JP2007268429A - Method of suppressing elution of arsenic from soil contaminated by arsenic - Google Patents

Method of suppressing elution of arsenic from soil contaminated by arsenic Download PDF

Info

Publication number
JP2007268429A
JP2007268429A JP2006097694A JP2006097694A JP2007268429A JP 2007268429 A JP2007268429 A JP 2007268429A JP 2006097694 A JP2006097694 A JP 2006097694A JP 2006097694 A JP2006097694 A JP 2006097694A JP 2007268429 A JP2007268429 A JP 2007268429A
Authority
JP
Japan
Prior art keywords
soil
arsenic
elution
rare earth
slaked lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097694A
Other languages
Japanese (ja)
Inventor
Toshio Yotsumoto
利夫 四元
Haruhiko Ito
晴彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KAISUI KK
Nihon Kaisui Co Ltd
Original Assignee
NIHON KAISUI KK
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KAISUI KK, Nihon Kaisui Co Ltd filed Critical NIHON KAISUI KK
Priority to JP2006097694A priority Critical patent/JP2007268429A/en
Publication of JP2007268429A publication Critical patent/JP2007268429A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and economically superior method of suppressing the elution of arsenic from soil, which is capable of suppressing arsenic in both of trivalent and pentavalent forms from a soil contaminated by arsenic and satisfying the soil elution standard by elution test conforming to the soil contamination countermeasure law. <P>SOLUTION: By the method, an arsenic concentration of 0.01 mg/L or lower being a standard soil elution can be achieved by a small consumption of rare earth salts, by controlling the pH of a soil to be 6-9 by adding a rare earth salt solution containing cerium as a main component and a slaked lime water-dispersed liquid at the same time or separately to the soil contaminated by trivalent or pentavalent arsenic. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有害化学物質の不適切な取扱い、不法投棄、鉱物資源の開発利用などの行為の結果として発生しうるヒ素で汚染された土壌からのヒ素の溶出を抑制する方法に関し、より詳しくは、土壌中に存在するヒ素を不溶性の物質に変換することにより、土壌溶出基準を満たし、土壌の再利用を可能とするヒ素汚染土壌からのヒ素の溶出抑制方法に関する。 The present invention relates to a method for suppressing arsenic elution from soil contaminated with arsenic that may occur as a result of improper handling of hazardous chemical substances, illegal dumping, development and utilization of mineral resources, and the like. Furthermore, the present invention relates to a method for suppressing arsenic elution from arsenic-contaminated soil, which satisfies soil elution standards by converting arsenic present in soil into an insoluble substance.

ヒ素及びその化合物は生体に対する有害性が顕著であるため、土壌環境基準の特定有害物質に指定され、「土壌汚染対策法」に基づく「土壌汚染対策法施行規則」(平成14年12月26日施行)によれば、土壌中のヒ素含有量が土壌1kg当り150mg以下、及び土壌溶出試験によるヒ素の溶出量が1リットル当たり0.01mg以下であることが定められている。 Since arsenic and its compounds are markedly harmful to living organisms, they are designated as specific hazardous substances in the soil environment standards, and the “Soil Contamination Countermeasures Law Enforcement Regulations” based on the “Soil Contamination Countermeasures Law” (December 26, 2002) According to the enforcement), the arsenic content in the soil is 150 mg or less per 1 kg of soil, and the arsenic elution amount by the soil elution test is 0.01 mg or less per liter.

ヒ素で汚染された土壌の処理法としては、これまで、掘削除去法、封じ込め、飛散防止、セメントによる固形化・不溶化、最終処分場への埋め立て処分といった対策がとられてきた。また、土壌中のヒ素を不溶化処理する技術として、キレート剤による土壌処理法、カルシウム化合物や鉄化合物等による土壌処理法、電気泳動による土壌修復技術、ガラス固化法、及び洗浄法等が知られている。更に、セリウム、ランタン等の希土類化合物を不溶化剤とする処理法も提案されている。 As a method for treating soil contaminated with arsenic, measures such as excavation and removal, containment, prevention of scattering, solidification / insolubilization with cement, and landfill disposal at the final disposal site have been taken. In addition, as a technique for insolubilizing arsenic in soil, a soil treatment method using a chelating agent, a soil treatment method using a calcium compound or an iron compound, a soil restoration technique by electrophoresis, a vitrification method, and a washing method are known. Yes. Further, a treatment method using a rare earth compound such as cerium or lanthanum as an insolubilizing agent has been proposed.

