shaft 40 rotatably supported on a base 38 via a bearing 39. The first member 33 performs eccentric rotational movement by the rotation of the rotating shaft 40.

試験条件は次の通りである。
スラスト荷重:1000N(荷重位置:中心からオフセット量OFFが12.5mmの位置)
回転速度:1500r/min.(公転半径(=偏心量e):2.5mm)
潤滑剤:PAG+白灯油
The test conditions are as follows.
Thrust load: 1000N (Load position: Position where the offset amount OFF is 12.5mm from the center)
Rotational speed: 1500 r / min. (Revolution radius (= eccentricity e): 2.5mm)
Lubricant: PAG + white kerosene

図18(A)に従来品の摩耗量確認試験結果を、同図(B)に発明品の摩耗量確認試験結果をそれぞれ示す。同図は、軌道面の母線形状曲線を示している。   FIG. 18A shows the results of the conventional wear amount confirmation test, and FIG. 18B shows the results of the wear amount confirmation test of the invention product. This figure shows the generatrix curve of the raceway surface.

図18(A),(B)を比較してわかるように、発明品の摩耗量は従来品の摩耗量の1/5程度であり、発明品は耐摩耗性が格段に向上していることが分かる。
これは、実施例の場合、反り・うねりが40μm以下(表2参照)と良いため、ころと試験片の間で片当りが生じなくなるため、耐摩耗性が向上されると考えられる。また、高周波熱処理を施すことにより、冷却前のオーステナイト結晶粒界の形成が完全に行われず、結晶粒界が明瞭に形成されないため、摩耗発生、進展に対する抵抗性が非常に大きくなり、ころの滑りによる摩耗の発生が防止され、摩耗発生、進展に対する抵抗性が非常に大きくなることによって、耐摩耗性が向上すると考えられる。同様に、高周波熱処理を施すことにより、スラスト受け機構の軌道輪および中間輪表面の粒界酸化を抑制し、表面の酸化層の層厚が1μm以下となり、殆ど形成されないに等しい。このことにおいても、ころの滑りによる摩耗の発生を防止することができ、耐摩耗性が向上されたと考えられる。
As can be seen by comparing FIGS. 18A and 18B, the wear amount of the invention product is about 1/5 of the wear amount of the conventional product, and the wear resistance of the invention product is remarkably improved. I understand.
In the case of the example, the warp / waviness is preferably 40 μm or less (see Table 2), so that no contact occurs between the roller and the test piece, which is considered to improve the wear resistance. Also, by applying high-frequency heat treatment, the austenite grain boundaries before cooling are not completely formed, and the crystal grain boundaries are not clearly formed. It is considered that the wear resistance is improved by preventing the occurrence of wear due to the occurrence of wear and increasing the resistance to the occurrence and progress of wear. Similarly, by applying high-frequency heat treatment, grain boundary oxidation on the surfaces of the bearing ring and intermediate ring of the thrust receiving mechanism is suppressed, and the thickness of the oxide layer on the surface becomes 1 μm or less, which is equivalent to being hardly formed. Also in this case, it is considered that wear due to roller sliding can be prevented and the wear resistance is improved.

〔寿命試験〕
実施例1〜8および比較例1〜4の試験片を用いて寿命試験を行った。ただし、この試験では、スラスト受け機構の代わりに、上記試験片を軌道輪として用いてスラスト軸受を組立て、スラスト軸受の形態で寿命試験を行った。ころおよび保持器については、スラスト軸受のものを用いた。試験条件を表4に示す。
[Life test]
A life test was performed using the test pieces of Examples 1 to 8 and Comparative Examples 1 to 4. However, in this test, instead of the thrust receiving mechanism, a thrust bearing was assembled using the test piece as a race, and a life test was performed in the form of a thrust bearing. About the roller and the cage, those of a thrust bearing were used. Table 4 shows the test conditions.

Figure 2007270932
Figure 2007270932

表5に寿命試験結果を示す。この寿命試験結果では、比較例1の寿命を1とし、その相対比で示している。   Table 5 shows the life test results. In this life test result, the life of Comparative Example 1 is set to 1, and the relative ratio is shown.

