JP2007267672A - Differentiation inducting method in stem cell of mammal - Google Patents

Differentiation inducting method in stem cell of mammal Download PDF

Info

Publication number
JP2007267672A
JP2007267672A JP2006097394A JP2006097394A JP2007267672A JP 2007267672 A JP2007267672 A JP 2007267672A JP 2006097394 A JP2006097394 A JP 2006097394A JP 2006097394 A JP2006097394 A JP 2006097394A JP 2007267672 A JP2007267672 A JP 2007267672A
Authority
JP
Japan
Prior art keywords
cells
cell
culture
stem
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097394A
Other languages
Japanese (ja)
Inventor
Yasushi Hasegawa
靖司 長谷川
Tsutomu Sakaida
勉 坂井田
Satoru Nakada
悟 中田
Hirohiko Akamatsu
浩彦 赤松
Kayoko Matsunaga
佳世子 松永
Naoki Yamamoto
直樹 山本
Tooru Marunouchi
棣 丸野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Menard Cosmetic Co Ltd
Original Assignee
Nippon Menard Cosmetic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Menard Cosmetic Co Ltd filed Critical Nippon Menard Cosmetic Co Ltd
Priority to JP2006097394A priority Critical patent/JP2007267672A/en
Publication of JP2007267672A publication Critical patent/JP2007267672A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology effectively differentiation inducing biofunctional cells for tissue reproduction or restoration by using a stem cell separated form a biomedical tissue of mammal. <P>SOLUTION: The technology comprises preparation of biofunctional cells for transplantation used for reproduction medicine with high taking rate by using stem cells separated from a biomedical tissue of mammal and combining an adhesion culture with a suspension culture. The cell aggregate (sphere body) with a size of 50-500 μm diameter on the suspension culture process is continuously kept in an undifferentiated state of the stem cells, and manifested an excellent improvement in differentiation inducing rate to biofunctional cells of the skin and taking rate after transplantation. The invention relates to the technology continuously keeping undifferentiated state of stem cells and then effectively inducing differentiation of biofunctional cells for reproduction or restoration of tissue with a high taking rate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、哺乳動物の生体組織から分離した幹細胞を、1回以上の継代培養(接着培養)と浮遊培養の工程を組み合わせることで、極めて高い生着率を備えた、組織の再生および修復に用いる機能性細胞を得るための、効率的な分化誘導方法、ならびに当該細胞の用途に関する。   The present invention relates to the regeneration and repair of tissue with a very high engraftment rate by combining stem cells isolated from mammalian biological tissue with one or more subculture (adhesion culture) and suspension culture processes. The present invention relates to an efficient differentiation-inducing method for obtaining functional cells for use in the present invention, and uses of the cells.

脊椎動物、特に哺乳動物の組織は、傷害もしくは疾患、または加齢などに伴い細胞・臓器の損傷が起こった場合、再生系が働き、細胞・臓器の損傷を回復しようとする。この作用に、当該組織に備わる多能性を有した細胞(以下、幹細胞と記す)や周囲の細胞が大きな役割を果している。特に、幹細胞は、あらゆる細胞・臓器に分化する多能性を有しており、この性質により細胞・組織の損傷部を補うことで回復に導くと考えられている。このような幹細胞を応用した、次世代の医療である再生医療に期待が集まっている。   In the case of vertebrate, particularly mammalian tissue, when cell or organ damage occurs due to injury or disease, or aging, the regeneration system works to try to recover the damage of the cell or organ. The pluripotent cells (hereinafter referred to as stem cells) provided in the tissue and surrounding cells play a major role in this action. In particular, stem cells have pluripotency to differentiate into all cells and organs, and it is considered that this property leads to recovery by supplementing damaged portions of cells and tissues. Expectations are gathered for regenerative medicine, which is the next generation of medicine using such stem cells.

哺乳動物における幹細胞研究で最も進んでいる組織は骨髄である。骨髄には生体の造血幹細胞が存在しており、血液細胞の主要な供給源と考えられている。さらに骨髄には、造血幹細胞とは別に、その他の臓器(例えば、骨、軟骨、筋肉、脂肪など)へ分化可能な幹細胞が包含されていることが報告されている(非特許文献1)。   The most advanced tissue in stem cell research in mammals is the bone marrow. Living bone-forming hematopoietic stem cells exist in the bone marrow and are considered to be the main source of blood cells. Furthermore, it has been reported that the bone marrow includes stem cells that can be differentiated into other organs (eg, bone, cartilage, muscle, fat, etc.) in addition to hematopoietic stem cells (Non-patent Document 1).

Pittenger M.F.,et al.,Science,1999,284,143−147Pittenger M.M. F. , Et al. , Science, 1999, 284, 143-147.

さらに、近年、骨髄以外にも、肝臓、膵臓、脂肪など、あらゆる臓器に幹細胞が存在することが明らかにされ、各臓器の恒常性維持に大きく関与していると考えられている(非特許文献2〜5)。これら幹細胞を再生医療へ利用するためには、生体組織から幹細胞を分離し、目的とする所定の機能性細胞に効率よく分化誘導を行う必要がある。   Furthermore, in recent years, in addition to bone marrow, it has been clarified that stem cells exist in all organs such as liver, pancreas, fat and the like, and it is considered that they are greatly involved in maintaining homeostasis of each organ (non-patent literature). 2-5). In order to use these stem cells for regenerative medicine, it is necessary to separate the stem cells from the living tissue and efficiently induce differentiation into the intended functional cells of interest.

Goodell M.F.,et al.,Nat. Med.,1997,3,1337−1345Goodell M.M. F. , Et al. Nat. Med. 1997, 3, 1337-1345. Zulewski H.,et al.,Diabetes,2001,50,521−533Zulewski H. , Et al. Diabetes, 2001, 50, 521-533. Suzuki A.,et al.,Hepatology,2000,32,1230−1239Suzuki A. , Et al. , Hepatology, 2000, 32, 1230-1239 Zuk P.A.,et al.,Tissue Engineering,2001,7,211−228Zuk P.M. A. , Et al. , Tissue Engineering, 2001, 7, 211-228.

現在までに、骨髄、血液、肝臓、膵臓、脂肪などからの幹細胞を分離する幾つかの報告がある。これらの方法は、各臓器から酵素処理などで細胞を分散し、遠心分離や幹細胞マーカー(タンパク質や遺伝子)を指標とし、フローサイトメーターなどを用いて幹細胞を分離する方法が主である。   To date, there are several reports that isolate stem cells from bone marrow, blood, liver, pancreas, fat, and the like. These methods are mainly methods in which cells are dispersed from each organ by enzyme treatment or the like, and stem cells are separated using a flow cytometer or the like using centrifugation or a stem cell marker (protein or gene) as an index.

例えば、Zukらは、脂肪から遠心分離法を用いて幹細胞を分離する方法を報告している(非特許文献6)。また、Reyesらは、骨髄に存在する幹細胞のマーカータンパク質(AC133)を発見し、これを利用することで、幹細胞を分離し、特殊な培養液を用いて培養する技術について報告している(非特許文献7)。また、膵臓からの幹細胞の分離法に関しても同様に、マーカータンパク質(c−Met、c−Kit、CD45およびTER119)を利用した選択的分離法に関する特許が公開されている(特許文献1)。さらに、その他の方法では、肝臓における幹細胞のマーカータンパク質(Ttm2A)をコードするmRNAを利用することで幹細胞の分離法についての発明が開示されている(特許文献2)。このように、各臓器から幹細胞を選択的に分離する技術についての報告または開示がある。   For example, Zuk et al. Have reported a method of separating stem cells from fat using a centrifugation method (Non-patent Document 6). In addition, Reyes et al. Have reported a technique for isolating a stem cell by using a marker protein (AC133) of a stem cell (AC133) existing in the bone marrow and culturing it using a special culture solution (non-contained). Patent Document 7). Similarly, regarding a method for separating stem cells from the pancreas, a patent relating to a selective separation method using marker proteins (c-Met, c-Kit, CD45 and TER119) has been published (Patent Document 1). Furthermore, in another method, an invention relating to a method for separating stem cells by using mRNA encoding a stem cell marker protein (Ttm2A) in the liver is disclosed (Patent Document 2). As described above, there are reports or disclosures on techniques for selectively separating stem cells from each organ.

Zuk P.A.,et al.,Molecular Biology of the Cell,2002,13,4279−4295Zuk P.M. A. , Et al. , Molecular Biology of the Cell, 2002, 13, 4279-4295. Reyes M.,et al.,J.Clin.Invest.,2002,109,337−346Reyes M.M. , Et al. , J .; Clin. Invest. , 2002, 109, 337-346 WO2002/088335号WO2002 / 088335 特開2004−187679号JP 2004-187679 A

また、各組織から分離した幹細胞の分化誘導技術の検討も進められている。   In addition, studies on the induction of differentiation of stem cells isolated from each tissue are also underway.

