JP2007266376A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2007266376A
JP2007266376A JP2006090420A JP2006090420A JP2007266376A JP 2007266376 A JP2007266376 A JP 2007266376A JP 2006090420 A JP2006090420 A JP 2006090420A JP 2006090420 A JP2006090420 A JP 2006090420A JP 2007266376 A JP2007266376 A JP 2007266376A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
layer
manufacturing
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090420A
Other languages
Japanese (ja)
Other versions
JP4967407B2 (en
Inventor
Yoshihiro Sugita
義博 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006090420A priority Critical patent/JP4967407B2/en
Publication of JP2007266376A publication Critical patent/JP2007266376A/en
Application granted granted Critical
Publication of JP4967407B2 publication Critical patent/JP4967407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device which controls a threshold voltage of a transistor by controlling a composition at the time of depositing by forming a gate electrode caused by a TaSiN-based film or a TiSiN-based film by a CVD method, and to provide the semiconductor device. <P>SOLUTION: The method of manufacturing the semiconductor device comprises the steps of: supplying hydrogenation silicon as a Si material, one selected from amide compound, imido compound or halide of Ta as a Ta material, titanium tetrachloride as a Ti material, and NH<SB>3</SB>as an N material, respectively; alternately laminating Si deposition film layer of 0.2 to 2.0 nm and TaN or TiN deposition film layer of 0.5 to 3.0 nm; and setting TaSi<SB>x</SB>N<SB>y</SB>or TiSi<SB>x</SB>N<SB>y</SB>film layer (here, x resides in a range of 0.1 to 3.0, y resides in a range of 0.5 to 5.0) to a layer thickness of 1 to 20 nm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ゲート電極を有する半導体装置の製造方法及びこれによって製造される半導体装置に関し、特に、仕事関数を制御することができるゲート電極を有する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device having a gate electrode and a semiconductor device manufactured thereby, and more particularly to a method for manufacturing a semiconductor device having a gate electrode capable of controlling a work function.

現在の情報化社会の中で、通信機器・情報機器に使用される半導体装置はますます小さくなっている。そのために、半導体装置を製造するための加工技術は、さらに発展し、個々の半導体装置はますます微細化されている。それとともに、トランジスタ構造も微細化され、そのゲート絶縁膜の厚さも、数十nm程度にまでなってきている。この程度にまでゲート絶縁膜が薄くなると、量子効果が顕在化し、トンネル効果によりリーク電流が急増してしまうようになる。その結果、オフ電流が増加して消費電力が増加したり回路動作をしなくなったりするといった問題が生じる。このようなリーク電流を抑制するために、具体的には、誘電率の高い、例えば、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化タンタル(Ta)などの高誘電体材料がゲート絶縁膜材料として挙げられている。これら高誘電率ゲート絶縁膜採用の効果を充分に引き出すためには、従来のポリシリコン電極に替わって金属電極を用いる事が望ましい。 In the current information society, semiconductor devices used for communication equipment and information equipment are becoming smaller and smaller. For this reason, processing technology for manufacturing semiconductor devices is further developed, and individual semiconductor devices are increasingly miniaturized. At the same time, the transistor structure has been miniaturized, and the thickness of the gate insulating film has reached about several tens of nm. When the gate insulating film is thinned to this extent, the quantum effect becomes obvious, and the leak current increases rapidly due to the tunnel effect. As a result, there arises a problem that the off-current increases and the power consumption increases or the circuit operation stops. In order to suppress such a leakage current, specifically, for example, aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), tantalum oxide (Ta) having a high dielectric constant is used. High dielectric materials such as 2 O 5 ) are mentioned as gate insulating film materials. In order to fully exploit the effects of adopting these high dielectric constant gate insulating films, it is desirable to use metal electrodes instead of the conventional polysilicon electrodes.

これらの高誘電体材料のゲート絶縁膜材料に対応する材料として、化学的・熱的に安定なTaN系、TaSiN系膜等の開発が進められている。例えば、非特許文献1では、TaN、TaSiN系膜と高誘電率材料を組み合わせる事で、n型MOSFETに要求される特性が合致していることが開示されている。また、非特許文献2では、TaN、TaSiN系膜をCVD法又はALD法で堆積する方法が開示されている。   Development of chemically and thermally stable TaN-based and TaSiN-based films has been promoted as materials corresponding to these high dielectric material gate insulating film materials. For example, Non-Patent Document 1 discloses that characteristics required for an n-type MOSFET are matched by combining a TaN or TaSiN film and a high dielectric constant material. Non-Patent Document 2 discloses a method of depositing a TaN or TaSiN film by a CVD method or an ALD method.

また、特許文献1では、金属ゲート電極として、それぞれ最適な仕事関数を有する材料を用い、低しきい値電圧のMISFETを形成する半導体装置が開示されている。また、特許文献2では、ゲート電極のゲート絶縁膜側から見た仕事関数を、そのゲート電極の材料のもつ特性値とは異なる値に自由に連続的に制御し、それによりVthを連続的に制御するMIS型トランジスタが開示されている。また、特許文献3では、PMOSおよびNMOSゲートで共通の材料が使用でき、同じゲート金属材料を使用して異なる仕事関数が生成できるスタック金属ゲートMOSFETおよびその製造方法が開示されている。特許文献4では、密着性が悪くならない程度の仕事関数を有する金属膜または金属化合物よりなる膜をゲート電極として使用した場合に、しきい値電圧を低く抑制できる半導体装置が開示されている。特許文献5では、ゲート電極をその下のゲート絶縁膜から保護するための方法、および対応するトランジスタ構造が開示されている。   Patent Document 1 discloses a semiconductor device in which a low threshold voltage MISFET is formed using a material having an optimum work function as a metal gate electrode. Further, in Patent Document 2, the work function viewed from the gate insulating film side of the gate electrode is freely and continuously controlled to a value different from the characteristic value of the material of the gate electrode, whereby Vth is continuously increased. An MIS transistor to be controlled is disclosed. Patent Document 3 discloses a stacked metal gate MOSFET in which a common material can be used for the PMOS and NMOS gates, and different work functions can be generated using the same gate metal material, and a manufacturing method thereof. Patent Document 4 discloses a semiconductor device that can suppress the threshold voltage to a low level when a metal film or a film made of a metal compound having a work function that does not deteriorate the adhesion is used as a gate electrode. In Patent Document 5, a method for protecting a gate electrode from a gate insulating film thereunder and a corresponding transistor structure are disclosed.

