JP2007268119A - Heating implement for microwave oven - Google Patents

Heating implement for microwave oven Download PDF

Info

Publication number
JP2007268119A
JP2007268119A JP2006099849A JP2006099849A JP2007268119A JP 2007268119 A JP2007268119 A JP 2007268119A JP 2006099849 A JP2006099849 A JP 2006099849A JP 2006099849 A JP2006099849 A JP 2006099849A JP 2007268119 A JP2007268119 A JP 2007268119A
Authority
JP
Japan
Prior art keywords
sintered body
carbon
microwave oven
ceramic sintered
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006099849A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yoshitake
一弘 吉武
Hiroshi Nakao
浩 中尾
Yutaka Fukumoto
豊 福元
Tomonori Hirai
智紀 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Prefecture
Original Assignee
Saga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Prefecture filed Critical Saga Prefecture
Priority to JP2006099849A priority Critical patent/JP2007268119A/en
Publication of JP2007268119A publication Critical patent/JP2007268119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cookers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating implement for a microwave oven, which is easily manufactured, capable of exhibiting sufficient strength, and excellent in heat generation and heat insulating performance. <P>SOLUTION: A ceramic sintered body is put into a furnace, and LP gas is fed to perform the carburizing process under high-temperature environment. Then, carbon is deposited on the surface of the ceramic sintered body and into pores constituting a porous structure to form a carbon thin-film layer. The ceramic sintered body with this carbon thin-film layer makes the heating implement for the microwave oven. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子レンジを用いて被調理物を加熱処理する際に用いられる電子レンジ用加熱具に関する。   The present invention relates to a heating tool for a microwave oven that is used when heat-treating an object to be cooked using a microwave oven.

電子レンジは、マグネトロンから発生するマイクロ波を被調理物に照射して、被調理物に含まれている水の分子に振動を与えて共振させ、水の分子同士の振動摩擦によって発生する熱により被調理物を加熱し、調理するものであって、食品や飲み物の加熱調理に広く利用されている。   The microwave oven irradiates the object to be cooked with microwaves generated from the magnetron, vibrates the water molecules contained in the object to be cooked, and resonates, and heat generated by vibration friction between the water molecules. It heats and cooks foods and is widely used for cooking foods and drinks.

電子レンジで被調理物を加熱処理するに当たり、被調理物を収納載置する調理用容器が用いられるが、この容器としては主に陶磁器製のものが使用されている。しかしながら、陶磁器はマイクロ波を吸収しないため、電子レンジ加熱の際、発熱せず、従って陶磁器製容器自体は加熱されない。   When the food to be cooked is heated in a microwave oven, a cooking container for storing and placing the food to be cooked is used. As the container, a ceramic container is mainly used. However, since ceramics do not absorb microwaves, they do not generate heat during microwave heating, and the ceramic container itself is not heated.

そのため、加熱処理された被調理物を電子レンジから取り出した状態において、被調理物の熱が容器に吸熱されることによって、比較的短時間で被調理物が冷めてしまい、食味が低下するという不具合があった。   Therefore, in the state where the cooked food to be cooked is taken out from the microwave oven, the cooked food is cooled in a relatively short time by the heat of the cooked food being absorbed by the container, and the taste is reduced. There was a bug.

この問題点を解決するため、マイクロ波を吸収して発熱する性質を有する物質からなる発熱層を調理用容器に設けて、被調理物だけでなく容器自体も加熱するようにした調理用容器がいくつか提案されている。   In order to solve this problem, there is provided a cooking container in which a heating layer made of a substance having a property of absorbing microwaves and generating heat is provided in the cooking container so as to heat not only the food to be cooked but also the container itself. Several proposals have been made.

この種の従来の調理用容器として、陶磁器材料にマイクロ波吸収材としてのカーボン、カーボンブラック等の発熱物質を混合し、焼成してなるもの、又は前記発熱物質からなる発熱体であって板状等各種形状に形成したものを陶磁器材料内に埋設し、焼成してなるものがある(特許文献1)。   As a conventional cooking container of this type, a ceramic material mixed with a heating material such as carbon or carbon black as a microwave absorber and fired, or a heating element made of the heating material, which is plate-shaped There are some which are formed in various shapes such as embedded in ceramic materials and fired (Patent Document 1).

また従来の調理用容器として、組織内部がカーボンブラックを含むセラミックス質で、外層がカーボンブラック不含のセラミックス質の粒状体を、セラミックス材とともに容器形状に成形焼結してなるものがある(特許文献2)。   Further, as a conventional cooking container, there is a ceramic container in which the inside of the structure is a ceramic material containing carbon black, and the outer layer is a ceramic material containing no carbon black and is molded and sintered together with the ceramic material into a container shape (patent) Reference 2).

しかしながら、特許文献1記載のものにおいては、カーボン、カーボンブラック等の発熱物質を陶磁器材料に混合したものを焼成するため、カーボン等の発熱物質の混合量が多い場合には、製品物性に影響を及ぼし、強度低下を招く虞がある。   However, in the thing of patent document 1, since what mixed exothermic substances, such as carbon and carbon black, with the ceramic material is baked, when there is much mixing amount of exothermic substances, such as carbon, it has an influence on a product physical property. There is a risk that strength will be reduced.

また、上記発熱物質のカーボン類は溶媒の水に対して疎水性のため、陶磁器材料と均一に混合せず、カーボン等の発熱物質が偏在し、そのため、カーボン等の発熱物質が陶磁器材料中に均一に分布することが困難である。   In addition, because the carbons of the above-mentioned exothermic substances are hydrophobic with respect to the solvent water, they are not mixed uniformly with the ceramic material, and exothermic substances such as carbon are unevenly distributed, so that exothermic substances such as carbon are contained in the ceramic material. It is difficult to distribute uniformly.

従って、マイクロ波を照射した際、偏在するカーボン等の発熱物質により、局部的な発熱が起こり、それにより局部的な熱膨張が生じて該熱膨張による応力が発生し、その結果、容器にヒビ割れが生じたり、容器が破壊したりする不具合がある。   Therefore, when the microwave is irradiated, heat generation material such as unevenly distributed carbon causes local heat generation, thereby causing local thermal expansion and generating stress due to the thermal expansion. As a result, the container is cracked. There are defects that cause cracks and breakage of the container.

また、発熱物質を板状等に成形してなる発熱体を陶磁器材料内に埋設し、焼成してなるものにおいては、マイクロ波照射時、埋設された発熱体の部分で急激な発熱が起こり、そのため温度勾配が生じて局部的な熱膨張が生じ、該熱膨張による応力が発生して、その結果、同様に容器にヒビ割れが生じたり、容器が破壊したりする欠点がある。   In addition, a heating element formed by molding a heating material into a plate shape or the like is embedded in a ceramic material and fired, and when microwave irradiation, sudden heat generation occurs in the embedded heating element portion, For this reason, a temperature gradient is generated, local thermal expansion occurs, stress is generated due to the thermal expansion, and as a result, there is a drawback that the container is similarly cracked or broken.