例えば、幹細胞のオクタマーバインディングトランスクリプションファクター−3/4(Oct−3/4)の発現を調節することで、神経細胞へ分化誘導する発明が開示されている(特許文献3)。また、間葉系幹細胞を用いた軟骨への分化誘導する方法(非特許文献8、特許文献4)や、造血幹細胞に、ノッチリガンドタンパク質を作用させることで白血球細胞に分化誘導する方法についての開示もある(特許文献5)。さらに、インスリン産生細胞(β細胞)への分化誘導(非特許文献9)、心筋細胞への分化誘導(非特許文献10)など、様々な細胞への分化誘導技術について報告されている。   For example, an invention that induces differentiation into nerve cells by regulating the expression of octamer binding transcription factor-3 / 4 (Oct-3 / 4) in stem cells is disclosed (Patent Document 3). Also disclosed are methods for inducing differentiation into cartilage using mesenchymal stem cells (Non-patent Documents 8 and 4) and methods for inducing differentiation into white blood cells by causing Notch ligand protein to act on hematopoietic stem cells. There is also (patent document 5). Furthermore, differentiation induction techniques for various cells such as differentiation induction into insulin-producing cells (β cells) (Non-patent Document 9) and differentiation induction into cardiomyocytes (Non-patent Document 10) have been reported.

特開2004−236607号JP-A-2004-236607 Grigoriadis A.E.,et al.,Journal of Cell Biology,1988,106,2139−2151Grigoriadis A. E. , Et al. , Journal of Cell Biology, 1988, 106, 2139-2151. 特開2004−254655号JP 2004-254655 A 特開2005−13059号JP 2005-13059 A Lumelsky N.,et al.,Science,2001,292,1389−1394Lumelsky N.M. , Et al. , Science, 2001, 292, 1389-1394. Makino S.,et al.,Journal of Clinical Investology,1999,103,697−705Makino S. , Et al. , Journal of Clinical Investology, 1999, 103, 697-705.

さらに近年では、これら分化誘導技術をより効果的に行い、分化誘導効率を高める特殊な培養技術についての報告または開示がある。   Furthermore, in recent years, there are reports or disclosures on special culture techniques that perform these differentiation induction techniques more effectively and increase differentiation induction efficiency.

例えば、幹細胞の分化誘導時に1〜5000mVの電気刺激を与えることで、血管細胞へ効率的に誘導する発明(特許文献6)や、中空糸の内腔に幹細胞を入れた後、遠心力または圧力をかけて凝集体を形成させ、未分化の状態のまま幹細胞を培養することで、軟骨細胞への分化誘導効率を高める発明の開示もみられる(特許文献7)。また、脳から得られた幹細胞を特異的に神経細胞へ導く浮遊培養法についての報告がある(非特許文献11)。   For example, an invention (Patent Document 6) that efficiently induces vascular cells by applying electrical stimulation of 1 to 5000 mV at the time of inducing differentiation of stem cells, or after putting stem cells into the lumen of a hollow fiber, centrifugal force or pressure There is also a disclosure of an invention that enhances the efficiency of inducing differentiation into chondrocytes by culturing stem cells in an undifferentiated state by forming an aggregate by applying (Patent Document 7). In addition, there is a report on a suspension culture method that specifically guides stem cells obtained from the brain to nerve cells (Non-patent Document 11).

特開2004−129603号JP 2004-129603 A 特開2004−166604号JP 2004-166604 A Reynolds B.A.,Journal of Neuroscience,1992,12,4565−4574Reynolds B.M. A. , Journal of Neuroscience, 1992, 12, 4565-4574.

以上のように、本発明に関連する先行技術については幾つか挙げられるが、再生医療への応用を考えると、複雑な組織を再生するためには、その組織の損傷に合わせた機能性細胞を効率よく調製することが必要である。   As described above, there are several prior arts related to the present invention. Considering application to regenerative medicine, in order to regenerate a complex tissue, functional cells adapted to the damage of the tissue are used. It is necessary to prepare it efficiently.

特に、皮膚は角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および毛包細胞など、多くの機能性細胞から構成された複雑な組織であり、皮膚の再生医療には、幹細胞からこれら機能性細胞を効率よく調製し、移植に用いることが必要である。   In particular, the skin is a complex tissue composed of many functional cells such as keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and hair follicle cells. It is necessary to efficiently prepare these functional cells and use them for transplantation.

近年、皮膚の再生医療では、培養表皮シートや三次元培養皮膚などの臨床応用が進められている。しかし、これら培養皮膚は、角化細胞または線維芽細胞のみで構成されるため、その他の機能性細胞(色素細胞、皮脂腺細胞、脂肪細胞や毛包細胞)を含んでおらず、これら細胞を組み込んだ高機能な皮膚の再生が望まれていた(非特許文献12、13)。   In recent years, in skin regenerative medicine, clinical applications such as cultured skin sheets and three-dimensional cultured skin have been promoted. However, since these cultured skins are composed only of keratinocytes or fibroblasts, they do not contain other functional cells (pigment cells, sebaceous gland cells, adipocytes, or hair follicle cells) and incorporate these cells. However, regeneration of highly functional skin has been desired (Non-patent Documents 12 and 13).

猪口 貞樹,医学のあゆみ,2001,199,1142−1146Sadaki Higuchi, History of Medicine, 2001, 199, 1142-1146 白方 裕司,日皮会誌,1999,109,1301−1307Yuji Shirakata, Journal of the Japanese Society of Skin, 1999, 109, 1301-1307

また、現在まで、複雑な組織ほど細胞移植後の生着率は悪く、繰り返し細胞移植が必要となり、満足のいく治療効果は得られていない。今後、再生医療において生着率の高い移植用の機能性細胞を安定供給するためにも、より簡便で、生着率の高い機能性細胞の分化誘導方法が望まれていた。   In addition, until now, the more complex tissues, the lower the survival rate after cell transplantation, which requires repeated cell transplantation, and a satisfactory therapeutic effect has not been obtained. In the future, in order to stably supply functional cells for transplantation with a high engraftment rate in regenerative medicine, a simpler method for inducing differentiation of functional cells with a high engraftment rate has been desired.

かかる状況に鑑み、本発明は、上記のような従来技術における問題点を解決し、生体組織から分離した幹細胞から、極めて高い生着率を備えた、組織の再生および修復に用いる機能性細胞を得るための、効率的な分化誘導方法を提供することにある。   In view of such a situation, the present invention solves the problems in the prior art as described above, and provides functional cells used for tissue regeneration and repair, which have an extremely high engraftment rate, from stem cells separated from living tissue. An object of the present invention is to provide an efficient differentiation induction method for obtaining the above.

このような事情により、本発明者らは鋭意研究を重ねた結果、哺乳動物の生体組織から分離した幹細胞を、1回以上の接着培養と浮遊培養の工程を組み合わせることで、幹細胞の未分化状態を維持したまま培養を行い、極めて生着率の高い機能性細胞へ分化誘導する技術を見出し、本発明を完成するに至った。   Under such circumstances, as a result of intensive research, the present inventors have combined stem cells isolated from mammalian biological tissue with one or more adhesion culture and suspension culture steps, and thus the undifferentiated state of the stem cells. Culturing was carried out while maintaining the above, and a technique for inducing differentiation into functional cells with an extremely high engraftment rate was found, and the present invention was completed.

したがって、本発明は、幹細胞を培養する過程で、当該細胞を段階的に機能性細胞へ分化誘導する培養技術であって、当該細胞の培養段階が、1)接着培養による工程、2)浮遊培養による工程、3)分化誘導培養による工程を含む3つの段階において実施され、この工程により培養することで、幹細胞の未分化状態を継続的に維持させたまま培養を行い、その後、生着率の極めて高い移植用の機能性細胞を調製するものである。   Therefore, the present invention is a culture technique for inducing differentiation of the cells into functional cells step by step in the process of culturing the stem cells, and the culture stage of the cells is 1) a process by adhesion culture, 2) suspension culture 3) It is carried out in three stages including a process by differentiation-inducing culture. By culturing by this process, culturing is performed while the undifferentiated state of the stem cells is continuously maintained. A very high functional cell for transplantation is prepared.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明で用いることのできる幹細胞は、本発明の目的に沿うものであれば、胚性の幹細胞、もしくは、骨髄、血液、皮膚、脂肪、脳、肝臓、膵臓、腎臓、筋肉やその他の組織から得られる、体性の幹細胞、さらには当該細胞の初代培養細胞、継代培養細胞、凍結細胞いずれであってもよい。しかし、好ましくは、骨髄、血液、皮膚、脂肪組織由来の幹細胞を用いることができる。また、哺乳動物における、幹細胞の分化の方向性、および、分化の過程等について同等の特性を持っていれば、全ての哺乳動物に応用が可能である。例えば、ヒト、サル、マウス、ラット、モルモット、ウサギ、ネコ、イヌ、ウマ、ウシ、ヒツジ、ヤギ、ブタ等の哺乳動物から得られた幹細胞を用いることができる。   Stem cells that can be used in the present invention are embryonic stem cells or bone marrow, blood, skin, fat, brain, liver, pancreas, kidney, muscle, and other tissues as long as they meet the purpose of the present invention. Somatic stem cells obtained, and further, primary cultured cells, subcultured cells, or frozen cells of the cells may be used. However, preferably, stem cells derived from bone marrow, blood, skin, or adipose tissue can be used. Moreover, if it has the same characteristic about the direction of differentiation of a stem cell in a mammal, the process of differentiation, etc., it can apply to all mammals. For example, stem cells obtained from mammals such as human, monkey, mouse, rat, guinea pig, rabbit, cat, dog, horse, cow, sheep, goat and pig can be used.

また、哺乳動物の幹細胞を得る方法としては、上記の非特許文献1〜11に記した方法や、遠心分離による方法、また、幹細胞マーカーを指標としてフローサイトメーターなどの機器を利用して分離する方法が挙げられる。   Moreover, as a method of obtaining a mammalian stem cell, it isolate | separates using apparatuses, such as the method described in said nonpatent literature 1-11, the method by centrifugation, and a stem cell marker as a parameter | index, such as a flow cytometer. A method is mentioned.