Figure 2007270932
Figure 2007270932

表5の結果から分かるように、実施例1〜8の試験片の寿命が比較例1〜4の寿命より2倍以上向上し、良好な結果が得られた。これは、実施例の場合、反り・うねりが40μm以下(表2参照)と良いため、ころと試験片の間で片当りが生じなくなると共に、摩耗や表面起点型の剥離などの表面損傷を防止できたためと考えられる。また、全体が高周波加熱硬化されているため、許容静転動体荷重が高くなり、かつ反り・うねりが40μm以下であるので、接触面圧が比較例に比べて小さくなり、内部起点型剥離を防止できるため、長寿命となっていると考えられる。   As can be seen from the results in Table 5, the life of the test pieces of Examples 1 to 8 was improved more than twice as long as the life of Comparative Examples 1 to 4, and good results were obtained. In the case of the example, the warp / waviness is 40 μm or less (see Table 2), so that no contact occurs between the roller and the test piece, and surface damage such as abrasion and surface-origin peeling is prevented. It is thought that it was made. In addition, since the whole is heat-cured by high frequency, the allowable static rolling element load is high, and the warp / waviness is 40 μm or less, so the contact surface pressure is smaller than that of the comparative example, and internal origin type peeling is prevented. It can be considered that it has a long life.

また、高周波熱処理を施すことにより、冷却前のオーステナイト結晶粒界の形成が完全に行われず、結晶粒界が明瞭に形成されないため、摩耗や亀裂発生、進展に対する抵抗性が非常に大きくなり、さらに、内部起点型剥離の亀裂に対しても、亀裂発生、進展に対する抵抗性が非常に大きくなることによって、長寿命となるものと考えられる。同様に、高周波熱処理を施すことにより、スラスト受け機構の軌道輪および中間輪表面の粒界酸化を抑制し、表面の酸化層の層厚が1μm以下となり、殆ど形成されないに等しいから、摩耗や表面亀裂の発生が防止されることによっても、長寿命となるものと考えられる。   In addition, by applying high-frequency heat treatment, the austenite grain boundaries before cooling are not completely formed, and the grain boundaries are not clearly formed. Also, it is considered that a long life is obtained by the resistance to the occurrence and propagation of cracks, even with respect to internally-origin-type delamination cracks. Similarly, by applying high-frequency heat treatment, the grain boundary oxidation on the surfaces of the bearing ring and intermediate ring of the thrust receiving mechanism is suppressed, and the thickness of the oxide layer on the surface is 1 μm or less, which is almost not formed. It is considered that a long life is also achieved by preventing the occurrence of cracks.

〔音響試験〕
反り・うねり値と音響との関係について、表6に示す試験条件で音響試験を実施した。音響試験についても、上記寿命試験と同じく、試験片でスラスト軸受を組立て、スラスト軸受の状態で試験を行った。
[Acoustic test]
An acoustic test was performed under the test conditions shown in Table 6 with respect to the relationship between the warp / waviness value and the sound. As for the acoustic test, the thrust bearing was assembled with the test piece and the test was performed in the state of the thrust bearing, as in the life test.

Figure 2007270932
Figure 2007270932

図13に、試験片の反り・うねり値と音響との関係を示す。図13における、音響試験の音響値は、一定の反り・うねり範囲におけるn=10の平均を採用した。図13から分かるように、試験片の反り・うねり値が45μmを超えると音響が大きくなる。そして、反り・うねり値が50μm以上では、84dBA以上と大きい値を示し、45μm以下では81dBA以下と著しく小さくなっていることが分かる。これは、試験片の反り・うねり値が45μm以下の場合、ころの挙動が安定し、軸受が滑らかな回転をすることができるからである。   FIG. 13 shows the relationship between the warp / waviness value of the test piece and the sound. The average of n = 10 in a certain warp / waviness range was adopted as the acoustic value of the acoustic test in FIG. As can be seen from FIG. 13, when the warp / waviness value of the test piece exceeds 45 μm, the sound becomes louder. It can be seen that when the warp / waviness value is 50 μm or more, it shows a large value of 84 dBA or more, and when it is 45 μm or less, it is remarkably small, 81 dBA or less. This is because when the warp / waviness value of the test piece is 45 μm or less, the roller behavior becomes stable and the bearing can rotate smoothly.