しかし、これらのTaSiN系膜をポリシリコンに替えて採用する場合、TaSiN系膜の膜組成を最適化する必要がある。非特許文献1の例を見ても分る通り、TaSiN系は閾値電圧に対する組成依存性は大きい、即ち、TaSiN系は組成によって仕事関数が多く変化するために、このTaSiN系を用いる場合にはその組成を制御しなければならない。一般に、金属膜の膜組成はスパッタ法では比較的容易に調整可能であるが、TaSiN系の膜を形成するCVD法では、膜質が良い成膜条件と望ましい組成の膜が堆積する成膜条件が一致するとは限らない。また、TaSiN系膜の場合には最適の閾値電圧を与える組成はプロセス全体の熱履歴に強く依存する上、その最適組成は、しばしば膜が非常に高抵抗になる領域に存在する。したがって、CVD法でTaSiN系膜を形成するには、最適組成になるように制御しなければならない。   However, when these TaSiN films are employed instead of polysilicon, it is necessary to optimize the film composition of the TaSiN films. As can be seen from the example of Non-Patent Document 1, the TaSiN system has a large composition dependency on the threshold voltage, that is, the TaSiN system has a large change in work function depending on the composition. Its composition must be controlled. In general, the film composition of a metal film can be adjusted relatively easily by sputtering, but the CVD method for forming a TaSiN-based film has film forming conditions with good film quality and film forming conditions for depositing a film with a desired composition. It does not always match. In the case of a TaSiN-based film, the composition that provides the optimum threshold voltage strongly depends on the thermal history of the entire process, and the optimum composition often exists in a region where the film becomes very high resistance. Therefore, in order to form a TaSiN-based film by the CVD method, it must be controlled so as to have an optimum composition.

特開2000−118175号公報JP 2000-118175 A 特開2003−23152号公報JP 2003-23152 A 特開2004−221596号公報JP 2004-221596 A 特開2004−289061号公報JP 2004-289061 A 特開2005−244186号公報JP 2005-244186 A Y. Suh, G. Heuss, J. Lee, and V. Misra:“Effect of the Composition on the Electrical Properties of TaSixNy Metal Gate Electrodes”, IEEE Elec. Dev. Lett. 24(2003) p439.Y. Suh, G. Heuss, J. Lee, and V. Misra: “Effect of the Composition on the Electrical Properties of TaSixNy Metal Gate Electrodes”, IEEE Elec. Dev. Lett. 24 (2003) p439. H. Kim:“Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing”, J. Vac. Sci. Technol.B21 (2003) p2231.H. Kim: “Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing”, J. Vac. Sci. Technol. B21 (2003) p2231.

上記したように、半導体装置のゲート電極は、絶縁膜に対するダメージの少ないCVD法で形成することが望ましい。しかし、上記のようにCVD法でゲート電極の膜組成を自由に制御することは容易ではない。
そこで、本発明は上記問題点に鑑みてなされたものであり、その課題は、CVD法でTaSiN系又はTiSiN系膜によるゲート電極を形成し、成膜時に組成を制御することで所望の閾値電圧を有する半導体装置の製造方法を提供することである。
As described above, the gate electrode of the semiconductor device is desirably formed by a CVD method with little damage to the insulating film. However, it is not easy to freely control the film composition of the gate electrode by the CVD method as described above.
Therefore, the present invention has been made in view of the above problems, and the problem is that a gate electrode is formed by a TaSiN-based or TiSiN-based film by a CVD method, and a desired threshold voltage is controlled by controlling the composition at the time of film formation. The manufacturing method of the semiconductor device which has this.

上記課題を解決する手段である本発明の特徴を以下に挙げる。
本発明の半導体装置の製造方法では、半導体基板上にCVD法で形成されるTaSiN系又はTiSiN系(以下、単に「TaSiN系等」と記す。)のゲート電極を形成する際に、Si堆積膜層とTaN堆積膜層又はTiN堆積膜を交互に積層して形成する。本発明では、TaSiN系膜の組成を制御するのに、特に、従来のように原料ガス、流量比等のみを制御するのではない。本発明の発明者は、高抵抗化したTaSiN系膜の膜組成と膜中金属の化学状態を調べ、特に、膜中のSi原子が典型的な絶縁膜であるSi膜のSi原子と同程度に窒化されていることを見出した。これは、成膜中にNとSiとの反応が充分進んだ結果である。CVD法等の成膜法を採用する限り、この反応は避けられない。そこで、本発明では、Si原料を熱分解して極薄いSi層を堆積させる工程とTa原料又はTi原料とN原料のNHを反応させ極薄いTaN系又はTiN系膜を堆積させる工程とを交互に行うことで、各々の成膜する厚さの比を調整して、所望の組成を有するTaSiN系膜を形成させるようにした。
従来のように原料ガスの組成比を制御して堆積させた膜では、NとSiとが反応して化学量論組成のSi膜中と同程度にSiが窒化して電気抵抗が大きく上昇する。しかし、本発明における半導体装置の製造方法では、堆積したTaSiN系膜は、従来とは異なり、膜中Siは完全には窒化されないため(SiN、x<4/3)、膜抵抗の大幅な上昇が起ることがなく、良好な電極を形成することができる。
The features of the present invention, which is a means for solving the above problems, are listed below.
In the method for manufacturing a semiconductor device of the present invention, a Si deposited film is formed when forming a TaSiN-based or TiSiN-based (hereinafter simply referred to as “TaSiN-based”) gate electrode formed on a semiconductor substrate by a CVD method. The layer and the TaN deposited film layer or the TiN deposited film are alternately laminated. In the present invention, in order to control the composition of the TaSiN-based film, in particular, only the source gas, the flow rate ratio, and the like are not controlled as in the prior art. The inventor of the present invention investigated the film composition of the TaSiN-based film with increased resistance and the chemical state of the metal in the film, and in particular, the Si atom in the Si 3 N 4 film in which the Si atom in the film is a typical insulating film It was found that the material was nitrided to the same degree. This is a result of a sufficient reaction between N and Si during film formation. This reaction is inevitable as long as a film forming method such as a CVD method is employed. Therefore, in the present invention, the Si raw material is thermally decomposed to deposit an extremely thin Si layer, and the Ta raw material or Ti raw material and the N raw material NH 3 are reacted to deposit an extremely thin TaN-based or TiN-based film. By alternately performing the adjustment, the ratio of the thicknesses of the respective films was adjusted to form a TaSiN-based film having a desired composition.
In a film deposited by controlling the composition ratio of the source gas as in the prior art, N reacts with Si, and Si is nitrided to the same extent as in a stoichiometric Si 3 N 4 film, resulting in an electrical resistance. A big rise. However, in the method for manufacturing a semiconductor device according to the present invention, the deposited TaSiN-based film is different from the conventional case, since Si in the film is not completely nitrided (SiN x , x <4/3), so that the film resistance is greatly increased. A good electrode can be formed without increasing.

また、さらに、半導体基板と、半導体基板のチャネル領域上にゲート絶縁膜を介して形成された金属膜を有するゲート電極と、半導体基板上のゲート電極の両側に形成された一対の拡散領域とよりなり、半導体基板上にCVD法で形成されるゲート電極を備える半導体装置であって、ゲート電極は、TaSi又はTiSi膜層と低抵抗金属膜との間に、TaSi又はTiSi膜層(ここで、xは0.1〜3.0、yは0.5〜5.0の範囲にする。)とTaN層又はTiN層(ここで、zは0.8〜1.3の範囲にする。)とを備える半導体装置を提供することができる。この半導体装置は、ゲート絶縁膜と直接接するゲート電極の上部に低抵抗の金属層を更に堆積した多層構造のゲート電極を有する。 Furthermore, a semiconductor substrate, a gate electrode having a metal film formed on a channel region of the semiconductor substrate via a gate insulating film, and a pair of diffusion regions formed on both sides of the gate electrode on the semiconductor substrate it is a semiconductor device comprising a gate electrode formed by CVD on a semiconductor substrate, a gate electrode, between the TaSi x N y, or TiSi x N y film layer and the low resistance metal film, TaSi x N y or TiSi x N y film layer (where x is in the range of 0.1 to 3.0 and y is in the range of 0.5 to 5.0) and TaN z layer or TiN z layer (where z is Can be provided in a range of 0.8 to 1.3). This semiconductor device has a gate electrode having a multilayer structure in which a low resistance metal layer is further deposited on the gate electrode directly in contact with the gate insulating film.