これら哺乳動物から得られた幹細胞について、以下の3段階を含む培養法にて幹細胞を培養し、その後、分化誘導を行う。   With respect to the stem cells obtained from these mammals, the stem cells are cultured by a culture method including the following three stages, and then differentiation induction is performed.

1)接着培養による工程:哺乳動物から得られた幹細胞を、イン・ビトロ(in vitro)の環境下で培養する第一の工程。具体的には、接着培養用の培養液を用いて、幹細胞を接着培養し、主に幹細胞を増殖させる工程。この工程を、少なくとも1回以上行うことが好ましい。   1) Step by adhesion culture: The first step of culturing stem cells obtained from a mammal in an in vitro environment. Specifically, a step of mainly cultivating stem cells by adhesion-culturing stem cells using a culture solution for adhesion culture. This step is preferably performed at least once.

2)浮遊培養による工程:1)接着培養による工程の後に、イン・ビトロ(in vitro)の環境下で培養する第二の工程。具体的には、浮遊培養用の培養液を用いて、幹細胞を浮遊培養し、主に幹細胞の多分化能と移植時の生着率を向上させる工程。好ましくは、浮遊細胞により、単一の細胞および/または細胞の凝集体(スフェア体)を形成させる工程。この工程を、少なくとも1回以上行うことが好ましい。   2) Step by suspension culture: 1) The second step of culturing in an in vitro environment after the step by adhesion culture. Specifically, a step of suspension-culturing stem cells using a culture solution for suspension culture, mainly improving the pluripotency of stem cells and the survival rate at the time of transplantation. Preferably, a step of forming a single cell and / or an aggregate (sphere body) of cells by floating cells. This step is preferably performed at least once.

上記の2)浮遊培養による工程にある、細胞の凝集体(スフェア体)とは、浮遊培養により幹細胞が増殖したもので、桑の実状の細胞凝集体のことである。凝集体の確認は、顕微鏡により行う。この時、凝集体の大きさは、直径が50〜500μmであることが好ましい。また、直径が100〜300μmであることが、より好ましい。   The cell aggregate (sphere body) in the above-mentioned 2) suspension culture step is a stem cell proliferated by suspension culture and is a real cell aggregate of mulberry. Confirmation of the aggregate is performed with a microscope. At this time, the size of the aggregate is preferably 50 to 500 μm in diameter. Moreover, it is more preferable that a diameter is 100-300 micrometers.

3)分化誘導培養による工程:2)浮遊培養による工程の後に、イン・ビトロ(in vitro)の環境下で培養する第三の工程。具体的には、分化誘導培養用の培養液を用いて、幹細胞を分化誘導し、主に幹細胞を目的の機能性細胞へ分化誘導する工程。   3) Step by differentiation induction culture: 2) Third step of culturing in an in vitro environment after the step by suspension culture. Specifically, a step of inducing differentiation of stem cells using a culture medium for differentiation induction culture, and mainly inducing differentiation of the stem cells into target functional cells.

1)接着培養による工程に用いる、接着培養用の培養液としては、以下のものが使用できる。   1) As a culture solution for adhesion culture used in the process by adhesion culture, the following can be used.

具体的には、細胞の生存増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン)を含む基本培地(例えば、Dulbeco‘s Modifide Eagle Medium(D−MEM),Minimum Essential Medium(MEM),RPMI1640,Basal Medium Eagle(BME),Dulbeco‘s Modifide Eagle Medium:Nutrient Mixture F−12(D−MEM/F−12),Glasgow Minimum Essential Medium(Glasgow MEM))に、増殖因子として塩基性線維芽細胞増殖因子(bFGF)、白血球遊走阻止因子(LIF)の少なくともいずれか1種を添加した培地が用いられ、好ましくは、これら増殖因子の全てが含有されたものである。また、増殖速度を増大させるために、必要に応じて、上皮細胞増殖因子(EGF)、腫瘍壊死因子(TNF)、ビタミン類、インターロイキン類、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、コラーゲン、フィブロネクチン、プロゲステロン、セレナイト、B27−サプリメント、N2−サプリメント、ITS−サプリメントが含有されてもよい。また、必要に応じて、抗生物質が含有されてもよい。   Specifically, a basic medium (for example, Dulbecco's Modified Eagle Medium (D-MEM), Minimum) containing components (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins) necessary for viable growth of cells. Essential Medium (MEM), RPMI 1640, Basal Medium Eagle (BME), Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (D-MEM / F-12), GlasgowM And at least one of basic fibroblast growth factor (bFGF) and leukocyte migration inhibitory factor (LIF) Medium is used, preferably those that all of these growth factors is contained. In order to increase the growth rate, epithelial cell growth factor (EGF), tumor necrosis factor (TNF), vitamins, interleukins, insulin, transferrin, heparin, heparan sulfate, collagen, fibronectin, Progesterone, selenite, B27-supplement, N2-supplement, ITS-supplement may be contained. Moreover, antibiotics may be contained as needed.

また、上記培養液には、1〜20%の含有率で血清が含まれることが好ましい。しかし、血清はロットの違いにより成分が異なり、その効果にバラツキがあるため、ロットチェックを行った後に使用することが好ましい。   Moreover, it is preferable that serum is contained in the culture solution at a content of 1 to 20%. However, since serum has different components depending on the lot and there are variations in the effects, it is preferable to use the serum after a lot check.

市販品としては、インビトロジェン製の間葉系幹細胞基礎培地や、三光純薬製の間葉系幹細胞基礎培地などを用いることができる。   As commercially available products, mesenchymal stem cell basal medium manufactured by Invitrogen, mesenchymal stem cell basal medium manufactured by Sanko Junyaku, etc. can be used.

2)浮遊培養による工程に用いる、浮遊培養用の培養液としては、以下のものが使用できる。   2) As the culture solution for suspension culture used in the suspension culture step, the following can be used.

具体的には、細胞の生存増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン)を含む基本培地(例えば、Dulbeco‘s Modifide Eagle Medium(D−MEM),Minimum Essential Medium(MEM),RPMI1640,Basal Medium Eagle(BME),Dulbeco‘s Modifide Eagle Medium:Nutrient Mixture F−12(D−MEM/F−12),Glasgow Minimum Essential Medium(Glasgow MEM))に、添加因子として塩基性線維芽細胞増殖因子(bFGF)、上皮細胞増殖因子(EGF)、白血球遊走阻止因子(LIF)、または、B27−サプリメントの少なくともいずれか1種を添加した培地が用いられ、好ましくは、これら添加因子の全てが含有されたものである。また、幹細胞の未分化状態を維持させるためと、移植時の生着率を向上させるために、必要に応じて、腫瘍壊死因子(TNF)、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、コラーゲン、フィブロネクチン、プロゲステロン、セレナイト、N2−サプリメント、ITS−サプリメントが含有されてもよい。また、必要に応じて、抗生物質が含有されてもよい。   Specifically, a basic medium (for example, Dulbecco's Modified Eagle Medium (D-MEM), Minimum) containing components (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins) necessary for viable growth of cells. Essential Medium (MEM), RPMI 1640, Basal Medium Eagle (BME), Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (D-MEM / F-12), GlasgowM Basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), leukocyte migration inhibitory factor (LIF), Is B27-medium supplemented with at least one kind of supplement is used, it is preferably, that all of these additives factors is contained. In order to maintain the undifferentiated state of stem cells and to improve the engraftment rate at the time of transplantation, tumor necrosis factor (TNF), insulin, transferrin, heparin, heparan sulfate, collagen, fibronectin, Progesterone, selenite, N2-supplement, ITS-supplement may be contained. Moreover, antibiotics may be contained as needed.

また、上記培養液では、血清を含まないことが好ましい。血清はロットの違いにより成分が異なり、さらに、幹細胞の分化に影響する未知の成分が含まれる可能性があるためである。   Moreover, it is preferable that the said culture solution does not contain serum. This is because serum has different components depending on lots and may contain unknown components that affect stem cell differentiation.

市販品としては、インビトロジェン製のNeurobasal Mediumや、タカラ製の神経前駆細胞培地キットなどを用いることができる。   As commercial products, Neurobasal Medium manufactured by Invitrogen, neural progenitor cell culture medium kit manufactured by Takara, and the like can be used.

3)分化誘導培養による工程に用いる、分化誘導用の培養液としては、以下のものが使用できる。   3) As the culture medium for differentiation induction used in the step of differentiation induction culture, the following can be used.

具体的には、細胞の生存増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン)を含む基本培地(例えば、Dulbeco‘s Modifide Eagle Medium(D−MEM),Minimum Essential Medium(MEM),RPMI1640,Basal Medium Eagle(BME),Dulbeco‘s Modifide Eagle Medium:Nutrient Mixture F−12(D−MEM/F−12),Glasgow Minimum Essential Medium(Glasgow MEM))に、分化誘導因子として、各機能性細胞に合わせて、細胞塩基性線維芽細胞増殖因子(bFGF)、上皮細胞増殖因子(EGF)、角化細胞増殖因子(KGF)、神経細胞増殖因子(NGF)、幹細胞因子(SCF)、トランスフォーミング増殖因子(TGF−β)、腫瘍壊死因子(TNF)、エンドセリン類、ビタミン類、サイトカイン類、インターロイキン類、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、レチノイン酸、コラーゲン、フィブロネクチン、プロゲステロン、セレナイト、B27−サプリメント、N2−サプリメント、ITS−サプリメントを、必要に応じて含有し使用する。また、必要に応じて、抗生物質が含有されてもよい。   Specifically, a basic medium (for example, Dulbecco's Modified Eagle Medium (D-MEM), Minimum) containing components (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins) necessary for viable growth of cells. Essential Medium (MEM), RPMI 1640, Basal Medium Eagle (BME), Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (D-MEM / F-12), GlasgowM As factors, cell basic fibroblast growth factor (bFGF), epithelial cell growth factor (EGF) according to each functional cell Keratinocyte growth factor (KGF), nerve cell growth factor (NGF), stem cell factor (SCF), transforming growth factor (TGF-β), tumor necrosis factor (TNF), endothelins, vitamins, cytokines, inter A leukin, insulin, transferrin, heparin, heparan sulfate, retinoic acid, collagen, fibronectin, progesterone, selenite, B27-supplement, N2-supplement, ITS-supplement are contained and used as necessary. Moreover, antibiotics may be contained as needed.