一方、特許文献2記載のものにおいても、予め陶磁器材料中にカーボンブラックからなる発熱物質を含有させておき、この発熱物質含有材料を焼成して容器を成形するものであるから、発熱物質の混合量が多い場合には、強度等の物性低下の虞がある。   On the other hand, in the case of the one described in Patent Document 2, since the exothermic substance made of carbon black is previously contained in the ceramic material and the exothermic substance-containing material is fired to form a container, the exothermic substance is mixed. When the amount is large, physical properties such as strength may be lowered.

また、カーボンブラックからなる発熱物質は内層にのみ存在しているから、全体として発熱物質は偏在するため、マイクロ波照射時に、局部的に発熱し、そのため上記したと同様に局部的な熱膨張が生じ、該熱膨張による応力が発生して、容器のヒビ割れや、容器の破壊が生じるという不具合がある。   In addition, since the exothermic material made of carbon black exists only in the inner layer, the exothermic material is unevenly distributed as a whole, and thus locally generates heat when irradiated with microwaves. Therefore, as described above, local thermal expansion occurs. There arises a problem that a stress due to the thermal expansion occurs and the container cracks or the container breaks.

更に、特許文献1、2に記載のものにおいては、いずれも製造工程が煩雑であり、製造コストも高価になるという不利がある。   Furthermore, the methods described in Patent Documents 1 and 2 both have the disadvantage that the manufacturing process is complicated and the manufacturing cost is high.

特開平7−116058号公報Japanese Patent Application Laid-Open No. 7-116058 特開平6−189849号公報Japanese Patent Laid-Open No. 6-189849

上記したように、従来構造のものにあっては、強度等の物性低下の虞があること、発熱物質の均一分布が困難でマイクロ波照射時に局部的な発熱が起こり、容器にヒビ割れや破壊が生じる虞があること、製造工程が煩雑で製造コストが高価になること等の問題点を有するものであった。   As described above, in the case of the conventional structure, there is a possibility that the physical properties such as strength may be lowered, the uniform distribution of the exothermic material is difficult, and local heat generation occurs during microwave irradiation, and the container is cracked or broken. There are problems that there is a risk that the manufacturing process will occur, the manufacturing process is complicated, and the manufacturing cost is expensive.

本発明者等は上記の課題を解決するため鋭意研究したところ、セラミックス焼結体に浸炭処理を施して、該セラミックス焼結体の表面及び該セラミックス焼結体の多孔質構造を構成する気孔内に、気相反応により炭素を蒸着して炭素薄膜層を形成するようにすれば、セラミックス焼結体としての強度低下を招くことなく発熱物質の層をセラミックス焼結体の表面及び気孔内に形成することができるとともに、このような炭素蒸着膜を形成すれば、マイクロ波照射時に均一な発熱が行われ、容器のヒビ割れや破壊の発生を防止できるという知見を得、この知見に基づき本発明を完成するに至った。   The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, the ceramic sintered body is subjected to a carburizing treatment, and the pores constituting the surface of the ceramic sintered body and the porous structure of the ceramic sintered body are formed. Furthermore, if carbon is deposited by vapor phase reaction to form a carbon thin film layer, a layer of a heat generating material is formed on the surface and pores of the ceramic sintered body without causing a decrease in strength as the ceramic sintered body. In addition, the formation of such a carbon vapor-deposited film allows the generation of uniform heat during microwave irradiation, thereby obtaining the knowledge that cracking and destruction of the container can be prevented. It came to complete.

従って本発明は、強度等の物性低下の問題がなく、マイクロ波照射時に十分且つ均一な発熱を行うことができ、加熱具のヒビ割れや破壊が生じる虞がなく、しかも製造が容易な電子レンジ用加熱具を提供することを目的とする。   Therefore, the present invention is free from problems of physical properties such as strength, can generate sufficient and uniform heat during microwave irradiation, has no risk of cracking or breaking of the heating tool, and is easy to manufacture. An object of the present invention is to provide a heating tool.

本発明は、
(1)セラミックス焼結体からなり、浸炭処理により該セラミックス焼結体の表面及び気孔内に炭素薄膜層を形成してなることを特徴とする電子レンジ用加熱具、
(2)炭素薄膜層が、炭化水素の熱分解により得られる炭素からなるものである前記(1)記載の電子レンジ用加熱具、
(3)浸炭処理による炭素薄膜層は、セラミックス焼結体を加熱し、LPガスを導入して還元雰囲気で熱処理し、気相反応により炭素をセラミックス焼結体の表面及び気孔内に蒸着させることにより形成されるものである前記(1)記載の電子レンジ用加熱具、
(4)セラミックス焼結体における選択された部位における気孔内に炭素薄膜層を形成してなる前記(1)記載の電子レンジ用加熱具、
(5)選択された部位を無釉部とし、それ以外の部分に釉薬を施して浸炭処理を行い、無釉部におけるセラミックス焼結体の気孔内に炭素薄膜層を形成してなる前記(4)記載の電子レンジ用加熱具、
(6)容器形状に成形してなる前記(1)記載の電子レンジ用加熱具
を要旨とする。
The present invention
(1) A heating device for a microwave oven comprising a ceramic sintered body, wherein a carbon thin film layer is formed on the surface and pores of the ceramic sintered body by carburizing treatment,
(2) The microwave heater according to (1), wherein the carbon thin film layer is made of carbon obtained by thermal decomposition of hydrocarbons,
(3) The carbon thin film layer by carburizing treatment heats the ceramic sintered body, introduces LP gas, heat-treats in a reducing atmosphere, and deposits carbon on the surface of the ceramic sintered body and in the pores by a gas phase reaction. The heating device for a microwave oven according to (1), which is formed by:
(4) A heating tool for a microwave oven according to (1), wherein a carbon thin film layer is formed in pores at selected sites in the ceramic sintered body,
(5) The selected portion is made into a solid part, a glaze is applied to the other part, carburizing treatment is performed, and the carbon thin film layer is formed in the pores of the ceramic sintered body in the solid part (4) ) Heating device for microwave oven,
(6) A heating device for a microwave oven according to (1) above, which is formed into a container shape.

本発明は浸炭処理により該セラミックス焼結体の表面及び気孔内に炭素薄膜層を形成してなるから、セラミックス焼結体を製造する段階では、通常の焼成条件で製造することができ、カーボン、カーボンブラック等の発熱物質を陶磁器材料に混合して焼成する従来技術に比べ焼成条件を調整する必要がなく、製造容易であり、且つ焼結強度や他の物理的強度が低下するという虞もない。   In the present invention, a carbon thin film layer is formed on the surface and pores of the ceramic sintered body by carburizing treatment. Therefore, in the stage of manufacturing the ceramic sintered body, it can be manufactured under normal firing conditions. There is no need to adjust the firing conditions as compared with the prior art in which a heating material such as carbon black is mixed and fired in a ceramic material, it is easy to manufacture, and there is no risk that the sintering strength or other physical strength will be reduced. .