本発明の半導体装置の製造方法では、上記手段を用いる事で、ゲート絶縁膜上に設けるTaSiN系等膜層の組成を制御でき、その結果閾値電圧を制御した半導体装置を製造することができた。
また、半導体装置では、ゲート電極を低抵抗金属との多層構造とする事でゲート電極の抵抗を低くすることができた。
In the method for manufacturing a semiconductor device of the present invention, by using the above-mentioned means, the composition of the TaSiN-based film layer provided on the gate insulating film can be controlled, and as a result, a semiconductor device in which the threshold voltage is controlled can be manufactured. .
Further, in the semiconductor device, the gate electrode has a multilayer structure with a low-resistance metal, so that the resistance of the gate electrode can be lowered.

以下に、本発明を実施するための最良の形態を図面に基づいて説明する。なお、いわゆる当業者は特許請求の範囲内における本発明を変更・修正をして他の実施形態をなすことは容易であり、これらの変更・修正はこの特許請求の範囲に含まれるものであり、以下の説明はこの発明における最良の形態の例であって、この特許請求の範囲を限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. Note that it is easy for a person skilled in the art to make other embodiments by changing or correcting the present invention within the scope of the claims, and these changes and modifications are included in the scope of the claims. The following description is an example of the best mode of the present invention, and does not limit the scope of the claims.

ここで、本発明の半導体装置の製造方法によって製造されるゲート電極30は、電界効果型(FET)のMOSトランジスタに用いられる。
図1は、本発明の半導体装置の製造方法を説明するために示す模式図である。
図1(1)に示すように、半導体基板10に素子活性領域11を画定する。半導体基板10は、シリコン単結晶シリコン基板を用いる。
具体的には、半導体基板10の素子分離領域11になる溝を形成し、この溝を埋め込む膜厚に絶縁物(SiO2等)を堆積した後、CMP(Chemical Mechanical Polishing)法により半導体基板10上に溝を絶縁物で充填されたSTI(Shallow Trench Isolation)素子分離領域11を形成する。
次に、(2)に示すように、半導体基板10上に絶縁膜20を形成する。半導体基板10表面に形成された自然酸化膜を除去した後、半導体基板10上に、CVD法により絶縁膜20として膜厚数nm程度の高誘電率材料による薄膜を形成する。
次に、(3)に示すように、CVD法でゲート電極30を形成するTaSiN系膜層31を堆積し、さらに、低抵抗金属層32を形成して、これをパターニングすることにより、ゲート絶縁膜21上にゲート電極30を形成する。さらに、半導体基板10中にゲート電極30を自己整合マスクにn型あるいはp型不純物元素のイオン注入を行ない、半導体基板10中に、ゲート電極30の両側にn型あるいはp型のソースエクステンション領域41又はドレインエクステンション領域51を形成する。
Here, the gate electrode 30 manufactured by the method for manufacturing a semiconductor device of the present invention is used for a field effect (FET) MOS transistor.
FIG. 1 is a schematic view for explaining a method for manufacturing a semiconductor device of the present invention.
As shown in FIG. 1 (1), an element active region 11 is defined in a semiconductor substrate 10. As the semiconductor substrate 10, a silicon single crystal silicon substrate is used.
Specifically, after forming a trench to be the element isolation region 11 of the semiconductor substrate 10 and depositing an insulator (SiO 2 or the like) to a thickness to fill the trench, the semiconductor substrate 10 is formed by CMP (Chemical Mechanical Polishing) method. An STI (Shallow Trench Isolation) element isolation region 11 having a trench filled with an insulating material is formed thereon.
Next, as shown in (2), an insulating film 20 is formed on the semiconductor substrate 10. After the natural oxide film formed on the surface of the semiconductor substrate 10 is removed, a thin film made of a high dielectric constant material having a film thickness of about several nm is formed as the insulating film 20 on the semiconductor substrate 10 by the CVD method.
Next, as shown in (3), a TaSiN-based film layer 31 for forming the gate electrode 30 is deposited by CVD, and further a low-resistance metal layer 32 is formed and patterned to form gate insulation. A gate electrode 30 is formed on the film 21. Further, ion implantation of an n-type or p-type impurity element is performed in the semiconductor substrate 10 using the gate electrode 30 as a self-aligned mask, and an n-type or p-type source extension region 41 is formed on both sides of the gate electrode 30 in the semiconductor substrate 10. Alternatively, the drain extension region 51 is formed.

さらに、(4)に示すように、半導体基板10上にSiO膜などの絶縁膜をCVD法によりゲート電極30を覆うように形成し、さらにこれをエッチバックすることにより、ゲート電極30の両側壁面上に側壁絶縁膜33を形成する。また、リソグラフィー及びこれに続くRIE(Reactive Ion Etching)によりによりパターニングして、ゲート絶縁膜21が形成される。
さらに、(5)に示すように、ゲート電極30および側壁絶縁膜33をマスクに、半導体基板10中にn型あるいはp型不純物元素のイオン注入を行ない、半導体基板10中、前記側壁絶縁膜33の外側にn型あるいはp型のソースあるいはドレイン拡散領域41、51を形成する。
また、絶縁膜20を形成する工程で、高誘電率の酸化膜、窒化膜あるいは酸窒化膜とを単独又は積層させて形成することも可能である。特に、高誘電体率の絶縁膜20によるゲート絶縁膜21を設けることで、リーク電流を小さくして、さらに、ゲート長をさらに減少させ、半導体装置1の動作速度を向上させることが可能になる。
Further, as shown in (4), an insulating film such as a SiO 2 film is formed on the semiconductor substrate 10 so as to cover the gate electrode 30 by the CVD method, and further etched back to thereby form both sides of the gate electrode 30. A sidewall insulating film 33 is formed on the wall surface. Further, the gate insulating film 21 is formed by patterning by lithography and subsequent RIE (Reactive Ion Etching).
Further, as shown in (5), n-type or p-type impurity element ions are implanted into the semiconductor substrate 10 using the gate electrode 30 and the sidewall insulating film 33 as a mask. The n-type or p-type source or drain diffusion regions 41 and 51 are formed outside the substrate.
In the step of forming the insulating film 20, it is possible to form an oxide film, a nitride film, or an oxynitride film having a high dielectric constant alone or in a stacked manner. In particular, by providing the gate insulating film 21 made of the insulating film 20 having a high dielectric constant, the leakage current can be reduced, the gate length can be further reduced, and the operating speed of the semiconductor device 1 can be improved. .