図14(A)(B)は、旧オーステナイト結晶粒界の光学顕微鏡写真であり、また、図15(A)(B)は、旧オーステナイト結晶粒界の模式図であり、夫々の(A)は実施例4の例であり、(B)は比較例4の例を示すものである。旧オーステナイト結晶粒界の観察は以下の手順は前記の通りであるが、さらに詳細には、上記軌道輪および中間輪を転走面に垂直な面で切断し、その断面を鏡面研磨した後、研磨された面を室温で腐食液に30分間浸漬して腐食させた。腐食液は、ピクリン酸飽和水溶液に界面活性剤を加えたもの(JIS G 0551 附属書1)を使用した。その後、断面の中央部を400倍の倍率で光学顕微鏡観察すると共にその写真撮影を行った。   FIGS. 14A and 14B are optical micrographs of the prior austenite grain boundaries, and FIGS. 15A and 15B are schematic views of the prior austenite grain boundaries. Is an example of Example 4, and (B) shows an example of Comparative Example 4. The observation of the prior austenite grain boundaries is as described above, but in more detail, after cutting the raceway ring and the intermediate ring in a plane perpendicular to the rolling surface, and mirror-polishing the cross section, The polished surface was immersed in a corrosive solution at room temperature for 30 minutes to be corroded. As the corrosive solution, a solution obtained by adding a surfactant to a saturated aqueous solution of picric acid (JIS G 0551 Annex 1) was used. Thereafter, the central part of the cross section was observed with an optical microscope at a magnification of 400 times and photographed.

図14および図15において、図14(B)の比較例では、明確な旧オーステナイト結晶粒界が観察されるのに対し、図14(A)のこの発明の実施例では、旧オーステナイト結晶粒界が不明確であることが観察される。これは、比較例の場合、図15(B)に示すように旧オーステナイト結晶粒界の形成が十分に進行しているため、結晶粒界が明瞭に観察されたものと考えられる。これに対し、この発明の実施例の場合、図15(A)に示すように、旧オーステナイト結晶粒界の形成が十分に進行していないため、結晶粒界が明瞭に観察されなかったものと考えられる。このことから、この発明の実施例1〜4では、旧オーステナイト結晶粒界の形成が、比較例1〜4ほど進行していないことが理解される。   14 and 15, a clear prior austenite grain boundary is observed in the comparative example of FIG. 14 (B), whereas in the example of the present invention of FIG. 14 (A), the prior austenite grain boundary is observed. Is observed to be ambiguous. In the case of the comparative example, it is considered that the formation of the prior austenite crystal grain boundary has sufficiently progressed as shown in FIG. 15B, and therefore the crystal grain boundary was clearly observed. On the other hand, in the case of the embodiment of the present invention, as shown in FIG. 15A, the formation of the prior austenite crystal grain boundary did not sufficiently proceed, and therefore the crystal grain boundary was not clearly observed. Conceivable. From this, it is understood that in Examples 1 to 4 of the present invention, the formation of prior austenite grain boundaries does not proceed as much as in Comparative Examples 1 to 4.

図16(A)(B)は、軌道輪および中間輪(試験片)の表層部の光学顕微鏡写真であり、(A)は実施例4の例であり、(B)は比較例4の例を示すものである。この光学顕微鏡写真は、次の手順で得た。即ち、上記軌道輪および中間輪を転走面に垂直な面で切断し、その断面を鏡面研磨した後、研磨された面を室温で3%ナイタルに浸漬して腐食させた。浸漬時間は、2〜10秒であるが、鋼種により腐食され易さが異なるため、腐食の進行状況を確認しながら、夫々の軌道輪および中間輪について適当な時間とした。その後、転走面直下の表層部を光学顕微鏡観察すると共にその写真撮影を行った。この光学顕微鏡観察の結果、この発明の実施例では、表層部の粒界酸化層の層厚は1μm以下であり、比較例では、表層部の粒界酸化層の層厚は6μm程度であることがわかった。   16 (A) and 16 (B) are optical micrographs of the surface layer portions of the raceway ring and the intermediate ring (test piece), (A) is an example of Example 4, and (B) is an example of Comparative Example 4. Is shown. This optical micrograph was obtained by the following procedure. That is, the raceway ring and the intermediate ring were cut at a plane perpendicular to the rolling surface, and the cross section was mirror-polished, and then the polished surface was immersed and corroded in 3% night at room temperature. Although the immersion time is 2 to 10 seconds, since the susceptibility to corrosion varies depending on the steel type, appropriate time was set for each of the race and intermediate rings while confirming the progress of corrosion. Thereafter, the surface layer portion directly under the rolling surface was observed with an optical microscope and photographed. As a result of this optical microscope observation, in the example of the present invention, the layer thickness of the grain boundary oxide layer in the surface layer portion is 1 μm or less, and in the comparative example, the layer thickness of the grain boundary oxide layer in the surface layer portion is about 6 μm. I understood.