本発明において炭素薄膜層を形成するに当り、セラミックス焼結体を加熱し、LPガスを導入して還元雰囲気で熱処理し、気相反応により炭素をセラミックス焼結体の表面及び気孔内に蒸着させることにより炭素薄膜層を形成した場合には、炭素からなる発熱物質をセラミックス焼結体に均一に分布することができ、その結果、マイクロ波照射時に均一な発熱が行われ、容器のヒビ割れや破壊の発生を防止できる効果がある。   In forming the carbon thin film layer in the present invention, the ceramic sintered body is heated, LP gas is introduced, heat treatment is performed in a reducing atmosphere, and carbon is deposited on the surface and pores of the ceramic sintered body by a gas phase reaction. Thus, when the carbon thin film layer is formed, the exothermic material made of carbon can be uniformly distributed in the ceramic sintered body, and as a result, uniform heat generation is performed during microwave irradiation, and cracking of the container and This has the effect of preventing the occurrence of destruction.

本発明によれば、均一な発熱が行われるので、電子レンジ用加熱具として十分な発熱量を発揮でき、加熱、保温に優れた電子レンジ用加熱具を提供できる。   According to the present invention, since uniform heat generation is performed, it is possible to provide a heating device for a microwave oven that can exhibit a sufficient amount of heat generation as a heating device for a microwave oven and is excellent in heating and heat retention.

また、既存製品の容器、皿等を利用してこれらに浸炭処理を施すことにより、本発明電子レンジ用加熱具を得るようにしてもよく、本発明電子レンジ用加熱具の製造は極めて簡便且つ容易であり、製造コストを低減できる利点がある。   In addition, the present microwave oven heater may be obtained by carburizing the existing product containers, dishes, etc., and the manufacture of the microwave oven heater is extremely simple and There is an advantage that the manufacturing cost can be reduced easily.

本発明において、選択された部位を無釉部とし、それ以外の部分に釉薬を施し、この一種の部分マスキングを施した状態で浸炭処理を行うことによって本発明電子レンジ用加熱具を構成した場合は、高発熱部と低発熱部を設けることができ、手持ちする場合などでは使い勝手の良い電子レンジ用加熱具を提供できる。   In the present invention, when the selected portion is a solid portion, the glaze is applied to other portions, and the heating device for the microwave oven according to the present invention is configured by performing the carburizing process in a state of performing this kind of partial masking. Can be provided with a high heat-generating part and a low heat-generating part, and can provide an easy-to-use microwave heater when it is held by hand.

本発明の電子レンジ用加熱具は、セラミックス焼結体からなり、ここでセラミックス焼結体とは、土器、石器、陶器、磁器等の陶磁器類全般を指す。セラミックス材料としては、コーディライト、コーディライト−ムライト、ペタライト、β−スポジュメン、アルミナ、シリカ、ジルコニア、その他各種のシャモット等が挙げられる。   The heating device for a microwave oven of the present invention is made of a ceramic sintered body, and the ceramic sintered body here refers to all ceramics such as earthenware, stoneware, earthenware, and porcelain. Examples of the ceramic material include cordierite, cordierite-mullite, petalite, β-spodumene, alumina, silica, zirconia, and other various chamottes.

セラミックス材料の選択は任意であるが、120℃以上の加熱や急熱急冷により或いは大型で厚手物の場合には熱膨張の応力によりヒビ割れや破壊が生じる虞があるので、このようなヒビ割れや破壊を防止するために低膨張性セラミックスである、ペタライト、コーディライト、コーディライト−ムライト或いは各種のシャモットを用いることが好ましい。   The ceramic material can be selected arbitrarily, but cracks and breakage may occur due to thermal expansion stress due to thermal expansion stress in the case of heating at 120 ° C or higher, rapid heating and quenching, or large and thick items. It is preferable to use petalite, cordierite, cordierite-mullite, or various types of chamotte, which are low expansion ceramics, in order to prevent damage.

本発明におけるセラミックス焼結体は、多孔質セラミックス焼結体であり、図1に示すように無数の微細な気孔Aを有する。同図は走査型電子顕微鏡によるセラミックス焼結体の断面写真(倍率100倍の拡大写真)であり、図中、Bは該セラミックス焼結体の表面を、Cは内部をそれぞれ示す。   The ceramic sintered body in the present invention is a porous ceramic sintered body and has innumerable fine pores A as shown in FIG. The figure is a cross-sectional photograph (enlarged photograph at a magnification of 100) of a ceramic sintered body by a scanning electron microscope. In the figure, B indicates the surface of the ceramic sintered body, and C indicates the inside.

気孔Aは連続気孔構造を有し、焼結体の内部の奥深くまで形成されている。気孔Aの形状、大きさや気孔率等の気孔に関する特性は、浸炭処理による炭素の蒸着量との関係で決定される。即ち、気孔内における炭素の蒸着量は、気孔特性によって自ずとその大小が決定される。ここにおいて、浸炭処理による炭素の気孔内への蒸着量は、現象的に水の浸透量と比例関係にあると考えられるから、上記にいう気孔特性は吸水率をもって表示することが可能である。   The pores A have a continuous pore structure and are formed deep inside the sintered body. The pore-related characteristics such as the shape, size, and porosity of the pore A are determined by the relationship with the amount of carbon deposited by the carburizing process. That is, the amount of carbon deposited in the pores is naturally determined by the pore characteristics. Here, the amount of carbon deposited in the pores of the carburizing process is considered to be proportional to the amount of water permeating phenomenon, so that the above-mentioned pore characteristics can be expressed by the water absorption rate.

本発明において、気孔特性としての吸水率は、0.2重量%〜30重量%が好ましい。吸水率が0.2重量%未満では、炭素の蒸着量が充分でなく、マイクロ波吸収発熱量が不足し、被調理物に対する加熱能力が不十分となる。また吸水率が30重量%を超えると、セラミックス焼結体としての強度低下を招き、実用に耐えなくなる虞がある。吸水率のより好ましい範囲は0.5重量%〜5重量%である。   In the present invention, the water absorption as the pore characteristic is preferably 0.2% by weight to 30% by weight. If the water absorption is less than 0.2% by weight, the amount of carbon deposited is not sufficient, the amount of heat generated by microwave absorption is insufficient, and the heating ability for the object to be cooked is insufficient. On the other hand, if the water absorption rate exceeds 30% by weight, the strength of the ceramic sintered body is lowered, and there is a possibility that it cannot be practically used. A more preferable range of water absorption is 0.5% by weight to 5% by weight.

本発明において、セラミックス焼結体を製造するに当っては、従来から行われている一般的な製造方法を採用できる。即ち、セラミックス粉末に水を加えてボールミル等の混練機により均一に湿式混合し、その後脱水して得られた原料を用いて成形を行う。この成形に当っては、プレス成形、鋳込み成形、ローラーマシン成形等の成形法が採用され、器形状等所望の形状を有する成形品を製造する。成形品は次いで焼成され、これによりセラミックス焼結体が得られる。   In the present invention, when manufacturing a ceramic sintered body, a conventional general manufacturing method can be employed. In other words, water is added to the ceramic powder, uniformly wet-mixed by a kneader such as a ball mill, and then molded using a raw material obtained by dehydration. In this molding, a molding method such as press molding, casting molding, roller machine molding or the like is adopted, and a molded product having a desired shape such as a vessel shape is manufactured. The molded article is then fired, whereby a ceramic sintered body is obtained.