また、上記培養液には、0.1〜20%の含有率で血清が含まれることが好ましい。しかし、血清はロットの違いにより成分が異なり、その効果にバラツキがあるため、ロットチェックを行った後に使用することが好ましい。   Moreover, it is preferable that serum is contained in the culture solution at a content of 0.1 to 20%. However, since serum has different components depending on the lot and there are variations in the effects, it is preferable to use the serum after a lot check.

市販品としては、三光純薬製の分化誘導培養液や、TOYOBO製の分化培養キットなどを用いることができる。   As a commercially available product, a differentiation induction culture solution manufactured by Sanko Junyaku, a differentiation culture kit manufactured by TOYOBO, or the like can be used.

いずれの培養工程においても、以上の培養液を用いて、37℃、5%炭酸ガスの環境下で、培養を行い、1〜3日毎の培地交換を行うことが好ましい。   In any of the culturing steps, it is preferable to perform the culture in the environment of 37 ° C. and 5% carbon dioxide gas and replace the medium every 1 to 3 days using the above culture solution.

以上の1)〜3)の培養工程を行うことで、幹細胞の未分化能を維持させたまま培養し、その後、分化誘導することで極めて高い生着率を備えた、組織の再生および/または修復に用いる機能性細胞を得ることができる。   By performing the above culturing steps 1) to 3), culturing while maintaining the undifferentiated ability of the stem cells, and then regenerating and / or regenerating tissue having a very high engraftment rate by inducing differentiation. Functional cells used for repair can be obtained.

本発明は、哺乳動物の骨髄、血液、脂肪または皮膚組織をはじめとする生体組織から分離した幹細胞を用いて、上記の1)〜3)の培養工程により、幹細胞の未分化状態を維持したまま培養を行い、その後、分化誘導することで生着率の優れた組織の再生および/または修復に用いる機能性細胞を、簡便に効率よく得ることを特徴とする分化誘導方法である。特に、移植に用いる機能性細胞が、皮膚を構成する、角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞である場合において、顕著な生着率の向上がみられる分化誘導方法である。以上より、本発明は、組織の再生医学の分野において大きく貢献できるものと期待される。   The present invention uses stem cells isolated from mammalian tissue such as bone marrow, blood, fat, or skin tissue, and maintains the undifferentiated state of the stem cells by the culture steps of 1) to 3) above. It is a differentiation induction method characterized in that functional cells used for regeneration and / or repair of a tissue having an excellent engraftment rate are obtained simply and efficiently by culturing and then differentiation induction. In particular, when the functional cells used for transplantation are keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and / or hair follicle cells that constitute the skin, a significant improvement in engraftment is achieved. It is a differentiation induction method that can be seen. From the above, the present invention is expected to contribute greatly in the field of tissue regenerative medicine.

以下、次に本発明を詳細に説明するため、具体的且つ詳細な実施例を挙げるが、本発明はこれらに何ら限定されるものではない。   Hereinafter, specific and detailed examples will be given to describe the present invention in detail, but the present invention is not limited thereto.

骨髄、血液、脂肪または皮膚組織から、幹細胞を、以下の方法で遠心分離法により分離した後、上記1)〜2)の培養工程である、1回以上接着培養し、その後、浮遊培養に移行させた細胞を用いて、従来の接着培養のみで培養する方法と、浮遊培養のみで培養する方法、そして本発明の接着培養と浮遊培養を組み合わせた方法における、幹細胞の状態(未分化の状態)について、下記の方法にて評価した。   Stem cells are separated from bone marrow, blood, fat, or skin tissue by centrifugation according to the following method, followed by one or more adhesion cultures, which are the culture steps of 1) to 2) above, and then transferred to suspension culture. Stem cell state (undifferentiated state) in a conventional method of culturing only by adhesion culture, a method of culturing only by suspension culture, and a method combining the adhesion culture and suspension culture of the present invention Was evaluated by the following method.

培養液1の調製(接着培養液)
接着培養液として、Dulbecco’s Modified Eagle MediumとF−12培養液の1:1混合培養液(Gibco)に、ウシ胎児血清(FBS、10%)、非必須アミノ酸溶液(Gibco)、ヌクレオシド溶液(Gibco)、10UのESGRO(CHEMICON)、100unit/mLのペニシリン(シグマ)と100μg/mLのストレプトマイシン(ベーリンガー)を添加した培養液を用いた(以降、培養液1と記す)。
Preparation of culture fluid 1 (adhesive culture fluid)
As an adhesion culture medium, a 1: 1 mixed culture medium (Gibco) of Dulbecco's Modified Eagle Medium and F-12 culture medium (Febco), fetal bovine serum (FBS, 10%), non-essential amino acid solution (Gibco), nucleoside solution ( Gibco), a culture solution containing 10 3 U ESGRO (CHEMICON), 100 unit / mL penicillin (Sigma) and 100 μg / mL streptomycin (Boehringer) was used (hereinafter referred to as culture solution 1).

培養液2の調製(浮遊培養液)
浮遊培養液として、Dulbecco’s Modified Eagle MediumとF−12培養液の1:1混合培養液(Gibco製)に、塩基性線維芽細胞増殖因子(bFGF、10ng/mL、シグマ製)、上皮細胞増殖因子(EGF、10ng/mL、シグマ製)、非必須アミノ酸溶液(Gibco製)、ヌクレオシド溶液(Gibco製)、B27サプリメント(インビトロジェン製)、10UのESGRO(CHEMICON製)、100unit/mLのペニシリン(シグマ製)と100μg/mLのストレプトマイシン(ベーリンガー製)を添加した無血清培養液を用いた(以降、培養液2と記す)。
Preparation of culture solution 2 (floating culture solution)
As a suspension culture solution, 1: 1 mixed culture solution (manufactured by Gibco) of Dulbecco's Modified Eagle Medium and F-12 culture medium (manufactured by Gibco), basic fibroblast growth factor (bFGF, 10 ng / mL, manufactured by Sigma), epithelial cells Growth factor (EGF, 10 ng / mL, manufactured by Sigma), non-essential amino acid solution (manufactured by Gibco), nucleoside solution (manufactured by Gibco), B27 supplement (manufactured by Invitrogen), 10 3 U ESGRO (manufactured by CHEMICON), 100 unit / mL A serum-free culture medium supplemented with penicillin (manufactured by Sigma) and 100 μg / mL streptomycin (manufactured by Boehringer) was used (hereinafter referred to as culture medium 2).

骨髄由来幹細胞の調製
C57BL/6マウス(雄性、4週齢)の大腿骨を無菌的に摘出し、周囲の結合組織を出来る限り除去した後、両骨端を骨尖刃刀にて切り落とした。その後、25G針付の注射筒を一方の骨端に突き刺し、PBS(−)を注入し骨髄を50mL容の遠沈管(Falcon製)に押し出した。その後、セルストレーナー(Falcon製)を通しながら別の50mL容の遠沈管に移し、遠心分離した。上清を除去し、新たに培養液2を加えて細胞を分散させ洗浄した。この洗浄操作を2回繰り返した。洗浄後、遠心分離法により幹細胞を分離した。
Preparation of Bone Marrow-Derived Stem Cells The femurs of C57BL / 6 mice (male, 4 weeks old) were aseptically removed, and the peripheral connective tissue was removed as much as possible. Thereafter, a syringe with a 25G needle was inserted into one of the bone ends, PBS (−) was injected, and the bone marrow was pushed out into a 50 mL centrifuge tube (Falcon). Then, it was transferred to another 50 mL centrifuge tube while passing through a cell strainer (Falcon) and centrifuged. The supernatant was removed, and the culture medium 2 was newly added to disperse and wash the cells. This washing operation was repeated twice. After washing, stem cells were separated by centrifugation.

血液由来幹細胞の調製
C57BL/6マウス(雄性、4週齢)から採血し、赤血球用血液(ミルティニーバイオ製)にて7分間処理を行った。その後、遠心分離し、上清を除去した後、新たに培養液2を加えて細胞を分散させ洗浄した。この洗浄操作を2回繰り返した。洗浄後、遠心分離法により幹細胞を分離した。
Preparation of blood-derived stem cells Blood was collected from C57BL / 6 mice (male, 4 weeks old) and treated with erythrocyte blood (Miltiny Bio) for 7 minutes. Then, after centrifuging and removing the supernatant, the culture medium 2 was newly added to disperse and wash the cells. This washing operation was repeated twice. After washing, stem cells were separated by centrifugation.