ヒ素の不溶化剤として上記の希土類化合物を使用する方法としては、ヒ素で汚染された土壌をリン酸、硫酸、塩酸などの酸水溶液で洗浄した後、ランタン、セリウム、鉄の塩溶液又はこれらの酸化物を土壌に混合してヒ素を不溶化する方法(特許文献1)、セリウム、ランタン等の希土類金属の水和酸化物を土壌に混合してヒ素を不溶化する方法(特許文献2、3)が提案されている。上記特許文献1の方法は、土壌の洗浄と不溶化という二段の処理を行う為、処理効果は非常に優れるが、操作の工程が煩雑で、時間的、費用的に過大になるといった欠点がある。また、土壌の汚染具合により不溶化処理に使用する薬剤の使用量や最適pHなどの具体的な使用条件が示されていないので明かではないが、それらの塩溶液を通常土壌1Kg当たり1L使用すれば十分との記述があることから、かなり多量の使用量であることが推察される。一方、特許文献2に於いては、研磨剤に使用した廃研磨剤を使用することを特徴としており、これを酸に溶解してアルカリで沈澱をした水酸化セリウムを土壌に混合するが、その使用量は廃研磨剤基準で0.1gを5gの汚染土壌に添加するなど添加量が過大であり、経済性、操作性に難がある。又、特許文献3に於いても同じ問題点を有する。 As a method of using the rare earth compound described above as an arsenic insolubilizer, arsenic-contaminated soil is washed with an acid aqueous solution such as phosphoric acid, sulfuric acid, hydrochloric acid, etc., and then lanthanum, cerium, iron salt solution or oxidation thereof. Proposed is a method for insolubilizing arsenic by mixing materials with soil (Patent Document 1), and a method for insolubilizing arsenic by mixing rare earth metal hydrated oxides such as cerium and lanthanum with soil (Patent Documents 2 and 3). Has been. The method of Patent Document 1 performs two-stage treatment of soil washing and insolubilization, so that the treatment effect is very good, but the operation process is complicated, and there is a disadvantage that it is excessive in terms of time and cost. . Moreover, it is not clear because specific usage conditions such as the amount of chemicals used for insolubilization treatment and the optimum pH are not shown due to soil contamination, but it is not clear if 1 L of salt solution is used per 1 kg of soil. Since there is a description that it is sufficient, it is presumed that the amount used is considerably large. On the other hand, in Patent Document 2, the waste abrasive used for the abrasive is used, and cerium hydroxide dissolved in acid and precipitated with alkali is mixed with the soil. The amount used is excessive, for example, 0.1 g is added to 5 g of contaminated soil on the basis of waste abrasive, and there are difficulties in economic efficiency and operability. Also, Patent Document 3 has the same problem.

又、土壌中に存在するヒ素の形態には、3価態の亜ヒ酸(HAsO、HAsO)と5価態のヒ酸(HAsO)が存在し、その毒性は3価態の方が強い事が知られているが、上記の特許文献などに於いては5価態のヒ素の処理方法については述べられているが3価態のヒ素に対する作用効果については明らかでない。 In addition, arsenic forms present in soil include trivalent arsenous acid (H 3 AsO 3 , HAsO 2 ) and pentavalent arsenic acid (H 3 AsO 4 ), and their toxicity is 3 Although it is known that the valence state is stronger, in the above-mentioned patent documents and the like, the treatment method of pentavalent arsenic is described, but the effect on the trivalent arsenic is not clear. .

特開2002−18421号公報JP 2002-18421 A 特開2001−200236号公報JP 2001-200366 A 特開2006−36995号公報JP 2006-36995 A

本発明は、上記の希土類化合物を使用する不溶化処理の問題点を改善し、ヒ素で汚染された土壌からの3価態、5価態いずれものヒ素の溶出を抑制し、土壌汚染対策法の溶出試験による土壌溶出基準を満たす簡便で、経済性に優れる土壌からのヒ素の溶出抑制方法を提供することを目的とする。 The present invention improves the problems of the insolubilization treatment using the above-mentioned rare earth compounds, suppresses the elution of trivalent and pentavalent arsenic from soil contaminated with arsenic, and elution of the soil contamination countermeasure method An object of the present invention is to provide a simple and economical method for suppressing arsenic elution from soil that satisfies the soil elution standard by the test.

本発明者らは、上記課題を解決すべく、希土類塩を使用して土壌中のヒ素を固定し、ヒ素の溶出を抑制する方法を詳細に検討した結果、セリウムが土壌中の3価態、5価態いずれものヒ素を効率的に固定化できることを見出し、土壌中のヒ素濃度とpH条件に対応させて、セリウムを主成分とする希土類塩の濃度と添加量及びpH調整剤の種類、添加方法を最適化することで、簡便で、極めて少量の薬剤の使用で溶出を抑制できる方法を開発し、本発明に到達した。 In order to solve the above-mentioned problems, the present inventors have studied in detail a method for fixing arsenic in soil using a rare earth salt and suppressing elution of arsenic. As a result, cerium is a trivalent state in soil, Found that all pentavalent arsenic can be immobilized efficiently, corresponding to the arsenic concentration and pH conditions in the soil, the concentration and addition amount of rare earth salts containing cerium as the main component, and the type and addition of pH adjusters By optimizing the method, a simple method that can suppress elution by using a very small amount of drug was developed, and the present invention was achieved.