なお、上記実施形態において、保持器13,15は、合成樹脂体の保持器のみを記載したが、保持器13,15は、箱形保持器、アルミ保持器等、色々な形状のものが適用可能である。また、保持器13,15は、合成樹脂体とする場合は射出成形にて製作するが、削り出し保持器でも適用可能であり、合成樹脂体以外では、削り出し保持器、プレス保持器等、色々な製作,加工方法で作られたものも適用可能である。
また、この発明のスラスト受機構は、自然冷媒(CO2)とPAGオイル環境下で使用されるスクロール圧縮機に望ましく採用されるが、これに限らず、その他の希薄潤滑下、高荷重下で用いられる圧縮幾にも有用である。
また、この明細書で開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、上記の説明だけでなく、特許請求の範囲によって示され、特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
In the above embodiment, the cages 13 and 15 are only synthetic resin cages. However, the cages 13 and 15 may be of various shapes such as a box cage and an aluminum cage. Is possible. In addition, the cages 13 and 15 are manufactured by injection molding in the case of a synthetic resin body, but are also applicable to a machined cage, and other than the synthetic resin body, a machined cage, a press cage, etc. Those made by various manufacturing and processing methods are also applicable.
Further, the thrust receiving mechanism of the present invention is desirably employed in a scroll compressor used in a natural refrigerant (CO2) and PAG oil environment, but is not limited to this, and is used under other lean lubrication and high loads. Useful for compression.
In addition, it should be considered that the embodiments disclosed in this specification are illustrative and non-restrictive in every respect. The scope of the present invention is shown not only by the above description but also by the scope of claims, and is intended to include all modifications within the scope equivalent to the scope of claims.

この発明に一実施形態にかかるスラスト受け機構の断面図である。It is sectional drawing of the thrust receiving mechanism concerning one Embodiment of this invention. 図1のII-II 線矢視図である。It is the II-II arrow directional view of FIG. 同スラスト受け機構の分解斜視図である。It is a disassembled perspective view of the thrust receiving mechanism. 図3におけるIV-IV 線断面図である。It is the IV-IV sectional view taken on the line in FIG. 同スラスト受け機構を備えたスクロール圧縮機の断面図である。It is sectional drawing of the scroll compressor provided with the thrust receiving mechanism. (A),(B)はそれぞれこの発明の一実施形態および従来例のスラスト受機構の軌道輪および中間輪の製造工程の一例を示す図である。(A), (B) is a figure which shows an example of the manufacturing process of the bearing ring and intermediate ring of one embodiment of this invention and the thrust receiving mechanism of a prior art example, respectively. この発明の軌道輪および中間輪の製造工程で使用される高周波熱処理装置の例を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the example of the high frequency heat processing apparatus used by the manufacturing process of the bearing ring and intermediate | middle ring of this invention. 同高周波熱処理装置の第一の変形例を示す同様図である。It is the same figure which shows the 1st modification of the same high frequency heat processing apparatus. 同高周波熱処理装置の第二の変形例を示す同様図である。It is the same figure which shows the 2nd modification of the same high frequency heat processing apparatus. 試験片の反り・うねりの測定部位を示す概略平面図である。It is a schematic plan view which shows the measurement site | part of the curvature and the wave | undulation of a test piece. 試験片の反り・うねりの測定によって得られるプロフィールの一例を示す図である。It is a figure which shows an example of the profile obtained by the measurement of the curvature and wave | undulation of a test piece. 試験片の反り・うねりの測定方法の一例を示す斜視図である。It is a perspective view which shows an example of the measuring method of the curvature and the wave | undulation of a test piece. 反り・うねり値と音響との関係を示すグラフである。It is a graph which shows the relationship between a curvature and a wave | undulation value, and a sound. (A),(B)は、旧オーステナイト結晶粒界の光学顕微鏡写真であり、(A)は実施例1〜4の例であり、(B)は比較例1〜4の例を示すものである。(A) and (B) are optical micrographs of prior austenite grain boundaries, (A) is an example of Examples 1 to 4, and (B) is an example of Comparative Examples 1 to 4. is there. (A),(B)は、旧オーステナイト結晶粒界の模式図であり、(A)は実施例1〜4の例であり、(B)は比較例1〜4の例を示すものである。(A), (B) is a schematic diagram of a prior austenite grain boundary, (A) is an example of Examples 1-4, (B) shows an example of Comparative Examples 1-4. . (A),(B)は、軌道輪あるいは中間輪の表層部の光学顕微鏡写真であり、(A)は実施例1〜4の例であり、(B)は比較例1〜4の例を示すものである。(A), (B) is an optical micrograph of the surface layer part of a raceway ring or an intermediate ring, (A) is an example of Examples 1-4, and (B) is an example of comparative examples 1-4. It is shown. 摩耗量確認試験の試験機を示す断面図である。It is sectional drawing which shows the testing machine of an abrasion amount confirmation test. 同摩耗量確認試験の結果を示すグラフである。It is a graph which shows the result of the wear amount confirmation test.