皮膚および脂肪由来幹細胞の調製
C57BL/6(雄性、4週齢)を刈毛処理した後、皮膚及び腹部皮下脂肪組織をそれぞれ別々に無菌的に摘出し、PBS(−)で3回洗浄した後、直径6cmの組織培養ディッシュ(Falcon製)に移した。それぞれの組織を、尖刃刀により約2mm角に細切し、0.2%コラゲナーゼ溶液(新田ゼラチン製)を加え、プラスチックディッシュを上下左右に揺らして溶液中に拡散させた。これらを、37℃で30分間インキュベートすることで細胞外マトリックスを消化した後、穏やかにピペッティングし細胞を分散させた。この細胞分散液を50mL容の遠沈管(Falcon製)にセルストレーナー(Falcon製)を通しながら移した。さらに、培養液1を適量添加し、よくピペッティングした後、5分間遠心分離した。遠心後、上清画分を除去し、新たに培養液1を加えて細胞を分散させ洗浄した。この洗浄操作を2回繰り返した。洗浄後、遠心分離法により幹細胞を分離した。
Preparation of skin and adipose-derived stem cells After C57BL / 6 (male, 4 weeks old) was shaved, the skin and abdominal subcutaneous adipose tissue were separately aseptically removed and washed three times with PBS (−) And transferred to a tissue culture dish (Falcon) having a diameter of 6 cm. Each tissue was chopped into approximately 2 mm squares with a pointed blade, 0.2% collagenase solution (manufactured by Nitta Gelatin) was added, and the plastic dish was shaken up and down and left and right to diffuse into the solution. These were incubated at 37 ° C. for 30 minutes to digest the extracellular matrix and then gently pipet to disperse the cells. This cell dispersion was transferred to a 50 mL centrifuge tube (Falcon) while passing through a cell strainer (Falcon). Further, an appropriate amount of the culture solution 1 was added, pipetted well, and then centrifuged for 5 minutes. After centrifugation, the supernatant fraction was removed, and the culture medium 1 was newly added to disperse and wash the cells. This washing operation was repeated twice. After washing, stem cells were separated by centrifugation.

以上の方法にて骨髄、血液、皮膚および脂肪組織から得られた幹細胞を用いて、まず培養液1による3日間の接着培養を行った、その後、培養液2による浮遊培養に移行し、14日間培養した(接着培養後に浮遊培養へ移行させる培養方法。以下、実施例1と記す)。なお、浮遊培養により得られた細胞凝集体(スフェア体)は、100〜300μmであった(以降の試験にも適用)。   Using stem cells obtained from bone marrow, blood, skin, and adipose tissue by the above method, first, adhesion culture was performed for 3 days with culture medium 1, and then transferred to suspension culture with culture medium 2 for 14 days. Culture was carried out (culture method for transferring to suspension culture after adhesion culture; hereinafter referred to as Example 1). In addition, the cell aggregate (sphere body) obtained by suspension culture was 100-300 micrometers (it applies also to subsequent tests).

比較例1
実施例1と同様に、骨髄、血液、皮膚および脂肪組織から調製したそれぞれの細胞を用いて、培養液2による浮遊培養を行わず、継続して培養液1により17日間の接着培養を行った(接着培養による培養方法。以下、比較例1と記す)。
Comparative Example 1
Similarly to Example 1, each cell prepared from bone marrow, blood, skin, and adipose tissue was used for continuous culture for 17 days with culture medium 1 without performing suspension culture with culture medium 2. (Culture method by adhesion culture. Hereinafter, referred to as Comparative Example 1).

比較例2
実施例1と同様に、骨髄、血液、皮膚および脂肪組織から調製したそれぞれの細胞を用いて、培養液1による接着培養を行わず、継続して培養液2による17日間の浮遊培養を行った(浮遊培養による培養方法。以下、比較例2と記す)。なお、浮遊培養により得られた細胞凝集体(スフェア体)は、実施例1と同様に、100〜300μmであった(以降の試験にも適用)。
Comparative Example 2
In the same manner as in Example 1, each cell prepared from bone marrow, blood, skin and adipose tissue was used for continuous culture for 17 days in culture medium 2 without performing adhesion culture in culture medium 1. (Culture method by suspension culture. Hereinafter, referred to as Comparative Example 2). In addition, the cell aggregate (sphere body) obtained by suspension culture was 100-300 micrometers similarly to Example 1 (it applies also to subsequent tests).

アルカリフォスファターゼ活性の測定による幹細胞の未分化状態の比較
実施例1、比較例1および比較例2における、幹細胞の未分化状態を以下の方法で比較した。
Comparison of undifferentiated state of stem cells by measurement of alkaline phosphatase activity The undifferentiated state of stem cells in Comparative Example 1, Comparative Example 1 and Comparative Example 2 were compared by the following method.

幹細胞の未分化状態の指標として、アルカリフォスファターゼ活性を測定した(文献:末盛 博文,実験医学別冊 幹細胞・クローン研究プロトコール,2001,10−16)。具体的には、アルカリフォスファターゼ検出キット(CHEMICON製)を用いて、実施例1、比較例1および比較例2における培養開始時点のアルカリフォスファターゼ活性を100%として、培養3日後、7日後および14日後のアルカリフォスファターゼ活性(%)を測定し、結果を1〜4に示した。   Alkaline phosphatase activity was measured as an indicator of the undifferentiated state of stem cells (Reference: Hirofumi Suemori, separate volume on experimental medicine, stem cell / clone research protocol, 2001, 10-16). Specifically, using an alkaline phosphatase detection kit (manufactured by CHEMICON), the alkaline phosphatase activity at the start of the culture in Example 1, Comparative Example 1 and Comparative Example 2 was taken as 100%, after 3 days, 7 days and 14 days after the culture. The alkaline phosphatase activity (%) was measured and the results are shown in 1-4.

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

以上の表1〜4に示した結果から、実施例1の方法は、比較例1および比較例2に比べて、骨髄、血液、皮膚および脂肪由来幹細胞の全てにおいて、培養3日、7日、14日後も幹細胞の未分化状態が顕著に保たれていた。   From the results shown in Tables 1 to 4 above, the method of Example 1 was compared with Comparative Example 1 and Comparative Example 2 in all bone marrow, blood, skin and adipose-derived stem cells. Even after 14 days, the undifferentiated state of the stem cells was remarkably maintained.

また、浮遊培養による期間を調節することで、細胞凝集体(スフェア体)の大きさを、直径50μm以下と、500μm以上のものにおいて同様な試験を行ったところ、直径100〜300μmのものに比べて、未分化状態(アルカリフォスファターゼ活性%)が2割程度低下した。   In addition, by adjusting the period of suspension culture, the same test was performed on cell aggregates (sphere bodies) having a diameter of 50 μm or less and a diameter of 500 μm or more, compared with those having a diameter of 100 to 300 μm. Thus, the undifferentiated state (alkaline phosphatase activity%) decreased by about 20%.

以上の結果より、実施例1による培養方法における直径100〜300μmの細胞凝集体(スフェア体)は、幹細胞の未分化状態を持続的に維持させることを確認した。   From the above results, it was confirmed that the cell aggregate (sphere body) having a diameter of 100 to 300 μm in the culture method according to Example 1 continuously maintained the undifferentiated state of the stem cells.

実施例1による培養を行ったそれぞれの細胞を用いて、以下の方法で皮膚を構成する機能性細胞である、角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および毛包細胞への分化誘導効率(%)を比較した。   Using each cell cultured in Example 1, to the keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and hair follicle cells, which are functional cells constituting the skin by the following method. The differentiation induction efficiency (%) was compared.

角化細胞への分化誘導および確認
実施例1、比較例1または比較例2で培養したそれぞれの細胞を、角化細胞用培養液(TOYOBO製)に角化細胞増殖因子(KGF、10ng/mL、シグマ製)を添加した培地にて、37℃、5%COの条件で14日間培養した。培養液は3日間毎に新鮮な角化細胞用培養液に交換した。角化細胞への分化誘導確認は、細胞を4%パラホルムアルデヒド溶液により固定した後、免疫染色(ケラチン)により、ケラチンが染色された細胞を指標に行った。
Differentiation induction and confirming the embodiment of the keratinocytes 1, each of the cells cultured in Comparative Example 1 or Comparative Example 2, keratinocyte growth factor keratinocyte culture medium for (manufactured by TOYOBO) (KGF, 10ng / mL And cultured at 37 ° C. and 5% CO 2 for 14 days. The culture medium was replaced with a fresh culture medium for keratinocytes every 3 days. Confirmation of differentiation induction into keratinocytes was performed using cells stained with keratin as an index by immunostaining (keratin) after fixing the cells with a 4% paraformaldehyde solution.

線維芽細胞への分化誘導および確認
実施例1、比較例1または比較例2で培養したそれぞれの細胞を、線維芽細胞用培養液(TOYOBO製)に線維芽細胞増殖因子(FGF、10ng/mL、シグマ製)を添加した培地にて、37℃、5%COの条件で14日間培養した。培養液は3日間毎に新鮮な線維芽細胞用培養液に交換した。線維芽細胞への分化誘導確認は、細胞を4%パラホルムアルデヒド溶液により固定した後、免疫染色(フィブロネクチン)により、フィブロネクチンが染色された細胞を指標に行った。
Differentiation induction and confirmation into fibroblasts Each cell cultured in Example 1, Comparative Example 1 or Comparative Example 2 was added to fibroblast growth medium (manufactured by TOYOBO) with fibroblast growth factor (FGF, 10 ng / mL). And cultured at 37 ° C. and 5% CO 2 for 14 days. The culture medium was replaced with a fresh fibroblast culture medium every 3 days. Confirmation of differentiation induction into fibroblasts was performed using cells stained with fibronectin as an index by immunostaining (fibronectin) after fixing the cells with a 4% paraformaldehyde solution.