すなわち本発明は、(1)ヒ素で汚染された土壌にセリウムを主成分とする希土類塩溶液及び消石灰を添加することを特徴とするヒ素汚染土壌からのヒ素の溶出抑制方法。 (2)該セリウムを主成分とする希土類塩溶液を酸化希土換算で0.1〜3.0質量%の水溶液及び、該消石灰を0.1〜2.0質量%の水分散液として用いることを特徴とするヒ素汚染土壌からのヒ素の溶出抑制方法。(3)セリウムを主成分とする希土類塩溶液及び消石灰を添加した後の土壌pHが6〜9になるように消石灰の添加量を調節することを特徴とし、更に(4)セリウムを主成分とする希土類塩溶液を添加後、又は希土類塩溶液と同時に消石灰を添加することを特徴とするヒ素汚染土壌からのヒ素の溶出抑制方法からなる。 That is, the present invention is (1) a method for suppressing arsenic elution from arsenic-contaminated soil, comprising adding a rare earth salt solution containing cerium as a main component and slaked lime to soil contaminated with arsenic. (2) A rare earth salt solution containing cerium as a main component is used in an aqueous solution of 0.1 to 3.0% by mass in terms of oxidized rare earth, and the slaked lime is used as an aqueous dispersion of 0.1 to 2.0% by mass. A method for suppressing arsenic elution from arsenic-contaminated soil. (3) The amount of slaked lime is adjusted so that the soil pH after adding the rare earth salt solution and slaked lime containing cerium as main components is 6 to 9, and (4) cerium as the main component After the addition of the rare earth salt solution, or simultaneously with the rare earth salt solution, slaked lime is added.

本発明により、汚染された土壌中の3価態、5価態いずれものヒ素を、セリウムを主成分とする希土類塩と消石灰を添加することにより、「土壌汚染対策法」の溶出試験による土壌溶出基準を満たしてヒ素の溶出を抑制し、簡便で、経済性に優れる汚染土壌処理方法を提供することが可能となり、土壌の再利用に寄与できる。 According to the present invention, by adding a rare earth salt mainly composed of cerium and slaked lime to contaminate soil in any of the trivalent and pentavalent arsenic, the soil elution by the “Soil Contamination Countermeasures” elution test It is possible to provide a method for treating contaminated soil that satisfies the standards and suppresses arsenic elution and is simple and excellent in economic efficiency, and can contribute to the reuse of soil.

以下、本発明について詳細に説明する。
本発明のヒ素で汚染された土壌に添加するセリウムを主成分とする希土類塩及び消石灰は、希土類塩は水溶液で、又消石灰は水の分散液として土壌に添加する。それぞれの濃度は、土壌の乾燥状態及び、添加方法にもよるが、希土類塩は酸化希土換算として0.1〜3.0質量%、好ましくは0.5〜2.0質量%である。また、消石灰は0.1〜2.0質量%である。土壌に添加するそれぞれの濃度は、添加量と密接な関係があり、濃度が低い程有効成分当り少量の添加量で効果が上がるが、土壌の水分率や保水性、土質を考慮して上記の濃度の範囲で適正な濃度を設定することが好ましい。
Hereinafter, the present invention will be described in detail.
The rare earth salt and slaked lime containing cerium as a main component added to the soil contaminated with arsenic of the present invention is added to the soil as a rare earth salt solution and as a water dispersion. Each concentration depends on the dry state of the soil and the addition method, but the rare earth salt is 0.1 to 3.0% by mass, preferably 0.5 to 2.0% by mass in terms of rare earth oxide. Moreover, slaked lime is 0.1-2.0 mass%. Each concentration added to the soil is closely related to the amount added, and the lower the concentration, the greater the effect with a small amount added per active ingredient, but considering the moisture content, water retention and soil quality of the above, It is preferable to set an appropriate concentration within the concentration range.

本発明で使用する希土類塩としては、塩酸塩、硫酸塩又は硝酸塩から選ばれた何れの塩でも良く、また、セリウムを主成分とする希土類塩とは、セリウムを90質量%以上、好ましくは92質量%以上含有する希土類元素混合物の塩である。特に、セリウム塩を主成分とするのは、セリウムは3価と4価の両方の形態を有し、ヒ素の3価態との酸化還元反応により3価態のヒ素でもセリウム化合物と反応してヒ素を固定化できるという知見に基づくこと、更に、セリウム以外の希土類元素が多く含まれているとヒ素イオンと結合した金属化合物の溶解度により、土壌の溶出試験の際にヒ素の溶出量が増大する場合があることによる。セリウム以外に混合されて良い元素としては、セリウム以外の希土類元素およびIVb元素から選ばれるスカンジウム、イットリウム、プラセオジウム、ネオジウム、プロメチュウム、サマリウム、ユウロピウム、ガドリニユム、テリビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、チタン、ジルコニウム、ハフニウム及びこれらとの化合物が挙げられる。 The rare earth salt used in the present invention may be any salt selected from hydrochloride, sulfate or nitrate, and the rare earth salt mainly composed of cerium is 90% by mass or more, preferably 92%. A salt of a rare earth element mixture containing at least mass%. In particular, cerium salt is the main component because cerium has both trivalent and tetravalent forms, and trivalent arsenic reacts with the cerium compound by oxidation-reduction reaction with arsenic trivalent. Based on the knowledge that arsenic can be immobilized, and when a large amount of rare earth elements other than cerium is contained, the solubility of metal compounds bound to arsenic ions increases the amount of arsenic dissolved during soil dissolution tests. Depending on the case. Elements other than cerium that may be mixed include scandium, yttrium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, selected from rare earth elements other than cerium and IVb elements. Examples include lutetium, titanium, zirconium, hafnium, and compounds thereof.

本発明の希土類塩及び消石灰の添加方法は、処理土壌表面に直接適量を散布して混合するか、又は掘削などの手段で取り出した土壌に適量添加し、攪拌混合して土中に戻すことにより行う。汚染された土壌中にヒ素以外の重金属類又は有機揮発性物質などの汚染物質が共存する場合は、予め公知の洗浄法、加熱焼却法、抽出法などの前処理を行ってから、本発明の方法を実施することができる。本発明の希土類塩及び消石灰の濃度と添加量は、予め土壌の含水率、pH、土壌溶出試験からのヒ素の溶出濃度を測定して決定する。 The method for adding rare earth salts and slaked lime according to the present invention is either by spraying and mixing an appropriate amount directly on the treated soil surface, or adding an appropriate amount to the soil taken out by means such as excavation, stirring and mixing, and returning to the soil. Do. When pollutants such as heavy metals other than arsenic or organic volatile substances coexist in the contaminated soil, a pretreatment such as a known cleaning method, heat incineration method, extraction method or the like is performed in advance. The method can be carried out. The concentration and addition amount of the rare earth salt and slaked lime of the present invention are determined in advance by measuring the moisture content of the soil, the pH, and the arsenic elution concentration from the soil elution test.

本発明の方法に於ける希土類塩と消石灰の添加順序は、土壌に希土類塩の水溶液を散布し、続いて消石灰の水分散液を散布してから均一に攪拌混合するか、又は二液を同時に、或いは散布直前に混合して散布してから均一に攪拌混合するかの何れの順序でも良い。 The addition order of the rare earth salt and slaked lime in the method of the present invention is to spray the aqueous solution of the rare earth salt on the soil, and then spray the aqueous dispersion of slaked lime, and then stir and mix the two solutions simultaneously. Alternatively, any order of mixing and spraying immediately after spraying and then stirring and mixing may be used.

本発明の方法によれば、希土類塩は酸性であるため、土壌中に散布された状態では希土類イオンとして希薄に拡散された状態で混入され、土壌中の遊離のヒ酸イオンと結合して不溶性の塩を形成するが、過剰の希土類イオンは溶解性なので、これにアルカリを添加する事により、希土類元素を水酸化物に変化させてヒ素イオンと希土類イオンの両方が不溶性の安定化合物となり、溶出を防止できると考えられる。一方、予め、希土類塩溶液にアルカリを添加して希土類の水酸化物を形成させた後に土壌に添加する場合は、水酸化物粒子へのヒ素イオンの吸着反応によりヒ素を固定化するので、ヒ素を不溶化する効率が塩溶液の場合に比べて劣る。 According to the method of the present invention, since the rare earth salt is acidic, it is mixed in a dilutely diffused state as rare earth ions when dispersed in the soil, and is insoluble by binding to free arsenate ions in the soil. However, since excess rare earth ions are soluble, adding alkali to them changes the rare earth elements into hydroxides, and both arsenic ions and rare earth ions become insoluble and stable compounds. Can be prevented. On the other hand, when an alkali is added to a rare earth salt solution in advance to form a rare earth hydroxide and then added to the soil, arsenic is immobilized by the adsorption reaction of arsenic ions to the hydroxide particles. The efficiency of insolubilizing is inferior to that of a salt solution.

本発明のアルカリ源としての消石灰は、添加した希土類塩の過剰分の溶出による弊害を防止できることと、苛性ソーダなどの強塩基に比べて土壌中のpHを緩慢に中和する為に好適で、その添加量は、土壌に希土類塩と消石灰を添加した後のpHが、6〜9の範囲になるような量を予め調査して決定する。pHが6以下ではヒ素の溶出抑制効果が不十分であると共に、添加した希土類塩の溶出があるので好ましくなく、またpHが9以上では、ヒ素の溶出抑制効果が低下するのみでなく、土壌のアルカリ性が強いため、植物への影響など自然界への悪影響があり好ましくない。 The slaked lime as an alkali source of the present invention is suitable for preventing harmful effects caused by the excessive elution of the added rare earth salt and for neutralizing the pH in the soil more slowly than a strong base such as caustic soda. The addition amount is determined by investigating in advance such an amount that the pH after adding the rare earth salt and slaked lime to the soil is in the range of 6-9. When the pH is 6 or less, the arsenic elution suppression effect is insufficient and the added rare earth salt is eluted, which is not preferable. When the pH is 9 or more, not only the arsenic elution suppression effect is lowered, but also the soil Since the alkalinity is strong, there is an adverse effect on the natural world such as effects on plants, which is not preferable.