符号の説明Explanation of symbols

3…第一の部材
4…第二の部材
8…スラスト受け機構
9…第一の軌道輪(輪体)
10…第二の軌道輪(輪体)
11…中間輪(輪体)
12…第一のころ
13…第一の保持器
13a…ポケット
14…第二のころ
15…第二の保持器
15a…ポケット
S…スクロール圧縮幾
3 ... 1st member 4 ... 2nd member 8 ... Thrust receiving mechanism 9 ... 1st track ring (ring body)
10 ... Second race ring (ring body)
11 ... Intermediate wheel
12 ... First roller 13 ... First cage 13a ... Pocket 14 ... Second roller 15 ... Second cage 15a ... Pocket S ... Scroll compression

Claims (10)

相互間で偏心回転運動を行う第一の部材と第二の部材との間に介在してスラスト荷重を支持するスラスト受け機構であって、第一の部材に固定した第一の軌道輪と、第二の部材に固定した第二の軌道輪と、第一の軌道輪と第二の軌道輪との間に配置した中間輪と、第一の軌道輪と中間輪との間に配置した複数の第一のころと、第一のころを転動軸心が互いに平行になるように保持するための複数のポケットを有する第一の保持器と、第二の軌道輪と中間輪との間に配置した複数の第二のころと、第二のころを転動軸心が互いに平行になるように保持するための複数のポケットを有する第二の保持器とを具備し、第一のころの転動軸心と第二のころの転動軸心とが直交し、且つ第一の部材から第一の軌道輪および第一の保持器を貫通して中間輪まで延在する第一のガイドピン、ならびに、第二の部材から第二の軌道輪および第二の保持器を貫通して中間輪まで延在する第二のガイドピンを具備し、第一のガイドピンが第一のころの転動軸線と直交する方向に、第一の保持器および中間輪の規制範囲内において移動可能で、第二のガイドピンが第二のころの転動軸線と直交する方向に、第二の保持器および中間輪の規制範囲内において移動可能としたことを特徴とするスラスト受け機構において、
それぞれ輪体である前記第一、第二の軌道輪および中間輪のうちの少なくとも一つの輪体が、高周波熱処理によって焼入硬化し、焼戻しされたものであって、この輪体の転走面に垂直な断面を鏡面研磨し、ピクリン酸飽和水溶液に界面活性剤を加えた腐食液に浸漬して前記鏡面研磨した面を腐食させ、光学顕微鏡による400倍の倍率で前記断面の中央部を観察した場合に、旧オーステナイト結晶粒界で閉じられた領域が視野全体の10%以下であることを特徴とするスラスト受け機構。
A thrust receiving mechanism for supporting a thrust load interposed between the first member and the second member that perform eccentric rotational movement between each other, the first bearing ring fixed to the first member; A second race ring fixed to the second member, an intermediate ring arranged between the first race ring and the second race ring, and a plurality arranged between the first race ring and the intermediate ring Between the first roller, the first cage having a plurality of pockets for holding the first roller so that the rolling axes are parallel to each other, and the second raceway ring and the intermediate ring A plurality of second rollers disposed on the second roller, and a second retainer having a plurality of pockets for holding the second rollers such that their rolling axes are parallel to each other. The rolling shaft center of the second roller and the rolling shaft center of the second roller are orthogonal to each other, and pass through the first track ring and the first cage from the first member, and the intermediate wheel. And a second guide pin extending from the second member through the second race and the second cage to the intermediate ring, The guide pin is movable in the direction perpendicular to the rolling axis of the first roller within the restriction range of the first cage and intermediate wheel, and the second guide pin is perpendicular to the rolling axis of the second roller. In the thrust receiving mechanism, characterized in that it is movable within the restricted range of the second cage and the intermediate wheel in the direction to
At least one of the first and second race rings and the intermediate ring, each of which is a ring body, is hardened and hardened by induction heat treatment and tempered. The cross section perpendicular to the surface is mirror-polished, and the mirror-polished surface is corroded by immersion in a corrosive solution obtained by adding a surfactant to a saturated aqueous picric acid solution, and the central portion of the cross section is observed at a magnification of 400 times using an optical microscope. In this case, the thrust receiving mechanism is characterized in that the area closed by the prior austenite grain boundaries is 10% or less of the entire visual field.