本発明において、セラミックス焼結体は器形状のものに限定されず、平板状のものであってもよい。器形状として構成する場合、容器形状、皿形状等、種々の形状に形成することが可能である。   In the present invention, the ceramic sintered body is not limited to a vessel shape, and may be a flat plate shape. When configured as a vessel shape, it can be formed in various shapes such as a container shape and a dish shape.

この得られたセラミックス焼結体に浸炭処理が施される。浸炭処理とは、LPガス(液化石油ガス)等の炭素を含むガス状物質(以下、LPガスを用いる場合を例にとり説明する)が供給される空間内にセラミックス焼結体を臨ませ、LPガスを加熱して熱分解させ、気相反応により炭素を焼結体の表面(即ち、セラミックス焼結体の基材を構成する粒子の表面)及び多孔質構造を構成する微細な気孔内に蒸着させる処理のことをいう。   The obtained ceramic sintered body is carburized. The carburizing process refers to a ceramic sintered body facing a space in which a gaseous substance containing carbon such as LP gas (liquefied petroleum gas) (hereinafter described using LP gas as an example) is supplied. The gas is heated and thermally decomposed, and carbon is vapor-deposited on the surface of the sintered body (that is, the surface of the particles constituting the base material of the ceramic sintered body) and in the fine pores constituting the porous structure. This is the processing to be performed.

この気相反応において、熱分解ガスから炭素が単離し、この単離した炭素が焼結体の表面及び気孔内に付着し、次第に堆積して炭素薄膜層(炭素蒸着膜層)を形成することにより、炭素蒸着が行われる。   In this gas phase reaction, carbon is isolated from the pyrolysis gas, and the isolated carbon adheres to the surface and pores of the sintered body and gradually deposits to form a carbon thin film layer (carbon vapor deposition film layer). Thus, carbon deposition is performed.

浸炭処理には、加熱設備を備え且つ外気を遮断できる構造を備えた炉が用いられる。この炉内に例えば棚に載置する形でセラミックス焼結体を入れ、同時にLPガスを炉内に供給して燃焼し、セラミックス焼結体を加熱する。炉内温度が所定温度に達した段階で、加熱を停止し、炉内を外気と遮断し、還元雰囲気下でLPガスを供給し、このLPガスを高温に加熱されたセラミックス焼結体に接触させる。LPガスはセラミックス焼結体の表面に接触するほか、該焼結体の気孔内にも入り込み接触する。   For the carburizing process, a furnace having a heating facility and a structure capable of shutting off the outside air is used. The ceramic sintered body is placed in the furnace, for example, on a shelf, and simultaneously, LP gas is supplied into the furnace and burned to heat the ceramic sintered body. When the furnace temperature reaches the specified temperature, heating is stopped, the interior of the furnace is shut off from the outside air, LP gas is supplied in a reducing atmosphere, and this LP gas is brought into contact with the ceramic sintered body heated to a high temperature. Let The LP gas contacts the surface of the ceramic sintered body and also enters and contacts the pores of the sintered body.

加熱を停止する段階での温度は、1000℃〜1100℃が好ましい。LPガスは、この高温雰囲気下で加熱を受けることにより熱分解を起こす。即ち、LPガスの主成分であるプロパン、ブタン等の炭化水素の熱分解が起こり、この熱分解ガスから炭素が単離する。この単離した炭素が焼結体の表面及び気孔内に付着し、それが堆積して層状を形成する。このようにして炭素が焼結体の表面及び気孔内に蒸着し、炭素薄膜層が形成される。   The temperature at the stage of stopping the heating is preferably 1000 ° C to 1100 ° C. LP gas undergoes thermal decomposition when heated under this high temperature atmosphere. That is, pyrolysis of hydrocarbons such as propane and butane, which are the main components of LP gas, occurs, and carbon is isolated from this pyrolysis gas. This isolated carbon adheres to the surface and pores of the sintered body and deposits to form a layer. In this way, carbon is deposited on the surface and pores of the sintered body, and a carbon thin film layer is formed.

浸炭処理に用いる炉として、例えば図2に示すような構造のものが用いられる。   As a furnace used for the carburizing process, for example, a furnace having a structure as shown in FIG. 2 is used.

同図において1は炉本体で、該炉本体1は図示しない扉を有し、且つ該炉本体1の内部には複数段の棚2が炉床3上に設置されている。炉床3には加熱用のガスバーナー4が設けられ、該ガスバーナー4はガス供給管5を通してLPガスボンベ6に連結されており、ガス供給管5の途中にはLPガスボンベ6から供給されるガスの流量を調整する供給ガス流量調整弁7が設けられている。   In the figure, reference numeral 1 denotes a furnace body, the furnace body 1 has a door (not shown), and a plurality of shelves 2 are installed on the hearth 3 in the furnace body 1. A gas burner 4 for heating is provided in the hearth 3, and the gas burner 4 is connected to an LP gas cylinder 6 through a gas supply pipe 5, and a gas supplied from the LP gas cylinder 6 in the middle of the gas supply pipe 5. A supply gas flow rate adjusting valve 7 for adjusting the flow rate of the gas is provided.

炉床3に複数の吸込口8及びこれらの吸込口8に連通している煙道9が設けられ、この煙道9を炉外方に延設するとともに、その延設部を炉本体1の外部に設置した煙突10に連通している。煙道9と煙突10との連結部に炉内の圧力を調整する圧力調整弁11を設け、更に煙突10の通路途中に排ガスの流量を調整する排ガス流量調整弁12を設ける。   The furnace floor 3 is provided with a plurality of suction ports 8 and a flue 9 communicating with the suction ports 8. The flue 9 extends outward from the furnace, and the extended portion is connected to the furnace body 1. It communicates with the chimney 10 installed outside. A pressure adjusting valve 11 for adjusting the pressure in the furnace is provided at the connection portion between the chimney 9 and the chimney 10, and an exhaust gas flow rate adjusting valve 12 for adjusting the flow rate of the exhaust gas is provided in the middle of the passage of the chimney 10.

扉の開閉箇所や、その他の接続箇所には無機質の断熱パッキンが施され、炉全体として気密構造を備えるように構成されている。   An inorganic heat insulating packing is applied to the opening / closing portion of the door and other connection portions, and the entire furnace is configured to have an airtight structure.