本発明の半導体装置の製造方法における工程の中で形成されるゲート電極30が、TaSi又はTiSi膜層(ここで、xが0.1〜3.0、yが0.5〜5.0の範囲にする。)の電極層で形成されている。
ここで、膜層を形成する手段は、真空蒸着法、スパッタリング法、レーザーアブレーション法などの物理的方法や、ゾルゲル法、溶液法、熱CVD法、プラズマCVD法、ALD法などのCVD法による化学的方法があるが、本発明ではCVD法を用いる。
CVD法は、加熱部を備えるプレート上に支持された半導体基板10に、ガスを供給して、半導体基板10上で反応させて薄膜を形成する。ガスとしては、原料となるガスの他に、搬送するためのキャリアガス、内部に残留する原料ガスを外部に排出するパージガスを供給する。
The gate electrode 30 formed in the process of the method for manufacturing a semiconductor device of the present invention is a TaSi x N y or TiSi x N y film layer (where x is 0.1 to 3.0 and y is 0.1. 5 to 5.0.)).
Here, the means for forming the film layer includes chemical methods such as a vacuum deposition method, a sputtering method, and a laser ablation method, and a CVD method such as a sol-gel method, a solution method, a thermal CVD method, a plasma CVD method, and an ALD method. In the present invention, the CVD method is used.
In the CVD method, a thin film is formed by supplying a gas to the semiconductor substrate 10 supported on a plate having a heating unit and reacting on the semiconductor substrate 10. As the gas, in addition to the raw material gas, a carrier gas for transport and a purge gas for discharging the raw material gas remaining inside are supplied.

Siの原料ガスとしては、SiH、Si、Si等、または、SiH2Cl2、SiCl4、SiHCl3等の水素化シリコン又はハロゲン化シリコンを用いる。とくに、水素化シリコンが分解しやすく、また、H等は残留しにくいので有利である。Tiの原料には四塩化Tiを用いる。Taの原料ガスとしては、Taのアミド化合物、イミド化合物又はハロゲン化物から選択される。具体的には、Taのアミド化合物として、PDMAT(Pentakis-dimethylamino-tantalum)、Taのイミド化合物としては、TAIMATA(Tertiary-amylimido -tris- dimethylamido -tantalum)、TBTDET(Tertiary-butylimido-tris-dietylamido-tantalum)、ハロゲン化物としては、TaF、TaCl、TaBr等を挙げることができる。N原料ガスとしては、NHが用いられる。
キャリアガスとして、例えば、He、Ar、N等の不活性ガス及び/又はHが用いられる。これらの不活性ガスは、半導体装置1を構成する物質と反応しないものである。また、キャリアガスに半導体装置1を構成する物質中の酸素と反応しない程度の微量の還元性ガスを添加してもよい。例えば、Heガスに微量の水素Hを添加してもよい。
As the Si source gas, SiH 4 , Si 2 H 6 , Si 3 H 8 or the like, or silicon hydride or silicon halide such as SiH 2 Cl 2 , SiCl 4 , or SiHCl 3 is used. In particular, it is advantageous because silicon hydride is easily decomposed and H and the like hardly remain. Ti tetrachloride is used as a raw material for Ti. The Ta source gas is selected from Ta amide compounds, imide compounds or halides. Specifically, as the amide compound of Ta, PDMAT (Pentakis-dimethylamino-tantalum), and as the imide compound of Ta, TAIMATA (Tertiary-amylimido-tris-dimethylamido-tantalum), TBTDET (Tertiary-butylimido-tris-dietylamido- tantalum) and halides include TaF 5 , TaCl 5 , TaBr 5 and the like. NH 3 is used as the N source gas.
As the carrier gas, for example, an inert gas such as He, Ar, N 2 and / or H 2 is used. These inert gases do not react with substances constituting the semiconductor device 1. Further, a small amount of reducing gas that does not react with oxygen in the substance constituting the semiconductor device 1 may be added to the carrier gas. For example, a small amount of hydrogen H 2 may be added to the He gas.

CVD法による処理は、Arガスをキャリアガスとして用いた条件下で行う。このときに、これらの原料ガス等を同時に供給して反応させるのではなく、Si原料ガスと、Ta原料ガス又はTi原料ガス及びN原料ガスとをそれぞれ別個に供給して、CVD法でそれぞれの薄膜を形成する。Si原料ガスを単独で供給することで、Si膜層を、Ta原料ガス又はTi原料ガス及びN原料ガスを同時に供給することで、CVD法の装置内で原料ガスを反応させTaN膜層又はTiN膜層を形成する。Si膜厚を0.2〜2.0nm、TaN又はTiN膜層の堆積膜厚を0.5〜3.0nmにし、これらの薄い膜層を交互に積層させる。これらの薄い膜層を交互に堆積させると、薄い膜層であることによりSiとTaN又はTiNとが混合又は反応して化合物を形成してTaSi又はTiSi膜層31を形成する。このときに、Siの堆積膜厚が0.2nm未満、TaNの堆積膜厚が0.5nm未満では薄くなりすぎて一様な膜層を形成することができない。Siの堆積膜厚が2.0nm、TaN又はTiNの堆積膜厚が3.0nmを越えると、各層構成が明確になり、単一の膜層にならない。 The treatment by the CVD method is performed under conditions using Ar gas as a carrier gas. At this time, instead of supplying and reacting these raw material gases simultaneously, Si raw material gas and Ta raw material gas or Ti raw material gas and N raw material gas are separately supplied, and the respective CVD methods are used. A thin film is formed. By supplying the Si source gas alone, the Si film layer is supplied simultaneously with the Ta source gas or the Ti source gas and the N source gas, so that the source gas reacts in the apparatus of the CVD method, and the TaN film layer or TiN A film layer is formed. The Si film thickness is set to 0.2 to 2.0 nm, the deposited film thickness of the TaN or TiN film layer is set to 0.5 to 3.0 nm, and these thin film layers are alternately stacked. When these thin film layers are alternately deposited, Si and TaN or TiN are mixed or reacted to form a compound by forming the TaSi x N y or TiSi x N y film layer 31. To do. At this time, if the deposited film thickness of Si is less than 0.2 nm and the deposited film thickness of TaN is less than 0.5 nm, it becomes too thin to form a uniform film layer. When the deposited film thickness of Si exceeds 2.0 nm and the deposited film thickness of TaN or TiN exceeds 3.0 nm, each layer structure becomes clear and does not become a single film layer.