請求項1において、前記第一、第二の軌道輪および中間輪のうちの前記少なくとも一つの輪体は、前記焼戻し後に旋削加工や研削加工を行うことなく使用されるものであって、表層部の粒界酸化層の厚さが1μm以下であるスラスト受け機構。   2. The surface layer portion according to claim 1, wherein the at least one of the first and second race rings and the intermediate ring is used without performing turning or grinding after the tempering. A thrust receiving mechanism in which the grain boundary oxide layer has a thickness of 1 μm or less. 請求項1または請求項2において、前記第一、第二の軌道輪および中間輪のうちの前記少なくとも一つの輪体は、前記焼戻し後に旋削加工や研削加工を行うことなく使用されるものであって、これら複数の輪体の群から無作為に抽出した輪体の反り・うねりを測定した場合の平均値に、反り・うねりの標準偏差の3倍を加えた値が40μm以下である輪体の群からとられたものであるスラスト受け機構。   In Claim 1 or Claim 2, said at least one ring body of said 1st, 2nd track ring and intermediate ring is used without performing a turning process or a grinding process after said tempering. In addition, an average value obtained by adding three times the standard deviation of warpage / waviness to an average value when the warpage / waviness of a ring extracted at random from a group of the plurality of ring bodies is measured is 40 μm or less. Thrust receiving mechanism that is taken from the group of. 請求項1ないし請求項3のいずれか1項において、前記第一、第二の軌道輪および中間輪のうちの前記少なくとも一つの輪体は、前記焼戻し後に旋削加工や研削加工を行うことなく使用されるものであって、これら複数の輪体の群から無作為に抽出した輪体の反り・うねりを測定した場合に、反り・うねりが40μm以上の輪体が検出される確率が0.1%以下である輪体の群からとられたものであるスラスト受け機構。   4. The method according to claim 1, wherein at least one of the first and second race rings and the intermediate ring is used without performing turning or grinding after the tempering. The probability that a ring body having a warp / waviness of 40 μm or more is detected when the warp / waviness of a ring body randomly extracted from the group of the plurality of ring bodies is measured is 0.1. Thrust receiving mechanism that is taken from a group of rings that are less than or equal to%. 請求項1ないし請求項4のいずれか1項において、軌道輪および中間輪の表面硬度および内部硬度が、HV653以上であるスラスト受け機構。   The thrust receiving mechanism according to any one of claims 1 to 4, wherein the surface hardness and the internal hardness of the raceway ring and the intermediate ring are HV653 or more. 請求項1ないし請求項5のいずれか1項において、軌道輪および中間輪の材料が、炭素を0.4質量%以上含む鋼であるスラスト受け機構。   The thrust receiving mechanism according to any one of claims 1 to 5, wherein the material of the race ring and the intermediate ring is steel containing 0.4 mass% or more of carbon. 請求項1ないし請求項6のいずれか1項において、軌道輪および中間輪が、鋼板をプレス加工したものであるスラスト受け機構。   The thrust receiving mechanism according to any one of claims 1 to 6, wherein the raceway ring and the intermediate ring are formed by pressing a steel plate. 請求項1ないし請求項7のいずれか1項において、軌道輪および中間輪は、CO2冷媒とPAGオイル環境下で使用されるものであるスラスト受け機構。   The thrust receiving mechanism according to any one of claims 1 to 7, wherein the raceway ring and the intermediate ring are used in a CO2 refrigerant and PAG oil environment. スラスト受け機構の軌道輪または中間輪の製造方法であって、材料に塑性加工を施して所定の形状に成形するプレス加工工程と、前記プレス加工工程で成形されたワークを変形しないよう保持した状態で高周波焼入れを行う焼入工程と、を備えるスラスト受け機構の軌道輪または中間輪の製造方法。   A method of manufacturing a bearing ring or an intermediate ring of a thrust receiving mechanism, in which a material is subjected to plastic working and formed into a predetermined shape, and the workpiece formed in the press working step is held so as not to be deformed A method of manufacturing a race ring or an intermediate ring of a thrust receiving mechanism. 前記焼入工程でワークを保持した状態を保ちつつ、高周波焼戻しを行う焼戻工程をさらに備える請求項9記載のスラスト受け機構の軌道輪または中間輪の製造方法。   The method for manufacturing a bearing ring or an intermediate ring of a thrust receiving mechanism according to claim 9, further comprising a tempering step of performing induction tempering while maintaining a state in which the workpiece is held in the quenching step.
JP2006096259A 2006-03-31 2006-03-31 Thrust bearing mechanism, raceway ring therefor, and method for manufacturing intermediate ring Withdrawn JP2007270932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096259A JP2007270932A (en) 2006-03-31 2006-03-31 Thrust bearing mechanism, raceway ring therefor, and method for manufacturing intermediate ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096259A JP2007270932A (en) 2006-03-31 2006-03-31 Thrust bearing mechanism, raceway ring therefor, and method for manufacturing intermediate ring

