JP2007270297A - Vacuum vapor deposition apparatus - Google Patents

Vacuum vapor deposition apparatus Download PDF

Info

Publication number
JP2007270297A
JP2007270297A JP2006098725A JP2006098725A JP2007270297A JP 2007270297 A JP2007270297 A JP 2007270297A JP 2006098725 A JP2006098725 A JP 2006098725A JP 2006098725 A JP2006098725 A JP 2006098725A JP 2007270297 A JP2007270297 A JP 2007270297A
Authority
JP
Japan
Prior art keywords
substrate
transport
evaporation
vacuum
reciprocating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006098725A
Other languages
Japanese (ja)
Inventor
Yukihisa Noguchi
恭久 野口
Makoto Kashiwatani
誠 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006098725A priority Critical patent/JP2007270297A/en
Publication of JP2007270297A publication Critical patent/JP2007270297A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum vapor deposition apparatus realizing a high use efficiency of a deposition material. <P>SOLUTION: The vacuum vapor deposition apparatus has a conveying means for linearly conveying a substrate back and forth and one or more rows of evaporation sources in which one or more evaporation sources are arranged in a direction perpendicular to the conveying direction. When the conveying means conveys the substrate back and forth, it turns back before the posterior end of the substrate in the traveling direction goes beyond an evaporation zone in which an evaporation stream from the rows of evaporation sources contacts the substrate to solve the problem. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、成膜材料の利用効率を大幅に向上でき、かつ、膜厚の均一性も確保できる、放射線画像変換パネルの製造、特に、輝尽性蛍光体からなる蛍光体層を有する放射線画像変換パネルの製造に好適な真空蒸着装置に関する。   The present invention can produce a radiation image conversion panel that can greatly improve the utilization efficiency of a film forming material and can ensure the uniformity of the film thickness, in particular, a radiation image having a phosphor layer made of a stimulable phosphor. The present invention relates to a vacuum deposition apparatus suitable for manufacturing a conversion panel.

放射線(X線、α線、β線、γ線、電子線、紫外線等)の照射を受けると、この放射線エネルギの一部を蓄積し、その後、可視光等の励起光の照射を受けると、蓄積されたエネルギに応じた輝尽発光を示す蛍光体が知られている。この蛍光体は、輝尽性蛍光体(蓄積性蛍光体)と呼ばれ、医療用途などの各種の用途に利用されている。   When irradiated with radiation (X-rays, α-rays, β-rays, γ-rays, electron beams, ultraviolet rays, etc.), a part of this radiation energy is accumulated, and then irradiated with excitation light such as visible light, Phosphors that exhibit stimulated emission according to the stored energy are known. This phosphor is called a stimulable phosphor (accumulating phosphor) and is used for various applications such as medical applications.

一例として、この輝尽性蛍光体の膜(輝尽性蛍光体層 以下、蛍光体層とする)を有する放射線画像変換パネル(以下、変換パネルとする(輝尽性蛍光体パネル(シート)とも呼ばれている))を利用する、放射線画像情報記録再生システムが知られており、例えば、富士写真フイルム社製のFCR(Fuji Computed Radiography)等として実用化されている。
このシステムでは、人体などの被写体を介してX線等を照射することにより、変換パネル(蛍光体層)に被写体の放射線画像情報を記録する。記録後に、変換パネルを励起光で2次元的に走査して輝尽発光を生ぜしめ、この輝尽発光光を光電的に読み取って画像信号を得、この画像信号に基づいて再生した画像を、CRTなどの表示装置や、写真感光材料などの記録材料等に、被写体の放射線画像として出力する。
As an example, a radiation image conversion panel (hereinafter referred to as a conversion panel (stimulable phosphor panel (sheet)) having the photostimulable phosphor film (stimulable phosphor layer). Radiation image information recording / reproducing system using the above-mentioned)) is known, and is put into practical use as, for example, FCR (Fuji Computed Radiography) manufactured by Fuji Photo Film Co., Ltd.
In this system, radiation image information of a subject is recorded on a conversion panel (phosphor layer) by irradiating X-rays or the like through a subject such as a human body. After recording, the conversion panel is scanned two-dimensionally with excitation light to generate stimulated emission, and this stimulated emission light is photoelectrically read to obtain an image signal, and an image reproduced based on this image signal is A radiographic image of the subject is output to a display device such as a CRT or a recording material such as a photographic photosensitive material.

変換パネルは、通常、輝尽性蛍光体の粉末をバインダ等を含む溶媒に分散してなる塗料を調製して、この塗料をガラスや樹脂製のパネル状の支持体(基板)に塗布し、乾燥することによって、作成される。
これに対し、特許文献1や特許文献2に示されるように、真空蒸着やスパッタリング等の気相堆積法(真空成膜法)によって、基板に蛍光体層を形成してなる変換パネルも知られている。気相堆積法による蛍光体層は、真空中で形成されるので不純物が少なく、また、輝尽性蛍光体以外のバインダなどの成分が殆ど含まれないので、性能のバラツキが少なく、しかも発光効率が非常に良好であるという、優れた特性を有している。
The conversion panel is usually prepared by dispersing a stimulable phosphor powder in a solvent containing a binder, and applying the paint to a glass or resin panel-like support (substrate). Created by drying.
On the other hand, as shown in Patent Document 1 and Patent Document 2, a conversion panel in which a phosphor layer is formed on a substrate by a vapor deposition method (vacuum film forming method) such as vacuum evaporation or sputtering is also known. ing. Phosphor layers by vapor deposition are formed in a vacuum, so there are few impurities, and since there are almost no components such as binders other than stimulable phosphors, there is little variation in performance and luminous efficiency. Has excellent properties of being very good.

ところで、放射線画像を撮影された蛍光体シートの読取方法として、線状の光源を延在方向と直交する方向に移動して、励起光を蛍光体シートに照射しつつ、光源と同方向に延在しかつ同期して移動するラインセンサによって輝尽発光光を読み取る方法が有る。
このようなラインセンサを用いた蛍光体シートの読み取りにおいて、好適な画像の読み取りを行うためには、蛍光体シートの蛍光体層の表面と、ラインセンサ(受光面)との間隙が、適正に保たれていることが必要であり、そのためには、蛍光体層の膜厚が均一であることが重要である。
By the way, as a method for reading a phosphor sheet from which a radiographic image has been taken, a linear light source is moved in a direction orthogonal to the extending direction, and the phosphor sheet is irradiated with excitation light, while extending in the same direction as the light source. There is a method of reading the photostimulated luminescence with a line sensor that exists and moves synchronously.
In reading a phosphor sheet using such a line sensor, in order to read a suitable image, the gap between the surface of the phosphor layer of the phosphor sheet and the line sensor (light receiving surface) is properly set. For this purpose, it is important that the thickness of the phosphor layer is uniform.

すなわち、輝尽発光光の焦点がラインセンサに合っていないと、読み取った画像がボケてしまう等の不都合が起こる。特に、前記FCRのような医療用途では、このような画質の劣化は、診断結果の相違や誤診にも繋がる重大な問題となる。そのため、蛍光体シートに撮影された放射線画像を適正に読み取るためには、蛍光体シートから発生した輝尽発光光の焦点を、ラインセンサ(その受光面)に適正に合わせる必要がある。
当然のことであるが、輝尽発光光の焦点を適正にラインセンサに合わせるためには、蛍光体シートとラインセンサとの間隙を適正に保つ必要がある。ラインセンサと蛍光体シートとの間隙は、通常、約100μm程度である。他方、蒸着による蛍光体層を有する蛍光体シートにおいて、蛍光体層の厚さは、通常500μm程度であり、厚い場合には、1000μmを超える場合も有る。従って、両者の間隙の大きさを考えると、蛍光体シートの膜厚分布は、ラインセンサと蛍光体シートとの間隙の大きな誤差要因となる。
That is, inconveniences such as blurring of the read image occur if the stimulated emission light is not focused on the line sensor. In particular, in medical applications such as the FCR, such deterioration in image quality becomes a serious problem that leads to differences in diagnosis results and misdiagnosis. For this reason, in order to properly read the radiation image photographed on the phosphor sheet, it is necessary to properly focus the stimulated emission light generated from the phosphor sheet on the line sensor (its light receiving surface).
As a matter of course, in order to properly focus the stimulated emission light on the line sensor, it is necessary to keep the gap between the phosphor sheet and the line sensor properly. The gap between the line sensor and the phosphor sheet is usually about 100 μm. On the other hand, in a phosphor sheet having a phosphor layer formed by vapor deposition, the thickness of the phosphor layer is usually about 500 μm, and when it is thick, it may exceed 1000 μm. Therefore, when considering the size of the gap between the two, the film thickness distribution of the phosphor sheet becomes a large error factor of the gap between the line sensor and the phosphor sheet.

通常、真空蒸着では、蒸発源(例えば、抵抗加熱用のルツボ)の情報において、基板を回転(自転、公転、自公転)しつつ蒸着を行なうことにより、膜厚分布の良好な蒸着膜を形成している。しかしながら、この基板回転による蛍光体層の形成では、変換パネルに要求される膜厚均一性を安定して満たすのは、困難である。
このような問題点を解決するために、本件出願人は、蒸着源を一方向に配列して、この配列方向と直交する方向に基板を往復搬送しつつ、蛍光体層を形成する製造装置を提案している(特許文献3等参照)。
Usually, in vacuum deposition, a deposition film with a good film thickness distribution is formed by performing deposition while rotating (rotating, revolving, or revolving) the substrate in the information of the evaporation source (for example, a crucible for resistance heating). is doing. However, in the formation of the phosphor layer by rotating the substrate, it is difficult to stably satisfy the film thickness uniformity required for the conversion panel.
In order to solve such a problem, the present applicant arranges a manufacturing apparatus for forming a phosphor layer while arranging a vapor deposition source in one direction and reciprocating the substrate in a direction orthogonal to the arrangement direction. It has been proposed (see Patent Document 3).

特公平7−18958号公報Japanese Patent Publication No. 7-18958 特開2002−181997号公報JP 2002-181997 A 特開2005−351762号公報JP 2005-351762 A

この装置によれば、複数の蒸発源を一列に配列することにより、この配列方向における成膜材料の蒸発量を均一にし、かつ、この配列方向と直交する方向に基板を往復搬送することにより、成膜蒸気の暴露量を基板全面で均一にできる。そのため、非常に膜厚均一性に優れた蛍光体層を形成することができる。   According to this apparatus, by arranging a plurality of evaporation sources in a row, the amount of evaporation of the film forming material in this arrangement direction is made uniform, and the substrate is reciprocated in a direction perpendicular to this arrangement direction, The exposure amount of the deposition vapor can be made uniform over the entire surface of the substrate. Therefore, it is possible to form a phosphor layer with excellent film thickness uniformity.