また、一体になったTaSi又はTiSi膜層31の組成としては、xが0.1〜3.0、yが0.5〜5.0の範囲にする。TaSiN系では、その組成によって仕事関数を制御することができ、半導体装置1を駆動させる閾値を調整することができる。仕事関数は、x、が増加するにつれて小さくなる。具体的には、仕事関数は、xが0.5、yが2.0でほぼ一定の値4.3eVになり、xが0.1、yが2.0で4.6eVになる。
このときに、TaSi又はTiSi膜層31は層厚を1〜20nmにする。層厚が1nm未満では、境界で不具合が発生しやすく、動作電圧が上昇する傾向がある。さらにフォノン散乱によって電子の移動度に劣化が見られる。また、層厚が20nmを越えると、ゲート抵抗が大きくなり高速動作に不利である。
Further, the composition of the integrated TaSi x N y or TiSi x N y film layer 31 is such that x is in the range of 0.1 to 3.0 and y is in the range of 0.5 to 5.0. In the TaSiN system, the work function can be controlled by its composition, and the threshold for driving the semiconductor device 1 can be adjusted. The work function decreases as x increases. Specifically, the work function has an almost constant value of 4.3 eV when x is 0.5 and y is 2.0, and becomes 4.6 eV when x is 0.1 and y is 2.0.
At this time, the thickness of the TaSi x N y or TiSi x N y film layer 31 is set to 1 to 20 nm. If the layer thickness is less than 1 nm, defects are likely to occur at the boundary, and the operating voltage tends to increase. Furthermore, the mobility of electrons is degraded due to phonon scattering. On the other hand, if the layer thickness exceeds 20 nm, the gate resistance increases, which is disadvantageous for high-speed operation.

また、ゲート電極30の下部には、SiO、HfO、ZrO、Al、La、HfAlOおよびHfAlONを含む高い酸化物又は窒化物ならびに酸窒化物を含む群より選択される高い誘電率の材料でゲート絶縁膜21を形成する。具体的には、HfAl、HfSi、HfSi、HfO又はHfO(ここで、lは、0.8〜1.2、mは1〜4、nは0.8〜4.0の範囲にする。)の中から選択される1つによるゲート絶縁膜21を設ける。これらの酸化物及び酸窒化物は、高い電気的絶縁性と誘電率を有し、リーク電流を減少させることができる。また、誘電率が高いことで、一定の絶縁性を得るのにゲート絶縁膜21を薄くすることができる。また、これらの酸化物及び酸窒化物は、結晶化温度が高く、熱的安定性がある。 Further, the lower portion of the gate electrode 30 is selected from the group including high oxide or nitride including SiO 2 , HfO 2 , ZrO 2 , Al 2 O 3 , La 2 O 3 , HfAlO and HfAlON and oxynitride. The gate insulating film 21 is formed of a material having a high dielectric constant. Specifically, HfAl 1 O m N n , HfSi 1 O m , HfSi 1 O m N n , HfO 2 or HfO m N n (where l is 0.8 to 1.2, m is 1 to 4 and n are in the range of 0.8 to 4.0), and a gate insulating film 21 is provided. These oxides and oxynitrides have high electrical insulation and dielectric constant, and can reduce leakage current. Further, since the dielectric constant is high, the gate insulating film 21 can be thinned to obtain a certain insulating property. In addition, these oxides and oxynitrides have a high crystallization temperature and thermal stability.

また、ゲート電極30では、電極層31の上に低抵抗金属層32としてMo又はW、或は多結晶シリコンを用いる。これまでは、多結晶シリコンが単独に用いられていたが、この材料は半導体であるためゲート電極30表面が僅かに空乏化し、素子の高速動作に不利に働く。これに対応して、多結晶シリコンからニッケルシリサイド、チタンシリサイド等がトランジスタの電流端子電極材料として検討されている。例えば、代表的な化合物としては、NiSiがあるが、閾値電圧が高く、トランジスタの低電圧動作が難しい。そこで、その他の金属を用いる事が検討されている。例えば、仕事関数の大きな金属、例えば、Ni、Coを用いると閾値がp型MOSでは小さくなるが、n型MOSでは大きくなる。一方、Hf、Zr等の仕事関数の小さな金属では、閾値がn型MOSでは小さくなるが、p型MOSでは大きくなる。本発明で着目するTaSixy又はTiSixyは仕事関数の小さな金属に相当する。 In the gate electrode 30, Mo or W or polycrystalline silicon is used as the low resistance metal layer 32 on the electrode layer 31. Until now, polycrystalline silicon has been used singly, but since this material is a semiconductor, the surface of the gate electrode 30 is slightly depleted, which is disadvantageous for high-speed operation of the device. Correspondingly, nickel silicide, titanium silicide, etc. from polycrystalline silicon have been studied as current terminal electrode materials for transistors. For example, NiSi is a typical compound, but the threshold voltage is high and the low voltage operation of the transistor is difficult. Therefore, the use of other metals has been studied. For example, when a metal having a large work function, such as Ni or Co, is used, the threshold value is reduced in the p-type MOS, but is increased in the n-type MOS. On the other hand, for a metal having a small work function such as Hf or Zr, the threshold value is small for an n-type MOS, but is large for a p-type MOS. TaSi x N y or TiSi x N y focused in the present invention corresponds to a metal having a small work function.

また、ゲート電極30には、低抵抗金属膜32とTaSi又はTiSi膜層31の間に、TaN層34(ここで、zは0.8〜1.3の範囲にする。)を設ける事が出来る。電極層のTaSi膜層31は厚く堆積させると膜組成が変化したり熱処理により相分離が生じる場合がある。そこで、TaN層34を設けることで、一定の実効膜厚を薄く保ちつつ、結晶化したTaN層膜は一般に柱状構造を取る傾向を持つが、上部と下部にTaSi膜層31を設けることで、柱状構造の欠点も補える。したがって、単に、化学的な安定性のみではなく、トランジスタの性能・信頼性向上を図る上で必要なプロセス上の改良・変更に対して幅広く適用出来る。TaN層は、zは0.8〜1.3の範囲にする。zが0.8未満及びzが1.2を越えると、緻密性に欠き酸素Oの拡散等を防止することができない。 The gate electrode 30 includes a TaN z layer 34 (where z is in the range of 0.8 to 1.3) between the low-resistance metal film 32 and the TaSi x N y or TiSi x N y film layer 31. Can be provided). When the TaSi x N y film layer 31 of the electrode layer is deposited thick, the film composition may change or phase separation may occur due to heat treatment. Therefore, by providing the TaN z layer 34, the crystallized TaN z layer film generally has a tendency to have a columnar structure while keeping a constant effective film thickness thin, but the TaSi x N y film layer 31 is provided at the upper and lower portions. By providing, it is possible to compensate for the disadvantages of the columnar structure. Therefore, the present invention can be widely applied not only to chemical stability but also to process improvements and changes necessary for improving the performance and reliability of transistors. In the TaN z layer, z is in the range of 0.8 to 1.3. If z is less than 0.8 and z is more than 1.2, diffusion of oxygen O and the like cannot be prevented due to lack of denseness.