色素細胞への分化誘導および確認
実施例1、比較例1または比較例2で培養したそれぞれの細胞を、色素細胞用培養液(TOYOBO)に幹細胞因子(SCF、10ng/mL、シグマ製)およびエンドセリン(10ng/mL、シグマ製)を添加した培地にて、37℃、5%COの条件で14日間培養した。培養液は3日間毎に新鮮な色素細胞用培養液に交換した。色素細胞への分化誘導確認は、細胞を4%パラホルムアルデヒド溶液により固定した後、フォンタナ・マッソン染色(メラニン)により、メラニンが染色された細胞を指標に行った。
Differentiation induction into pigment cells and confirmation Each cell cultured in Example 1, Comparative Example 1 or Comparative Example 2 was treated with stem cell factor (SCF, 10 ng / mL, manufactured by Sigma) and endothelin in pigment cell culture medium (TOYOBO). In a medium supplemented with (10 ng / mL, manufactured by Sigma), the cells were cultured for 14 days under conditions of 37 ° C. and 5% CO 2 . The culture medium was replaced with a fresh pigment cell culture medium every 3 days. Confirmation of differentiation induction into pigment cells was performed using cells stained with Fontana-Masson staining (melanin) after fixing the cells with a 4% paraformaldehyde solution as an index.

皮脂腺細胞への分化誘導および確認
実施例1、比較例1または比較例2で培養したそれぞれの細胞を、皮脂腺細胞用培養液(Dulbecco’s Modified Eagle MediumとF−12培養液の1:1混合培養液(Gibco製))に、ウシ胎児血清(FBS、10%)、上皮細胞成長因子(EGF、10ng/mL、シグマ製)、テストステロン(シグマ製)を添加した培地にて、37℃、5%COの条件で14日間培養した。培養液は3日間毎に新鮮な脂肪細胞用培養液に交換した。皮脂腺細胞への分化誘導確認は、細胞を4%パラホルムアルデヒド溶液により固定した後、免疫染色(PPARγ)により、PPARγが染色された細胞を指標に行った。
Differentiation induction and confirmation into sebaceous gland cells Each cell cultured in Example 1, Comparative Example 1 or Comparative Example 2 was mixed with a culture solution for sebaceous gland cells (Dulbecco's Modified Eagle Medium and F-12 culture solution in 1: 1 mixture). In a medium in which fetal bovine serum (FBS, 10%), epidermal growth factor (EGF, 10 ng / mL, Sigma) and testosterone (Sigma) are added to a culture solution (Gibco)) at 37 ° C., 5 ° C. The cells were cultured for 14 days under the condition of% CO 2 . The culture solution was replaced with a fresh adipocyte culture solution every 3 days. Confirmation of differentiation induction into sebaceous gland cells was performed by fixing cells with 4% paraformaldehyde solution and then immunostaining (PPARγ) using the cells stained with PPARγ as an index.

脂肪細胞への分化誘導および確認
実施例1、比較例1または比較例2で培養したそれぞれの細胞を、脂肪細胞用培養液(TOYOBO製)にインスリン(シグマ製)を添加した培地にて、37℃、5%COの条件で14日間培養した。培養液は3日間毎に新鮮な脂肪細胞用培養液に交換した。脂肪細胞への分化誘導確認は細胞を4%パラホルムアルデヒド溶液により固定した後、オイルレッドO染色により、脂肪滴が赤く染色された細胞を指標に行った。
Differentiation induction into adipocytes and confirmation Each cell cultured in Example 1, Comparative Example 1 or Comparative Example 2 was cultured in a medium in which insulin (Sigma) was added to a culture medium for fat cells (TOYOBO). ° C., and cultured for 14 days in 5% CO 2 conditions. The culture solution was replaced with a fresh adipocyte culture solution every 3 days. Confirmation of differentiation into adipocytes was performed by fixing cells with a 4% paraformaldehyde solution and then using oil red O staining as a marker for cells in which fat droplets were stained red.

毛包細胞への分化誘導および確認
実施例1、比較例1または比較例2で培養したそれぞれの細胞を、毛包細胞用培養液(TOYOBO製)にアスコルビン酸マグネシウム(シグマ製)を添加した培地にて、37℃、5%COの条件で14日間培養した。培養液は3日間毎に新鮮な毛包細胞用培養液に交換した。毛包細胞への分化誘導確認は細胞を4%パラホルムアルデヒド溶液により固定した後、免疫染色(ヘアーケラチン)により、ヘアーケラチンが染色された細胞を指標に行った。
Differentiation induction and confirming the embodiment of the hair follicle cells 1, the medium of each of cells cultured in Comparative Example 1 or Comparative Example 2, with the addition of magnesium ascorbate (Sigma) in hair follicle cells for culture (manufactured by TOYOBO) And cultured at 37 ° C. under 5% CO 2 for 14 days. The culture medium was replaced with a fresh culture medium for hair follicle cells every 3 days. Confirmation of differentiation induction into hair follicle cells was carried out by fixing cells with a 4% paraformaldehyde solution and then immunostaining (hair keratin) using the cells stained with hair keratin as an index.

比較例3
比較例1(接着培養)による培養を行ったそれぞれの細胞を用いて、実施例2と同様に、上記の角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および毛包細胞への分化誘導および確認を行った。
Comparative Example 3
Using each cell cultured in Comparative Example 1 (adhesion culture), the same as in Example 2, the above keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and hair follicle cells. Differentiation induction and confirmation were performed.

比較例4
比較例2(浮遊培養)による培養を行ったそれぞれの細胞を用いて、実施例2と同様に、上記の角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および毛包細胞への分化誘導および確認を行った。
Comparative Example 4
Using each cell cultured in Comparative Example 2 (suspension culture), in the same manner as in Example 2, the keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and hair follicle cells Differentiation induction and confirmation were performed.

実施例2、比較例3および比較例4の分化誘導効率(%)の比較
実施例2、比較例3または比較例4で培養した細胞を、それぞれ角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および毛包細胞への分化誘導した後、各細胞の確認染色を行い、顕微鏡観察にて単一細胞(500個)当りの分化した細胞数を計測した。その結果をもとに分化誘導効率(計測した細胞(500個)中の分化した細胞数の割合%)を算出し、実施例2、比較例3および比較例4における分化誘導効率を比較した。
The cells cultured in Comparative Example 2, Comparative Example 3 or Comparative Example 4 in differentiation induction efficiency (%) of Example 2, Comparative Example 3 and Comparative Example 4 were keratinocytes, fibroblasts, pigment cells, and sebaceous glands, respectively. After induction of differentiation into cells, adipocytes, and hair follicle cells, each cell was confirmed and stained, and the number of differentiated cells per single cell (500 cells) was counted by microscopic observation. Based on the result, the differentiation induction efficiency (ratio% of the number of differentiated cells in the measured cells (500)) was calculated, and the differentiation induction efficiency in Example 2, Comparative Example 3 and Comparative Example 4 were compared.

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

表5〜8に示した結果から、実施例2の方法は、骨髄、血液、皮膚および脂肪由来の幹細胞全てにおいて、比較例3と比較例4に比べて、皮膚を構成する機能性細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)への分化誘導効率が顕著に上昇した。   From the results shown in Tables 5 to 8, in the method of Example 2, the functional cells (corner) constituting the skin in all stem cells derived from bone marrow, blood, skin, and fat, compared to Comparative Example 3 and Comparative Example 4. Differentiation induction efficiency into cells, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and / or hair follicle cells) significantly increased.

また、細胞凝集体(スフェア体)の大きさを、直径50μm以下と、500μm以上にしたものにおいて同様な試験を行ったところ、直径100〜300μmのものに比べて、分化誘導効率(%)が2割程度低下した。   Moreover, when the same test was performed on the cell aggregate (sphere body) having a diameter of 50 μm or less and a diameter of 500 μm or more, differentiation induction efficiency (%) was higher than that of 100 to 300 μm in diameter. It decreased by about 20%.

以上の結果より、実施例2による培養方法により、各機能性細胞への分化誘導効率が著しく向上することを確認した。   From the above results, it was confirmed that the differentiation induction efficiency into each functional cell was remarkably improved by the culture method according to Example 2.

実施例2、比較例3および比較例4で分化誘導した各細胞を用いて、以下の方法で細胞移植を行い、移植後のそれぞれの生着率(%)を比較した。   Using the cells induced to differentiate in Example 2, Comparative Example 3 and Comparative Example 4, cell transplantation was performed by the following method, and the respective engraftment ratios (%) after transplantation were compared.

生着率(%)の確認
骨髄、血液、脂肪または皮膚組織から幹細胞を分離した後、実施例2で分化誘導した各細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)を用いて、以下の方法にて、皮膚移植を行い、生着率(%)について測定した。
Confirmation of engraftment rate (%) After separating stem cells from bone marrow, blood, fat or skin tissue, each cell (keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and cells induced to differentiate in Example 2) (Or hair follicle cells) was subjected to skin transplantation by the following method, and the survival rate (%) was measured.

移植用の皮膚を構成する各機能性細胞の調製
実施例2で分化誘導した各細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)を、それぞれ5%FBS添加ハンクス液(Hank‘s balanced salt solution)に分散し、以下の各細胞のマーカーにて分化した機能性細胞を標識し、フローサイトメーターにて分離回収した。具体的には、角化細胞の分離用マーカーとして抗ケラチン抗体(CHEMICON製)、線維芽細胞の分離用マーカーとして抗ファイブロブラスト抗体(R&D製)、色素細胞の分離用マーカーとして抗MITF抗体(Santa Cruz製)、皮脂腺細胞の分離用マーカーとして抗PPARγ抗体(ベイバイオ製)、脂肪細胞の分離用マーカーとしてNile Red染色(アルドリッチ製)、毛包細胞の分離用マーカーとして抗ヘアーケラチン抗体(Santa Cruz製)をそれぞれ用いて、30分間氷中にて反応させた後、5%FBS添加ハンクス液にて3回洗浄した。続いてAlexa Fruo 488で標識した抗IgGモノクローナル2次抗体(インビトロジェン製)と30分間氷中にて反応させた。なお、NillRed染色については、2次抗体反応の工程は必要ないため、省いた。反応終了後、5%FBSを含むハンクス液にて3回洗浄した後、PBSに細胞を懸濁した。これら蛍光標識したそれぞれの機能性細胞を、フローサイトメーター(ベックトン・ディッキンソン製)にて分離回収し、移植用細胞として用いた。
Preparation of functional cells constituting skin for transplantation Each of the cells (keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and / or hair follicle cells) induced to differentiate in Example 2 was used. Functional cells that were dispersed in Hank's balanced salt solution with% FBS, differentiated with the following markers for each cell, were labeled and separated and collected with a flow cytometer. Specifically, an anti-keratin antibody (manufactured by CHEMICON) as a marker for separating keratinocytes, an anti-fibroblast antibody (manufactured by R & D) as a marker for separating fibroblasts, and an anti-MITF antibody (Santa) as a marker for separating pigment cells Cruz), anti-PPARγ antibody (manufactured by Baybio) as a sebaceous gland cell separation marker, Nile Red staining (manufactured by Aldrich) as a fat cell separation marker, anti-hair keratin antibody (manufactured by Santa Cruz) as a marker for hair follicle cell separation ) For 30 minutes in ice and then washed 3 times with 5% FBS-added Hanks solution. Subsequently, it was reacted with Alexa Fruo 488-labeled anti-IgG monoclonal secondary antibody (manufactured by Invitrogen) for 30 minutes in ice. NillRed staining was omitted because the secondary antibody reaction step was not necessary. After completion of the reaction, the cells were washed 3 times with Hanks solution containing 5% FBS, and then the cells were suspended in PBS. Each of these fluorescently labeled functional cells was separated and collected by a flow cytometer (manufactured by Beckton Dickinson), and used as a cell for transplantation.

機能性細胞の移植および生着率(%)の測定
フローサイトメーターにより分離回収した各機能性細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)それぞれ10個を、ヌードマウス(雄性、4週齢)の皮下に移植した。具体的には、移植する10個の細胞を、予めCell Tracker(モレキュラープローブ製)にて蛍光標識し、その時点の蛍光強度を測定し100%とした。移植部位をマジックにてマーキングし、移植1週間、2週間、4週間後に移植部位を摘出し、酵素処理により細胞を分散させ、蛍光強度を測定し、移植時の蛍光強度(100%)と比較することで、生着率(%)を算出した。
Measurement of functional cell transplantation and engraftment rate (%) Each functional cell (keratinocyte, fibroblast, pigment cell, sebaceous gland cell, adipocyte and / or hair follicle cell) separated and collected by a flow cytometer 10 6 were implanted subcutaneously in nude mice (male, 4 weeks old). Specifically, 10 6 cells to be transplanted, and fluorescently labeled in advance Cell Tracker (Molecular Probe) was 100% by measuring the fluorescence intensity at that time. Mark the transplant site with magic, remove the transplant site 1 week, 2 weeks and 4 weeks after transplantation, disperse the cells by enzyme treatment, measure the fluorescence intensity, and compare it with the fluorescence intensity at the time of transplantation (100%) Thus, the survival rate (%) was calculated.

比較例5
比較例3で分化誘導した各細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)を用いて、実施例3と同様にヌードマウス(雄性、4週齢)の皮下に移植し、その生着率(%)を測定した。
Comparative Example 5
Using each cell (keratinocyte, fibroblast, pigment cell, sebaceous gland cell, adipocyte and / or hair follicle cell) induced to differentiate in Comparative Example 3, nude mice (male, 4 weeks) (Age) was transplanted subcutaneously, and the survival rate (%) was measured.

比較例6
比較例4で分化誘導した各細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)を用いて、実施例3と同様にヌードマウス(雄性、4週齢)の皮下に移植し、その生着率(%)を測定した。
Comparative Example 6
Using each cell (keratinocyte, fibroblast, pigment cell, sebaceous gland cell, adipocyte and / or hair follicle cell) induced to be differentiated in Comparative Example 4, nude mice (male, 4 weeks) (Age) was transplanted subcutaneously, and the survival rate (%) was measured.

実施例3、比較例5または比較例6による細胞移植後の生着率(%)の比較
実施例3、比較例5または比較例6における、皮膚を構成する機能性細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)の移植1週間、2週間、4週間後の生着率(%)を比較し、結果を9〜14に示した。
Functional cells (keratinocytes, fibers) constituting the skin in Comparative Example 3, Comparative Example 5 or Comparative Example 6 in engraftment rate (%) after cell transplantation according to Example 3, Comparative Example 5 or Comparative Example 6 The engraftment rate (%) after 1 week, 2 weeks and 4 weeks of transplantation of blast cells, pigment cells, sebaceous gland cells, adipocytes and / or hair follicle cells) was compared, and the results are shown in 9-14.

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

Figure 2007267672
Figure 2007267672

表9〜14に示した結果から実施例3は、比較例5または比較例6に比べて、移植1週間、2週間、4週間後すべてにおいて、極めて高い生着率を示した。   From the results shown in Tables 9 to 14, Example 3 showed an extremely high engraftment rate after 1 week, 2 weeks, and 4 weeks after transplantation, as compared with Comparative Example 5 or Comparative Example 6.

また、表9〜14以外の細胞(実施例3、比較例5および比較例6における、骨髄由来幹細胞から分化誘導した線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞または毛包細胞、血液由来幹細胞から分化誘導した角化細胞、色素細胞、皮脂腺細胞、脂肪細胞または毛包細胞、皮膚由来幹細胞から分化誘導した線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞または毛包細胞、脂肪由来幹細胞から分化誘導した角化細胞、線維芽細胞、色素細胞)についても同様な試験を行ったところ、いずれも実施例3の方法は、比較例5および比較例6に比べて、移植1週間、2週間、4週間後すべてにおいて、極めて高い生着率を確認した。   Further, cells other than those in Tables 9 to 14 (fibroblasts, pigment cells, sebaceous gland cells, adipocytes or hair follicle cells, blood-derived stem cells derived from bone marrow-derived stem cells in Example 3, Comparative Example 5 and Comparative Example 6) Differentiation induced from keratinocytes, pigment cells, sebaceous gland cells, adipocytes or hair follicle cells, fibroblasts differentiated from skin-derived stem cells, pigment cells, sebaceous gland cells, adipocytes or hair follicle cells, differentiation from adipose-derived stem cells When the same test was performed on induced keratinocytes, fibroblasts, pigment cells), all of the methods of Example 3 were compared with Comparative Example 5 and Comparative Example 6 for 1 week, 2 weeks of transplantation, All four weeks later, a very high survival rate was confirmed.

また、細胞凝集体(スフェア体)の大きさを、直径50μm以下と、500μm以上にしたものにおいて同様な試験を行ったところ、直径100〜300μmのものに比べて、生着率(%)が3割程度低下した。   In addition, when the same test was performed with the cell aggregate (sphere body) having a diameter of 50 μm or less and a diameter of 500 μm or more, the engraftment rate (%) was higher than that of 100 to 300 μm in diameter. It decreased by about 30%.

以上の結果より、実施例3による方法は、細胞移植における生着率を優位に向上させることを確認した。   From the above results, it was confirmed that the method according to Example 3 significantly improved the engraftment rate in cell transplantation.

以上の結果から、骨髄、血液、脂肪または皮膚組織から得られた幹細胞を用いて、従来の接着培養のみによる培養、または浮遊培養のみで培養した時に比べて、接着培養と浮遊培養を組み合わせることで、幹細胞の未分化状態を持続させ、生着率の高い機能性細胞への分化誘導効率が顕著に向上することを明らかにした。また、この時、浮遊細胞における細胞凝集体(スフェア体)の大きさが、直径50〜500μmのものに関して、幹細胞の未分化状態の維持と、その後の機能性細胞への分化誘導効率、さらに移植時の生着率が極めて優れていた。特に、本発明の分化誘導方法では、機能性細胞として、皮膚を構成する角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞において、分化誘導率が相乗的に向上することを明らかにした。本発明によれば、簡便に皮膚を構成する機能性細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)を調製することが可能であり、皮膚の損傷に応じて幹細胞から必要な機能性細胞を調製することが可能であると考える。故に本発明は、今後の再生医療における、移植用の細胞調製方法および移植方法に大きく貢献できるものと考える。   From the above results, it is possible to combine adhesion culture and suspension culture using stem cells obtained from bone marrow, blood, fat or skin tissue, compared to conventional culture using only adhesion culture or culture using suspension culture alone. It was revealed that the differentiation induction efficiency into functional cells with a high engraftment rate was significantly improved by maintaining the undifferentiated state of stem cells. At this time, regarding the size of the cell aggregate (sphere body) in the floating cell having a diameter of 50 to 500 μm, maintenance of the undifferentiated state of the stem cell and subsequent differentiation induction efficiency into the functional cell, and further transplantation The survival rate at the time was very good. In particular, in the differentiation induction method of the present invention, the differentiation induction rate is synergistically used as functional cells in keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and / or hair follicle cells constituting the skin. It was clarified to improve. According to the present invention, it is possible to easily prepare functional cells (keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and / or hair follicle cells) constituting the skin, It is considered possible to prepare necessary functional cells from stem cells according to the damage. Therefore, it is considered that the present invention can greatly contribute to a cell preparation method and a transplantation method for transplantation in future regenerative medicine.