しかしながら、このような直線状に基板を往復搬送する真空蒸着では、膜厚均一性を確保するためには、ルツボなどの蒸発源からの蒸発流が基板に到達して蒸着が行なわれる領域(蒸着領域)の全域で、基板を一定速度で搬送するのが好ましく、そのためには、基板の全面が蒸着領域を超えた後に搬送を折り返して、基板を往復搬送する必要がある。
このような搬送経路を設定した場合には、基板の搬送領域に比して、基板が蒸着に供される領域が狭く、その結果、成膜材料の利用効率が悪くなってしまう。
However, in such vacuum deposition in which the substrate is reciprocated in a straight line, in order to ensure film thickness uniformity, the region where the evaporation flow from the evaporation source such as a crucible reaches the substrate (deposition is performed). It is preferable that the substrate is transported at a constant speed over the entire region). For this purpose, it is necessary to fold the transport after the entire surface of the substrate exceeds the vapor deposition region and transport the substrate back and forth.
When such a transfer route is set, the area where the substrate is subjected to vapor deposition is narrower than the transfer area of the substrate, and as a result, the utilization efficiency of the film forming material is deteriorated.

本発明の目的は、前記従来技術の問題点を解決することにあり、蒸発源を一方向に配列し、かつ、基板を蒸発源配列方向と直交する方向に直線状に往復搬送しつつ、真空蒸着によって輝尽性蛍光体層等を形成する真空蒸着装置であって、成膜材料の利用効率を向上することができ、好ましくは、良好な膜厚の均一性も確保することができる真空蒸着装置を提供することにある。   An object of the present invention is to solve the above-described problems of the prior art, in which the evaporation sources are arranged in one direction and the substrate is reciprocated linearly in a direction perpendicular to the evaporation source arrangement direction, A vacuum vapor deposition apparatus for forming a photostimulable phosphor layer or the like by vapor deposition, which can improve the utilization efficiency of the film forming material, and preferably can ensure good film thickness uniformity. To provide an apparatus.

前記目的を達成するために、本発明の真空蒸着装置は、真空チャンバと、基板を直線状に往復搬送する搬送手段と、前記搬送手段による基板搬送位置の下方に配置される、前記往復搬送方向と直交する方向に1以上の蒸発源を配列してなる蒸発源列を、前記往復搬送方向に配列して1以上有する加熱蒸発部とを有する真空蒸着装置であって、個々の前記蒸発源列毎に上部に基板を固定して蒸着を行なった際に得られる、前記往復搬送方向の膜厚分布の最大点をTmax、膜厚が実質的に0になる点をTminとした際に、前記搬送手段は、前記基板の搬送方向後端が搬送方向最下流の前記Tminに至る前に搬送を折り返して、前記基板の往復搬送を行なうことを特徴とする真空蒸着装置を提供する。   In order to achieve the above object, a vacuum deposition apparatus according to the present invention includes a vacuum chamber, a transport unit that linearly transports a substrate back and forth, and a reciprocal transport direction that is disposed below a substrate transport position by the transport unit. And a heating evaporation section having one or more evaporation source arrays arranged in the reciprocating conveyance direction, each of the evaporation source arrays. When the maximum point of the film thickness distribution in the reciprocating conveyance direction obtained by performing deposition while fixing the substrate to the upper part every time is Tmax, and the point where the film thickness is substantially 0 is Tmin, The conveying means provides a vacuum deposition apparatus characterized in that the substrate is reciprocated before the rear end of the substrate in the conveyance direction reaches the Tmin, which is the most downstream in the conveyance direction, and the substrate is reciprocated.

このような本発明の真空蒸着装置において、前記搬送手段は、前記基板の搬送の折り返し時を除く直線状の搬送中に、基板の搬送速度を変更するのが好ましく、この際において、前記基板の往復搬送方向の中心位置を基準位置として、前記搬送手段は、前記基板の基準位置が前記往復搬送の中間部を通過する際の基板の搬送速度が、搬送を折り返す前後の所定搬送速度よりも低速となるように、前記基板の搬送速度を変更するのが好ましい。
また、前記蒸着源列を前記往復搬送方向に配列して2以上有し、前記搬送手段は、前記基板の搬送方向後端が搬送方向最下流の前記Tmaxとその直上流の前記Tmaxとの間に位置する時に搬送を折り返して、前記基板の往復搬送を行なうのが好ましく、さらに、前記基板の表面に輝尽性蛍光体からなる蛍光体層を形成するのが好ましい。
In such a vacuum vapor deposition apparatus of the present invention, it is preferable that the transport means changes the transport speed of the substrate during linear transport except when the substrate is folded back. With the center position in the reciprocating transport direction as a reference position, the transporting means is configured such that the transport speed of the substrate when the reference position of the substrate passes through the intermediate portion of the reciprocating transport is lower than a predetermined transport speed before and after returning the transport. It is preferable to change the conveyance speed of the substrate so that
Further, the vapor deposition source row is arranged in the reciprocating transport direction and has two or more, and the transport means has a rear end in the transport direction of the substrate between the Tmax at the most downstream in the transport direction and the Tmax immediately upstream thereof. It is preferable that the substrate is reciprocated by folding the substrate when it is positioned at the position, and further, a phosphor layer made of a stimulable phosphor is preferably formed on the surface of the substrate.

上記構成を有する本発明によれば、基板の往復搬送領域の全域において、蒸着源からの蒸発流(成膜材料の蒸発蒸気)に基板を暴露して蒸着を行なうことができるので、非常に良好な成膜材料の利用効率で蒸着を行なうことができる。また、成膜材料の無駄が無いので、環境対策の点でも有利である。従って、本発明は、高価な成膜材料を用いる必要がある放射線画像変換パネル、特に、輝尽性蛍光体を用いる放射線像変換パネルの製造に好適である。
また、蒸発源を一方向に配列し、かつ、基板を蒸発源配列方向と直交する方向に往復搬送することにより、ある程度の膜厚均一性を確保できるが、好ましくは搬送速度を変更し、より好ましくは、基板の中心が往復搬送の中心位置を通過する際の搬送速度が、搬送の折り返し前後の搬送速度よりも低速となるように搬送速度を変更することにより、より膜厚均一性に優れた蒸着膜を形成できる。
According to the present invention having the above configuration, the substrate can be exposed to the evaporation flow (evaporation vapor of the film forming material) from the evaporation source over the entire area of the reciprocating conveyance area of the substrate. Vapor deposition can be performed with a high efficiency of using a film forming material. In addition, there is no waste of film forming material, which is advantageous in terms of environmental measures. Therefore, the present invention is suitable for manufacturing a radiation image conversion panel that requires the use of an expensive film forming material, particularly a radiation image conversion panel that uses a stimulable phosphor.
Further, by arranging the evaporation sources in one direction and reciprocating the substrate in the direction orthogonal to the evaporation source arrangement direction, it is possible to ensure a certain degree of film thickness uniformity, but preferably by changing the conveyance speed, Preferably, film thickness uniformity is further improved by changing the transport speed so that the transport speed when the center of the substrate passes through the center position of the reciprocating transport is lower than the transport speed before and after the return of the transport. A deposited film can be formed.

以下、本発明の真空蒸着装置について、添付の図面に示される好適実施例を基に詳細に説明する。   Hereinafter, the vacuum vapor deposition apparatus of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.

図1に、本発明の真空蒸着装置を放射線画像変換パネル(輝尽性蛍光体パネル)の製造装置に利用した一例の概念図を示す。なお、図1において、(A)は正面図、(B)は側面図である。
図1に示す製造装置10は、基板Sの表面に真空蒸着によって輝尽性蛍光体からなる蛍光体層を形成して、放射線画像変換パネル(以下、変換パネルとする)を製造するもので、基本的に、真空チャンバ12と、基板搬送機構14と、加熱蒸発部16と、ガス導入手段18とを有して構成される。
In FIG. 1, the conceptual diagram of an example which utilized the vacuum evaporation system of this invention for the manufacturing apparatus of a radiation image conversion panel (stimulable phosphor panel) is shown. 1A is a front view, and FIG. 1B is a side view.
A manufacturing apparatus 10 shown in FIG. 1 manufactures a radiation image conversion panel (hereinafter referred to as a conversion panel) by forming a phosphor layer made of a stimulable phosphor by vacuum deposition on the surface of a substrate S. Basically, the vacuum chamber 12, the substrate transport mechanism 14, the heating evaporation unit 16, and the gas introduction unit 18 are configured.

このような製造装置10は、基板Sを直線状に往復搬送しつつ、蛍光体の成膜材料と付活剤の成膜材料とを別々に蒸発する、二元の真空蒸着によって基板Sの表面に蛍光体層を形成して、放射線画像変換パネルを製造する。   Such a manufacturing apparatus 10 reciprocates the substrate S linearly, and separately evaporates the phosphor film-forming material and the activator film-forming material, and the surface of the substrate S by binary vacuum deposition. Then, a phosphor layer is formed to produce a radiation image conversion panel.

製造装置10が製造する変換パネルにおいて、基板Sには特に限定はなく、公知の放射線画像変換パネルで用いられている各種のものが利用可能である。
一例として、セルロースアセテート、ポリエステル、ポリエチレンテレフタレート、ポリアミド、ポリイミド、トリアセテート、ポリカーボネートなどから形成されるプラスチック板やプラスチックシート(フィルム); 石英ガラス、無アルカリガラス、ソーダガラス、耐熱ガラス(パイレックスTM等)などから形成されるガラス板やガラスシート; アルミニウム、鉄、銅、クロムなどの金属類から形成される金属板や金属シート; このような金属板等の表面に金属酸化物層等の被覆層を形成してなる板やシート; 等が例示される。
また、基板Sは、必要に応じて、表面(蛍光体層の形成面)に、アルミニウム板等の基板Sの基材を保護するための保護層、輝尽発光光の反射層、この反射層の保護層等を有してもよい。この場合には、蛍光体層は、これらの層の上に形成される。
In the conversion panel manufactured by the manufacturing apparatus 10, the substrate S is not particularly limited, and various types used in known radiation image conversion panels can be used.
Examples include plastic plates and plastic sheets (films) formed from cellulose acetate, polyester, polyethylene terephthalate, polyamide, polyimide, triacetate, polycarbonate, etc .; quartz glass, alkali-free glass, soda glass, heat-resistant glass (Pyrex ™, etc.), etc. Glass plates and glass sheets formed from: metal plates and metal sheets formed from metals such as aluminum, iron, copper, and chromium; a coating layer such as a metal oxide layer is formed on the surface of such metal plates Examples of such a plate or sheet are as follows.
Further, the substrate S has a protective layer for protecting the base material of the substrate S such as an aluminum plate on the surface (phosphor layer forming surface), a reflective layer for stimulated emission light, and this reflective layer, as necessary. The protective layer may be provided. In this case, the phosphor layer is formed on these layers.