以上のように、本発明の半導体装置の製造方法では、ゲート絶縁膜21に高誘電率の酸化物又は酸窒化物を用い、さらに、電極層としてTaSiN系又はTaTiN系のナイトライド化合物をCVD法で堆積させて、その上に低抵抗金属層を形成した半導体を製造した。電極層のTaSiN系又はTaTiN系のナイトライド化合物では、閾値を調整するために、従来はCVD法で形成することが困難であった組成制御を用意に行うことができるようになった。
また、半導体装置1では、ゲート絶縁膜21の直上にTaSi又はTiSi膜層31(ここで、xは0.1〜3.0、yは0.5〜5.0の範囲にする。)を有する電極層を設けた。この電極層にWもしくはMo或は多結晶シリコンを積層させることで、ゲート電極30を薄層化することができ、さらに、ゲート抵抗の上昇を抑えて、安定した動作を確保できた。
As described above, in the method for manufacturing a semiconductor device of the present invention, a high dielectric constant oxide or oxynitride is used for the gate insulating film 21, and a TaSiN-based or TaTiN-based nitride compound is used as the electrode layer by the CVD method. A semiconductor having a low resistance metal layer formed thereon was manufactured. With the TaSiN-based or TaTiN-based nitride compound of the electrode layer, composition control that has been difficult to form by the conventional CVD method can be prepared in order to adjust the threshold value.
In the semiconductor device 1, the TaSi x N y or TiSi x N y film layer 31 (where x is 0.1 to 3.0 and y is 0.5 to 5.0) is directly above the gate insulating film 21. An electrode layer having a range) was provided. By laminating W, Mo, or polycrystalline silicon on this electrode layer, the gate electrode 30 can be thinned, and further, a stable operation can be secured by suppressing an increase in gate resistance.

以下に、本発明の半導体装置の製造方法を、更に、具体的に説明する。
(実施例1)
1:まず、初めに、n型MOS−FETのチャネルとなる半導体基板10として、p型の単結晶シリコンを半導体基板10に用いる。この半導体基板10上に、ゲート絶縁膜21として、HfSi(lは1、mは2、nは2にする。)を2〜5nmの厚さにCVD法で形成する。
2:次に、CVD装置に導入する。Si原料ガスとしてSiH、Si、SiをキャリアガスのArと一緒に供給してCVD処理を行う。このときのCVD装置の条件は、400〜600℃の温度、13〜133Paのチャンバ真空度、500〜2000sccm流量のArガスを用いた条件下で30〜120秒の間行う。これで、ほぼ厚さが1nmのSi堆積層を得た。
3:次に、供給するガスをTa原料ガスとしてTaアミド化合物PDMATとN原料ガスとしてNHに切り替えて同時に供給した。このときのCVD装置の条件は、400〜600℃の温度、13〜133Paのチャンバ真空度、500〜2000sccm流量のArガスを用いた条件下で20〜100秒の間行う。これで、ほぼ厚さが3nmのTaN堆積層を得た。
4:これを交互に繰り返して、Si膜層3nmとTaN膜層9nmを合計で12nmに積層させて、12nmの厚さを有するxは0.5で、yは2.0の組成を有するTaSi膜層31を形成することができた。組成がSi層とTaN層の単純な平均にならないのは、膜を交互に堆積する際に表面で反応が生じるためである。図2は、実施例1で形成したゲート電極30の構造を示す概略図である。
5:その次に、ゲート抵抗を下げるため、更に低抵抗なワイヤリングメタルとして50〜100nmの厚さでタングステンWを堆積させた低抵抗金属層32を設ける。その後、ゲート加工を施し、MIS構造を有する半導体装置1を製造した。
これによって、従来のCVD法では、原料ガスを同時に供給して、最初から所望の組成を有するTaSiN系膜31を製造することができなかったが、Si膜層とTaN膜層の層厚を制御することで、TaSiN系膜31の組成制御が容易に行うことができた。
Hereinafter, the method for manufacturing a semiconductor device of the present invention will be described more specifically.
Example 1
1: First, p-type single crystal silicon is used for the semiconductor substrate 10 as the semiconductor substrate 10 which becomes the channel of the n-type MOS-FET. On the semiconductor substrate 10, as a gate insulating film 21, HfSi l O m N n (l is 1, m is 2, n is 2) is formed to a thickness of 2 to 5 nm by a CVD method.
2: Next, it introduce | transduces into a CVD apparatus. SiH 4 , Si 2 H 6 , and Si 3 H 8 are supplied as Si source gas together with Ar as a carrier gas to perform a CVD process. The conditions of the CVD apparatus at this time are 30 to 120 seconds under conditions using a temperature of 400 to 600 ° C., a chamber vacuum of 13 to 133 Pa, and Ar gas having a flow rate of 500 to 2000 sccm. Thus, a Si deposited layer having a thickness of about 1 nm was obtained.
3: Next, the supplied gas was switched to Ta amide compound PDMAT as the Ta source gas and NH 3 as the N source gas and supplied simultaneously. The conditions of the CVD apparatus at this time are 20 to 100 seconds under conditions using a temperature of 400 to 600 ° C., a chamber vacuum of 13 to 133 Pa, and Ar gas having a flow rate of 500 to 2000 sccm. Thus, a TaN deposited layer having a thickness of about 3 nm was obtained.
4: By repeating this alternately, a Si film layer of 3 nm and a TaN film layer of 9 nm are laminated to a total of 12 nm, x having a thickness of 12 nm is 0.5, and y is TaSi having a composition of 2.0. The xNy film layer 31 could be formed. The reason why the composition does not become a simple average of the Si layer and the TaN layer is that a reaction occurs on the surface when the films are alternately deposited. FIG. 2 is a schematic view showing the structure of the gate electrode 30 formed in the first embodiment.
5: Next, in order to lower the gate resistance, a low resistance metal layer 32 on which tungsten W is deposited with a thickness of 50 to 100 nm is provided as a further low resistance wiring metal. Thereafter, gate processing was performed to manufacture a semiconductor device 1 having a MIS structure.
As a result, in the conventional CVD method, the TaSiN film 31 having a desired composition cannot be manufactured from the beginning by simultaneously supplying the source gas, but the layer thicknesses of the Si film layer and the TaN film layer are controlled. As a result, the composition control of the TaSiN film 31 could be easily performed.