次に、上記の如く構成される炉を用いて浸炭処理を行う一例を説明する。
炉の扉を開き、棚2の各段に複数の焼成品13(容器形状に成形してなるセラミックス焼結体)を載置した後、扉を閉め、LPガスボンベ6の開閉弁を開き、LPガスをガス供給管5を通して炉内のガスバーナー4に送り、燃焼させる。ガス燃焼のためLPガスは酸素存在下で炉内に供給される。即ち、LPガスは空気とともに炉内に供給される。このとき供給ガス流量調整弁7により、LPガスと空気との混合比を調整する。このガス燃焼により炉内及び焼成品13が加熱される。燃焼ガスは吸引口8から煙道9に導かれ、煙突10内に入り込み、該煙突10より大気中に放出される。
Next, an example of performing the carburizing process using the furnace configured as described above will be described.
Open the furnace door, place a plurality of fired products 13 (ceramic sintered bodies formed in a container shape) on each stage of the shelf 2, then close the door, open the open / close valve of the LP gas cylinder 6, The gas is sent to the gas burner 4 in the furnace through the gas supply pipe 5 and burned. For gas combustion, LP gas is supplied into the furnace in the presence of oxygen. That is, LP gas is supplied into the furnace together with air. At this time, the mixing ratio of LP gas and air is adjusted by the supply gas flow rate adjusting valve 7. The furnace and the fired product 13 are heated by this gas combustion. The combustion gas is guided from the suction port 8 to the flue 9, enters the chimney 10, and is discharged from the chimney 10 into the atmosphere.

炉内及び焼成品13の温度が1000℃〜1100℃に上昇した段階で供給ガス流量調整弁7を操作して空気供給を停止し、ガス燃焼を停止する。この状態でLPガスを炉内に供給するともに、圧力調整弁11及び排ガス流量調整弁12の開度を調整して炉内の圧力が外気圧よりも大きくなるようにする。このような圧力調整により、空気が炉内に入り込むのを防止することができる。炉内に供給されるLPガスは、酸素不存在下で焼成品13と接触する。   When the temperature of the furnace and the fired product 13 rises to 1000 ° C. to 1100 ° C., the supply gas flow rate adjusting valve 7 is operated to stop the air supply and stop the gas combustion. In this state, LP gas is supplied into the furnace, and the opening degree of the pressure regulating valve 11 and the exhaust gas flow rate regulating valve 12 is adjusted so that the pressure in the furnace becomes larger than the external pressure. Such pressure adjustment can prevent air from entering the furnace. The LP gas supplied into the furnace contacts the fired product 13 in the absence of oxygen.

この高温且つ還元雰囲気下においてLPガスは加熱され、LPガスの主成分であるプロパン、ブタン等の炭化水素が熱分解する。炭化水素の熱分解ガスから単離した炭素が焼成品13の表面及び焼成品13の素材であるセラミックス焼結体の多孔質構造の気孔内に付着し、且つ堆積する。このように気相反応により、焼成品13の表面及び気孔内に炭素が蒸着し、炭素薄膜層が形成される。   Under this high temperature and reducing atmosphere, LP gas is heated, and hydrocarbons such as propane and butane, which are main components of LP gas, are thermally decomposed. Carbon isolated from the hydrocarbon pyrolysis gas adheres to and accumulates on the surface of the fired product 13 and the pores of the porous structure of the ceramic sintered body that is the material of the fired product 13. Thus, carbon is vapor-deposited on the surface and pores of the fired product 13 by a gas phase reaction, and a carbon thin film layer is formed.

炉は自然冷却され、炉内温度が炭素の発火燃焼温度以下となった時点で、炉の扉を開いて、浸炭処理された焼成品13を炉より取り出す。炉の扉を開いて外気を導入する段階は、炉内温度が350℃以下に冷却された時点が好ましい。   When the furnace is naturally cooled and the furnace temperature becomes equal to or lower than the ignition and combustion temperature of carbon, the furnace door is opened, and the carburized fired product 13 is taken out of the furnace. The step of opening the furnace door and introducing outside air is preferably performed when the furnace temperature is cooled to 350 ° C. or lower.

上記の如くして浸炭処理された焼成品13は、本発明の電子レンジ用加熱具として用いられる。このようにして得られる本発明加熱具は、カーボンによる黒色外観を呈する。   The fired product 13 that has been carburized as described above is used as a heating tool for a microwave oven of the present invention. The heating tool of the present invention thus obtained exhibits a black appearance due to carbon.

本発明の電子レンジ用加熱具は、セラミックス焼結体の表面及び気孔内に炭素薄膜層が形成されているから、本発明加熱具に食品、飲み物等の被調理物を入れて、これを電子レンジ内で加熱したとき、電子レンジのマグネトロンから発生するマイクロ波を炭素薄膜層が吸収して発熱し、それにより本発明加熱具は電子レンジ内で加熱される。   Since the heating device for a microwave oven of the present invention has a carbon thin film layer formed on the surface of the ceramic sintered body and in the pores, the food to be cooked such as food and drink is put in the heating device of the present invention, When heated in the microwave oven, the carbon thin film layer absorbs microwaves generated from the magnetron of the microwave oven and generates heat, whereby the heating tool of the present invention is heated in the microwave oven.

その結果、被調理物がマイクロ波により加熱されるだけでなく、本発明加熱具自体もマイクロ波により加熱されるため被調理物を十分に加熱できるとともに、電子レンジから取り出した後も被調理物を保温できる効果がある。   As a result, not only the food to be cooked is heated by the microwave, but also the heating device of the present invention is heated by the microwave itself, so that the food to be cooked can be sufficiently heated and the food to be cooked even after taking out from the microwave Has the effect of keeping warm.

本発明は、セラミックス焼結体における選択された部位における気孔内に炭素薄膜層を形成することができる。即ち、本発明はセラミックス焼結体の多孔質構造における気孔全部に炭素薄膜層を形成することに限定されず、気孔のうち、或る選択された部位における気孔のみに炭素薄膜層を形成するようにしてもよい。   According to the present invention, a carbon thin film layer can be formed in pores at selected sites in a ceramic sintered body. That is, the present invention is not limited to the formation of the carbon thin film layer in all the pores in the porous structure of the ceramic sintered body, and the carbon thin film layer is formed only in the pores in a selected portion of the pores. It may be.

このようないわゆる部分炭素薄膜層の形成に当っては、炭素の透過が困難な材料を用いて部分マスキングを施し、この部分マスキングされたセラミックス焼結体を浸炭処理すればよい。この場合に用いるマスキング材としては、陶磁器の表面に施される一般的な釉薬を用いることができ、なかでもガラス質層を形成する釉薬を用いることが好ましい。   In forming such a so-called partial carbon thin film layer, partial masking may be performed using a material difficult to permeate carbon, and the partially masked ceramic sintered body may be carburized. As the masking material used in this case, a general glaze applied to the surface of the ceramic can be used, and it is particularly preferable to use a glaze that forms a vitreous layer.

この釉薬による部分マスキングに当っては、選択された部位を無釉部とし、それ以外の部分に釉薬を施す。この部分マスキングされたセラミックス焼結体に浸炭処理を施すと、無釉部におけるセラミックス焼結体の表面及び気孔内に炭素が蒸着して炭素薄膜層が形成される。一方、釉薬を施した部分(施釉部)においては、炭素は釉薬表面に蒸着するが、この釉薬層を炭素が透過しないため、釉薬層に覆われているセラミックス焼結体部位においては、気孔内に炭素が蒸着せず、従って、炭素薄膜層は釉薬層表面にのみ形成され、気孔内には形成されない。   In the partial masking with the glaze, the selected portion is made free of glaze, and the glaze is applied to other portions. When this partially masked ceramic sintered body is subjected to carburizing treatment, carbon is deposited on the surface and pores of the ceramic sintered body in the solid portion to form a carbon thin film layer. On the other hand, in the portion where the glaze has been applied (glazed portion), carbon is deposited on the surface of the glaze, but carbon does not permeate through this glaze layer, so in the ceramic sintered body covered with the glaze layer, No carbon is deposited on the surface, so that the carbon thin film layer is formed only on the surface of the glaze layer and not in the pores.

このように、無釉部においては、表面及び気孔内に炭素薄膜層が形成され、一方、施釉部においては、表面のみに炭素薄膜層が形成されるため、電子レンジ加熱時の発熱量は無釉部におけるほうが施釉部におけるよりも大きくなる。ここにおいて、無釉部に対応した部分を高発熱部、施釉部に対応した部分を低発熱部と称すと、本発明のこの実施形態によれば、本発明電子レンジ用加熱具の一部を高発熱部として構成し、他部を低発熱部として構成することができる。   In this way, the carbon thin film layer is formed on the surface and pores in the solid part, while the carbon thin film layer is formed only on the surface in the glazed part, so there is no calorific value during microwave heating. It is larger in the heel than in the glazed part. Here, when the portion corresponding to the flangeless portion is referred to as a high heat generation portion and the portion corresponding to the glazed portion is referred to as a low heat generation portion, according to this embodiment of the present invention, a part of the heating device for the microwave oven according to the present invention is used. It can be configured as a high heat generating part, and the other part can be configured as a low heat generating part.

この実施形態における具体的態様として、セラミックス焼結体を例えば湯飲み茶碗の如き椀形状とした場合において、椀の上部を低発熱部として構成し、それより下方を高発熱部として構成することができる。この場合、椀に飲み物を入れて電子レンズで加熱を行っても椀上部の発熱量は少ないため、椀を取り出す際に椀上部を手に持っても熱すぎることはない。   As a specific aspect in this embodiment, when the ceramic sintered body has a bowl shape such as a tea cup, for example, the upper part of the bowl can be configured as a low heat generation part, and the lower part can be configured as a high heat generation part. In this case, even if a drink is placed in a bowl and heated with an electronic lens, the amount of heat generated at the top of the bowl is small.

また、取っ手のある容器の場合に取っ手部を低発熱部として構成すれば、取っ手部の発熱量は少ないため、電子レンジから容器を取り出す際、同様に取っ手部を手に持っても熱すぎることはない。   Also, in the case of a container with a handle, if the handle part is configured as a low heat generation part, the heat generation amount of the handle part is small, so when taking out the container from the microwave oven, it is too hot to hold the handle part in the same way There is no.

更に、容器の上方部の或る特定位置に高発熱部を構成すれば、内容物たる食品の上部に焦げ目を付けることも可能となる。   Furthermore, if a high heat generating part is formed at a specific position above the container, it is possible to burn the upper part of the food as the contents.

一般に、深底容器に牛乳等の液体を入れて電子レンジで加熱した際、該液体の上方よりも下方のほうが加熱温度が低く、深度に沿って温度勾配が生じる。本発明の上記実施形態によれば、深底容器の上部を低発熱部として構成し、該容器の下部を高発熱部として構成することができ、このように構成することにより、牛乳等の液体を上下方向に均一に加熱することが可能となる。   In general, when a liquid such as milk is placed in a deep bottom container and heated in a microwave oven, the heating temperature is lower in the lower part than in the upper part of the liquid, and a temperature gradient is generated along the depth. According to the above embodiment of the present invention, the upper part of the deep bottom container can be configured as a low heat generating part, and the lower part of the container can be configured as a high heat generating part. Can be heated uniformly in the vertical direction.

釉薬の施された陶磁器製容器において、容器の底部には釉薬が施されないのが普通であり、この容器に浸炭処理を施した場合、無釉部である容器底部における多孔質構造を構成する気孔内に炭素が蒸着し、炭素薄膜層が形成される。   In a ceramic container with glaze, it is normal that no glaze is applied to the bottom of the container, and when this container is carburized, the pores constituting the porous structure at the bottom of the container, which is an unglazed part Carbon is deposited inside, and a carbon thin film layer is formed.

この態様における本発明加熱具に被調理物を入れて電子レンジで加熱した際、容器底部における炭素薄膜層が発熱部となって容器が発熱し、被調理物に加熱作用を与えるとともに、電子レンジ加熱後の保温機能を発揮する。   When the food to be cooked is put in the heating tool of the present invention in this embodiment and heated in the microwave, the carbon thin film layer at the bottom of the container becomes a heat generating part, the container generates heat, and the cooking object is heated, and the microwave oven is heated. Demonstrate heat retention after heating.

本発明加熱具は、椀類、丼、湯のみコップ類、皿類、鉢類等の食器、急須、徳利等の注器、土鍋、陶板等の調理具、ホットプレート、保温容器等に適用できる。   The heating tool of the present invention can be applied to tableware such as bowls, bowls, cups of hot water, dishes, bowls and the like, pots such as teapots and bottles, cooking utensils such as earthenware pots and ceramic plates, hot plates, and heat insulation containers.

以下、本発明の実施例を示す。
実施例1
セラミックス基材組成
ぺタライト粉末 50重量部
可塑性粘土 20重量部
アルミナ 10重量部
天草陶土 20重量部
上記組成からなるセラミックス基材の各成分を湿式で均質に混合し、脱水した後、泥しょうに調整し、鋳込み成形により縦90mm×横90mm×厚さ30mmの板状片を成形し、乾燥した後、800℃で素焼きした。得られた素焼片を大気下で1250℃、12時間で焼成し、焼結片とした。この焼結片の吸水率を測定したところ3.2重量%であった。
Examples of the present invention will be described below.
Example 1
Ceramic base material composition Petalite powder 50 parts by weight Plastic clay 20 parts by weight Alumina 10 parts by weight Amakusa porcelain clay 20 parts by weight The components of the ceramic base material having the above composition are mixed in a wet manner, dehydrated, and then adjusted to mud. Then, a plate-like piece having a length of 90 mm × width of 90 mm × thickness of 30 mm was formed by casting, dried, and then baked at 800 ° C. The obtained unglazed piece was fired at 1250 ° C. for 12 hours in the air to obtain a sintered piece. The water absorption of the sintered piece was measured and found to be 3.2% by weight.