また、製造装置10が製造する変換パネルにおいて、蛍光体層を形成する輝尽性蛍光体(蓄積性蛍光体)にも、特に限定はなく、公知の各種の輝尽性蛍光体が利用可能である。
一例として、特開昭61−72087号公報に開示される、一般式「MI X・aMIIX’2 ・bMIIIX''3 :cA」で示されるアルカリハライド系輝尽性蛍光体が好適に利用される。
(上記式において、MI は、Li,Na,K,RbおよびCsからなる群より選択される少なくとも一種であり、MIIは、Be,Mg,Ca,Sr,Ba,Zn,Cd,CuおよびNiからなる群より選択される少なくとも一種の二価の金属であり、MIIIは、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Al,GaおよびInからなる群より選択される少なくとも一種の三価の金属であり、X、X’およびX''は、F,Cl,BrおよびIからなる群より選択される少なくとも一種であり、Aは、Eu,Tb,Ce,Tm,Dy,Pr,Ho,Nd,Yb,Er,Gd,Lu,Sm,Y,Tl,Na,Ag,Cu,BiおよびMgからなる群より選択される少なくとも一種である。また、0≦a<0.5であり、0≦b<0.5であり、0<c≦0.2である。)
中でも、優れた輝尽発光特性を有する等の点で、MIが、少なくともCsを含み、Xが、少なくともBrを含み、さらに、Aが、EuまたはBiであるアルカリハライド系輝尽性蛍光体は好ましく、その中でも特に、一般式「CsBr:Eu」で示される輝尽性蛍光体が好ましい。
Moreover, in the conversion panel manufactured by the manufacturing apparatus 10, there is no particular limitation on the stimulable phosphor (accumulative phosphor) forming the phosphor layer, and various known stimulable phosphors can be used. is there.
As an example, an alkali halide photostimulable phosphor represented by a general formula “M I X · aM II X ′ 2 · bM III X ″ 3 : cA” disclosed in JP-A-61-72087 is disclosed. It is preferably used.
(In the above formula, M I is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and M II is Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu and at least one trivalent metal selected from the group consisting of Ni, M III is, Sc, Y, La, Ce , Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, At least one trivalent metal selected from the group consisting of Tm, Yb, Lu, Al, Ga and In, and X, X ′ and X ″ are selected from the group consisting of F, Cl, Br and I A is from Eu, Tb, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu, Bi, and Mg. At least one selected from the group consisting of . Also, a 0 ≦ a <0.5, a 0 ≦ b <0.5, it is 0 <c ≦ 0.2.)
Among them, an alkali halide photostimulable phosphor in which M I contains at least Cs, X contains at least Br, and A is Eu or Bi in that it has excellent photostimulated emission characteristics. Among them, a photostimulable phosphor represented by the general formula “CsBr: Eu” is particularly preferable.

また、これ以外にも、米国特許第3,859,527号明細書、特開昭55−12142号、同55−12144号、同55−12145号、同56−116777号、同58−69281号、同58−206678号、同59−38278号、同59−75200号等の各公報に開示される各種の輝尽性蛍光体も、好適に利用可能である。   In addition, U.S. Pat. No. 3,859,527, JP-A-55-12142, 55-12144, 55-12145, 56-116777, 58-69281. 58-206678, 59-38278, 59-75200, and the like, various photostimulable phosphors disclosed in each publication can be suitably used.

製造装置10において、真空チャンバ12は、鉄、ステンレス、アルミニウム等で形成される、真空蒸着装置で利用される公知の真空チャンバ(ベルジャー、真空槽)である。
ガス導入手段18も、ボンベ等との接続手段やガス流量の調整手段等を有する(もしくは、これらに接続される)、真空蒸着装置やスパッタリング装置等で用いられている公知の真空チャンバ12内(成膜系内)へのガス導入手段である。図示例においては、後述する中真空での真空蒸着による蛍光体層の成膜を行うために、ガス導入手段18を用いて、アルゴンガスや窒素ガス等の不活性ガスを真空チャンバ12内に導入する。
In the manufacturing apparatus 10, the vacuum chamber 12 is a known vacuum chamber (bell jar, vacuum chamber) that is formed of iron, stainless steel, aluminum, or the like and is used in a vacuum deposition apparatus.
The gas introduction means 18 also has a connection means with a cylinder or the like, a gas flow rate adjustment means, or the like (or is connected thereto), and the inside of a known vacuum chamber 12 used in a vacuum deposition apparatus or a sputtering apparatus ( It is a means for introducing gas into the film forming system. In the illustrated example, an inert gas such as argon gas or nitrogen gas is introduced into the vacuum chamber 12 by using the gas introduction means 18 in order to form a phosphor layer by vacuum deposition under medium vacuum, which will be described later. To do.

真空チャンバ12には、図示しない真空ポンプが接続される。
真空ポンプは、油拡散ポンプ、クライオポンプ、ターボモレキュラポンプ等の公知のものである。また、補助として、クライオコイル等を併用してもよい。なお、前述の輝尽性蛍光体からなる蛍光体層を成膜する製造装置10においては、真空チャンバ12内の到達真空度は、8.0×10-4Pa以下であるのが好ましい。
A vacuum pump (not shown) is connected to the vacuum chamber 12.
The vacuum pump is a known one such as an oil diffusion pump, a cryopump, a turbo molecular pump, or the like. Further, as an auxiliary, a cryocoil or the like may be used in combination. In addition, in the manufacturing apparatus 10 for forming the phosphor layer made of the photostimulable phosphor described above, the ultimate vacuum in the vacuum chamber 12 is preferably 8.0 × 10 −4 Pa or less.

基板搬送機構14は、基板12を保持して直線状の搬送経路で往復搬送するものであり、基板保持手段24と搬送手段26とを有して構成される。   The substrate transport mechanism 14 holds the substrate 12 and reciprocates along a linear transport path, and includes a substrate holding unit 24 and a transport unit 26.

搬送手段26は、ガイドレール30とガイドレール30に係合してガイド(案内)される係合部材32とを有するリニアモータガイド、ネジ軸34およびナット36からなるボールネジ、ネジ軸34の回転駆動源38等を有する、ネジ伝動を利用する公知の直線状の移動機構である。
回転駆動源38は、正逆転が可能なものである。また、回転駆動源38には、基板Sの往復搬送を制御する搬送制御手段40が接続される。
The conveying means 26 is a linear motor guide having a guide rail 30 and an engagement member 32 engaged with the guide rail 30 to be guided (guided), a ball screw including a screw shaft 34 and a nut 36, and a rotational drive of the screw shaft 34. This is a known linear moving mechanism using a screw transmission having a source 38 and the like.
The rotational drive source 38 is capable of forward and reverse rotation. In addition, the rotation drive source 38 is connected to a conveyance control means 40 that controls the reciprocal conveyance of the substrate S.

他方、基板保持手段24は、基台42と、保持部材44とを有する。
基台42は、上面に前記搬送手段26のナット36および係合部材32を固定する、矩形状の板状部材である。また、保持部材44は、四隅から垂下するように基台42に固定され、下端部に基板Sを保持する。なお、保持部材44による基板Sの保持方法には、特に限定はなく、吸引/吸着による方法、基板Sの周辺を下方から保持(すなわち基板Sの四辺を載置)する枠体などの保持部材を用いる方法、裏面から基板Sに螺合するネジを用いる方法等、公知の板状部材の保持方法が、全て利用可能である。
基板保持手段24は、搬送手段26によって、所定の方向(図1(A)では矢印x方向、図1(B)では紙面に垂直方向)に直線移動される。
On the other hand, the substrate holding means 24 includes a base 42 and a holding member 44.
The base 42 is a rectangular plate-like member that fixes the nut 36 and the engaging member 32 of the conveying means 26 to the upper surface. The holding member 44 is fixed to the base 42 so as to hang from the four corners, and holds the substrate S at the lower end. The method for holding the substrate S by the holding member 44 is not particularly limited, and a holding member such as a method using suction / adsorption, a frame body for holding the periphery of the substrate S from below (that is, placing the four sides of the substrate S). Any known method for holding a plate-like member, such as a method using a screw, a method using a screw screwed to the substrate S from the back side, or the like can be used.
The substrate holding means 24 is linearly moved by the conveying means 26 in a predetermined direction (the arrow x direction in FIG. 1A and the direction perpendicular to the paper surface in FIG. 1B).

図示例の製造装置10においては、基板保持手段24によって基板Sを保持した状態で、回転駆動源38を駆動してネジ軸34を回転することにより、搬送手段26によって基板保持手段24を搬送手段26によって搬送して、基板Sを直線状に往復搬送する。
後述するが、図示例においては、このように基板Sの搬送を直線状とし、かつ、複数の蒸発源を搬送方向と直交する方向に配列することにより、膜厚分布均一性の高い蛍光体層の形成を実現している。
In the manufacturing apparatus 10 of the illustrated example, the substrate holding means 24 is transferred by the transfer means 26 by driving the rotation drive source 38 and rotating the screw shaft 34 while holding the substrate S by the substrate holding means 24. 26, the substrate S is reciprocated linearly.
As will be described later, in the illustrated example, the transport of the substrate S is made linear, and a plurality of evaporation sources are arranged in a direction orthogonal to the transport direction, whereby a phosphor layer with high uniformity of film thickness distribution is obtained. The formation of is realized.

この基板Sの往復搬送(回転駆動源38の駆動)は、搬送制御手段40によって制御される。
なお、往復搬送の回数は、蛍光体層の目的膜厚や目的とする膜厚分布均一性等に応じて、適宜、決定すればよい。
また、基板Sの搬送速度にも、特に限定はなく、装置の搬送速度限界、往復搬送の回数、目的とする蛍光体層の膜厚等に応じて、適宜、決定すればよい。
なお、本発明において、基板保持手段24は、上記構成に限定はされず、公知の板状物の直線状の往復搬送手段が、全て利用可能である。
The reciprocal conveyance of the substrate S (drive of the rotational drive source 38) is controlled by the conveyance control means 40.
Note that the number of reciprocating conveyances may be appropriately determined according to the target film thickness of the phosphor layer, the target film thickness distribution uniformity, and the like.
Also, the transport speed of the substrate S is not particularly limited, and may be determined as appropriate according to the transport speed limit of the apparatus, the number of reciprocal transports, the film thickness of the target phosphor layer, and the like.
In the present invention, the substrate holding means 24 is not limited to the above-described configuration, and all known plate-like linear reciprocating means can be used.