本発明の活用例として、再生医療への応用が期待される。例えば、骨髄、血液、皮膚および脂肪組織の幹細胞から、再生医療における生着率の高い移植用細胞を、効率よく調製することが可能となった。特に、皮膚を構成する機能性細胞(角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞)を簡便に調製することが可能となり、さらに、移植後の生着率も極めて高いことから、今後の再生医療における有用な細胞調製技術として期待される。すなわち、本発明は、生体組織から得られた幹細胞を、従来よりも極めて生着率の高い、皮膚などの組織の再生および/または修復用の機能性細胞へ効率よく分化誘導する、優れた幹細胞の分化誘導方法といえる。
As an application example of the present invention, application to regenerative medicine is expected. For example, it has become possible to efficiently prepare transplant cells with a high engraftment rate in regenerative medicine from bone marrow, blood, skin and adipose tissue stem cells. In particular, it is possible to easily prepare functional cells (keratinocytes, fibroblasts, pigment cells, sebaceous gland cells, adipocytes and / or hair follicle cells) constituting the skin, and further, engraftment after transplantation. Since the rate is extremely high, it is expected as a useful cell preparation technique in future regenerative medicine. That is, the present invention is an excellent stem cell that efficiently induces differentiation of a stem cell obtained from a living tissue into a functional cell for regeneration and / or repair of tissue such as skin, which has a much higher engraftment rate than before. It can be said that this is a differentiation induction method.

Claims (7)

哺乳動物の生体組織から分離した幹細胞を、1)接着培養による工程、2)浮遊培養による工程、3)分化誘導培養による工程を含む3つの段階において実施されることを特徴とする、幹細胞の機能性細胞への分化誘導方法。 Stem cells isolated from mammalian biological tissue are performed in three stages including 1) adhesion culture, 2) suspension culture, and 3) differentiation induction culture. A method for inducing differentiation into sex cells. 生体組織が骨髄、血液、皮膚および/または脂肪組織由来であることを特徴とする、請求項1に記載の幹細胞の機能性細胞への分化誘導方法。 The method for inducing differentiation of a stem cell into a functional cell according to claim 1, wherein the living tissue is derived from bone marrow, blood, skin and / or adipose tissue. 浮遊培養として、単一細胞および/または細胞凝集体(スフェア体)を形成させることを特徴とする、請求項1から2に記載の幹細胞の機能性細胞への分化誘導方法。 The method for inducing differentiation of a stem cell into a functional cell according to claim 1, wherein single cells and / or cell aggregates (sphere bodies) are formed as suspension culture. 細胞凝集体(スフェア体)が50〜500μmであることを特徴とする、請求項1から3に記載の幹細胞の機能性細胞への分化誘導方法。 The method for inducing differentiation of a stem cell into a functional cell according to claim 1, wherein the cell aggregate (sphere body) is 50 to 500 μm. 機能性細胞が、皮膚を構成する、角化細胞、線維芽細胞、色素細胞、皮脂腺細胞、脂肪細胞および/または毛包細胞であることを特徴とする、請求項1から4に記載の幹細胞の機能性細胞への分化誘導方法。 5. The stem cell according to claim 1, wherein the functional cell is a keratinocyte, fibroblast, pigment cell, sebaceous gland cell, adipocyte and / or hair follicle cell constituting the skin. A method for inducing differentiation into functional cells. 請求項1から5に記載の幹細胞の分化誘導方法により調製された、組織再生および/または修復用の機能性細胞。 A functional cell for tissue regeneration and / or repair, prepared by the method for inducing differentiation of a stem cell according to claim 1. 哺乳動物の生体組織から分離した幹細胞を、1)接着培養による工程、2)浮遊培養による工程を含む2つの段階において実施されることを特徴とする、幹細胞の未分化維持培養方法。
A stem cell undifferentiated maintenance culture method characterized in that stem cells isolated from mammalian biological tissue are performed in two stages including 1) a process by adhesion culture and 2) a process by suspension culture.
JP2006097394A 2006-03-31 2006-03-31 Differentiation inducting method in stem cell of mammal Pending JP2007267672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097394A JP2007267672A (en) 2006-03-31 2006-03-31 Differentiation inducting method in stem cell of mammal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097394A JP2007267672A (en) 2006-03-31 2006-03-31 Differentiation inducting method in stem cell of mammal

Publications (1)

Publication Number Publication Date
JP2007267672A true JP2007267672A (en) 2007-10-18

Family

ID=38671122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097394A Pending JP2007267672A (en) 2006-03-31 2006-03-31 Differentiation inducting method in stem cell of mammal

Country Status (1)

Country Link
JP (1) JP2007267672A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011588A (en) * 2007-07-05 2009-01-22 Lion Corp Artificial skin and its manufacturing method
JP2011087466A (en) * 2009-10-20 2011-05-06 Nippon Menaade Keshohin Kk Method for detecting, separating and culturing stem cell
JP2011087467A (en) * 2009-10-20 2011-05-06 Nippon Menaade Keshohin Kk Method for detecting, separating and culturing stem cell
WO2013077423A1 (en) * 2011-11-25 2013-05-30 国立大学法人京都大学 Method for culturing pluripotent stem cell
WO2022024886A1 (en) * 2020-07-27 2022-02-03 株式会社コーセー Holocrine regulators evaluation and/or selection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514944A (en) * 2002-01-25 2005-05-26 一知 井上 Method for inducing differentiation of embryonic stem cells into functional cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514944A (en) * 2002-01-25 2005-05-26 一知 井上 Method for inducing differentiation of embryonic stem cells into functional cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011588A (en) * 2007-07-05 2009-01-22 Lion Corp Artificial skin and its manufacturing method
JP2011087466A (en) * 2009-10-20 2011-05-06 Nippon Menaade Keshohin Kk Method for detecting, separating and culturing stem cell
JP2011087467A (en) * 2009-10-20 2011-05-06 Nippon Menaade Keshohin Kk Method for detecting, separating and culturing stem cell
WO2013077423A1 (en) * 2011-11-25 2013-05-30 国立大学法人京都大学 Method for culturing pluripotent stem cell
JPWO2013077423A1 (en) * 2011-11-25 2015-04-27 国立大学法人京都大学 Method for culturing pluripotent stem cells
WO2022024886A1 (en) * 2020-07-27 2022-02-03 株式会社コーセー Holocrine regulators evaluation and/or selection method

Similar Documents

Publication Publication Date Title
US11851682B2 (en) Brown fat cell compositions and methods
EP2374871B1 (en) Pluripotent stem cells, method for preparation thereof and uses thereof
Lindroos et al. The potential of adipose stem cells in regenerative medicine
US20110171726A1 (en) Multipotent stem cells derived from human adipose tissue and cellular therapeutic agents comprising the same
Ferroni et al. Potential for neural differentiation of mesenchymal stem cells
KR101753630B1 (en) Composition for promoting the differentiation of stem cell and proliferation of cell and the method of manufacturing the same
Mantovani et al. Isolation of adult stem cells and their differentiation to Schwann cells
Cui et al. Biological characterization and pluripotent identification of sheep dermis-derived mesenchymal stem/progenitor cells
Dai et al. The human skin-derived precursors for regenerative medicine: current state, challenges, and perspectives
JP2007267672A (en) Differentiation inducting method in stem cell of mammal
KR100677054B1 (en) Method for isolating and culturing multipotent progenitor cells from umbilical cord blood and method for inducing differentiation thereof
JP4722508B2 (en) Identification and isolation culture method of pluripotent stem cells
Mizuno et al. Adipose-Derived Stem Cells in Regenerative Medicine
Alt et al. Fundamentals of Stem cells: why and how patients' own adult stem cells are the next generation of medicine
JP2011211956A (en) Undifferentiation-maintaining agent for stem cell and growth-promoting agent
WO2013123607A1 (en) Serum-free in vitro cultivation method and culture medium for adult stem cells
Dai et al. Isolation, characterization, and safety evaluation of human skin-derived precursors from an adherent monolayer culture system
JP5301146B2 (en) Keratinocyte progenitor cells cultured by a specific method and method for producing the same
KR20080094431A (en) Method for differentiating, culturing and isolating neural progenitor cells from peripheral blood mononuclear cells
Kamiya et al. Induction of Functional Mesenchymal Stem/Stromal Cells from Human iPCs Via a Neural Crest Cell Lineage Under Xeno-Free Conditions
TWI573873B (en) Serum-free culture expansion of somatic stem/progenitor cells in vitro
US20240024367A1 (en) Method of preparing mesenchymal-like stem cells and mesenchymal-like stem cells prepared thereby
JP2011211954A (en) Agent for maintaining undifferentiation of stem cell and proliferation promoter
KR20180092523A (en) Serum-free medium additive composition and method for inducing chondrogenesis of mesenchymal stem cells
Calikoglu-Koyuncu et al. Cell Sources for Tissue Engineering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828