ここで、ヒ素の土壌溶出濃度の測定法は、環境庁告示46号の試験法に準じて、50gの処理済みの土壌に、pH5.8〜6.3に調整した500mlの純水を添加し、これを6時間振とう撹拌する。そして、この振とう撹拌により得られた溶出液を20分静置後、遠心分離を行い、0.45μmメンブランフィルタで濾過し、その濾液中に含まれるヒ素(As)の濃度を水素化物発生−ICP発光分析法によって測定する。又土壌のpHは、土壌10gを100mlの純水に入れて攪拌し、そのままpHメーターで測定する方法による。 Here, the method for measuring the soil elution concentration of arsenic was performed by adding 500 ml of pure water adjusted to pH 5.8 to 6.3 to 50 g of treated soil in accordance with the test method of Environment Agency Notification No. 46. This is stirred for 6 hours with shaking. The eluate obtained by shaking and stirring is allowed to stand for 20 minutes, and then centrifuged, filtered through a 0.45 μm membrane filter, and the concentration of arsenic (As) contained in the filtrate is reduced to hydride generation— Measured by ICP emission spectrometry. The pH of the soil is determined by a method in which 10 g of soil is stirred in 100 ml of pure water and directly measured with a pH meter.

本発明の好ましい実施態様の1例として、ヒ素の土壌含有量が40mg/kg、ヒ素の土壌溶出濃度が1.29mg/Lの模擬ヒ素汚染土壌を調整し、この土壌50gに酸化セリウム換算で1重量%の塩化セリウム溶液10mLを添加した土壌に、1重量%の消石灰水分散液を土壌pHを変動させるため添加量を変えて添加し、攪拌混合、1日静置した土壌の土壌溶出試験から、土壌pHとヒ素の溶出量の関係を調べた結果を図1に示す。この結果から、土壌のpHが6〜8.5の範囲においてヒ素の土壌溶出基準である0.01mg/L以下が達成されている事が明らかである。(実施例4参照) As an example of a preferred embodiment of the present invention, simulated arsenic-contaminated soil having an arsenic soil content of 40 mg / kg and an arsenic soil elution concentration of 1.29 mg / L was prepared, and 1 gram of cerium oxide was added to 50 g of this soil. From the soil elution test of the soil that was added to the soil to which 10 mL of the cerium chloride solution of 1% by weight was added with varying amounts of slaked lime aqueous dispersion to change the soil pH, and mixed with stirring. The results of examining the relationship between soil pH and arsenic elution amount are shown in FIG. From this result, it is clear that 0.01 mg / L or less, which is the soil elution standard for arsenic, is achieved when the pH of the soil is in the range of 6 to 8.5. (See Example 4)

以下、この発明を具体的に説明するが、実施例はこの発明の理解を容易とするためのものであり、この発明を限定するものではない。実施例中%とあるのは重量%を表す。 The present invention will be described in detail below, but the examples are for facilitating the understanding of the present invention and are not intended to limit the present invention. In the examples, “%” means “% by weight”.

模擬ヒ素汚染土壌試料の調製
実施例及び比較例、対比例に用いる土壌試料は、近隣より採取した山土を風乾後、粒径2mm以下に篩い分けしたものに5価態ヒ素のヒ素汚染土壌としてヒ酸水素ニナトリウム(NaHAsO・7HO)の水溶液、3価態ヒ素のヒ素汚染土壌としてオルト亜ヒ酸カリウム(KAsO)の水溶液を所定量添加し、再度風乾したものを用いた。調整した模擬ヒ素汚染土壌試料の土壌中のヒ素濃度、溶出試験による溶出ヒ素濃度及び土壌pHの結果を表1に示す。
Preparation examples and comparative examples of simulated arsenic-contaminated soil samples The soil samples used for comparison are air-dried mountain soil collected from the neighborhood, and screened to a particle size of 2 mm or less as arsenic-contaminated soil of pentavalent arsenic An aqueous solution of disodium hydrogen arsenate (Na 2 HAsO 4 · 7H 2 O), a predetermined amount of an aqueous solution of potassium ortho arsenite (K 2 AsO 3 ) added as trivalent arsenic arsenic contaminated soil, and air-dried again Was used. Table 1 shows the results of the arsenic concentration in the soil of the prepared simulated arsenic-contaminated soil sample, the dissolved arsenic concentration by the dissolution test, and the soil pH.

Figure 2007268429
Figure 2007268429

実施例1
上記で調製した模擬ヒ素汚染土壌試料を用いて、各土壌試料50gをポリ容器に採取し、これに所定量のセリウム純度98%の塩化セリウムを酸化セリウム換算で1%に希釈した塩溶液(1%−CeO2)と所定量の消石灰の1%分散液(1%消石灰)を添加し、均一に混合させ、1日静置し、前述の環境庁告示46号の試験法に準じた土壌溶出試験にてセリウムの溶出濃度、及び土壌pHを測定した結果を表2に示す。この結果、汚染土壌のヒ素溶出濃度に対応させたセリウム塩溶液と、土壌pHを7〜8前後に調節するための消石灰分散液を所定量添加することで、土壌環境基準の溶出濃度0.01mg/L以下を達成できること、及び添加したセリウムの溶出が無いことが分かる。また、使用するセリウムの使用量も汚染土壌のヒ素溶出量0.05〜5.29mg/Lに対して酸化セリウム換算で土壌当り0.02〜0.2%程度の使用で十分である事が明らかである。
Example 1
Using the simulated arsenic-contaminated soil sample prepared above, 50 g of each soil sample was collected in a plastic container, and a predetermined amount of cerium chloride with 98% cerium purity was diluted to 1% in terms of cerium oxide (1 % -CeO2) and 1% dispersion of slaked lime (1% slaked lime) in a given amount, mixed uniformly, left to stand for one day, and soil dissolution test according to the test method of the Environment Agency Notification No. 46 described above Table 2 shows the results of measuring the elution concentration of cerium and the soil pH. As a result, by adding a predetermined amount of a cerium salt solution corresponding to the arsenic elution concentration of the contaminated soil and a slaked lime dispersion for adjusting the soil pH to around 7-8, an elution concentration of 0.01 mg based on the soil environment standard / L or less can be achieved, and it can be seen that there is no elution of the added cerium. The amount of cerium used should be about 0.02 to 0.2% per soil in terms of cerium oxide with respect to the arsenic elution amount 0.05 to 5.29 mg / L of the contaminated soil. it is obvious.