真空チャンバ12内の下方には、加熱蒸発部16が配置される。
加熱蒸発部16は、一例として、蒸発源(蒸着源)として抵抗加熱用のルツボ50を用い、抵抗加熱によって成膜材料を加熱蒸発させるものである。
なお、図示は省略するが、加熱蒸発部16の上には、加熱蒸発部16(ルツボ50)からの成膜材料の蒸気を遮蔽するシャッタが配置される。また、なお、本発明は、抵抗加熱によって成膜材料を加熱するのに限定はされず、誘導加熱や電子線加熱など、真空蒸着で利用される各種の加熱方法が、全て利用可能である。
A heating evaporation unit 16 is disposed below the vacuum chamber 12.
For example, the heating evaporation unit 16 uses a resistance heating crucible 50 as an evaporation source (evaporation source), and heats and evaporates the film forming material by resistance heating.
Although not shown, a shutter that shields the vapor of the film forming material from the heating evaporation unit 16 (the crucible 50) is disposed on the heating evaporation unit 16. Note that the present invention is not limited to heating the film forming material by resistance heating, and any of various heating methods used in vacuum vapor deposition such as induction heating and electron beam heating can be used.

前述のように、図示例の製造装置10は、好ましい態様として、輝尽性蛍光体の蛍光体の成膜材料と付活剤(賦活剤:activator)の成膜材料とを独立して加熱/蒸発する、二元(多元)の真空蒸着により、蛍光体層を形成するものである。例えば、前記好ましい輝尽性蛍光体として例示したCsBr:Euであれば、蛍光体の成膜材料である臭化セシウム(CsBr)と、付活剤成分の成膜材料である臭化ユーロピウム(EuBrx(xは、通常、2〜3だが2が好ましい))とを、独立して加熱蒸発する。
ルツボ50は、蛍光体の成膜材料を加熱蒸発する蛍光体用ルツボ50aと、付活剤の成膜材料を加熱蒸発する付活剤用成膜ルツボ50bとを組み合わせてなるものである。
As described above, the manufacturing apparatus 10 of the illustrated example, as a preferred embodiment, heats / fires the phosphor film-forming material of the stimulable phosphor and the film-forming material of the activator independently. The phosphor layer is formed by evaporating binary (multi-element) vacuum deposition. For example, in the case of CsBr: Eu exemplified as the preferable stimulable phosphor, cesium bromide (CsBr) which is a film forming material of the phosphor and europium bromide (EuBr) which is a film forming material of the activator component. x (x is usually 2 to 3, but 2 is preferred)) is evaporated by heating independently.
The crucible 50 is formed by combining a phosphor crucible 50a for heating and evaporating a phosphor film forming material and an activator film forming crucible 50b for heating and evaporating an activator film forming material.

なお、本発明の真空蒸着装置は、二元(多元)の真空蒸着を行なうものに限定はされず、一元の真空蒸着を行なうものであってもよいのは、もちろんである。   The vacuum vapor deposition apparatus of the present invention is not limited to the one that performs binary (multi-element) vacuum deposition, and of course, the vacuum vapor deposition apparatus may perform unitary vacuum deposition.

図示例の製造装置10において、蛍光体用ルツボ50aと付活剤用成膜ルツボ50bとは、より均一な組成を有する蛍光体層が得られる好ましい態様として、基板Sの往復搬送方向に並べられる。
また、蛍光体用ルツボ50aと付活剤用成膜ルツボ50bとは、電気的に絶縁(あるいはさらに断熱)されており、互いに独立して加熱を制御可能である。
In the manufacturing apparatus 10 of the illustrated example, the phosphor crucible 50a and the activator film-forming crucible 50b are arranged in the reciprocating conveyance direction of the substrate S as a preferred embodiment in which a phosphor layer having a more uniform composition is obtained. .
Further, the phosphor crucible 50a and the activator film forming crucible 50b are electrically insulated (or further thermally insulated), and heating can be controlled independently of each other.

図1(B)および図2(模式的上面図)に示すように、製造装置10において、ルツボ50は、基板Sの往復搬送方向(矢印x方向)と直交する方向に、6個、配列される。また、製造装置10は、この6個のルツボ50の列を、往復搬送方向に並べて2列有する。以下、便宜的に、この6個のルツボ50の配列の一方を第1蒸発源列54、他方を第2蒸発源列56とする。
蒸発源列におけるルツボ50の数は、6個に限定はされず、1個でもよく、あるいは、2〜5個でもよく、あるいは7個以上でもよい。なお、基板Sの往復搬送方向と直交する方向の膜厚均一性を考慮すると、この方向に複数のルツボを配列するのが好ましい。
As shown in FIGS. 1B and 2 (schematic top view), in the manufacturing apparatus 10, six crucibles 50 are arranged in a direction orthogonal to the reciprocating conveyance direction (arrow x direction) of the substrate S. The Further, the manufacturing apparatus 10 has two rows of the six crucibles 50 arranged in the reciprocating conveyance direction. Hereinafter, for convenience, one of the six crucibles 50 will be referred to as a first evaporation source row 54 and the other as a second evaporation source row 56.
The number of crucibles 50 in the evaporation source row is not limited to six, but may be one, may be 2 to 5, or may be 7 or more. In consideration of the film thickness uniformity in the direction orthogonal to the reciprocating conveyance direction of the substrate S, it is preferable to arrange a plurality of crucibles in this direction.

また、本発明において、このルツボ50の列(蒸発源列)は、2つに限定は、されず、後述するように、蒸発源列を1つのみ有するものであってもよく、あるいは、3列以上の蒸発源列を有するものであってもよい。   In the present invention, the number of crucible 50 rows (evaporation source rows) is not limited to two, and may include only one evaporation source row, as will be described later, or 3 It may have one or more evaporation source rows.

本発明の真空蒸着装置である製造装置10においては、前述のように、基板12を直線状の往復搬送とし、抵抗加熱の蒸発源となるルツボ50を、基板Sの往復搬送方向と直交する方向に、複数、配列することにより、基板12の全面を成膜材料の蒸気で均一に暴露して、極めて膜厚分布均一性が高い蛍光体層の形成を可能にしている。   In the manufacturing apparatus 10 which is a vacuum deposition apparatus of the present invention, as described above, the substrate 12 is linearly reciprocated and the crucible 50 serving as a resistance heating evaporation source is perpendicular to the reciprocating direction of the substrate S. Further, by arranging a plurality of layers, the entire surface of the substrate 12 is uniformly exposed with the vapor of the film forming material, thereby enabling formation of a phosphor layer with extremely high film thickness distribution uniformity.

すなわち、基板12を直線状の往復搬送とし、かつ、複数のルツボ(抵抗加熱蒸発源)を搬送方向と直交する方向に直線状に並べることにより、搬送方向と直交する方向の基板12への蒸発流(成膜材料の蒸発蒸気)の暴露量を均一にできるので、極めて簡易な構成で、基板12の全面的に均一に成膜材料の蒸気を暴露することができ、膜厚分布均一性の高い蛍光体層を形成できる。特に、後述する中真空での真空蒸着では、アルゴン等のガス粒子と蒸発した成膜材料との衝突があるため、通常の高真空での蒸着に比して、基板と蒸発源との間隔を狭くする必要が有るため、成膜材料が系内に拡散する前に基板12に到達してしまうため、その効果は大きい。
しかも、このような構成を有することにより、蛍光体層の面方向および厚さ方向共に、蓄積性蛍光体層中に付活剤成分を高度に均一に分散することができ、これにより、輝尽発光特性および感度等の均一性に優れた蛍光体シートを得ることができる。
That is, the substrate 12 is linearly reciprocated and a plurality of crucibles (resistance heating evaporation sources) are linearly arranged in a direction perpendicular to the conveyance direction, thereby evaporating the substrate 12 in a direction perpendicular to the conveyance direction. Since the exposure amount of the flow (evaporation vapor of the film forming material) can be made uniform, the vapor of the film forming material can be uniformly exposed on the entire surface of the substrate 12 with a very simple configuration, and the film thickness distribution can be uniform. A high phosphor layer can be formed. In particular, in vacuum evaporation at medium vacuum, which will be described later, there is a collision between gas particles such as argon and evaporated film forming material, so that the distance between the substrate and the evaporation source is larger than that in normal high vacuum evaporation. Since it is necessary to make it narrower, the film forming material reaches the substrate 12 before diffusing into the system, so that the effect is great.
In addition, by having such a configuration, the activator component can be dispersed highly uniformly in the stimulable phosphor layer in both the surface direction and the thickness direction of the phosphor layer. A phosphor sheet excellent in uniformity such as emission characteristics and sensitivity can be obtained.

ルツボ50(蛍光体用ルツボ50aと付活剤用成膜ルツボ50b)は、通常の抵抗加熱による真空蒸着に用いられるルツボと同様、タンタル(Ta)、モリブデン(Mo)、タングステン(W)などの高融点金属で形成される、電極(図示省略)から通電されることにより自身が発熱し、充填された成膜材料を加熱/溶融して蒸発させる、抵抗加熱蒸発源となるルツボである。   The crucible 50 (phosphor crucible 50a and activator film forming crucible 50b) is made of tantalum (Ta), molybdenum (Mo), tungsten (W), etc., as in the case of the crucible used for vacuum evaporation by normal resistance heating. This is a crucible serving as a resistance heating evaporation source which is made of a high melting point metal and generates heat when energized from an electrode (not shown) and heats / melts the filled film forming material to evaporate.