Publications (1)

Publication Number Publication Date
JP2007270932A true JP2007270932A (en) 2007-10-18

Family

ID=38673953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096259A Withdrawn JP2007270932A (en) 2006-03-31 2006-03-31 Thrust bearing mechanism, raceway ring therefor, and method for manufacturing intermediate ring

Country Status (1)

Country Link
JP (1) JP2007270932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115135A (en) * 2007-11-02 2009-05-28 Denso Corp Thrust slide bearing and scroll type compressor with thrust slide bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115135A (en) * 2007-11-02 2009-05-28 Denso Corp Thrust slide bearing and scroll type compressor with thrust slide bearing

Similar Documents

Publication Publication Date Title
JP4546843B2 (en) Thrust bearing washer manufacturing method and thrust bearing manufacturing method
JP2007182926A (en) Manufacturing method for needle-like roll bearing raceway member, needle-like roll bearing raceway member, and needle-like roll bearing
JP5058611B2 (en) Thrust bearing
JP2008174822A (en) Thrust bearing
JP2008196033A (en) Thrust bearing
EP2258881B1 (en) Quench hardened bearing washer for thrust bearing and thrust bearing
JP2007270932A (en) Thrust bearing mechanism, raceway ring therefor, and method for manufacturing intermediate ring
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2007182607A (en) Method for manufacturing rolling member for use in constant velocity joint, rolling member for use in constant velocity joint, and constant velocity joint
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing
JP2006200724A (en) Thrust bearing for automatic transmission
JP4546844B2 (en) Thrust bearing washer manufacturing method and thrust bearing manufacturing method
JP2006200719A (en) Thrust bearing for compressor of car air conditioner
JP2007064292A (en) Eccentric thrust ball bearing
JP2006200713A (en) Thrust bearing for electrically-powered brake
JP2008095926A (en) Thrust needle roller bearing and manufacturing method thereof
TWI679360B (en) Screw device
JP2007064293A (en) Eccentric thrust ball bearing
JP2006200720A (en) Thrust bearing for continuously variable transmission
JP2006200665A (en) Raceway disk of thrust bearing and thrust bearing
JP2006200661A (en) Raceway disks of thrust bearing and thrust bearing
JP2006200664A (en) Raceway disk of thrust bearing and thrust bearing
JP2006200726A (en) Thrust bearing for manual transmission
JP2022055301A (en) Bearing ring and rolling bearing
JP2024018145A (en) Method of manufacturing rolling sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100531