Figure 2007268429
Figure 2007268429

実施例2、比較例1、2
実施例1と同様にして、実施例2として5価態ヒ素No.5で調製したAs溶出濃度1.37mg/Lの土壌試料を使用し、酸化セリウム換算1%の塩化セリウム10mlとアルカリ液として1%消石灰10ml添加した。一方、比較例1として、アルカリ液を添加しない場合、又比較例2として1Nの苛性ソーダ液を用いてpH調節した。これらの処理土壌のAs溶出濃度、Ce溶出濃度と土壌pHを測定した結果をブランクと比較して、表3に示す。この結果、アルカリ液を添加しない場合は土壌pHが低いため、Asの溶出濃度は溶出基準を満たさないが、アルカリ液を添加してpH調節すれば溶出基準を満たすが、苛性ソーダの場合はCeの溶出濃度が高く問題であることが分かる。
Example 2 and Comparative Examples 1 and 2
In the same manner as in Example 1, pentavalent arsenic no. The soil sample with an As elution concentration of 1.37 mg / L prepared in 5 was used, and 10 ml of 1% cerium chloride in terms of cerium oxide and 10 ml of 1% slaked lime were added as an alkaline solution. On the other hand, as Comparative Example 1, when no alkali solution was added, and as Comparative Example 2, pH was adjusted using 1N caustic soda solution. The results of measuring the As elution concentration, Ce elution concentration and soil pH of these treated soils are shown in Table 3 in comparison with the blank. As a result, the soil pH is low when the alkaline solution is not added, so the elution concentration of As does not meet the elution standard, but the elution standard is met if the pH is adjusted by adding the alkaline solution, but in the case of caustic soda, Ce It can be seen that the elution concentration is a problem.

Figure 2007268429
Figure 2007268429

実施例3
実施例1と同様にして、ヒ素実施例3として3価態ヒ素No.1及びNo.2で調製した3価態のヒ素汚染土壌試料を使用し、酸化セリウム換算1%の塩化セリウムと1%消石灰液を所定量添加した。これらの処理土壌のAs溶出濃度、Ce溶出濃度と土壌pHを測定した結果を表4に示す。この結果、3価態のヒ素に於いても同様にAsの溶出濃度は溶出基準を満たすことのできることが分かる。
Example 3
As in Example 1, trivalent arsenic No. 3 was used as Arsenic Example 3. 1 and no. Using the trivalent arsenic-contaminated soil sample prepared in 2, a predetermined amount of 1% cerium chloride in terms of cerium oxide and 1% slaked lime solution were added. Table 4 shows the results of measuring the As elution concentration, Ce elution concentration, and soil pH of these treated soils. As a result, it can be seen that the elution concentration of As can also satisfy the elution standard even in trivalent arsenic.

Figure 2007268429
Figure 2007268429

実施例4、対比例
実施例1と同様に5価態ヒ素No.4で調製したAs溶出濃度1.29mg/Lの土壌試料を使用して、酸化セリウム換算1%の塩化セリウム10mlを添加し、これに1%消石灰の添加量を換えることで土壌pHの異なる処理を行った。その結果を表5及び図1に示す。この結果、土壌pHをpH6.2〜7.6の範囲に調節するように消石灰の添加量を設定すれば、土壌溶出基準を満たすことが明らかである。
As in Example 4 and Comparative Example 1, pentavalent arsenic No. Using the soil sample with an As elution concentration of 1.29 mg / L prepared in Step 4, add 10 ml of 1% cerium chloride in terms of cerium oxide, and change the amount of 1% slaked lime to change the soil pH. Went. The results are shown in Table 5 and FIG. As a result, it is clear that the soil elution standard is satisfied if the amount of slaked lime added is set so as to adjust the soil pH to a range of pH 6.2 to 7.6.

Figure 2007268429
Figure 2007268429

実施例5、6及び比較例3
実施例1と同様に5価態ヒ素No.5で調製したAs溶出濃度1.37mg/Lの土壌試料を使用して、実施例5では予め酸化セリウム換算1%の塩化セリウム10mLを添加し土壌を攪拌混合して、1時間後に1%消石灰液7mLを添加して良く攪拌混合した。また、実施例6では、塩化セリウムと消石灰を土壌に同時に添加して良く攪拌混合した。一方比較例3では、予め、酸化セリウム換算1%の塩化セリウム10mLに1%消石灰液7mLを添加し、攪拌後室温3日放置して水酸化セリウムの沈殿物を調製し、沈殿物を土壌に添加して良く攪拌混合した。それぞれの処理土壌の分析結果を表6に示す。この結果、塩化セリウム液と消石灰液を別々に添加した場合及び同時に添加した場合は土壌溶出基準を満たすが、予め両者を混合して、水酸化セリウムの沈殿物として添加する場合は、土壌溶出基準を満たすことはできないことが明らかである。
Examples 5 and 6 and Comparative Example 3
As in Example 1, pentavalent arsenic No. In Example 5, 10 mL of 1% cerium chloride equivalent to cerium oxide was added in advance and the soil was stirred and mixed, and 1 hour afterwards, 1% slaked lime using the As elution concentration 1.37 mg / L prepared in 5 7 mL of the liquid was added and mixed well with stirring. In Example 6, cerium chloride and slaked lime were simultaneously added to the soil and mixed well. On the other hand, in Comparative Example 3, 7 mL of 1% slaked lime solution was previously added to 10 mL of 1% cerium chloride in terms of cerium oxide, and after stirring, left to stand at room temperature for 3 days to prepare a cerium hydroxide precipitate. Add and mix well with stirring. Table 6 shows the analysis results of each treated soil. As a result, when the cerium chloride solution and the slaked lime solution are added separately and simultaneously, the soil elution standard is satisfied. Obviously it cannot be satisfied.

Figure 2007268429
Figure 2007268429

以上の実施例により、3価態又は5価態のヒ素で汚染された土壌に、セリウム塩を酸化希土換算で1重量%の水溶液及び消石灰の1重量%希釈液を、同時に又は別々に添加して、土壌pHを6〜9に調節することにより、土壌溶出基準である土壌ヒ素溶出濃度0.01mg/L以下を達成でき、更に、セリウム塩は、ヒ素の土壌溶出濃度が0.05〜5.29mg/Lに対して、酸化セリウム換算で土壌当り0.02〜0.2重量%程度の少ない使用量で処理できることが分かる。   According to the above examples, a 1 wt% aqueous solution of cerium salt and 1 wt% diluted solution of slaked lime are added simultaneously or separately to soil contaminated with trivalent or pentavalent arsenic. Then, by adjusting the soil pH to 6-9, it is possible to achieve a soil arsenic elution concentration of 0.01 mg / L or less, which is a soil elution standard, and cerium salt has an arsenic soil elution concentration of 0.05- It turns out that it can process with the small usage-amount about 0.02-0.2 weight% per soil in conversion of cerium oxide with respect to 5.29 mg / L.

本発明のヒ素汚染土壌からのヒ素の溶出抑制方法は、ヒ素で汚染された土壌中の3価態、5価態いずれものヒ素の溶出を抑制することができ、汚染土壌の修復、再利用に有用である。 The method for suppressing arsenic elution from arsenic-contaminated soil according to the present invention can suppress elution of arsenic in both trivalent and pentavalent forms in soil contaminated with arsenic, and can be used to repair and reuse contaminated soil. Useful.

実施例4に示すヒ素汚染土壌にセリウム塩溶液とpH調整用の消石灰を添加して、処理土壌の調整pHと土壌溶出試験に於けるヒ素溶出濃度の関係を示すグラフである。It is a graph which shows the relationship between the adjusted pH of a treated soil, and the arsenic elution density | concentration in a soil elution test by adding a cerium salt solution and slaked lime for pH adjustment to the arsenic contaminated soil shown in Example 4.

Claims (4)

ヒ素で汚染された土壌にセリウムを主成分とする希土類塩溶液及び消石灰を添加することを特徴とするヒ素汚染土壌からのヒ素の溶出抑制方法。 A method for suppressing arsenic elution from arsenic-contaminated soil, comprising adding a rare earth salt solution containing cerium as a main component and slaked lime to soil contaminated with arsenic. セリウムを主成分とする希土類塩溶液を酸化希土換算で0.1〜3.0質量%の水溶液及び、消石灰を0.1〜2.0質量%の水分散液として用いることを特徴とする請求項1に記載のヒ素汚染土壌からのヒ素の溶出抑制方法。 A rare earth salt solution containing cerium as a main component is used as an aqueous solution of 0.1 to 3.0% by mass in terms of oxidized rare earth, and slaked lime is used as an aqueous dispersion of 0.1 to 2.0% by mass. The method for suppressing arsenic elution from arsenic-contaminated soil according to claim 1. セリウムを主成分とする希土類塩溶液及び消石灰を添加した後の土壌pHが6〜9になるように消石灰の添加量を調節することを特徴とする請求項1及び2に記載のヒ素汚染土壌の溶出抑制方法。 The amount of slaked lime is adjusted so that the soil pH after adding a rare earth salt solution containing cerium as a main component and slaked lime is 6 to 9, and the arsenic-contaminated soil according to claim 1 or 2, Elution suppression method. セリウムを主成分とする希土類塩溶液を添加後、又は希土類塩溶液と同時に消石灰を添加することを特徴とする請求項1から3に記載のヒ素汚染土壌からのヒ素の溶出抑制方法。 4. The method for suppressing arsenic elution from arsenic-contaminated soil according to claim 1, wherein slaked lime is added after the rare earth salt solution containing cerium as a main component is added or simultaneously with the rare earth salt solution.
JP2006097694A 2006-03-31 2006-03-31 Method of suppressing elution of arsenic from soil contaminated by arsenic Pending JP2007268429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097694A JP2007268429A (en) 2006-03-31 2006-03-31 Method of suppressing elution of arsenic from soil contaminated by arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097694A JP2007268429A (en) 2006-03-31 2006-03-31 Method of suppressing elution of arsenic from soil contaminated by arsenic