焼結片を図2に示す炉の中にいれ、LPガスを吹き込んで温度1100℃に加熱し、10時間浸炭処理を行った。これにより均質な黒色を呈する試験片が得られた。この試験片を家庭用電子レンジ(出力600W)に入れ、マイクロ波をそれぞれ30秒、60秒、90秒照射したときの発熱温度を表面温度計(testo社製 905−T2型)で測定した。即ち、まず第1の試験片について、30秒加熱後に電子レンジより試験片を取り出し、表面温度計を試験片に当てて発熱温度を測定し、次いで第2の試験片について、60秒加熱後に電子レンジより試験片を取り出して同様に発熱温度を測定し、また第3の試験片について90秒加熱後に同様に取り出して、発熱温度を測定した。結果を表1に示す。
実施例2
実施例1に示すセラミックス基材を用いて実施例1と同様の方法で焼結片を作り、この焼結片の一辺から60mmの長さの地点までの領域に釉薬を施し施釉部を形成する。釉薬は、ぺタライト粉末50重量部、可塑性粘土5重量部、長石30重量部、タルク15重量部を湿式で粉砕混合し、水分率を45重量部に調整したものを用いた。この施釉した焼結片の吸水率を測定したところ2.5重量%であった。
The sintered piece was placed in the furnace shown in FIG. 2, and LP gas was blown into the furnace to be heated to a temperature of 1100 ° C. and carburized for 10 hours. As a result, a test piece exhibiting a uniform black color was obtained. This test piece was put in a household microwave oven (output 600 W), and the heat generation temperature when microwaves were irradiated for 30 seconds, 60 seconds, and 90 seconds, respectively, was measured with a surface thermometer (905-T2 type manufactured by Testo). That is, the first test piece is first taken out of the microwave oven after 30 seconds of heating, the surface thermometer is applied to the test piece to measure the heat generation temperature, and then the second test piece is heated after 60 seconds of heating. The test piece was taken out of the range and the exothermic temperature was measured in the same manner, and the third test piece was taken out after heating for 90 seconds, and the exothermic temperature was measured. The results are shown in Table 1.
Example 2
A sintered piece is made in the same manner as in Example 1 using the ceramic substrate shown in Example 1, and a glaze is applied to a region from one side of this sintered piece to a point having a length of 60 mm to form a glazed portion. . As the glaze, 50 parts by weight of petalite powder, 5 parts by weight of plastic clay, 30 parts by weight of feldspar, and 15 parts by weight of talc were pulverized and mixed in a wet manner to adjust the moisture content to 45 parts by weight. The water absorption of the glazed sintered piece was measured and found to be 2.5% by weight.

次いで、焼結片に実施例1と同様の方法で浸炭処理を施した。施釉部はクリーム色で、無釉部は黒色を呈する試験片が得られた。この試験片について実施例1と同様の方法で発熱温度を測定した。発熱温度は無釉部に表面温度計を当てて測定した。結果を表1に示す。
比較例1
実施例1に示すセラミックス基材を用いて実施例1と同様な方法により同一の焼結片を製作した。この焼結片に浸炭処理を施さないものを試験片とし、この試験片について実施例1と同様の方法で発熱温度を測定した。結果を表1に示す。
比較例2
実施例1に示すセラミックス基材を用いて実施例2と同様な方法により施釉部と無釉部を有する同一の焼結片を製作した。この焼結片に浸炭処理を施さないものを試験片とし、この試験片について実施例1と同様の方法で発熱温度を測定した(測定箇所は無釉部)。結果を表1に示す。
Next, the sintered piece was subjected to carburizing treatment in the same manner as in Example 1. A test piece in which the glazed portion was cream-colored and the unglazed portion was black was obtained. The heat generation temperature of this test piece was measured in the same manner as in Example 1. The exothermic temperature was measured by applying a surface thermometer to the solid part. The results are shown in Table 1.
Comparative Example 1
Using the ceramic substrate shown in Example 1, the same sintered piece was produced in the same manner as in Example 1. The sintered piece was not subjected to carburization treatment as a test piece, and the heat generation temperature of this test piece was measured in the same manner as in Example 1. The results are shown in Table 1.
Comparative Example 2
Using the ceramic base material shown in Example 1, the same sintered piece having a glazed part and an unglazed part was produced in the same manner as in Example 2. The sintered piece that was not carburized was used as a test piece, and the exothermic temperature of this test piece was measured in the same manner as in Example 1 (the measurement location was a solid part). The results are shown in Table 1.

(表1)
(Table 1)

測定結果から、実施例1、2は高温に発熱するが、比較例1、2はほとんど発熱しないことが判る。実施例1は実施例2よりも発熱温度の上昇速度が大きく、しかもより高温に発熱している。
実施例3
実施例1に示すセラミックス基材を用いて鋳込み成形により図3に示す容器を成形し、実施例1と同様の方法で素焼きし、その後焼成して実施例1と同様な吸水率を有する容器を製作した。この容器に実施例1と同様の方法で浸炭処理を施した。
From the measurement results, it can be seen that Examples 1 and 2 generate heat at a high temperature, but Comparative Examples 1 and 2 hardly generate heat. In Example 1, the rate of increase in the heat generation temperature is larger than that in Example 2, and the heat is generated at a higher temperature.
Example 3
A container shown in FIG. 3 is formed by casting using the ceramic substrate shown in Example 1, and subjected to unglaring by the same method as in Example 1, and then fired to obtain a container having the same water absorption rate as in Example 1. Produced. This container was carburized by the same method as in Example 1.

浸炭処理後の容器を実施例1と同様の方法により電子レンジに入れ、60秒照射して加熱し、その後取り出して、実施例1で用いたと同様な表面温度計を容器の各部位に当てて各部位における発熱温度を測定した。容器の口縁部14、胴部15及び高台16の各部位について発熱温度を測定した。結果を表2に示す。
実施例4
実施例1に示すセラミックス基材を用いて実施例3と同様な方法により容器を製作した。容器の口縁部14から高台16までの高さをLとしたとき、口縁部14から高台16に向けて2L/3に相当する長さの領域に実施例2と同様の方法により釉薬を施し施釉部を形成し、この施釉部を形成してなる容器に実施例1と同様の方法で浸炭処理を施した。
The carburized container is put into a microwave oven in the same manner as in Example 1, heated by irradiation for 60 seconds, then taken out, and the same surface thermometer as used in Example 1 is applied to each part of the container. The exothermic temperature at each site was measured. Exothermic temperature was measured about each part of mouth edge part 14, body part 15, and hill 16 of a container. The results are shown in Table 2.
Example 4
A container was manufactured in the same manner as in Example 3 using the ceramic substrate shown in Example 1. When the height from the mouth edge 14 of the container to the hill 16 is L, glaze is applied to the region having a length corresponding to 2L / 3 from the mouth edge 14 to the hill 16 by the same method as in the second embodiment. A glazed glazed portion was formed, and a carburizing treatment was performed on the container formed with the glazed portion in the same manner as in Example 1.

浸炭処理後の容器を実施例1と同様の方法により電子レンジにて加熱し、実施例3と同様、容器の各部位における発熱温度を測定した。結果を表2に示す。
比較例3
実施例1に示すセラミックス基材を用いて実施例3と同様な方法により容器を製作した。この容器に浸炭処理を施すことなく、実施例1と同様の方法により電子レンジにて加熱し、実施例3と同様、容器の各部位における発熱温度を測定した。結果を表2に示す。
The carburized container was heated in the microwave by the same method as in Example 1, and the exothermic temperature at each part of the container was measured as in Example 3. The results are shown in Table 2.
Comparative Example 3
A container was manufactured in the same manner as in Example 3 using the ceramic substrate shown in Example 1. Without subjecting this container to carburizing treatment, it was heated in a microwave oven in the same manner as in Example 1, and the exothermic temperature at each part of the container was measured as in Example 3. The results are shown in Table 2.

(表2)
(Table 2)

測定結果から、実施例3、4においては各部位において高い発熱温度が得られるが、比較例3の場合には、どの部位もほとんど発熱していないことが判る。実施例3、4のうち、実施例3は各部位においてほぼ均等な発熱温度が得られるが、実施例4においては口縁部14から高台16にかけて次第に発熱温度が高くなり、温度勾配を生じている。   From the measurement results, it can be seen that in Examples 3 and 4, a high heat generation temperature is obtained in each part, but in the case of Comparative Example 3, almost no part generates heat. Among Examples 3 and 4, Example 3 can obtain a substantially uniform heat generation temperature at each part. However, in Example 4, the heat generation temperature gradually increases from the lip 14 to the hill 16 and causes a temperature gradient. Yes.

本発明の電子レンジ用加熱具は、製造が容易で、十分な強度を発揮でき、発熱及び保温性能に優れており、食品や飲み物の加熱調理具等として用いるのに極めて有益である。   The microwave oven heater of the present invention is easy to manufacture, can exhibit sufficient strength, is excellent in heat generation and heat retention performance, and is extremely useful for use as a cooking utensil for foods and drinks.

走査型電子顕微鏡によるセラミックス焼結体の断面写真である。It is a cross-sectional photograph of the ceramic sintered compact by a scanning electron microscope. 浸炭処理を説明するための説明図である。It is explanatory drawing for demonstrating a carburizing process. 発熱温度を測定する部位を示す容器の断面略図である。It is the cross-sectional schematic of the container which shows the site | part which measures exothermic temperature.

符号の説明Explanation of symbols

A セラミックス焼結体の気孔
B セラミックス焼結体の表面
14 口縁部
15 胴部
16 高台
A. Pores of ceramic sintered body B Surface of ceramic sintered body 14 Mouth part 15 Body part 16 Height

Claims (6)

セラミックス焼結体からなり、浸炭処理により該セラミックス焼結体の表面及び気孔内に炭素薄膜層を形成してなることを特徴とする電子レンジ用加熱具。   A heating device for a microwave oven comprising a ceramic sintered body, wherein a carbon thin film layer is formed on the surface and pores of the ceramic sintered body by carburizing treatment. 炭素薄膜層が、炭化水素の熱分解により得られる炭素からなるものである請求項1記載の電子レンジ用加熱具。   The heating device for a microwave oven according to claim 1, wherein the carbon thin film layer is made of carbon obtained by thermal decomposition of hydrocarbon. 浸炭処理による炭素薄膜層は、セラミックス焼結体を加熱し、LPガスを導入して還元雰囲気で熱処理し、気相反応により炭素をセラミックス焼結体の表面及び気孔内に蒸着させることにより形成されるものである請求項1記載の電子レンジ用加熱具。   The carbon thin film layer formed by carburization is formed by heating the ceramic sintered body, introducing LP gas, heat-treating in a reducing atmosphere, and depositing carbon on the surface and pores of the ceramic sintered body by a gas phase reaction. The heating device for a microwave oven according to claim 1, wherein the heating device is a microwave oven. セラミックス焼結体における選択された部位における気孔内に炭素薄膜層を形成してなる請求項1記載の電子レンジ用加熱具。   The heating device for a microwave oven according to claim 1, wherein a carbon thin film layer is formed in pores at selected portions of the ceramic sintered body. 選択された部位を無釉部とし、それ以外の部分に釉薬を施して浸炭処理を行い、無釉部におけるセラミックス焼結体の気孔内に炭素薄膜層を形成してなる請求項4記載の電子レンジ用加熱具。   5. The electron according to claim 4, wherein the selected portion is made a solid part, and a carburizing treatment is performed by applying glaze to the other part, and a carbon thin film layer is formed in the pores of the ceramic sintered body in the solid part. Heating tool for the range. 容器形状に成形してなる請求項1記載の電子レンジ用加熱具。   The heating tool for a microwave oven according to claim 1, which is formed into a container shape.
JP2006099849A 2006-03-31 2006-03-31 Heating implement for microwave oven Pending JP2007268119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099849A JP2007268119A (en) 2006-03-31 2006-03-31 Heating implement for microwave oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099849A JP2007268119A (en) 2006-03-31 2006-03-31 Heating implement for microwave oven

Publications (1)

Publication Number Publication Date
JP2007268119A true JP2007268119A (en) 2007-10-18

Family

ID=38671520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099849A Pending JP2007268119A (en) 2006-03-31 2006-03-31 Heating implement for microwave oven

Country Status (1)

Country Link
JP (1) JP2007268119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620995A (en) * 2022-03-16 2022-06-14 杭州良渚黑陶文化科技有限公司 Black pottery product firing process and firing equipment thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620995A (en) * 2022-03-16 2022-06-14 杭州良渚黑陶文化科技有限公司 Black pottery product firing process and firing equipment thereof

Similar Documents

Publication Publication Date Title
JP2014228239A (en) Heat treatment vessel
WO1989007584A1 (en) Production of ceramic honeycomb structure
JP2539480B2 (en) Chemical heat storage material and manufacturing method thereof
JP2003302166A (en) Microwave baking furnace and method of microwave baking
JP2007268119A (en) Heating implement for microwave oven
JPH04229592A (en) Microwave absorption heating body
KR101904377B1 (en) Electric roaster comprising heat resistant ceramic roasting plate
KR20080039591A (en) Heat-proof ceramic tableware and method thereof
KR100719899B1 (en) High density, high strength, no crack earthen bowl manufacture method
EP2982614A1 (en) Device for microwave cooking
KR20000073829A (en) The method of production of heat resisting ceramic manufactures for cooking and the vessels
WO1989001921A1 (en) Thermal ceramics and uses therefor
KR100881951B1 (en) A heat resistant container coating structure and manufacture method
KR20170002349U (en) Ceramic vessel for induction ranges
JPH07124050A (en) Cooking appliance
JP2005272214A (en) Insulated container and its producing method
KR100937842B1 (en) High energy efficiency vessel for microwave oven and drying furance
JP5083728B2 (en) Ceramic products
JP2014001082A (en) Carbonizing and baking method, and carbonized and baked product
US20180282221A1 (en) A composition for refractory material
Choudary et al. Fabrication and testing of clay cups
KR100916551B1 (en) Manufacturing Method of Pottery with a Charcoal and Pottery thereof
KR200449973Y1 (en) A meat thermos instrument
CN1062729C (en) Heat accumulation cooker for closed cooking or roasting
KR20050055405A (en) Flat ceramic container