(実施例2)
1:まず、初めに、n型MOS−FETのチャネルとなる半導体基板10として、p型の単結晶シリコンを半導体基板10に用いる。この半導体基板10上に、ゲート絶縁膜21として、HfSi(lは1、mは2、nは2にする。)を2〜5nmの厚さにCVD法で形成する。
2:次に、CVD装置に導入する。Si原料ガスとしてSiH、Si、SiをキャリアガスのArガスと一緒に供給してCVD処理を行う。このときのCVD装置の条件は、400〜600℃の温度、13〜133Paのチャンバ真空度、500〜2000sccm流量のArガスを用いた条件下で30〜120秒の間行う。これで、ほぼ厚さが0.5nmのSi堆積層を得た。
3:次に、供給するガスをTa原料ガスとしてTaアミド化合物PDMATとN原料ガスとしてNHに切り替えて同時に供給した。このときのCVD装置の条件は、400〜600℃の温度、13〜133Paのチャンバ真空度、500〜2000sccm流量のArガスを用いた条件下で20〜100秒の間行う。これで、ほぼ厚さが1.5nmのTaN堆積層を得た。
4:これを交互に繰り返して、Si膜層1nmとTaN膜層3nmを合計で4nmに積層させて、8nmの厚さを有するxが0.5で、yが2.0の組成を有するTaSi膜層を形成することができた。
5:次に、供給するガスをTa原料ガスとしてTaアミド化合物PDMATとN原料ガスとしてNHに切り替えて同時に供給した。このときのCVD装置の条件は、400〜600℃の温度、13〜133Paのチャンバ真空度、500〜2000sccm流量のArガスを用いた条件下で120〜240秒の間行う。これで、ほぼ厚さが10nmのTaN堆積層34を得た。
(Example 2)
1: First, p-type single crystal silicon is used for the semiconductor substrate 10 as the semiconductor substrate 10 which becomes the channel of the n-type MOS-FET. On the semiconductor substrate 10, as a gate insulating film 21, HfSi l O m N n (l is 1, m is 2, n is 2) is formed to a thickness of 2 to 5 nm by a CVD method.
2: Next, it introduce | transduces into a CVD apparatus. SiH 4 , Si 2 H 6 , and Si 3 H 8 are supplied as Si source gas together with Ar gas as a carrier gas to perform CVD processing. The conditions of the CVD apparatus at this time are 30 to 120 seconds under conditions using a temperature of 400 to 600 ° C., a chamber vacuum of 13 to 133 Pa, and Ar gas having a flow rate of 500 to 2000 sccm. Thus, a Si deposited layer having a thickness of about 0.5 nm was obtained.
3: Next, the supplied gas was switched to Ta amide compound PDMAT as the Ta source gas and NH 3 as the N source gas and supplied simultaneously. The conditions of the CVD apparatus at this time are 20 to 100 seconds under conditions using a temperature of 400 to 600 ° C., a chamber vacuum of 13 to 133 Pa, and Ar gas having a flow rate of 500 to 2000 sccm. Thus, a TaN deposited layer having a thickness of about 1.5 nm was obtained.
4: By repeating this alternately, a Si film layer of 1 nm and a TaN film layer of 3 nm are laminated to a total of 4 nm, TaSi having a composition of x having an 8 nm thickness of 0.5 and y of 2.0. An xNy film layer could be formed.
5: Next, the supplied gas was switched to Ta amide compound PDMAT as Ta source gas and NH 3 as N source gas and supplied simultaneously. The conditions of the CVD apparatus at this time are performed for 120 to 240 seconds under conditions using a temperature of 400 to 600 ° C., a chamber vacuum of 13 to 133 Pa, and Ar gas having a flow rate of 500 to 2000 sccm. Thus, a TaN deposited layer 34 having a thickness of about 10 nm was obtained.

6:次に、上記2、3、4と同様に工程を繰り返して、TaN膜層34の上に4nmの厚さを有するxが0.5で、yが2.0の組成を有するTaSi膜層31を形成することができた。このときに、中間にあるTaN膜層34の厚さが厚いことで、高温処理を行っても相分離することなく存在させることができる。図3は、実施例2で形成したゲート電極30の構造を示す概略図である。
7:その次に、ゲート抵抗を下げるため、更に低抵抗なワイヤリングメタルとして50〜100nmの厚さでタングステンWを堆積させた低抵抗金属層32を設ける。その後、ゲート加工を施し、MIS構造を有する半導体装置1を製造した。
これによって、従来のCVD法では、原料ガスを同時に供給して、最初から所望の組成を有するTaSiN系膜を製造することができなかったが、Si膜層とTaN膜層の層厚を制御することで、TaSiN系膜31の組成制御が容易に行うことができた。さらに、TaN膜層34を設けることで、TaSiN系膜31の安定性を向上させ、製造時における酸素等の拡散を防止することができた。
6: Then, by repeating the process in the same manner as in 2, 3, 4, with x 0.5 having a thickness of 4nm on the TaN film layer 34, TaSi x having a composition of y is 2.0 The Ny film layer 31 could be formed. At this time, since the TaN film layer 34 in the middle is thick, the TaN film layer 34 can exist without phase separation even when high-temperature treatment is performed. FIG. 3 is a schematic view showing the structure of the gate electrode 30 formed in the second embodiment.
7: Next, in order to lower the gate resistance, a low resistance metal layer 32 on which tungsten W is deposited with a thickness of 50 to 100 nm is provided as a further low resistance wiring metal. Thereafter, gate processing was performed to manufacture a semiconductor device 1 having a MIS structure.
As a result, in the conventional CVD method, a TaSiN film having a desired composition cannot be manufactured from the beginning by simultaneously supplying source gases, but the layer thicknesses of the Si film layer and the TaN film layer are controlled. As a result, the composition control of the TaSiN film 31 could be easily performed. Furthermore, by providing the TaN film layer 34, the stability of the TaSiN-based film 31 was improved, and diffusion of oxygen or the like during manufacturing could be prevented.

本発明の半導体装置の製造方法を説明するために示す模式図である。It is a schematic diagram shown in order to demonstrate the manufacturing method of the semiconductor device of this invention. 実施例1で形成したゲート電極の構造を示す概略図である。3 is a schematic view showing the structure of a gate electrode formed in Example 1. FIG. 実施例2で形成したゲート電極の構造を示す概略図である。6 is a schematic diagram showing the structure of a gate electrode formed in Example 2. FIG.

符号の説明Explanation of symbols

1 半導体装置
10 半導体基板
11 STI素子分離領域
20 絶縁膜
21 ゲート絶縁膜
30 ゲート電極
31 TaSi又はTiSi膜層
32 低抵抗金属層
33 側壁絶縁膜
34 TaN
40 ソースエクステンション領域
41 ソース拡散領域
50 ドレインエクステンション領域
51 ドレイン拡散領域
60 チャネル領域
DESCRIPTION OF SYMBOLS 1 Semiconductor device 10 Semiconductor substrate 11 STI element isolation region 20 Insulating film 21 Gate insulating film 30 Gate electrode 31 TaSi x N y or TiSi x N y film layer 32 Low resistance metal layer 33 Side wall insulating film 34 TaN z layer 40 Source extension region 41 Source diffusion region 50 Drain extension region 51 Drain diffusion region 60 Channel region

Claims (5)