Publications (1)

Publication Number Publication Date
JP2007268429A true JP2007268429A (en) 2007-10-18

Family

ID=38671777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097694A Pending JP2007268429A (en) 2006-03-31 2006-03-31 Method of suppressing elution of arsenic from soil contaminated by arsenic

Country Status (1)

Country Link
JP (1) JP2007268429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249554A (en) * 2008-04-09 2009-10-29 Nihon Kaisui:Kk Insolubilizing agent for soil contaminated with heavy metal or the like, and insolubilization method for soil using the same
JP2010142714A (en) * 2008-12-17 2010-07-01 Ohbayashi Corp In-situ purification method of ground contaminated with heavy metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187931A (en) * 1985-02-18 1986-08-21 Asahi Chem Ind Co Ltd Adsorbent of arsenic in aqueous solution
JPH0478374A (en) * 1990-07-17 1992-03-12 Toyota Motor Corp Shift fork for transmission
JP2004010776A (en) * 2002-06-07 2004-01-15 Nippon Sheet Glass Co Ltd Soil conditioner
JP2004314058A (en) * 2003-03-28 2004-11-11 Miyoshi Oil & Fat Co Ltd Treatment method for waste
JP2006000778A (en) * 2004-06-18 2006-01-05 Miyoshi Oil & Fat Co Ltd Waste treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187931A (en) * 1985-02-18 1986-08-21 Asahi Chem Ind Co Ltd Adsorbent of arsenic in aqueous solution
JPH0478374A (en) * 1990-07-17 1992-03-12 Toyota Motor Corp Shift fork for transmission
JP2004010776A (en) * 2002-06-07 2004-01-15 Nippon Sheet Glass Co Ltd Soil conditioner
JP2004314058A (en) * 2003-03-28 2004-11-11 Miyoshi Oil & Fat Co Ltd Treatment method for waste
JP2006000778A (en) * 2004-06-18 2006-01-05 Miyoshi Oil & Fat Co Ltd Waste treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249554A (en) * 2008-04-09 2009-10-29 Nihon Kaisui:Kk Insolubilizing agent for soil contaminated with heavy metal or the like, and insolubilization method for soil using the same
JP2010142714A (en) * 2008-12-17 2010-07-01 Ohbayashi Corp In-situ purification method of ground contaminated with heavy metal

Similar Documents

Publication Publication Date Title
Kim et al. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd)
JP4712483B2 (en) Treatment composition and treatment method for heavy metal contaminated soil
US7736291B2 (en) Method for stabilization of heavy metals and odor control with dicalcium phosphate dihydrate powder
Conner Chemical stabilization of contaminated soils
JP2009249554A (en) Insolubilizing agent for soil contaminated with heavy metal or the like, and insolubilization method for soil using the same
JP2014054602A (en) Insolubilizer of harmful matter and insolubilization treatment method of harmful matter
TW201605511A (en) Agent for treating hazardous materials
JP2009256593A (en) Toxic substance elution reducing material and toxic substance elution reducing treatment method
JP2007268429A (en) Method of suppressing elution of arsenic from soil contaminated by arsenic
US5640704A (en) Process for solidification and immobilization of harmful waste species
JP2012110852A (en) Insolubilizing agent for soil contaminated with heavy metals or the like, and insolubilization method
Fuessle et al. Stabilization of arsenite wastes with prior oxidation
JP5502841B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
Bostick Use of apatite for chemical stabilization of subsurface contaminants
JP4431664B2 (en) A leaching inhibitor for harmful elements, fly ash that has been used to suppress the leaching of harmful elements
JP5938784B2 (en) Heavy metal contaminated water treatment method, solid heavy metal contaminated treatment method, and heavy metal removal composition
JP5608352B2 (en) Methods for insolubilizing hazardous substances
JP3818446B2 (en) Heavy metal fixing agent
JP2007216069A (en) Treating method of contaminated soil
JP2001121132A (en) Insolubilizing method of soil and industrial waste containing cyan compound and soluble heavy metals
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
JP2020018956A (en) Insolubilization method of heavy metal, and insolubilization material
JP2012135727A (en) Method for reducing elution of heavy metal from contaminated soil and composition and kit for reducing elution of heavy metal from contaminated material
JP4476110B2 (en) Heavy metal scavengers containing morpholine dithiocarbamic acid alkali metal salts
AU2018335497B2 (en) Method and reagent system for treating mercury-contaminated material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129