蓄積性蛍光体において、付活剤と蛍光体とは、例えばモル濃度比で0.0005/1〜0.01/1程度と、蛍光体層の大部分が蛍光体である。従って、蛍光体用ルツボ50aと付活剤用成膜ルツボ50bの加熱量(通電量)は、蛍光体層14中の蛍光体および付活剤の量が、この目的の濃度比となるように制御される。また、付活剤用成膜ルツボ50bは、蛍光体用ルツボ50aに比して小型でよい。
なお、ルツボ50の加熱制御は、サイリスタ方式、DC方式、フィードバック方式等、抵抗加熱による真空蒸着で用いられる公知の方法によればよい。また、これらの制御は、通常の抵抗加熱による真空蒸着と同様に、ルツボの温度測定結果、水晶振動子を用いる蒸発量測定などに応じて行なえばよい。さらに、蒸発量の少ない付活剤の成膜材料は、定電流制御としてもよい。
In the stimulable phosphor, the activator and the phosphor are, for example, about 0.0005 / 1 to 0.01 / 1 in molar concentration ratio, and most of the phosphor layer is the phosphor. Therefore, the heating amount (energization amount) of the phosphor crucible 50a and the activator film forming crucible 50b is set so that the amount of the phosphor and the activator in the phosphor layer 14 is the target concentration ratio. Be controlled. Further, the film forming crucible 50b for the activator may be smaller than the phosphor crucible 50a.
The heating control of the crucible 50 may be performed by a known method used in vacuum deposition by resistance heating, such as a thyristor method, a DC method, or a feedback method. Further, these controls may be performed according to the temperature measurement result of the crucible, the evaporation amount measurement using a crystal resonator, and the like, similarly to the vacuum vapor deposition by normal resistance heating. Further, the activator film-forming material having a small evaporation amount may be controlled with constant current.

ここで、本発明の真空蒸着装置である製造装置10は、基板Sの基板搬送手段14は、各ルツボ50の列(蒸発源列)毎に、上部に基板Sを固定して蒸着を行なった際に得られる膜厚分布(往復搬送方向の膜厚分布)において、最大点をTmax、膜厚が実質的に0になる点をTminとした際に、基板Sの後端(搬送方向の後端)が最下流(搬送方向の最下流)のTminに至る前に搬送を折り返して、基板Sの往復搬送を行なう。   Here, in the manufacturing apparatus 10 which is a vacuum deposition apparatus of the present invention, the substrate transport means 14 of the substrate S performs deposition by fixing the substrate S to the upper portion for each row of crucibles 50 (evaporation source row). In the film thickness distribution (film thickness distribution in the reciprocating conveyance direction) obtained at this time, the maximum point is Tmax, and the point where the film thickness is substantially zero is Tmin. Before the end reaches Tmin, which is the most downstream (the most downstream in the transport direction), the transport is folded back and the substrate S is transported back and forth.

なお、本発明において、膜厚が実質的に0になる点とは、膜厚がTmaxに対して1/10000となる点である。例えば、Tmaxが700μmであれば、膜厚が0.07μmとなる位置を膜厚が実質的に0になる点として、Tminとする。
また、図示例のように二元(多元)の真空蒸着を行なう場合には、通常、前記搬送の折り返しは、両(全)成膜材料の蒸発源によって形成される膜の膜厚分布に応じて行なう。しかしながら、図示例のように、一方の成膜材料(すなわち付活剤の成膜材料)の蒸着量が極めて少ない場合には、多量に蒸着される成膜材料(すなわち蛍光体の成膜材料)による膜厚分布のみに応じて、往復搬送の折り返し位置を設定してもよい。
In the present invention, the point where the film thickness is substantially 0 is the point where the film thickness is 1/10000 with respect to Tmax. For example, if Tmax is 700 μm, the position where the film thickness is 0.07 μm is defined as Tmin, where the film thickness is substantially zero.
When performing binary (multi-element) vacuum deposition as shown in the figure, the return of the conveyance is usually in accordance with the film thickness distribution of the film formed by the evaporation sources of both (all) film forming materials. To do. However, as shown in the illustrated example, when the deposition amount of one film forming material (that is, the film forming material for the activator) is extremely small, the film forming material that is deposited in a large amount (that is, the film forming material for the phosphor). The return position of the reciprocating conveyance may be set only in accordance with the film thickness distribution.

例えば、蒸発源列が1列で、基板Sを蒸発源列の上方に固定して真空蒸着を行なった際に、図3(A)に模式的に示す膜厚分布(縦軸は膜厚、横軸は基板Sの往復搬送方向の位置)の蛍光体層が形成される場合には、基板搬送手段14(搬送制御手段40)は、基板Sの後端が下流側のTminに至る前に、搬送を折り返して基板Sの往復搬送を行なう。
言い換えれば、基板Sの後端がTminよりもTmax側に有る位置で、搬送を折り返して基板Sの往復搬送を行なう。
For example, when the evaporation source row is one row and the substrate S is fixed above the evaporation source row and vacuum deposition is performed, the film thickness distribution schematically shown in FIG. When the phosphor layer is formed on the horizontal axis (the position in the reciprocating conveyance direction of the substrate S), the substrate conveyance means 14 (conveyance control means 40) determines that the rear end of the substrate S reaches Tmin on the downstream side. Then, the conveyance is folded back and the substrate S is reciprocated.
In other words, at the position where the rear end of the substrate S is on the Tmax side with respect to Tmin, the conveyance is turned back and the substrate S is reciprocated.

また、図示例のように、第1蒸発源列54および第2蒸発源列56の2列の蒸発源列を有し、同様に真空蒸着を行なった際に、各蒸発源列によって図3(B)に模式的に示される膜厚分布の蛍光体層が形成される場合には、基板搬送手段14は、基板Sの後端が最下流のTmin1に至る前、および、同Tmin2に至る前に、搬送を折り返して、基板Sの往復搬送を行なう。
言い換えれば、基板Sの後端がTmin1よりもTmax1側にある位置、および、基板Sの後端がTmin2よりもTmax2側にある位置で、搬送を折り返して基板Sの往復搬送を行なう。
In addition, as shown in the example, there are two evaporation source rows of the first evaporation source row 54 and the second evaporation source row 56, and when the vacuum evaporation is performed in the same manner, each of the evaporation source rows has a structure shown in FIG. In the case where the phosphor layer having the film thickness distribution schematically shown in B) is formed, the substrate transfer means 14 is arranged so that the rear end of the substrate S reaches the most downstream Tmin1 and before reaching the same Tmin2. Then, the conveyance is folded back and the substrate S is reciprocated.
In other words, the substrate S is reciprocated by returning the conveyance at the position where the rear end of the substrate S is on the Tmax1 side from Tmin1 and the position where the rear end of the substrate S is on the Tmax2 side from Tmin2.

さらに、3列の蒸発源列を有し、同様に真空蒸着を行った際に、各蒸発源列によって図3(C)に模式的に示される膜厚分布の蛍光体層が形成される場合には、基板Sの後端が最下流のTmin1に至る前、および、同Tmin3に至る前に、搬送を折り返して基板Sの往復搬送を行なう。
言い換えれば、基板Sの後端がTmin1よりもTmax1側にある位置、および、基板Sの後端がTmin3よりもTmax3側にある位置で、搬送を折り返して基板Sの往復搬送を行なう。
Further, when there are three evaporation source rows and the same vacuum deposition is performed, a phosphor layer having a film thickness distribution schematically shown in FIG. 3C is formed by each evaporation source row. First, before the rear end of the substrate S reaches the most downstream Tmin1 and before reaching the same Tmin3, the substrate S is returned and the substrate S is reciprocated.
In other words, the substrate S is reciprocated by returning the conveyance at a position where the rear end of the substrate S is on the Tmax1 side from Tmin1 and a position where the rear end of the substrate S is on the Tmax3 side from Tmin3.

また、図3(B)や図3(C)に示すように、複数の蒸発源列を有する場合には、基板Sの後端が最下流のTmaxに至る前に、搬送を折り返すように基板Sの往復搬送を行なうのが好ましい。
すなわち、2列の蒸発源列を有する図3(B)であれば、基板Sの後端が下流のTmax1に至る前、および、同Tmax2に至る前に、搬送を折り返して、基板Sの往復搬送を行なうのが好ましい。
さらに、3列の蒸発源列を有する図3(C)であれば、基板Sの後端が最下流のTmax1に至る前、および、同Tmax3に至る前に、搬送を折り返して、基板Sの往復搬送を行なうのが好ましい。言い換えれば、基板Sの後端がTmax1よりもTmax2側にある位置、および、基板Sの後端がTmax3よりもTmax2側にある位置で、搬送を折り返して基板Sの往復搬送を行なう。特に、基板Sの一部が、常に、Tmax2の上方に有るように、基板Sの往復搬送を行なうのが好ましい。
In addition, as shown in FIGS. 3B and 3C, when a plurality of evaporation source arrays are provided, the substrate is folded so that the rear end of the substrate S reaches the most downstream Tmax. It is preferable to perform S reciprocating conveyance.
That is, in the case of FIG. 3B having two rows of evaporation source rows, the substrate S is reciprocated by returning the conveyance before the rear end of the substrate S reaches the downstream Tmax1 and before reaching the same Tmax2. It is preferable to carry.
Further, in the case of FIG. 3C having three evaporation source rows, the conveyance of the substrate S is folded before the rear end of the substrate S reaches the most downstream Tmax1 and before reaching the same Tmax3. It is preferable to perform reciprocal conveyance. In other words, the substrate S is reciprocated by returning the conveyance at a position where the rear end of the substrate S is on the Tmax2 side from Tmax1 and a position where the rear end of the substrate S is on the Tmax2 side from Tmax3. In particular, it is preferable to reciprocate the substrate S so that a part of the substrate S is always above Tmax2.

本発明のように、蒸発源を一方向に配列し、かつ、蒸発源列と直交する方向に基板Sを往復搬送する真空蒸着では、層厚の均一性という点では、蒸着が行なわれる領域(基板Sが蒸発流に接触する領域)すなわち図3であれば往復搬送方向の両端のTminの上の領域は、基板Sの全面が等速で通過するように往復搬送を行なうのが好ましい。
ここで、基板Sを往復搬送する場合には、搬送の折り返しのための減速および加速が必要である。従って、蒸着が行なわれる領域(蒸着領域)の全域において基板S全面を等速で搬送するためには、基板Sの後端が蒸着領域を超える位置まで、すなわち最下流のTminを超える位置まで、基板Sを搬送する必要がある。
そのため、このような往復搬送を行なうと、基板Sの搬送領域に比して、基板Sが蒸着に供される領域が狭く、その結果、成膜材料の利用効率が悪くなってしまうのは、前述のとおりである。
As in the present invention, in vacuum deposition in which evaporation sources are arranged in one direction and the substrate S is reciprocally conveyed in a direction orthogonal to the evaporation source row, the region where the deposition is performed in terms of uniformity of layer thickness ( In the region where the substrate S is in contact with the evaporation flow), that is, in FIG. 3, the region above Tmin at both ends in the reciprocating conveyance direction is preferably reciprocated so that the entire surface of the substrate S passes at a constant speed.
Here, when the substrate S is transported back and forth, it is necessary to decelerate and accelerate to return the transport. Accordingly, in order to transport the entire surface of the substrate S at a constant speed in the entire region where the vapor deposition is performed (vapor deposition region), the rear end of the substrate S is to a position exceeding the vapor deposition region, that is, to a position exceeding the most downstream Tmin. It is necessary to transport the substrate S.
Therefore, when such a reciprocating transfer is performed, the region where the substrate S is subjected to vapor deposition is narrower than the transfer region of the substrate S, and as a result, the utilization efficiency of the film forming material is deteriorated. As described above.

これに対し、本発明では、前述のように、基板Sの後端が最下流のTminに至る前に、搬送を折り返して、基板Sの往復搬送を行なうので、基板Sの一部は、必ず蒸着領域すなわち図3であれば往復搬送方向の両端のTminの上に存在する。
そのため、本発明によれば、成膜材料の利用効率を向上することができ、生産コストや環境汚染等の点で、非常に有利な真空蒸着を行なうことができる。特に、蛍光体、特に輝尽性蛍光体(中でも特に前記CsBr:Eu)は、原料が高価であるので、生産コストダウンの効果は大きい。また、往復搬送距離を短くし、かつ、成膜材料の利用効率も高いので、蒸着時間も短くでき、生産性も向上できる。
On the other hand, in the present invention, as described above, before the rear end of the substrate S reaches the most downstream Tmin, the conveyance is folded back and the substrate S is reciprocated. In the case of the vapor deposition region, that is, FIG.
Therefore, according to the present invention, it is possible to improve the utilization efficiency of the film forming material, and it is possible to perform vacuum deposition that is very advantageous in terms of production cost, environmental pollution, and the like. In particular, phosphors, particularly photostimulable phosphors (especially CsBr: Eu in particular) are expensive in terms of raw materials, and thus have a great effect of reducing production costs. Further, since the reciprocating conveyance distance is shortened and the use efficiency of the film forming material is high, the vapor deposition time can be shortened and the productivity can be improved.

ここで、本発明によれば、蒸発源を蒸発源列とし、基板Sを、この蒸発源列の延在方向と直交する方向に直線状に往復搬送することにより、ある程度の膜厚均一性を確保することはできる。
しかしながら、基板Sの後端が蒸着領域に存在する状態で往復搬送の折り返しを行なうので、折り返しのための搬送の減速および加速によって、基板Sの端部近傍は、他の領域に比して蒸着領域での滞在時間が長くなる。その結果、基板Sの往復搬送方向で蒸発流の暴露量が変動してしまい、基板Sの中央部の層厚が薄くなるような状態で、膜厚分布を生じてしまう。
Here, according to the present invention, the evaporation source array is an evaporation source array, and the substrate S is linearly reciprocated in a direction orthogonal to the extending direction of the evaporation source array, thereby providing a certain degree of film thickness uniformity. It can be secured.
However, since the back-and-forth transfer is folded in a state where the rear end of the substrate S exists in the vapor deposition region, the vicinity of the end of the substrate S is vapor-deposited as compared with other regions by the deceleration and acceleration of the conveyance for the folding. Increases time spent in the area. As a result, the exposure amount of the evaporative flow fluctuates in the reciprocating conveyance direction of the substrate S, and the film thickness distribution is generated in a state where the layer thickness of the central portion of the substrate S becomes thin.

このような不都合を解消するために、本発明においては、好ましい態様として、基板搬送手段14(搬送制御手段40)は、折り返し時を除く直線搬送時(すなわち、搬送の折り返しの為の加速時および減速時を除く直線搬送時)に、基板Sの搬送速度を変更する。   In order to eliminate such inconveniences, in the present invention, as a preferred mode, the substrate transport unit 14 (transport control unit 40) is configured to perform linear transport other than folding (that is, during acceleration for transport folding and The substrate S transport speed is changed during linear transport except during deceleration.

基板Sの搬送の速度パターンには、特に限定はなく、基板Sの中央部がTmax上に滞在する時間が長くなるような速度パターンを、適宜、設定すればよい。
すなわち、本発明において、上記要因に起因する膜厚分布は、基板Sのサイズ、基板Sの搬送速度、蒸発源列からの蒸発流の流れ(すなわち前述の各蒸着列上に基板を固定して蒸着した際の膜厚分布)、蒸発源列を複数有する場合には蒸発源列の間隔等、様々な要因によって変動する。そのため、これらに応じて、層圧が薄くなる部分が、Tmaxの上に滞在する時間が長くなるような速度パターンを、適宜、決定すればよい。
The speed pattern for transporting the substrate S is not particularly limited, and a speed pattern that makes the time for the central portion of the substrate S to stay on Tmax may be set as appropriate.
That is, in the present invention, the film thickness distribution resulting from the above factors is the size of the substrate S, the transport speed of the substrate S, the flow of the evaporation flow from the evaporation source row (that is, the substrate is fixed on each of the above-described vapor deposition rows). It varies depending on various factors, such as the distribution of film thickness at the time of vapor deposition) and the interval between evaporation source rows when there are a plurality of evaporation source rows. Therefore, in accordance with these, a speed pattern may be appropriately determined so that the portion where the layer pressure becomes thin increases the time spent on Tmax.

好適な一例として、基板の中心(往復搬送方向の中心)を基準位置として、この基準位置が往復搬送の中間部(往復搬送の中間の位置)を通過する際の搬送速度を、往復搬送のための基板の折り返し前後の所定速度(減速前の速度、および、加速後の速度)よりも低速とする速度パターンが例示される。すなわち、この速度パターンでは、搬送を折り返して所定速度になった後に、基準位置が中間部に至る前に搬送速度を減速し、基準位置が中間部を通過した後に搬送速度を増加する。
なお、一般的に、蒸発源列が奇数列の場合には、基板Sの往復搬送方向の中央に位置する蒸発源列の上部(通常は、この蒸発源列のTmaxの位置となる)を、蒸発源列が偶数列の場合には、基板Sの往復搬送方向の中央に位置する2つの蒸発源列の中間(通常は、2つの蒸発源列のTmaxの中間の位置となる)を、それぞれ往復搬送の中間部とするのが、通常である。
As a preferred example, with the center of the substrate (the center in the reciprocating transport direction) as the reference position, the transport speed when this reference position passes through the intermediate part of the reciprocating transport (the intermediate position of the reciprocating transport) A speed pattern is exemplified that is lower than a predetermined speed (speed before deceleration and speed after acceleration) before and after folding the substrate. That is, in this speed pattern, after the conveyance is turned back to a predetermined speed, the conveyance speed is decelerated before the reference position reaches the intermediate portion, and the conveyance speed is increased after the reference position passes the intermediate portion.
In general, when the evaporation source row is an odd number row, the upper portion of the evaporation source row located at the center in the reciprocating conveyance direction of the substrate S (usually, the position of Tmax of this evaporation source row) is When the evaporation source row is an even row, the middle of the two evaporation source rows located at the center in the reciprocating conveyance direction of the substrate S (normally, the middle position of Tmax of the two evaporation source rows) Usually, the intermediate part of the reciprocating conveyance is used.

図4に、上記中間位置で搬送速度を低下(中央速度低下)する速度パターンの一例を、図5に、図1に示す製造装置10を用い、図4に示す搬送速度の変動パターンでCsBr層を形成した際の膜厚分布を示す。また、図5には、図4に示す200mm/秒の一定速度(速度一定)で往復搬送を行なった以外は、全く同様にして基板Sに蛍光体層を形成した際の膜厚分布を併記する。   FIG. 4 shows an example of a speed pattern that lowers the transport speed (lower the central speed) at the intermediate position. FIG. 5 shows the CsBr layer using the manufacturing apparatus 10 shown in FIG. 1 and the fluctuation pattern of the transport speed shown in FIG. The film thickness distribution at the time of forming is shown. FIG. 5 also shows the film thickness distribution when the phosphor layer is formed on the substrate S in exactly the same manner except that reciprocal conveyance is performed at a constant speed (constant speed) of 200 mm / sec shown in FIG. To do.

図4において、横軸の搬送距離0の位置が往復搬送の中間部で、すなわち第1蒸発源列54と第2蒸発源列56の中間の位置である。
この往復搬送では、基板Sの基準位置が中間部から250mmの位置で搬送を折り返して、同210mmの位置で200mm/secとし、同150mmの位置となったら減速して同130mmの位置で搬送速度を100mm/secとし、同−130mmの位置となったら加速して同−150mmの位置で搬送速度を200mm/secとし、同−210mmの位置となったら減速して同−250mmの位置で搬送を折り返す。
他方、一定速度の往復搬送は、基板Sの基準位置が中間位置から250mmの位置で搬送を折り返して、同200mmの位置で搬送速度を200mm/secとし、200mm/sec一定速度で搬送して、同−200mmの位置となったら減速して同−250mmの位置で搬送を折り返す。
すなわち、共に、中間位置を中心とした対称の搬送パターンである。
In FIG. 4, the position of the conveyance distance 0 on the horizontal axis is the intermediate part of the reciprocating conveyance, that is, the middle position between the first evaporation source row 54 and the second evaporation source row 56.
In this reciprocating conveyance, the substrate S is folded back at a position where the reference position of the substrate S is 250 mm from the intermediate portion, and is set to 200 mm / sec at the position of 210 mm. Is set to 100 mm / sec. When the position is -130 mm, the speed is increased and the transfer speed is set to 200 mm / sec at the position of -150 mm. When the position is -210 mm, the speed is decreased and the transfer is performed at the position of -250 mm. Wrap.
On the other hand, in the reciprocal conveyance at a constant speed, the conveyance is turned back at a position where the reference position of the substrate S is 250 mm from the intermediate position, the conveyance speed is 200 mm / sec at the position of 200 mm, and the substrate S is conveyed at a constant speed of 200 mm / sec. When the position becomes −200 mm, the speed is reduced and the conveyance is turned back at the position −250 mm.
That is, both are symmetrical transport patterns centered on the intermediate position.

基板Sは、厚さ10mm、430×430mmのアルミニウム板を用いた。また、ルツボ50(蒸発源)と基板Sとの距離は10cm、第1蒸着源列54と第2蒸着源列との間隔56(ルツボ50aの往復搬送方向の中心位置の間隔)は210mmとした。
さらに、蒸着は、真空チャンバ12内を2×10-3Paまで減圧した後、アルゴンガスを導入して1Paとし、臭化セシウムの加熱温度を670℃の一定となるように制御して行ない、CsBr層蛍光体層の膜厚は約700μmとなった時点で、成膜を終了した。なお、加熱温度の制御は、ルツボ50c内に挿入したR型(白金−ロジウム)熱電対による温度測定結果を用いたフィードバック制御で行なった。
膜厚分布は、形成したCsBr層の表面形状をレーザ変位計で測定して得た。なお、図5に示す蛍光体層の膜厚分布は、最大厚さの位置を1として規格化した膜厚分布であり、0の位置が基板Sの基準位置である。
As the substrate S, an aluminum plate having a thickness of 10 mm and 430 × 430 mm was used. The distance between the crucible 50 (evaporation source) and the substrate S was 10 cm, and the distance 56 between the first vapor deposition source row 54 and the second vapor deposition source row (the distance between the center positions in the reciprocating conveyance direction of the crucible 50a) was 210 mm. .
Furthermore, vapor deposition, after reducing the pressure of the vacuum chamber 12 to 2 × 10 -3 Pa, and 1Pa argon gas was introduced performs control to the heating temperature of the cesium bromide as a constant 670 ° C., When the film thickness of the CsBr layer phosphor layer reached about 700 μm, the film formation was completed. The heating temperature was controlled by feedback control using a temperature measurement result by an R-type (platinum-rhodium) thermocouple inserted in the crucible 50c.
The film thickness distribution was obtained by measuring the surface shape of the formed CsBr layer with a laser displacement meter. The film thickness distribution of the phosphor layer shown in FIG. 5 is a film thickness distribution normalized by setting the position of the maximum thickness to 1, and the position of 0 is the reference position of the substrate S.

図5に示すように、中間部で搬送速度を低下する速度パターンで往復搬送を行なうことにより、搬送速度を一定とした往復搬送に比して、膜厚分布が小さく、すなわち、膜厚の均一性に優れた蛍光体層(真空蒸着膜)を形成できる。   As shown in FIG. 5, by performing reciprocal conveyance with a speed pattern that lowers the conveyance speed at the intermediate portion, the film thickness distribution is smaller than the reciprocal conveyance with a constant conveyance speed, that is, the film thickness is uniform. A phosphor layer (vacuum deposited film) having excellent properties can be formed.

本発明において、搬送速度を変化させる際の速度パターンとしては、これ以外にも、図3に示すような、基板を停止して成膜した際に得られる膜厚分布に応じた速度パターンも好適に利用可能である。
具体的には、基板Sを固定した状態で、図3のように個々の蒸発源列ではなく、全ての蒸発源列によって成膜を行なった際の膜厚分布を得、この膜厚分布のプロファイルを上下反転した速度パターンで、基板を往復搬送する方法が例示される。
In the present invention, as the speed pattern for changing the conveyance speed, a speed pattern corresponding to the film thickness distribution obtained when the film is formed with the substrate stopped as shown in FIG. 3 is also suitable. Is available.
Specifically, in a state where the substrate S is fixed, a film thickness distribution is obtained when film formation is performed by all the evaporation source arrays instead of individual evaporation source arrays as shown in FIG. A method of reciprocating the substrate with a speed pattern in which the profile is turned upside down is exemplified.

本発明は、図示例のような二元の真空蒸着に限定されないのは、前述のとおりであるが、図示例のような輝尽性蛍光体からなる蛍光体層を形成する際には、蛍光体の成膜材料と付活剤(賦活剤:activator)の成膜材料とを独立して加熱/蒸発する、二元(多元)の真空蒸着により、蛍光体層を形成するのが好ましい。
なお、この際において、付活剤の蒸発量は、蛍光体層中における付活剤の濃度が目的値となるように制御するのは、当然の事である。
As described above, the present invention is not limited to the binary vacuum deposition as in the illustrated example. However, when forming the phosphor layer made of the stimulable phosphor as in the illustrated example, The phosphor layer is preferably formed by binary (multi-component) vacuum deposition in which a body film-forming material and an activator film-forming material are heated / evaporated independently.
In this case, it is natural that the evaporation amount of the activator is controlled so that the concentration of the activator in the phosphor layer becomes a target value.

また、真空蒸着の条件にも、特に限定はなく、用いる成膜材料等に応じて、適宜、決定すればよい。
ここで、本発明の製造装置10においては、前述した各種の輝尽性蛍光体、特にアルカリハライド系輝尽性蛍光体、中でも特に前記一般式「CsX:Eu」で示される輝尽性蛍光体、その中でも特にCsBr:Euからなる蛍光体層を真空蒸着によって形成する場合には、一旦、系内を高い真空度に排気した後、アルゴンガスや窒素ガス等を系内に導入して、0.01〜3Pa程度の真空度(以下、便宜的に中真空とする)とし、この中真空下で抵抗加熱等によって成膜材料を加熱して真空蒸着を行うのが好ましい。
真空蒸着によって形成した輝尽性蛍光体からなる蛍光体層は、多くの場合、柱状結晶構造を有するが、このような中真空下で形成して得られる蛍光体層、中でも、前記CsBr:Eu等のアルカリハライド系の蛍光体層は、特に良好な柱状の結晶構造を有し、輝尽発光特性や画像の鮮鋭性等の点で好ましい。
There are no particular limitations on the conditions for vacuum deposition, and the conditions may be appropriately determined according to the film forming material used.
Here, in the production apparatus 10 of the present invention, the above-mentioned various photostimulable phosphors, particularly alkali halide photostimulable phosphors, and in particular, photostimulable phosphors represented by the general formula “CsX: Eu”. In particular, when a phosphor layer made of CsBr: Eu is formed by vacuum deposition, the system is once evacuated to a high degree of vacuum, and then argon gas, nitrogen gas, or the like is introduced into the system. It is preferable that the degree of vacuum is about 0.01 to 3 Pa (hereinafter referred to as medium vacuum for convenience), and vacuum deposition is performed by heating the film forming material by resistance heating or the like under vacuum.
A phosphor layer made of a photostimulable phosphor formed by vacuum deposition has a columnar crystal structure in many cases. The phosphor layer obtained by forming under such a medium vacuum, particularly the CsBr: Eu The alkali halide phosphor layer such as has a particularly good columnar crystal structure, and is preferable in terms of photostimulable light emission characteristics and image sharpness.

以下、製造装置10による基板Sへの蛍光体層の形成(蛍光体シートの製造)の作用について説明する。   Hereinafter, an operation of forming the phosphor layer on the substrate S (manufacturing the phosphor sheet) by the manufacturing apparatus 10 will be described.

まず、真空チャンバ12を開放して、基板搬送機構14の基板保持手段24に基板12を保持し、かつ、全ての蛍光体用ルツボ50aに蛍光体の成膜材料を、全ての付活剤用ルツボ50bに付活剤の成膜材料を、それぞれ所定量まで充填する。その後、ルツボ50の上部のシャッタを閉塞し、さらに、真空チャンバ12を閉塞する。   First, the vacuum chamber 12 is opened, the substrate 12 is held by the substrate holding means 24 of the substrate transport mechanism 14, and the phosphor film forming material is used for all the phosphor crucibles 50a for all activators. The crucible 50b is filled with a predetermined amount of the film forming material of the activator. Thereafter, the upper shutter of the crucible 50 is closed, and the vacuum chamber 12 is further closed.

次いで、真空排気手段を駆動して真空チャンバ12内を排気し、真空チャンバ内が例えば8×10-4Paとなった時点で、排気を継続しつつ、ガス導入手段18によって真空チャンバ12内にアルゴンガスを導入して、真空チャンバ12内の圧力を例えば1Paに調整し、さらに、抵抗加熱用の電源を駆動して全てのルツボ50に通電して成膜材料を加熱/溶融し、所定時間経過後、回転駆動源38を駆動して、基板12の往復搬送を開始し、シャッタを開放して、基板12の表面への蛍光体層の形成を開始する。
ここで、この往復搬送は、基板Sの後端がTmin1に至る前、および、基板Sの後端がTmin2に至る前に、搬送を折り返して行なうものであり、搬送制御手段40は、このような往復搬送を行なうように、回転駆動源38の駆動を制御する。また、好ましくは、成膜中には、往復搬送の直線搬送時における基板Sの搬送速度を、予め設定した速度パターンに応じて変更する。
Next, the vacuum evacuation means is driven to evacuate the vacuum chamber 12. When the inside of the vacuum chamber reaches 8 × 10 −4 Pa, for example, the gas introduction means 18 keeps the evacuation inside the vacuum chamber 12. Argon gas is introduced to adjust the pressure in the vacuum chamber 12 to, for example, 1 Pa, and further, the resistance heating power source is driven to energize all the crucibles 50 to heat / melt the film forming material for a predetermined time. After the elapse of time, the rotary drive source 38 is driven to start reciprocating conveyance of the substrate 12, the shutter is opened, and formation of the phosphor layer on the surface of the substrate 12 is started.
Here, the reciprocal conveyance is performed by folding the conveyance before the rear end of the substrate S reaches Tmin1 and before the rear end of the substrate S reaches Tmin2, and the conveyance control means 40 is configured as described above. The drive of the rotational drive source 38 is controlled so as to perform the reciprocal conveyance. Preferably, during film formation, the transport speed of the substrate S at the time of linear transport during reciprocal transport is changed according to a preset speed pattern.

形成する蛍光体層の膜厚等に応じて設定された所定回数の直線状の往復搬送が終了したら、基板Sの搬送を停止し、シャッタを閉塞し、抵抗加熱用の電源を切り、ガス導入手段18によるアルゴンガスの導入を停止し、乾燥した窒素ガスあるいは乾燥空気を導入して、真空チャンバ12内を大気圧とし、次いで真空チャンバ12を開放して、蛍光体層を形成した基板Sすなわち作製した蛍光体シートを取り出す。   When a predetermined number of linear reciprocating conveyances set according to the film thickness of the phosphor layer to be formed, etc., the conveyance of the substrate S is stopped, the shutter is closed, the resistance heating power is turned off, and the gas is introduced. The introduction of argon gas by the means 18 is stopped, dry nitrogen gas or dry air is introduced, the inside of the vacuum chamber 12 is brought to atmospheric pressure, then the vacuum chamber 12 is opened, and the substrate S on which the phosphor layer is formed, that is, The produced phosphor sheet is taken out.

以上、本発明の真空蒸着装置について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。   The vacuum deposition apparatus of the present invention has been described in detail above, but the present invention is not limited to the above examples, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.

例えば、上述の例は、本発明を輝尽性蛍光体からなる蛍光体層を有する放射線画像変換パネルの製造に利用した例であるが、本発明は、これに限定はされず、例えば、沃化セシウムなどの蛍光体の柱状結晶からなる蛍光体層を有する放射線シンチレータパネル等、蛍光体の柱状結晶からなる蛍光体層を有する放射線画像変換パネルにも、好適に利用可能である。また、本発明の真空蒸着装置は、放射線画像変換パネルの製造以外にも、各種の真空蒸着に利用可能である。
中でも、前述のように、高精度な膜厚均一性が要求され、しかも、成膜材料も高価であることが多い等の点で、図示例のように、輝尽性蛍光体からなる蛍光体層を有する放射線画像変換パネルの製造には、好適である。
For example, the above-described example is an example in which the present invention is used for manufacturing a radiation image conversion panel having a phosphor layer made of a stimulable phosphor. However, the present invention is not limited to this. The present invention can also be suitably used for a radiation image conversion panel having a phosphor layer composed of a columnar crystal of phosphor, such as a radiation scintillator panel having a phosphor layer composed of a columnar crystal of phosphor such as cesium fluoride. Moreover, the vacuum evaporation apparatus of this invention can be utilized for various vacuum evaporation besides manufacture of a radiation image conversion panel.
In particular, as described above, a phosphor made of a photostimulable phosphor as shown in the example in that high-precision film thickness uniformity is required and the film forming material is often expensive. It is suitable for the production of a radiation image conversion panel having a layer.

(A)は、本発明の真空蒸着装置を放射線画像変換パネルの製造装置に利用した一例の概略正面図、(B)は、同概略側面図である。(A) is a schematic front view of an example which utilized the vacuum evaporation system of this invention for the manufacturing apparatus of a radiographic image conversion panel, (B) is the schematic side view. 図1に示す製造装置の加熱蒸発部の概略平面図である。It is a schematic plan view of the heating evaporation part of the manufacturing apparatus shown in FIG. (A)、(B)および(C)は、図1に示す製造装置による基板の搬送を説明するための概念図である。(A), (B), and (C) are the conceptual diagrams for demonstrating conveyance of the board | substrate by the manufacturing apparatus shown in FIG. 図1に示す製造装置における基板の往復搬送の速度パターンの一例を示す図である。It is a figure which shows an example of the speed pattern of the reciprocating conveyance of the board | substrate in the manufacturing apparatus shown in FIG. 図4に示す速度パターンで形成したCsBr層の膜厚分布を概念的に示す図である。It is a figure which shows notionally the film thickness distribution of the CsBr layer formed with the speed pattern shown in FIG.

符号の説明Explanation of symbols

10 製造装置
12 真空チャンバ
14 基板搬送手段
16 加熱蒸発部
18 ガス導入手段
24 基板保持手段
26 搬送手段
30 ガイドレール
32 係合部材
34 ネジ軸
36 ナット部
38 回転駆動源
40 搬送制御手段
42 基台
44 保持部材
50 ルツボ
54 第1蒸発源列
56 第2蒸発源列
DESCRIPTION OF SYMBOLS 10 Manufacturing apparatus 12 Vacuum chamber 14 Substrate conveyance means 16 Heating evaporation part 18 Gas introduction means 24 Substrate holding means 26 Conveyance means 30 Guide rail 32 Engagement member 34 Screw shaft 36 Nut part 38 Rotation drive source 40 Conveyance control means 42 Base 44 Holding member 50 Crucible 54 First evaporation source row 56 Second evaporation source row

Claims (5)

真空チャンバと、基板を直線状に往復搬送する搬送手段と、前記搬送手段による基板搬送位置の下方に配置される、前記往復搬送方向と直交する方向に1以上の蒸発源を配列してなる蒸発源列を、前記往復搬送方向に配列して1以上有する加熱蒸発部とを有する真空蒸着装置であって、
個々の前記蒸発源列毎に上部に基板を固定して蒸着を行なった際に得られる、前記往復搬送方向の膜厚分布の最大点をTmax、膜厚が実質的に0になる点をTminとした際に、前記搬送手段は、前記基板の搬送方向後端が搬送方向最下流の前記Tminに至る前に搬送を折り返して、前記基板の往復搬送を行なうことを特徴とする真空蒸着装置。
Evaporation comprising one or more evaporation sources arranged in a direction perpendicular to the reciprocating conveyance direction, disposed under a substrate conveyance position by the conveying means, and a vacuum chamber, a conveying means for linearly reciprocating the substrate A vacuum evaporation apparatus having a heating evaporation section having a source row arranged in the reciprocating conveyance direction and having one or more,
Tmax is the maximum point of the film thickness distribution in the reciprocating conveyance direction, and Tmin is the point at which the film thickness becomes substantially zero, which is obtained when the evaporation is performed with the substrate fixed to the upper part of each evaporation source row. In this case, the transfer means folds the transfer before the rear end in the transfer direction of the substrate reaches the Tmin, which is the most downstream in the transfer direction, and performs the reciprocal transfer of the substrate.
前記搬送手段は、前記基板の搬送の折り返し時を除く直線状の搬送中に、基板の搬送速度を変更する請求項1に記載の真空蒸着装置。   The vacuum deposition apparatus according to claim 1, wherein the transfer unit changes a transfer speed of the substrate during linear transfer except when the substrate is turned back. 前記基板の往復搬送方向の中心位置を基準位置として、
前記搬送手段は、前記基板の基準位置が前記往復搬送の中間部を通過する際の基板の搬送速度が、搬送を折り返す前後の所定搬送速度よりも低速となるように、前記基板の搬送速度を変更する請求項2に記載の真空蒸着装置。
With the center position in the reciprocating conveyance direction of the substrate as a reference position,
The transport means sets the transport speed of the substrate so that the transport speed of the substrate when the reference position of the substrate passes through the intermediate part of the reciprocating transport is lower than a predetermined transport speed before and after the transport is folded back. The vacuum evaporation system according to claim 2 to be changed.
前記蒸着源列を前記往復搬送方向に配列して2以上有し、
前記搬送手段は、前記基板の搬送方向後端が搬送方向最下流の前記Tmaxとその直上流の前記Tmaxとの間に位置する時に搬送を折り返して、前記基板の往復搬送を行なう請求項1〜3のいずれかに記載の真空蒸着装置。
Having two or more vapor deposition source arrays arranged in the reciprocating conveyance direction;
2. The transport means wraps back and transports the substrate when the rear end of the substrate in the transport direction is positioned between the Tmax at the most downstream in the transport direction and the Tmax immediately upstream thereof. 4. The vacuum evaporation apparatus according to any one of 3.
前記基板の表面に輝尽性蛍光体からなる蛍光体層を形成する請求項1〜4のいずれかに記載の真空蒸着装置。   The vacuum evaporation apparatus in any one of Claims 1-4 which form the fluorescent substance layer which consists of stimulable fluorescent substance on the surface of the said board | substrate.
JP2006098725A 2006-03-31 2006-03-31 Vacuum vapor deposition apparatus Withdrawn JP2007270297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098725A JP2007270297A (en) 2006-03-31 2006-03-31 Vacuum vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098725A JP2007270297A (en) 2006-03-31 2006-03-31 Vacuum vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2007270297A true JP2007270297A (en) 2007-10-18

Family

ID=38673394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098725A Withdrawn JP2007270297A (en) 2006-03-31 2006-03-31 Vacuum vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP2007270297A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234271B2 (en) 2013-07-16 2016-01-12 Canon Kabushiki Kaisha Radiation imaging apparatus, method of manufacturing the same, and radiation inspection apparatus
JP2016117915A (en) * 2014-12-18 2016-06-30 キヤノントッキ株式会社 Device and method of vapor deposition
EP3124648A1 (en) * 2015-07-31 2017-02-01 Hilberg & Partner GmbH Evaporator, evaporator system and evaporation method for coating a strip-shaped substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234271B2 (en) 2013-07-16 2016-01-12 Canon Kabushiki Kaisha Radiation imaging apparatus, method of manufacturing the same, and radiation inspection apparatus
JP2016117915A (en) * 2014-12-18 2016-06-30 キヤノントッキ株式会社 Device and method of vapor deposition
EP3124648A1 (en) * 2015-07-31 2017-02-01 Hilberg & Partner GmbH Evaporator, evaporator system and evaporation method for coating a strip-shaped substrate
WO2017021277A1 (en) * 2015-07-31 2017-02-09 Hilberg & Partner Gmbh Induction vaporiser, vaporiser system and vaporising method for coating a strip-shaped substrate
CN108026636A (en) * 2015-07-31 2018-05-11 希尔贝格公司 Induction evaporation mode device, evaporator system and method for evaporating for coated strip shape substrate
CN108026636B (en) * 2015-07-31 2020-03-03 希尔贝格公司 Induction evaporator, evaporator system and evaporation method for coating strip-shaped substrates

Similar Documents

Publication Publication Date Title
JP2008285719A (en) Vacuum deposition method
US20060060792A1 (en) Radiographic image conversion panel and method of manufacturing the same
US7217944B2 (en) Process and apparatus for producing evaporated phosphor sheets and an evaporated phosphor sheet produced by means of such process and apparatus
US20050103273A1 (en) Vacuum evaporation crucible and phosphor sheet manufacturing apparatus using the same
US20050279285A1 (en) Phosphor sheet manufacturing apparatus
JP2007270297A (en) Vacuum vapor deposition apparatus
US20070243313A1 (en) Method of manufacturing radiographic image conversion panel
JP2007297695A (en) Crucible for vacuum deposition and vacuum deposition system
US20050120959A1 (en) Vacuum deposition device and pretreatment method for vacuum deposition
JP2006119124A (en) Radiation image conversion panel and production method therefor
JP2005350731A (en) Vacuum deposition system
JP2005126822A (en) Method and apparatus for vacuum deposition
JP2007126698A (en) Vacuum vapor deposition method
JP2010014469A (en) Manufacturing method of radiographic image conversion panel
JP2008014900A (en) Method for manufacturing radiological image conversion panel and radiological image conversion panel
JP2006274308A (en) Phosphor sheet manufacturing apparatus
JP2005351756A (en) Device for manufacturing phosphor sheet
JP2008014853A (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP3863810B2 (en) Phosphor sheet and method for producing the same
JP2006152395A (en) Vacuum vapor deposition method and vacuum vapor deposition system
JP2006300647A (en) Phosphor panel manufacturing method
JP2005351762A (en) Device for manufacturing phosphor sheet
JP2006283086A (en) Vacuum deposition method and vacuum deposition apparatus
JP3995038B2 (en) Phosphor sheet manufacturing equipment
JP2004037363A (en) Method for manufacturing radiation image conversion panel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602