半導体基板上にCVD法でゲート電極が形成される半導体装置の製造方法において、
前記ゲート電極は、TaSi又はTiSi膜層(ここで、xは0.1〜3.0、yは0.5〜5.0の範囲にする。)を有し、
該TaSi又はTiSi膜層が、
Si原料として水素化シリコン、Ti原料として四塩化チタン又はTa原料としてTaのアミド化合物、イミド化合物又はハロゲン化物から選択される1つと、N原料としてNHとをそれぞれ供給して、
Si堆積膜層と、TiN堆積膜層又はTaN堆積膜層とを積層して形成される
ことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which a gate electrode is formed on a semiconductor substrate by a CVD method,
The gate electrode has a TaSi x N y or TiSi x N y film layer (where x is in the range of 0.1 to 3.0 and y is in the range of 0.5 to 5.0).
The TaSi x N y or TiSi x N y film layer is
Si hydride as a Si raw material, titanium tetrachloride as a Ti raw material, or one selected from an amide compound, an imide compound or a halide of Ta as a Ta raw material, and NH 3 as an N raw material,
A method of manufacturing a semiconductor device, characterized by being formed by laminating a Si deposited film layer and a TiN deposited film layer or a TaN deposited film layer.
請求項1に記載の半導体装置の製造方法において、
前記TaSi又はTiSi膜層は、
Si堆積膜層が0.2〜2.0nm、TaN又はTiN堆積膜層が0.5〜3.0nmを交互に積層させ、
1〜20nmの層厚に形成される
ことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1,
The TaSi x N y or TiSi x N y film layer is
Si deposited film layers are alternately stacked with 0.2 to 2.0 nm, TaN or TiN deposited film layers are 0.5 to 3.0 nm,
A method for manufacturing a semiconductor device, wherein the semiconductor device is formed to have a layer thickness of 1 to 20 nm.
請求項1又は2に記載の半導体装置の製造方法において、
前記ゲート絶縁膜が、HfAl、HfSi、HfSi、HfOとHfO(ここで、lは、0.8〜1.2、mは1〜4、nは0.8〜4の範囲にする。)の中から選択される1つにより形成される
ことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1 or 2,
The gate insulating film is made of HfAl 1 O m N n , HfSi 1 O m , HfSi 1 O m N n , HfO 2 and HfO m N n (where l is 0.8 to 1.2, m is 1 -4 and n are in the range of 0.8-4.). A method of manufacturing a semiconductor device, characterized in that:
請求項1及び2に記載の半導体装置の製造方法において、
前記ゲート電極上部にW又はMoによる低抵抗金属膜又は多結晶シリコン層が積層形成される
ことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 1 and 2,
A method of manufacturing a semiconductor device, wherein a low-resistance metal film or a polycrystalline silicon layer made of W or Mo is laminated on the gate electrode.
請求項4に記載の半導体装置の製造方法において、
前記ゲート電極は、TaSi又はTiSi膜層と低抵抗金属膜との間にTaN層又はTiN層(ここで、zは0.8〜1.3の範囲にする。)が形成される
ことを特徴とする半導体装置の製造方法。
In the manufacturing method of the semiconductor device according to claim 4,
The gate electrode may be a TaN z layer or a TiN z layer (where z is in the range of 0.8 to 1.3) between the TaSi x N y or TiSi x N y film layer and the low-resistance metal film. ) Is formed. A method for manufacturing a semiconductor device, comprising:
JP2006090420A 2006-03-29 2006-03-29 Manufacturing method of semiconductor device Expired - Fee Related JP4967407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090420A JP4967407B2 (en) 2006-03-29 2006-03-29 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090420A JP4967407B2 (en) 2006-03-29 2006-03-29 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2007266376A true JP2007266376A (en) 2007-10-11
JP4967407B2 JP4967407B2 (en) 2012-07-04

Family

ID=38639058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090420A Expired - Fee Related JP4967407B2 (en) 2006-03-29 2006-03-29 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4967407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494525B1 (en) * 2008-10-31 2010-06-30 キヤノンアネルバ株式会社 Dielectric film manufacturing method, semiconductor device manufacturing method, dielectric film, and computer-readable recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047549B (en) * 2015-06-30 2018-08-24 上海华力微电子有限公司 The method for reducing the fluctuation of high-k/metal gate device threshold voltage using redundancy silicon technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077355A (en) * 1999-08-13 2001-03-23 Texas Instr Inc <Ti> Forming method of transistor
JP2001144032A (en) * 1999-11-17 2001-05-25 Tokyo Electron Ltd TiSiN MEMBRANE, FILM FORMING METHOD THEREFOR, SEMICONDUCTOR DEVICE, PRODUCING METHOD THEREFOR AND FILM FORMING DEVICE FOR TiSiN MEMBRANE
JP2004186693A (en) * 2002-12-03 2004-07-02 Asm Internatl Nv Method of forming electrode with adjusted work function
WO2004082005A1 (en) * 2003-03-12 2004-09-23 Micron Technology, Inc. Semiconductor mos, cmos devices and capacitors and method of manufacturing the same
WO2005047561A1 (en) * 2003-11-13 2005-05-26 International Business Machines Corporation Cvd tantalum compounds for fet gate electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077355A (en) * 1999-08-13 2001-03-23 Texas Instr Inc <Ti> Forming method of transistor
JP2001144032A (en) * 1999-11-17 2001-05-25 Tokyo Electron Ltd TiSiN MEMBRANE, FILM FORMING METHOD THEREFOR, SEMICONDUCTOR DEVICE, PRODUCING METHOD THEREFOR AND FILM FORMING DEVICE FOR TiSiN MEMBRANE
JP2004186693A (en) * 2002-12-03 2004-07-02 Asm Internatl Nv Method of forming electrode with adjusted work function
WO2004082005A1 (en) * 2003-03-12 2004-09-23 Micron Technology, Inc. Semiconductor mos, cmos devices and capacitors and method of manufacturing the same
WO2005047561A1 (en) * 2003-11-13 2005-05-26 International Business Machines Corporation Cvd tantalum compounds for fet gate electrodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494525B1 (en) * 2008-10-31 2010-06-30 キヤノンアネルバ株式会社 Dielectric film manufacturing method, semiconductor device manufacturing method, dielectric film, and computer-readable recording medium
US7867847B2 (en) 2008-10-31 2011-01-11 Canon Anelva Corporation Method of manufacturing dielectric film that has hafnium-containing and aluminum-containing oxynitride
US8178934B2 (en) 2008-10-31 2012-05-15 Canon Anelva Corporation Dielectric film with hafnium aluminum oxynitride film

Also Published As

Publication number Publication date
JP4967407B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4623006B2 (en) Semiconductor device and manufacturing method thereof
JP6218384B2 (en) Manufacturing method of semiconductor device having tungsten gate electrode
US7279413B2 (en) High-temperature stable gate structure with metallic electrode
JP5089576B2 (en) Gate electrode metal / metal nitride double layer CMOS and semiconductor structures in self-aligned and positively scaled CMOS devices
JP5270086B2 (en) Semiconductor structure using metal oxynitride as pFET material and manufacturing method thereof
JP5535706B2 (en) Manufacturing method of semiconductor device
US20080105920A1 (en) Semiconductor devices and fabrication process thereof
JP2014078734A (en) Gate electrode structures and methods of manufacture
JP2007513498A (en) CVD Tantalum Compound for FET Gate Electrode (Chemical Vapor Deposition Method of Compounds Containing Ta and N and Semiconductor Field Effect Device)
JP5937297B2 (en) Metal nitride film, semiconductor device using the metal nitride film, and method for manufacturing the semiconductor device
US20090250757A1 (en) Semiconductor device and method for manufacturing same
JP2009033032A (en) Semiconductor device, and method of manufacturing semiconductor device
US8575014B2 (en) Semiconductor device fabricated using a metal microstructure control process
US20120077336A1 (en) Semiconductor device and method for manufacturing same
JP2004319952A (en) Semiconductor device and manufacturing method therefor
KR101155364B1 (en) Semiconductor device and method for manufacturing same
JP5056418B2 (en) Semiconductor device and manufacturing method thereof
US20090283836A1 (en) Cmos structure including protective spacers and method of forming thereof
JP4967407B2 (en) Manufacturing method of semiconductor device
JPWO2006129637A1 (en) Semiconductor device
US20090101984A1 (en) Semiconductor device having gate electrode including metal layer and method of manufacturing the same
JP2005045166A (en) Semiconductor device and manufacturing method thereof
US7391089B2 (en) Semiconductor device and method of manufacturing the same
JP3987046B2 (en) Manufacturing method of semiconductor device
JP5195421B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees