JP2007266365A - Plasma treatment apparatus, and method of measuring high-frequency current quantity in plasma - Google Patents

Plasma treatment apparatus, and method of measuring high-frequency current quantity in plasma Download PDF

Info

Publication number
JP2007266365A
JP2007266365A JP2006090278A JP2006090278A JP2007266365A JP 2007266365 A JP2007266365 A JP 2007266365A JP 2006090278 A JP2006090278 A JP 2006090278A JP 2006090278 A JP2006090278 A JP 2006090278A JP 2007266365 A JP2007266365 A JP 2007266365A
Authority
JP
Japan
Prior art keywords
frequency
frequency current
plasma
probe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006090278A
Other languages
Japanese (ja)
Other versions
JP4727479B2 (en
Inventor
Yohei Yamazawa
陽平 山澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006090278A priority Critical patent/JP4727479B2/en
Priority to US11/692,340 priority patent/US7993487B2/en
Publication of JP2007266365A publication Critical patent/JP2007266365A/en
Application granted granted Critical
Publication of JP4727479B2 publication Critical patent/JP4727479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correctly detect a high-frequency current quantity flowing through plasma between upper and lower electrodes, and to know the flow of a high-frequency current in the plasma. <P>SOLUTION: Two coil-like probes 40, 41 for detecting the strength of a magnetic field around a center axis of a processing space K are provided in a processing container 2 of a plasma etching apparatus 1. In the probes 40, 41, the shafts of the coils are directed to the circumferential direction of the center axis of the processing space K. The lower probe 40 is provided at a height near the lower electrode 12, and the upper probe 41 is provided at a height near the upper electrode 20. The probes 40, 41 each detect an induced electromotive force generated in each coil as the strength of a magnetic field, and a computer 51 calculates high-frequency current quantities Az1, Az2 from the induced electromotive force on the basis of a predetermined calculating principle. The difference between the high-frequency current quantities Az1 and Az2 in the probes 40 and 41 is obtained to calculate a loss output high-frequency current quantity Ar to be flown out from a plasma region P between the upper and lower electrodes. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,処理容器内にプラズマを生成して基板を処理するプラズマ処理装置と,そのプラズマ処理装置におけるプラズマ内の高周波電流量の測定方法に関する。   The present invention relates to a plasma processing apparatus that generates a plasma in a processing container to process a substrate, and a method for measuring a high-frequency current amount in plasma in the plasma processing apparatus.

例えば半導体装置や液晶表示装置等の製造プロセスにおけるエッチングや成膜などの基板処理では,プラズマを用いた処理が広く用いられている。   For example, plasma processing is widely used in substrate processing such as etching and film formation in manufacturing processes of semiconductor devices and liquid crystal display devices.

そのプラズマ処理は,通常プラズマ処理装置で行われている。このプラズマ処理装置には,処理容器内に上下に対向する電極が設けられ,例えば基板を載置した下部電極に高周波電力を供給し,下部電極と上部電極との間にプラズマを生成して基板の処理を行っている。   The plasma processing is usually performed by a plasma processing apparatus. In this plasma processing apparatus, electrodes that are vertically opposed to each other are provided in a processing container. For example, high-frequency power is supplied to a lower electrode on which a substrate is placed, and plasma is generated between the lower electrode and the upper electrode to generate a substrate. Is being processed.

上述のプラズマ処理では,高周波電力の供給により下部電極から上部電極に向けてプラズマ内に高周波電流が流れる。この高周波電流は,プラズマの生成に寄与し,プラズマ密度やセルフバイアス(Vdc)などのプラズマ状態と密接な関係を有するものであり,基板の処理状態を評価する上で重要な要素となる。このため,従来より,プラズマ処理装置では,下部電極に接続されたマッチング装置の出力側に電流センサを取り付け,マッチング装置から電極に流れる高周波電流量を測定することが行われていた(特許文献1参照)。   In the above-described plasma processing, a high frequency current flows in the plasma from the lower electrode toward the upper electrode by supplying high frequency power. This high-frequency current contributes to plasma generation and has a close relationship with plasma states such as plasma density and self-bias (Vdc), and is an important factor in evaluating the processing state of the substrate. For this reason, conventionally, in a plasma processing apparatus, a current sensor is attached to the output side of the matching device connected to the lower electrode, and the amount of high-frequency current flowing from the matching device to the electrode has been measured (Patent Document 1). reference).

特開2002―43402号公報JP 2002-43402 A

しかしながら,上述のように電流センサをマッチング装置の出力側に設けた場合,高周波電流量の測定点がプラズマから離れており,また処理容器のインピーダンスの影響を受けて電力が消費されるため,実際にプラズマ内を通過する高周波電流量と電流センサによる測定電流量が異なっている。このため,測定した高周波電流量から,基板の処理状態を正確に評価することは難しかった。特にエッチング処理に用いられる数十MHz程度の高周波では,上記マッチング装置の出力側の測定点における電流量と実際にプラズマ内に入る電流量との違いが大きくなることが多く,この場合基板の処理状態を正確に知ることはできなかった。   However, when the current sensor is provided on the output side of the matching device as described above, the measurement point of the high frequency current amount is away from the plasma, and the power is consumed due to the influence of the impedance of the processing container. The amount of high-frequency current passing through the plasma differs from the amount of current measured by the current sensor. For this reason, it has been difficult to accurately evaluate the processing state of the substrate from the measured amount of high-frequency current. In particular, at a high frequency of about several tens of MHz used for the etching process, the difference between the amount of current at the measurement point on the output side of the matching device and the amount of current actually entering the plasma often becomes large. I could not know the condition accurately.

ところで,処理容器内のコンディションの変化,例えば処理容器の内壁面や上下電極の汚染や損傷などは,プラズマ内における高周波電流の流れの変化により検出できる。しかしながら,上述の電流センサでは,プラズマ内における高周波電流の流れは把握できないため,処理容器内のコンディションの変化を検出できなかった。このため,処理容器内のコンディションの変化による基板の処理状態の変動を早期に検出し,それに対応することができなかった。   By the way, a change in the condition in the processing vessel, for example, contamination or damage to the inner wall surface of the processing vessel or the upper and lower electrodes can be detected by a change in the flow of high-frequency current in the plasma. However, the current sensor described above cannot detect the flow of high-frequency current in the plasma, and thus cannot detect a change in the condition in the processing vessel. For this reason, the change in the processing state of the substrate due to the change of the condition in the processing container was detected at an early stage and could not be dealt with.

また,同じ仕様のプラズマ処理装置であっても,各プラズマ処理装置毎に,処理容器内のコンディションが僅かに異なるが,上述のようにそのコンディションを知るためのプラズマ内の高周波電流の流れが把握できないため,各プラズマ処理装置のコンディションの違い(機差)を合わせ込むことができなかった。この結果,複数のプラズマ処理装置で基板を並行して処理すると,基板の処理状態が装置間でばらつくことがあった。   Even if the plasma processing equipment has the same specifications, the conditions in the processing vessel are slightly different for each plasma processing equipment. However, as described above, the flow of high-frequency current in the plasma to know the conditions is known. Because it was not possible, it was not possible to match the differences in the conditions (machine differences) of each plasma processing equipment. As a result, when a plurality of plasma processing apparatuses process a substrate in parallel, the processing state of the substrate may vary between apparatuses.

本発明は,かかる点に鑑みてなされたものであり,処理容器内のプラズマ内を流れる高周波電流量を正確に検出し,さらにプラズマ内の高周波電流の流れを把握することをその目的とする。   The present invention has been made in view of this point, and an object of the present invention is to accurately detect the amount of high-frequency current flowing in the plasma in the processing vessel and to grasp the flow of high-frequency current in the plasma.

上記目的を達成するために,本発明は,処理容器内に上下に対向する高周波電極を有し,それらの高周波電極の少なくともいずれかの高周波電極に高周波電力を供給し処理容器内にプラズマを生成して,基板を処理するプラズマ処理装置であって,前記処理容器内に設置され,前記処理容器の上下方向の中心軸に対し周方向に向かう磁界の時間変化量を検出するプローブと,前記プローブによる前記磁界の時間変化量の検出結果に基づいて,前記高周波電力の供給によりプラズマ内を軸方向に流れる高周波電流量を算出する算出部と,を有し,前記プローブは,前記処理容器内の上下方向の複数個所に設けられていることを特徴とする。   In order to achieve the above object, the present invention has a high-frequency electrode facing up and down in a processing vessel, and supplies high-frequency power to at least one of the high-frequency electrodes to generate plasma in the processing vessel. A plasma processing apparatus for processing a substrate, wherein the probe is installed in the processing container and detects a time change amount of a magnetic field in a circumferential direction with respect to a vertical center axis of the processing container, and the probe A calculation unit that calculates an amount of high-frequency current flowing in the axial direction in the plasma by the supply of the high-frequency power based on the detection result of the time change amount of the magnetic field by the probe. It is provided at a plurality of locations in the vertical direction.

本発明によれば,処理容器内の中心軸周りに実際に生じている磁界の時間変化量を検出し,その磁界の時間変化量から高周波電流量を算出できるので,処理容器内のプラズマ内を軸方向に流れる高周波電流量を正確に検出できる。この結果,基板の処理状態を正確に評価することができる。また,処理容器内の上下方向の複数個所にプローブを配置して,複数個所の高周波電流量を算出できるので,処理容器内における高周波電流量の変動を検出し,高周波電流の流れを把握できる。これにより,処理容器内のコンディションの変化を検出できる。また,複数の装置間でコンディションを合わせ込むことができる。   According to the present invention, the amount of time change of the magnetic field actually generated around the central axis in the processing container can be detected, and the amount of high-frequency current can be calculated from the amount of time change of the magnetic field. The amount of high-frequency current flowing in the axial direction can be accurately detected. As a result, the processing state of the substrate can be accurately evaluated. In addition, since high-frequency current amounts at a plurality of locations can be calculated by arranging probes at a plurality of locations in the vertical direction in the processing vessel, it is possible to detect a change in the high-frequency current amount in the processing chamber and grasp the flow of the high-frequency current. Thereby, the change of the condition in a processing container is detectable. In addition, the condition can be adjusted among a plurality of devices.

前記プローブは,コイル状に形成され,そのコイルの軸が前記処理容器の中心軸周りの前記周方向に向けられていてもよい。   The probe may be formed in a coil shape, and the axis of the coil may be directed in the circumferential direction around the central axis of the processing container.

前記プローブは,前記磁界の時間変化量として前記コイルに生じる誘導起電力を検出し,前記算出部は,前記誘導起電力から前記高周波電流量を算出するようにしてもよい。   The probe may detect an induced electromotive force generated in the coil as a time change amount of the magnetic field, and the calculation unit may calculate the high-frequency current amount from the induced electromotive force.

前記プローブは,前記上下の高周波電極の間の高さに設けられていてもよい。   The probe may be provided at a height between the upper and lower high-frequency electrodes.

前記プローブは,前記処理容器内で上下のいずれかの高周波電極に保持された基板よりも外側に設けられていてもよい。   The probe may be provided outside the substrate held by any one of the upper and lower high-frequency electrodes in the processing container.

前記プローブの少なくとも一つは,上方の高周波電極の直下の高さに設けられ,少なくとも一つは,下方の高周波電極の直上の高さに設けられていてもよい。   At least one of the probes may be provided at a height immediately below the upper high-frequency electrode, and at least one of the probes may be provided at a height immediately above the lower high-frequency electrode.

前記算出部は,一方の高周波電極側に近いプローブにより検出された高周波電流量から,他方の高周波電極側に近いプローブにより検出された高周波電流量を減算し,それらのプローブ間で増減した軸方向の高周波電流量から径方向に流れる高周波電流量を算出するようにしてもよい。   The calculation unit subtracts the high-frequency current amount detected by the probe close to the other high-frequency electrode side from the high-frequency current amount detected by the probe close to the one high-frequency electrode side, and increases or decreases the axial direction between the probes. The amount of high-frequency current flowing in the radial direction may be calculated from the amount of high-frequency current.

上記プラズマ処理装置は,前記プローブ間の高周波電流量の算出を基板の処理中に行い,その算出された前記高周波電流量と予め設定された高周波電流量の閾値に基づいて基板の処理を停止させる制御部を有していてもよい。   The plasma processing apparatus calculates a high-frequency current amount between the probes during the processing of the substrate, and stops the processing of the substrate based on the calculated high-frequency current amount and a preset threshold value of the high-frequency current amount. You may have a control part.

上記プラズマ処理装置は,前記検出された磁界の時間変化量を,その中に含まれる各周波数成分に分解する解析部を有し,前記算出部は,前記各周波数毎に,前記プローブ間の高周波電流量を算出するようにしてもよい。   The plasma processing apparatus has an analysis unit for decomposing the time variation of the detected magnetic field into each frequency component included therein, and the calculation unit performs a high-frequency operation between the probes for each frequency. The amount of current may be calculated.

上記プラズマ処理装置は,算出された前記各周波数の高周波電流量に基づいて,特定の周波数の高周波電流量を調整する調整部を有するようにしてもよい。   The plasma processing apparatus may include an adjustment unit that adjusts the high-frequency current amount of a specific frequency based on the calculated high-frequency current amount of each frequency.

前記プローブは,絶縁体のカバーによって覆われていてもよい。   The probe may be covered with an insulating cover.

前記プローブは,生成されたプラズマに面した部材内に埋め込まれていてもよく,例えばプローブは,前記処理容器の壁部内に埋め込まれていてもよい。   The probe may be embedded in a member facing the generated plasma. For example, the probe may be embedded in a wall portion of the processing container.

また,最下部のプローブは,前記処理容器内の下方の高周波電極に保持された基板の外周を囲む環状部材内に埋め込まれていてもよい。   The lowermost probe may be embedded in an annular member surrounding the outer periphery of the substrate held by the lower high-frequency electrode in the processing container.

前記プローブは,前記処理容器内で昇降自在であってもよい。   The probe may be movable up and down in the processing container.

別の観点による本発明によれば,処理容器内に上下に対向する高周波電極を有し,それらの高周波電極の少なくともいずれかの高周波電極に高周波電力を供給し処理容器内にプラズマを生成して,基板を処理するプラズマ処理装置において,プラズマ内を流れる高周波電流量を測定する方法であって,前記処理容器内の上下方向の複数個所に設置されたプローブにより,前記処理容器の上下方向の中心軸に対し周方向に向かう磁界の時間変化量を検出する工程と,各プローブの前記磁界の時間変化量の検出結果に基づいて,前記高周波電力の供給によりプラズマ内を軸方向に流れる高周波電流量を算出する工程と,一方の高周波電極側に近いプローブにより検出された高周波電流量から,他方の高周波電極側に近いプローブにより検出された高周波電流量を減算し,それらのプローブ間で増減した軸方向の高周波電流量から径方向に流れる高周波電流量を算出する工程と,を有することを特徴とする。   According to another aspect of the present invention, the processing vessel has high-frequency electrodes facing vertically, and high-frequency power is supplied to at least one of the high-frequency electrodes to generate plasma in the processing vessel. In a plasma processing apparatus for processing a substrate, a method for measuring the amount of high-frequency current flowing in plasma, wherein the center of the processing container in the vertical direction is measured by probes installed at a plurality of vertical positions in the processing container. The amount of high-frequency current flowing in the plasma in the axial direction by the supply of the high-frequency power based on the step of detecting the amount of time change of the magnetic field in the circumferential direction with respect to the axis and the detection result of the time change amount of the magnetic field of each probe Detected by the probe near the other high-frequency electrode side from the step of calculating the amount of high-frequency current detected by the probe near the one high-frequency electrode side The frequency current amount is subtracted, to a step of calculating a high-frequency current amount that flows from the high-frequency current amount of axially increased or decreased between the probes in the radial direction, characterized in that it has a.

本発明によれば,生成されたプラズマ内を流れる高周波電流量を正確に検出できるので,その高周波電流量により基板の処理状態を正確に把握することができる。また,プラズマ内の高周波電流の流れを把握できるので,それによって装置コンディションの変化を検出でき,また装置間の機差を合わせ込むことができる。   According to the present invention, since the amount of high-frequency current flowing in the generated plasma can be detected accurately, the processing state of the substrate can be accurately grasped by the amount of high-frequency current. In addition, since the flow of the high-frequency current in the plasma can be grasped, it is possible to detect a change in the device condition and to adjust the machine difference between the devices.

以下,本発明の好ましい実施の形態について説明する。図1は,本発明にかかるプラズマ処理装置としてのプラズマエッチング装置1の構成の概略を示す縦断面の説明図である。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is an explanatory view of a longitudinal section showing an outline of a configuration of a plasma etching apparatus 1 as a plasma processing apparatus according to the present invention. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1に示すようにプラズマエッチング装置1は,例えば略円筒状の処理容器2を備えている。この処理容器2の内側に処理空間Kが形成される。処理容器2の内壁面には,例えばアルミナなどの保護膜が被覆されている。また処理容器2は,接地されている。   As shown in FIG. 1, the plasma etching apparatus 1 includes a processing container 2 having a substantially cylindrical shape, for example. A processing space K is formed inside the processing container 2. The inner wall surface of the processing container 2 is covered with a protective film such as alumina. The processing container 2 is grounded.

例えば処理容器2内の中央部の底部には,絶縁板10を介在して円柱状の電極支持台11が設けられている。電極支持台11上には,基板Wを載置する載置台を兼ねた高周波電極としての下部電極12が設けられている。下部電極12の上面は,例えば中央が円柱状に突出しており,この突出部12aに基板Wが保持される。なお,突出部12aは,静電チャックになっている。下部電極12の突出部12aの周囲には,石英製で環状の環状部材としてのフォーカスリング13が設けられている。   For example, a cylindrical electrode support 11 is provided at the bottom of the central portion in the processing container 2 with an insulating plate 10 interposed. On the electrode support 11, a lower electrode 12 is provided as a high-frequency electrode that also serves as a mounting table on which the substrate W is mounted. For example, the center of the upper surface of the lower electrode 12 protrudes in a columnar shape, and the substrate W is held by the protruding portion 12a. The protruding portion 12a is an electrostatic chuck. Around the protrusion 12a of the lower electrode 12, a focus ring 13 made of quartz as an annular member is provided.

下部電極12と対向する処理容器2の天井部には,例えば略円盤形状の上部電極20が取り付けられている。上部電極20の下面には,例えば多数のガス吐出孔20aが形成されている。ガス吐出孔20aは,上部電極20の上面に接続されたガス供給管22により,ガス供給源23に連通している。ガス供給源23には,エッチング処理のための処理ガスが貯留されている。ガス供給管22から上部電極20内に導入された処理ガスは,複数のガス吐出孔20aから処理空間Kに供給される。   For example, a substantially disk-shaped upper electrode 20 is attached to the ceiling of the processing container 2 facing the lower electrode 12. On the lower surface of the upper electrode 20, for example, a large number of gas discharge holes 20a are formed. The gas discharge hole 20 a communicates with a gas supply source 23 through a gas supply pipe 22 connected to the upper surface of the upper electrode 20. The gas supply source 23 stores a processing gas for the etching process. The processing gas introduced into the upper electrode 20 from the gas supply pipe 22 is supplied to the processing space K from the plurality of gas discharge holes 20a.

下部電極12には,整合器(図示せず)を介して高周波電源31が電気的に接続されている。高周波電源31は,例えば40MHz以上,例えば60MHzの周波数の高周波電力を出力できる。また高周波電源31と下部電極12との間には,整合器とは別に,下部電極12側の回路のインピーダンスを補正可能なインピーダンス調整部30が設けられている。なお,高周波電源31やインピーダンス調整部30の動作の制御は,後述する制御部60により行われている。   A high-frequency power source 31 is electrically connected to the lower electrode 12 via a matching unit (not shown). The high frequency power supply 31 can output high frequency power having a frequency of, for example, 40 MHz or more, for example, 60 MHz. In addition to the matching unit, an impedance adjustment unit 30 capable of correcting the impedance of the circuit on the lower electrode 12 side is provided between the high frequency power supply 31 and the lower electrode 12. The operation of the high-frequency power supply 31 and the impedance adjustment unit 30 is controlled by the control unit 60 described later.

処理容器2の側壁部2aの近傍には,上下方向に2つのプローブ40,41が設置されている。例えば下部プローブ40は,図2に示すように直径が3mm程度の円形の二巻きコイル40aにより構成されている。コイル40aは,その軸の向きが処理容器2の上下方向の中心軸周りの周方向θに向けられている。換言すると,コイル40aは,図1に示すように下部電極12上の基板Wの表面と処理容器2の側壁部2aの内側面との両面に対し,コイル面が直角になるように設置されている。これによって,処理空間Kに生じる周方向θの磁束がコイル40a内を貫通し,その磁束の変化によってコイル40aに誘導起電力を生じさせることができる。したがって,下部プローブ40は,周方向θの磁界の時間変化量を誘導起電力として検出できる。   In the vicinity of the side wall 2a of the processing container 2, two probes 40 and 41 are installed in the vertical direction. For example, as shown in FIG. 2, the lower probe 40 is constituted by a circular two-turn coil 40a having a diameter of about 3 mm. The direction of the axis of the coil 40 a is directed in the circumferential direction θ around the central axis in the vertical direction of the processing container 2. In other words, the coil 40a is installed such that the coil surface is perpendicular to both the surface of the substrate W on the lower electrode 12 and the inner surface of the side wall 2a of the processing vessel 2 as shown in FIG. Yes. Thereby, the magnetic flux in the circumferential direction θ generated in the processing space K penetrates the coil 40a, and an induced electromotive force can be generated in the coil 40a by the change of the magnetic flux. Therefore, the lower probe 40 can detect the time variation of the magnetic field in the circumferential direction θ as an induced electromotive force.

上部プローブ41も下部プローブ40と同様の構成を有し,例えば円形の二巻きコイル41aにより構成され,コイル41aは,その軸の向きが処理容器2の上下方向の中心軸周りの周方向θに向けられている。したがって,上部プローブ41は,処理空間Kに生じる周方向θの磁束をコイル41a内に貫通させ,その磁束の変化によってコイル41aに誘導される誘導起電力を,周方向θの磁界の時間変化量として検出できる。   The upper probe 41 has the same configuration as that of the lower probe 40, and is constituted by, for example, a circular two-winding coil 41a. The coil 41a has an axial direction in a circumferential direction θ around the central axis in the vertical direction of the processing vessel 2. Is directed. Therefore, the upper probe 41 penetrates the magnetic flux in the circumferential direction θ generated in the processing space K into the coil 41a, and the induced electromotive force induced in the coil 41a by the change of the magnetic flux is converted into the amount of time change of the magnetic field in the circumferential direction θ. Can be detected as

下部プローブ40は,例えば下部電極12の直上,つまり下部電極12上の基板Wの外方であって基板Wと同程度の高さに設置されている。例えば下部プローブ40は,コイル40aの下端部が基板Wの表面より5〜10mm程度高くなる位置に設置されている。これにより,下部プローブ40は,下部電極12付近の高さの周方向θの磁界の時間変化量を検出できる。また,下部ブローブ40は,図3に示すように側壁部2aの近傍であって側壁部2aの内側面から15〜25mm,より好ましくは20mmの位置に設置されている。下部プローブ40は,側壁部2aに固定された絶縁体の例えば石英又はセラミックスのカバー42によって覆われている。   The lower probe 40 is installed, for example, immediately above the lower electrode 12, that is, outside the substrate W on the lower electrode 12 and at the same height as the substrate W. For example, the lower probe 40 is installed at a position where the lower end of the coil 40a is about 5 to 10 mm higher than the surface of the substrate W. Thereby, the lower probe 40 can detect the amount of time change of the magnetic field in the circumferential direction θ at the height near the lower electrode 12. Further, as shown in FIG. 3, the lower probe 40 is disposed in the vicinity of the side wall 2a and at a position of 15 to 25 mm, more preferably 20 mm from the inner surface of the side wall 2a. The lower probe 40 is covered with a cover 42 made of an insulator, such as quartz or ceramics, fixed to the side wall 2a.

上部プローブ41は,図1に示すように例えば上部電極20の直下の高さに設置されている。例えば上部プローブ41は,コイル41aの上端部が上部電極20の下面より5〜10mm程度低くなる位置に設置されている。また,上部ブローブ41は,下部プローブ40と同様に側壁部2aの近傍であって側壁部2aの内側面から15〜25mm,より好ましくは20mmの位置に設置されている。上部プローブ41は,側壁部2aに固定された絶縁体の例えば石英又はセラミックスのカバー43によって覆われている。   As shown in FIG. 1, the upper probe 41 is installed, for example, at a height immediately below the upper electrode 20. For example, the upper probe 41 is installed at a position where the upper end portion of the coil 41 a is about 5 to 10 mm lower than the lower surface of the upper electrode 20. Similarly to the lower probe 40, the upper probe 41 is provided in the vicinity of the side wall 2a and at a position of 15 to 25 mm, more preferably 20 mm from the inner surface of the side wall 2a. The upper probe 41 is covered with a cover 43 made of an insulating material such as quartz or ceramics fixed to the side wall 2a.

下部プローブ40のコイル40aと上部プローブ41のコイル41aは,解析部としてのアナライザボックス50に接続されている。アナライザボックス50は,プローブ40,41において検出された磁界の時間変化量(誘導起電力)を,その中に含まれる各周波数成分に分解できる。   The coil 40a of the lower probe 40 and the coil 41a of the upper probe 41 are connected to an analyzer box 50 as an analysis unit. The analyzer box 50 can decompose the time variation (induced electromotive force) of the magnetic field detected by the probes 40 and 41 into each frequency component included therein.

アナライザボックス50は,算出部としてのコンピュータ51に接続されている。コンピュータ51は,アナライザボックス50で分解された各周波数成分の誘導起電力から,後述する算出原理を用いて,処理空間Kのプラズマ内を流れる高周波電流量を算出し,それらの情報を蓄積できる。なお,ここでいう高周波電流量とは,プラズマ領域P内を流れる高周波電流の各プローブ40,41の位置における総電流量である。   The analyzer box 50 is connected to a computer 51 as a calculation unit. The computer 51 can calculate the amount of high-frequency current flowing in the plasma of the processing space K from the induced electromotive force of each frequency component decomposed by the analyzer box 50, and store the information. The high-frequency current amount here is the total amount of high-frequency current flowing in the plasma region P at the positions of the probes 40 and 41.

ここで,図4を用いてプラズマ領域P内を軸方向に流れる高周波電流Izの高周波電流量Azの算出原理について説明する。図4は,プラズマ領域Pを有する処理容器2の内部を模式的に示すものである。図4中のrは,処理容器2の中心軸からの距離,Hθ(r)は,周方向θの磁界の強さ,V(r)は,コイル40a(41a)に生じる誘導起電力を示す。高周波電流Izは,高周波電流量Azを用いて,次式(1) Here, the calculation principle of the high-frequency current amount Az of the high-frequency current Iz flowing in the axial direction in the plasma region P will be described with reference to FIG. FIG. 4 schematically shows the inside of the processing vessel 2 having the plasma region P. In FIG. 4, r is the distance from the central axis of the processing vessel 2, H θ (r) is the strength of the magnetic field in the circumferential direction θ, and V (r) is the induced electromotive force generated in the coil 40a (41a). Show. The high frequency current Iz is expressed by the following equation (1) using the high frequency current amount Az.

Figure 2007266365
Figure 2007266365

で表せられる(ωは,高周波の振動数)。また,アンペールの法則から,次式(2) (Ω is the frequency of the high frequency). From Ampere's law, the following equation (2)

Figure 2007266365
Figure 2007266365

が成り立つ。また,磁束をΦとすると,ファラデーの法則により次式(3) Holds. If the magnetic flux is Φ, the following equation (3) is given by Faraday's law:

Figure 2007266365
Figure 2007266365

が成り立つ。Nをコイル40a(41a)の巻き数,Sをコイル面の面積,μを透磁率とし,式(1),(2)を式(3)に代入し変形すると, Holds. When N is the number of turns of the coil 40a (41a), S is the area of the coil surface, μ 0 is the magnetic permeability, and the equations (1) and (2) are substituted into the equation (3) and transformed,

Figure 2007266365
Figure 2007266365

となる。したがって, It becomes. Therefore,

Figure 2007266365
Figure 2007266365

となり,コイル40a(41a)に生じる誘導起電力V(r)から高周波電流量Azが算出される。 Thus, the high-frequency current amount Az is calculated from the induced electromotive force V (r) generated in the coil 40a (41a).

以下,下部プローブ40のコイル40aに生じる誘導起電力をV(r)1,その誘導起電力V(r)1から算出される高周波電流量をAz1とする。また,上部プローブ41のコイル41aに生じる誘導起電力をV(r)2,その誘導起電力V(r)2から算出される高周波電流量をAz2とする。この例の場合,下部プローブ40により算出される高周波電流量Az1は,図1に示すように下部電極12からプラズマ領域Pに入力される高周波電流量になり,上部プローブ41により算出される高周波電流量Az2は,プラズマ領域Pから上部電極20に出力される高周波電流量Az2になる。   Hereinafter, the induced electromotive force generated in the coil 40a of the lower probe 40 is V (r) 1, and the high-frequency current amount calculated from the induced electromotive force V (r) 1 is Az1. Further, the induced electromotive force generated in the coil 41a of the upper probe 41 is V (r) 2, and the high-frequency current amount calculated from the induced electromotive force V (r) 2 is Az2. In this example, the high-frequency current amount Az1 calculated by the lower probe 40 is the high-frequency current amount input from the lower electrode 12 to the plasma region P as shown in FIG. The amount Az2 is the high-frequency current amount Az2 output from the plasma region P to the upper electrode 20.

コンピュータ51は,さらに高周波電流量Az1と高周波電流量Az2の差を求めて,上部電極20と下部電極12との間で径方向の側壁部2aに流出する損出高周波電流量Ar(Ar=Az1―Az2)を算出できる。コンピュータ51は,算出された損出高周波電流量Arの情報を,例えばプラズマエッチング装置1の制御部60に出力できる。   The computer 51 further obtains a difference between the high-frequency current amount Az1 and the high-frequency current amount Az2, and causes a loss high-frequency current amount Ar (Ar = Az1) to flow out to the radial side wall portion 2a between the upper electrode 20 and the lower electrode 12. -Az2) can be calculated. The computer 51 can output information on the calculated loss high-frequency current Ar to the control unit 60 of the plasma etching apparatus 1, for example.

制御部60は,例えば出力された損出高周波電流量Arと予め設定された閾値と比較し,損出高周波電流量Arの値が閾値を超えている場合には,エラーを出力して基板Wの処理を停止させることができる。なお,閾値については,例えば処理容器2のコンディションや基板Wの処理状態に不具合が生じる場合の損出高周波電流量Arの値を予め求めておき,その値を閾値に設定する。   For example, the control unit 60 compares the output loss high-frequency current amount Ar with a preset threshold value, and outputs an error when the value of the loss high-frequency current amount Ar exceeds the threshold value. Can be stopped. As for the threshold value, for example, a value of the loss high-frequency current amount Ar when a problem occurs in the condition of the processing container 2 or the processing state of the substrate W is obtained in advance, and the value is set as the threshold value.

処理容器2の下部には,排気機構(図示せず)に通じる排気管70が接続されている。排気管70を介して処理容器2内を真空引きすることで,処理空間Kを所定の圧力に減圧できる。   An exhaust pipe 70 communicating with an exhaust mechanism (not shown) is connected to the lower portion of the processing container 2. By evacuating the processing container 2 through the exhaust pipe 70, the processing space K can be reduced to a predetermined pressure.

次に,以上のように構成されたプラズマエッチング装置1の作用について説明する。   Next, the operation of the plasma etching apparatus 1 configured as described above will be described.

プラズマエッチング装置1においてエッチング処理を行う際には,図1に示すように先ず基板Wが処理容器2内に搬入され,下部電極12上に載置される。排気管70から排気が行われ処理容器2内が減圧され,ガス吐出孔20aからは所定の処理ガスが供給される。次に,高周波電源31により,下部電極12にプラズマ生成用の高周波電力が供給される。これにより,下部電極12と上部電極20との間に高周波電圧が印加され,処理容器2内の下部電極12と上部電極20との間の処理空間Kにプラズマが生成され,プラズマ領域Pが形成される。このプラズマにより処理ガスから活性種やイオンなどが生成され,ウェハWの表面膜がエッチングされる。所定時間エッチングが行われた後,高周波電力の供給と処理ガスの供給が停止され,ウェハWが処理容器2内から搬出されて,一連のエッチング処理が終了する。   When performing an etching process in the plasma etching apparatus 1, first, the substrate W is loaded into the processing container 2 and placed on the lower electrode 12 as shown in FIG. Exhaust is performed from the exhaust pipe 70, the inside of the processing container 2 is decompressed, and a predetermined processing gas is supplied from the gas discharge hole 20a. Next, high frequency power for plasma generation is supplied to the lower electrode 12 by the high frequency power supply 31. As a result, a high frequency voltage is applied between the lower electrode 12 and the upper electrode 20, plasma is generated in the processing space K between the lower electrode 12 and the upper electrode 20 in the processing container 2, and a plasma region P is formed. Is done. The plasma generates active species and ions from the processing gas, and the surface film of the wafer W is etched. After etching is performed for a predetermined time, the supply of high-frequency power and the supply of processing gas are stopped, the wafer W is unloaded from the processing container 2, and a series of etching processes is completed.

プラズマエッチング装置1において,例えばプラズマ領域P内の高周波電流量の変動を検出する際には,先ずプラズマの発生中に,下部プローブ40により処理空間Kの下部電極12付近の周方向θの磁界の時間変化量が検出される。この際,下部プローブ40のコイル40aには,処理空間Kの下部電極12付近の周方向θの磁束Φが通過し,そのコイル40a内の磁束Φの変化によりコイル40aに誘導起電力V(r)1が生じる。この誘導起電力V(r)1が下部電極12の付近の磁界の時間変化量として検出される。また,上部プローブ41により処理空間Kの上部電極20付近の周方向θの磁界の時間変化量が検出される。上部プローブ41のコイル41aには,処理空間Kの上部電極20付近の周方向θの磁束Φが通過し,そのコイル41a内の磁束Φの変化によりコイル41aに誘導起電力V(r)2が生じる。この誘導起電力V(r)2が上部電極20付近の磁界の時間変化量として検出される。   In the plasma etching apparatus 1, for example, when detecting a change in the amount of high-frequency current in the plasma region P, first, during the generation of plasma, the magnetic field in the circumferential direction θ near the lower electrode 12 in the processing space K is generated by the lower probe 40. A time change amount is detected. At this time, a magnetic flux Φ in the circumferential direction θ near the lower electrode 12 in the processing space K passes through the coil 40a of the lower probe 40, and an induced electromotive force V (r) is generated in the coil 40a due to a change in the magnetic flux Φ in the coil 40a. ) 1 is generated. This induced electromotive force V (r) 1 is detected as a time change amount of the magnetic field in the vicinity of the lower electrode 12. Further, the amount of time change of the magnetic field in the circumferential direction θ near the upper electrode 20 in the processing space K is detected by the upper probe 41. A magnetic flux Φ in the circumferential direction θ near the upper electrode 20 in the processing space K passes through the coil 41a of the upper probe 41, and an induced electromotive force V (r) 2 is applied to the coil 41a due to a change in the magnetic flux Φ in the coil 41a. Arise. This induced electromotive force V (r) 2 is detected as a time change amount of the magnetic field in the vicinity of the upper electrode 20.

誘導起電力V(r)1,V(r)2の検出情報は,アナライザボックス50に入力され,アナライザボックス50では,検出された誘導起電力V(r)1,V(r)2が,高周波電力の基本波,高調波などの各周波数成分に分解される。各周波数成分に分解された誘導起電力V(r)1,V(r)2は,コンピュータ51に送られ,コンピュータ51では,上記式(4)などの算出原理を用いて,各誘導起電力V(r)1,V(r)2に対応する高周波電流量Az1,Az2が算出される。また,コンピュータ51では,高周波電流量Az1から高周波電流量Az2を引いた損出高周波電流量Arが算出される。   The detection information of the induced electromotive forces V (r) 1 and V (r) 2 is input to the analyzer box 50. In the analyzer box 50, the detected induced electromotive forces V (r) 1 and V (r) 2 are It is decomposed into each frequency component such as fundamental wave and harmonics of high frequency power. The induced electromotive forces V (r) 1 and V (r) 2 decomposed into the respective frequency components are sent to the computer 51. The computer 51 uses the calculation principle such as the above equation (4) to generate each induced electromotive force. High-frequency current amounts Az1 and Az2 corresponding to V (r) 1 and V (r) 2 are calculated. Further, the computer 51 calculates a loss high-frequency current amount Ar obtained by subtracting the high-frequency current amount Az2 from the high-frequency current amount Az1.

算出された高周波電流量Az1,Az2,Arは,例えば制御部60に出力され,例えば損出高周波電流量Arが周波数成分毎に予め設定された閾値と比較され,閾値内の場合には正常と判定され,閾値を超えていた場合には,例えばエラーが出力され,基板Wの処理が停止される。また,高周波電流量Az1,Az2,Arの情報は,制御部60に蓄積され,基板Wの処理状態や処理容器2内のコンディションを評価する情報として利用される。なお,閾値の設定の仕方によって,閾値を下回った場合にエラーを出力するようにしてもよい。   The calculated high-frequency current amounts Az1, Az2, Ar are output to, for example, the control unit 60. For example, the loss high-frequency current amount Ar is compared with a threshold value set in advance for each frequency component. If it is determined that the threshold value is exceeded, an error is output, for example, and the processing of the substrate W is stopped. Information on the high-frequency current amounts Az1, Az2, Ar is stored in the control unit 60 and used as information for evaluating the processing state of the substrate W and the condition in the processing container 2. Note that an error may be output when the threshold value is exceeded, depending on how the threshold value is set.

以上の実施の形態によれば,プローブ40,41が処理容器2内に設置されたので,プラズマ内を流れる高周波電流量Az,Arを直接的に検出することができる。このため,正確な高周波電流量Az,Arを検出でき,この高周波電流量Az,Arにより例えば基板Wの処理状態を正確に評価することができる。   According to the above embodiment, since the probes 40 and 41 are installed in the processing container 2, the high-frequency current amounts Az and Ar flowing in the plasma can be directly detected. Therefore, accurate high-frequency current amounts Az and Ar can be detected, and for example, the processing state of the substrate W can be accurately evaluated based on the high-frequency current amounts Az and Ar.

また,処理容器2内の上下の電極12,20付近にプローブ40,41をそれぞれ設けたので,下部電極12からプラズマ領域P内に入力される高周波電流量Az1と,プラズマ領域Pから上部電極20に出力される高周波電流量Az2とを検出でき,それらの高周波電流量Az1,Az2から,下部電極12と上部電極20との間の側壁面2aに流出する損出高周波電流量Arを検出できる。これにより,プラズマ領域P内における高周波電流量の変動を検出し,プラズマ領域P内の高周波電流の流れを把握できる。この結果,例えば処理容器2内のコンディションを把握できる。例えば処理容器2の内壁面や電極12,20に汚れや亀裂が生じたり,内壁面の保護膜が減少したり,或いは上部電極20のガス孔20aなどに異常放電が生じているような場合には,高周波電流量Izの上部電極20方向の流れが妨げられたり,側壁面2a方向への流出が妨げられたりして,高周波電流量Az,Arが変わる。したがって,本実施の形態のように高周波電流量Az,Arから高周波電流の流れを把握することにより,処理容器2内のコンディションの変化を検出できる。また,処理容器2内のコンディションを把握できるので,そのコンディションに基づいて他のプラズマエッチング装置との間の機差を補正できる。   Further, since the probes 40 and 41 are provided in the vicinity of the upper and lower electrodes 12 and 20 in the processing chamber 2, respectively, the high-frequency current amount Az1 input from the lower electrode 12 into the plasma region P and the upper electrode 20 from the plasma region P. The high-frequency current amount Az2 that is output to the side wall surface 2a between the lower electrode 12 and the upper electrode 20 can be detected from the high-frequency current amounts Az1 and Az2. Thereby, the fluctuation | variation of the high frequency current amount in the plasma area | region P is detected, and the flow of the high frequency current in the plasma area | region P can be grasped | ascertained. As a result, for example, the condition in the processing container 2 can be grasped. For example, when the inner wall surface of the processing container 2 and the electrodes 12 and 20 are soiled or cracked, the protective film on the inner wall surface is reduced, or abnormal discharge occurs in the gas hole 20a of the upper electrode 20 or the like. The flow of the high-frequency current amount Iz in the direction of the upper electrode 20 is hindered or the outflow of the high-frequency current amount Iz in the direction of the side wall surface 2a is hindered to change the high-frequency current amounts Az and Ar. Therefore, by grasping the flow of the high-frequency current from the high-frequency current amounts Az and Ar as in the present embodiment, it is possible to detect a change in the condition in the processing container 2. In addition, since the condition in the processing container 2 can be grasped, the machine difference with other plasma etching apparatuses can be corrected based on the condition.

また,各プローブ40,41がコイル状に形成され,コイル40a,41aの軸が処理空間Kの周方向θに向けられているので,コイル40a,41a内に磁束Φを貫通させ,電磁誘導によりコイル40a,41aに誘導起電力を生じさせることにより,周方向θの磁界の時間変化量を誘導起電力V(r)として簡単かつ正確に検出することができる。   Further, since the probes 40 and 41 are formed in a coil shape and the axes of the coils 40a and 41a are oriented in the circumferential direction θ of the processing space K, the magnetic flux Φ is passed through the coils 40a and 41a, and electromagnetic induction is used. By generating an induced electromotive force in the coils 40a and 41a, it is possible to easily and accurately detect the time change amount of the magnetic field in the circumferential direction θ as the induced electromotive force V (r).

各プローブ40,41が絶縁体の石英又はセラミックスからなるカバー42,43により覆われているので,プラズマによるプローブ40,41の腐食を防止できる。   Since the probes 40 and 41 are covered with covers 42 and 43 made of insulating quartz or ceramics, corrosion of the probes 40 and 41 due to plasma can be prevented.

各プローブ40,41が,処理容器2内の基板Wの外側であって側壁部2aの近傍に設けられたので,処理容器2内にプローブ40,41を設けても,処理空間Kの基板Wの処理を妨げることなく,基板Wの処理を適正に行うことができる。   Since the probes 40 and 41 are provided outside the substrate W in the processing container 2 and in the vicinity of the side wall portion 2a, even if the probes 40 and 41 are provided in the processing container 2, the substrate W in the processing space K is provided. The processing of the substrate W can be appropriately performed without hindering the processing.

またプローブ40,41は,処理容器2の側壁部2aの内側面から15mm〜25mmの位置に設けられている。図5は,他の条件を同じにして,プローブと側壁部2aとの距離を変えた場合のプローブによる検出電流量を示すグラフである。この図5のグラフから,プローブが側壁部2aから15mm〜25mmの距離にあるときに,検出電流量が高くなることが分かる。したがって,プローブ40,41を側壁部2aから15mm〜25mmの範囲に位置させることにより,プローブ40,41の感度を最適にすることができる。   The probes 40 and 41 are provided at positions of 15 mm to 25 mm from the inner surface of the side wall 2a of the processing container 2. FIG. 5 is a graph showing the amount of current detected by the probe when the other conditions are the same and the distance between the probe and the side wall 2a is changed. From the graph of FIG. 5, it can be seen that when the probe is at a distance of 15 mm to 25 mm from the side wall 2a, the detected current amount increases. Therefore, the sensitivity of the probes 40 and 41 can be optimized by positioning the probes 40 and 41 within the range of 15 mm to 25 mm from the side wall 2a.

また,以上の実施の形態では,下部プローブ40を基板Wと同程度の高さの下部電極12の直上の高さに配置したので,下部電極12からプラズマ領域Pに流入した高周波電流量Az1を正確に検出できる。また,上部プローブ41を上部電極20の直下の高さに配置したので,プラズマ領域Pから上部電極20に流出する高周波電流量Az2を正確に検出できる。さらに,これにより下部電極12から上部電極20に至るまでに外部に流出する高周波電流量Arも正確に検出できる。   In the above embodiment, since the lower probe 40 is arranged at a height immediately above the lower electrode 12 having the same height as the substrate W, the high-frequency current amount Az1 flowing into the plasma region P from the lower electrode 12 is calculated. It can be detected accurately. Further, since the upper probe 41 is disposed at a height immediately below the upper electrode 20, the high-frequency current amount Az2 flowing out from the plasma region P to the upper electrode 20 can be accurately detected. In addition, the amount of high-frequency current Ar flowing out from the lower electrode 12 to the upper electrode 20 can be detected accurately.

上記実施の形態では,制御部60により,損出高周波電流量Arが閾値を超えた場合に基板Wの処理を停止させたので,基板Wの処理状態の異常や処理容器2内のコンディションの異常に早期に対応することができ,不良の基板Wを大量に製造することを防止できる。   In the above embodiment, since the processing of the substrate W is stopped by the controller 60 when the loss high-frequency current amount Ar exceeds the threshold value, the processing state of the substrate W or the condition in the processing container 2 is abnormal. Therefore, it is possible to prevent a large number of defective substrates W from being manufactured.

アナライザボックス50により,プローブ40,41から出力された誘導起電力V(r)1,V(r)2を,高周波電力の基本波,高調波などの各周波数成分に分解するので,コンピュータ51において,各周波数成分毎に高周波電流量Az1,Az2と損出高周波電流量Arを算出できる。このため,基板Wの処理状態や処理容器2内のコンディションをより詳細に把握できる。   In the computer 51, the analyzer box 50 decomposes the induced electromotive forces V (r) 1 and V (r) 2 output from the probes 40 and 41 into respective frequency components such as a fundamental wave and a harmonic wave of the high frequency power. The high-frequency current amounts Az1 and Az2 and the loss high-frequency current amount Ar can be calculated for each frequency component. For this reason, the processing state of the substrate W and the condition in the processing container 2 can be grasped in more detail.

上記実施の形態において,算出された特定の周波数成分である基本波や高調波の高周波電流量Arに基づいて,下部電極12側の回路における基本波や高調波に対するインピーダンスを制御してもよい。この場合,例えばインピーダンス調整部30は,図6に示すように可変素子としての可変コンデンサ75,固定コイル76などから構成され,可変コンデンサ75の容量を変更することによって,下部電極12側の回路全体の基本波や高調波に対するインピーダンスを変更できる。そして,制御部60は,算出された基本波や高調波の高周波電流量Az,Arに基づいて,インピーダンス調整部30を制御し,下部電極12側の回路の基本波や高調波に対するインピーダンスを制御する。こうすることにより,プラズマ内の基本波や高調波の高周波電流量Az,Arを調整し,プラズマ状態や基板Wの処理状態,又は処理容器2内のコンディションをより適正なものに調整できる。   In the above-described embodiment, the impedance to the fundamental wave and harmonics in the circuit on the lower electrode 12 side may be controlled based on the fundamental frequency and harmonic high-frequency current amount Ar that are the calculated specific frequency components. In this case, for example, the impedance adjustment unit 30 includes a variable capacitor 75 as a variable element, a fixed coil 76, and the like as shown in FIG. 6, and the entire circuit on the lower electrode 12 side is changed by changing the capacitance of the variable capacitor 75. Impedance for fundamental wave and harmonics can be changed. Then, the control unit 60 controls the impedance adjustment unit 30 based on the calculated high-frequency current amounts Az and Ar of the fundamental wave and harmonics, and controls the impedance of the circuit on the lower electrode 12 side with respect to the fundamental wave and harmonics. To do. By doing so, the high-frequency current amounts Az and Ar of the fundamental wave and harmonics in the plasma can be adjusted, and the plasma state, the processing state of the substrate W, or the condition in the processing container 2 can be adjusted to a more appropriate one.

以上の実施の形態では,プローブ40,41が処理容器2の側壁部2aに取り付けられていたが,プローブ40,41は,図7に示すように側壁部2a内に埋め込まれていてもよい。この場合,例えば側壁部2a内に上下2つの空間80,81が形成され,その空間80,81内にプローブ40,41がそれぞれ設置される。こうすることにより,処理容器2内の処理空間Kにプローブ40,41が突出しないので,処理空間Kのプラズマがプローブ40,41により影響を受けることがない。また,側壁部2aによりプローブ40,41が保護されるので,プラズマによるプローブ40,41の腐食も防止できる。なお,この場合,上述の図5に示したようにプローブ40,41により検出される電流量が減少することも考えられるので,この場合例えば予めその減少量を考慮に入れて,高周波電流量Azを評価するようにしてもよい。   In the above embodiment, the probes 40 and 41 are attached to the side wall 2a of the processing vessel 2. However, the probes 40 and 41 may be embedded in the side wall 2a as shown in FIG. In this case, for example, two upper and lower spaces 80 and 81 are formed in the side wall 2a, and the probes 40 and 41 are installed in the spaces 80 and 81, respectively. By doing so, the probes 40 and 41 do not protrude into the processing space K in the processing container 2, so that the plasma in the processing space K is not affected by the probes 40 and 41. Further, since the probes 40 and 41 are protected by the side wall portion 2a, corrosion of the probes 40 and 41 by plasma can be prevented. In this case, it is conceivable that the amount of current detected by the probes 40 and 41 is reduced as shown in FIG. 5 described above. In this case, for example, the amount of high frequency current Az is taken into consideration in advance. May be evaluated.

また,上記例において,フォーカスリング13の材質が誘電体の場合,下部プローブ40が,図8に示すように基板Wの周囲にあるフォーカスリング13の内部に埋め込まれていてもよい。かかる場合,例えばフォーカスリング13内に空間90が形成され,その空間90内に下部プローブ40が設置される。この場合も,処理容器2内の処理空間Kに下部プローブ40が突出することがないので,処理空間Kのプラズマが下部プローブ40により影響を受けることがない。また,フォーカスリング13により下部プローブ40が保護されるので,プラズマによる下部プローブ40の腐食も防止できる。さらに,下部プローブ40の位置が基板Wの表面に近いので,エッチングプロセスに最も影響を与える基板Wの直上に流出する高周波電流量Az1を正確に検出できる。   In the above example, when the material of the focus ring 13 is a dielectric, the lower probe 40 may be embedded in the focus ring 13 around the substrate W as shown in FIG. In such a case, for example, a space 90 is formed in the focus ring 13, and the lower probe 40 is installed in the space 90. Also in this case, since the lower probe 40 does not protrude into the processing space K in the processing container 2, the plasma in the processing space K is not affected by the lower probe 40. Further, since the lower probe 40 is protected by the focus ring 13, corrosion of the lower probe 40 due to plasma can be prevented. Furthermore, since the position of the lower probe 40 is close to the surface of the substrate W, it is possible to accurately detect the high-frequency current amount Az1 that flows out immediately above the substrate W that most affects the etching process.

なお,プローブ40,41は,側壁部2aやフォーカスリング13に限られず,処理容器2内を見るための窓部(図示せず)や上部電極20などのプラズマ領域Pに面する他の誘電体の部材に埋め込まれていてもよい。   The probes 40 and 41 are not limited to the side wall 2a and the focus ring 13, but other dielectrics facing the plasma region P such as a window (not shown) for viewing the inside of the processing vessel 2 and the upper electrode 20. It may be embedded in the member.

以上の実施の形態では,プローブ40,41が側壁部2aに固定されていたが,プローブ40,41が上下方向に移動できるようにしてもよい。この場合,例えば図9に示すように処理容器2の側壁部2aに,上下方向に延びるレール100が設けられ,このレール100に,上下に移動する2つのスライダ101,102が設けられてもよい。そしてその下方のスライダ101に,下部プローブ40及びそのカバー42が取り付けられ,上方のスライダ102に,上部プローブ41及びそのカバー43がそれぞれ取り付けられてもよい。高周波電流量Az1,Az2,Arを検出する際には,下部プローブ40又は上部プローブ41のいずれか,或いは下部プローブ40と上部プローブ41の両方を上下動させ,上下方向の任意の位置で磁界の時間変化量を検出し,各位置の高周波電流量Az1,Az2と,その損出高周波電流量Arを算出する。こうすることにより,例えば側壁部2a面内において損出高周波電流量Arの多い位置或いは少ない位置を特定できる。この結果,例えば処理容器2内のコンディションの変動の原因となる側壁部2aの亀裂や保護膜の剥離などの位置を特定できる。また,プラズマ領域P内の高周波電流Izの流れをより詳細に把握でき,基板Wの処理状態や処理容器2内のコンディションを正確に知ることができる。   In the above embodiment, the probes 40 and 41 are fixed to the side wall 2a. However, the probes 40 and 41 may be movable in the vertical direction. In this case, for example, as shown in FIG. 9, a rail 100 extending in the vertical direction is provided on the side wall 2 a of the processing container 2, and two sliders 101 and 102 that move up and down may be provided on the rail 100. . The lower probe 40 and its cover 42 may be attached to the lower slider 101, and the upper probe 41 and its cover 43 may be attached to the upper slider 102, respectively. When detecting the high-frequency current amounts Az1, Az2, Ar, either the lower probe 40 or the upper probe 41, or both the lower probe 40 and the upper probe 41 are moved up and down, and the magnetic field is detected at an arbitrary position in the vertical direction. The amount of time change is detected, and the high-frequency current amounts Az1, Az2 at each position and the loss high-frequency current amount Ar are calculated. By doing so, for example, a position where the loss high-frequency current amount Ar is large or small can be specified in the side wall 2a surface. As a result, for example, it is possible to specify a position such as a crack in the side wall 2a or a peeling of the protective film that causes a change in the condition in the processing container 2. Further, the flow of the high-frequency current Iz in the plasma region P can be grasped in more detail, and the processing state of the substrate W and the condition in the processing container 2 can be accurately known.

以上,添付図面を参照しながら本発明の好適な実施の形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された思想の範疇内において,各種の変更例または修正例に相到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。例えばプローブ40,41のコイル40a,41aの巻き数は,二巻に限られず,一巻或いは三巻以上であってもよい。またコイル40a,41aの形状も円形でなく,方形であってもよい。また,以上の実施の形態では,下部電極12に高周波電力が供給されていたが,上部電極20に高周波電力を供給してもよい。また下部電極12と上部電極20の両方に高周波電力を供給してもよい。また,プローブの数も2つに限られず,3つ以上の複数箇所に設けられてもよい。以上の実施の形態では,本発明をプラズマエッチング装置1に適用していたが,本発明は,エッチング処理以外の基板処理,例えば成膜処理を行うプラズマ処理装置にも適用できる。また,本発明のプラズマ処理装置で処理される基板は,半導体ウェハ,有機EL基板,FPD(フラットパネルディスプレイ)用の基板等のいずれのものであってもよい。   The preferred embodiment of the present invention has been described above with reference to the accompanying drawings, but the present invention is not limited to such an example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the spirit described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs. For example, the number of turns of the coils 40a and 41a of the probes 40 and 41 is not limited to two, but may be one or three or more. The shapes of the coils 40a and 41a may not be circular but may be square. In the above embodiment, the high frequency power is supplied to the lower electrode 12, but the high frequency power may be supplied to the upper electrode 20. Further, high frequency power may be supplied to both the lower electrode 12 and the upper electrode 20. Further, the number of probes is not limited to two, and may be provided at three or more locations. In the above embodiment, the present invention is applied to the plasma etching apparatus 1, but the present invention can also be applied to a substrate processing other than the etching process, for example, a plasma processing apparatus that performs a film forming process. Further, the substrate processed by the plasma processing apparatus of the present invention may be any of a semiconductor wafer, an organic EL substrate, a substrate for FPD (flat panel display), and the like.

本発明によれば,基板のプラズマ処理装置において,プラズマ内を流れる高周波電流量を正確に検出し,またプラズマ内の高周波電流の流れを把握する際に有用である。   The present invention is useful for accurately detecting the amount of high-frequency current flowing in the plasma and grasping the flow of high-frequency current in the plasma in the substrate plasma processing apparatus.

本実施の形態にかかるプラズマエッチング装置の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of a structure of the plasma etching apparatus concerning this Embodiment. プローブのコイルの模式図である。It is a schematic diagram of the coil of a probe. プローブの設置位置を示す説明図である。It is explanatory drawing which shows the installation position of a probe. 高周波電流量を算出するための処理空間の模式図である。It is a schematic diagram of the processing space for calculating the amount of high frequency current. プローブの側壁部からの距離とその位置における検出電流量との関係を示すグラフである。It is a graph which shows the relationship between the distance from the side wall part of a probe, and the detected electric current amount in the position. インピーダンス調整部の構成を示す模式図である。It is a schematic diagram which shows the structure of an impedance adjustment part. プローブを側壁部内に設けた場合のプラズマエッチング装置の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of a structure of the plasma etching apparatus at the time of providing a probe in a side wall part. プローブをフォーカスリング内に設けた場合のプラズマエッチング装置の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of a structure of the plasma etching apparatus at the time of providing a probe in a focus ring. プローブを上下動自在にした場合のプラズマエッチング装置の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of a structure of the plasma etching apparatus at the time of making a probe movable up and down.

符号の説明Explanation of symbols

1 プラズマエッチング装置
2 処理容器
12 下部電極
20 上部電極
40 下部プローブ
41 上部プローブ
51 コンピュータ
60 制御部
P プラズマ領域
K 処理空間
W 基板
DESCRIPTION OF SYMBOLS 1 Plasma etching apparatus 2 Processing container 12 Lower electrode 20 Upper electrode 40 Lower probe 41 Upper probe 51 Computer 60 Control part P Plasma area K Processing space W Substrate

Claims (16)

処理容器内に上下に対向する高周波電極を有し,それらの高周波電極の少なくともいずれかの高周波電極に高周波電力を供給し処理容器内にプラズマを生成して,基板を処理するプラズマ処理装置であって,
前記処理容器内に設置され,前記処理容器の上下方向の中心軸に対し周方向に向かう磁界の時間変化量を検出するプローブと,
前記プローブによる前記磁界の時間変化量の検出結果に基づいて,前記高周波電力の供給によりプラズマ内を軸方向に流れる高周波電流量を算出する算出部と,を有し,
前記プローブは,前記処理容器内の上下方向の複数個所に設けられていることを特徴とする,プラズマ処理装置。
A plasma processing apparatus having a high-frequency electrode facing vertically in a processing vessel, supplying high-frequency power to at least one of the high-frequency electrodes, generating plasma in the processing vessel, and processing a substrate. And
A probe that is installed in the processing container and detects the amount of time change of the magnetic field in the circumferential direction with respect to the central axis in the vertical direction of the processing container;
A calculation unit that calculates the amount of high-frequency current flowing in the axial direction in the plasma by the supply of the high-frequency power based on the detection result of the time change amount of the magnetic field by the probe;
The plasma processing apparatus, wherein the probe is provided at a plurality of locations in the vertical direction in the processing container.
前記プローブは,コイル状に形成され,そのコイルの軸が前記処理容器の中心軸周りの前記周方向に向けられていることを特徴とする,請求項1に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the probe is formed in a coil shape, and an axis of the coil is oriented in the circumferential direction around a central axis of the processing container. 前記プローブは,前記磁界の時間変化量として前記コイルに生じる誘導起電力を検出し,
前記算出部は,前記誘導起電力から前記高周波電流量を算出することを特徴とする,請求項2に記載のプラズマ処理装置。
The probe detects an induced electromotive force generated in the coil as a time change amount of the magnetic field,
The plasma processing apparatus according to claim 2, wherein the calculation unit calculates the high-frequency current amount from the induced electromotive force.
前記プローブは,前記上下の高周波電極の間の高さに設けられていることを特徴とする,請求項1〜3のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the probe is provided at a height between the upper and lower high-frequency electrodes. 前記プローブは,前記処理容器内で上下のいずれかの高周波電極に保持された基板よりも外側に設けられていることを特徴とする,請求項1〜4のいずれかに記載のプラズマ処理装置。 5. The plasma processing apparatus according to claim 1, wherein the probe is provided outside a substrate held by any one of upper and lower high-frequency electrodes in the processing container. 前記プローブの少なくとも一つは,上方の高周波電極の直下の高さに設けられ,少なくとも一つは,下方の高周波電極の直上の高さに設けられていることを特徴とする,請求項1〜5のいずれかに記載のプラズマ処理装置。 The at least one of the probes is provided at a height immediately below the upper high-frequency electrode, and at least one of the probes is provided at a height immediately above the lower high-frequency electrode. The plasma processing apparatus according to claim 5. 前記算出部は,一方の高周波電極側に近いプローブにより検出された高周波電流量から,他方の高周波電極側に近いプローブにより検出された高周波電流量を減算し,それらのプローブ間で増減した軸方向の高周波電流量から径方向に流れる高周波電流量を算出することを特徴とする,請求項1〜6のいずれかに記載のプラズマ処理装置。 The calculation unit subtracts the high-frequency current amount detected by the probe close to the other high-frequency electrode side from the high-frequency current amount detected by the probe close to the one high-frequency electrode side, and increases or decreases the axial direction between the probes. The plasma processing apparatus according to claim 1, wherein the amount of high-frequency current flowing in the radial direction is calculated from the amount of high-frequency current. 前記プローブ間の高周波電流量の算出を基板の処理中に行い,その算出された前記高周波電流量と予め設定された高周波電流量の閾値に基づいて基板の処理を停止させる制御部を有することを特徴とする,請求項7に記載のプラズマ処理装置。 A controller that performs a calculation of the high-frequency current amount between the probes during the processing of the substrate, and stops the processing of the substrate based on the calculated high-frequency current amount and a preset threshold value of the high-frequency current amount; 8. The plasma processing apparatus according to claim 7, wherein the plasma processing apparatus is characterized. 前記各プローブにより検出された磁界の時間変化量を,その中に含まれる各周波数成分に分解する解析部を有し,
前記算出部は,前記各周波数毎に,前記プローブ間の高周波電流量を算出することを特徴とする,請求項7又は8のいずれかに記載のプラズマ処理装置。
An analysis unit for decomposing the time variation of the magnetic field detected by each probe into frequency components included therein;
The plasma processing apparatus according to claim 7, wherein the calculation unit calculates a high-frequency current amount between the probes for each frequency.
算出された前記各周波数の高周波電流量に基づいて,特定の周波数の高周波電流量を調整する調整部を有することを特徴とする,請求項9に記載のプラズマ処理装置。 10. The plasma processing apparatus according to claim 9, further comprising an adjustment unit configured to adjust a high-frequency current amount of a specific frequency based on the calculated high-frequency current amount of each frequency. 前記プローブは,絶縁体のカバーによって覆われていることを特徴とする,請求項1〜10のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the probe is covered with an insulating cover. 前記プローブは,生成されたプラズマに面した部材内に埋め込まれていることを特徴とする,請求項1〜10のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the probe is embedded in a member facing the generated plasma. 前記プローブは,前記処理容器の壁部内に埋め込まれていることを特徴とする,請求項12に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 12, wherein the probe is embedded in a wall portion of the processing container. 最下部のプローブは,前記処理容器内の下方の高周波電極に保持された基板の外周を囲む環状部材内に埋め込まれていることを特徴とする,請求項12に記載のプラズマ処理装置。 The plasma processing apparatus according to claim 12, wherein the lowermost probe is embedded in an annular member surrounding an outer periphery of a substrate held by a lower high-frequency electrode in the processing container. 前記プローブは,前記処理容器内で昇降自在であることを特徴とする,請求項1〜11のいずれかに記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the probe is movable up and down in the processing container. 処理容器内に上下に対向する高周波電極を有し,それらの高周波電極の少なくともいずれかの高周波電極に高周波電力を供給し処理容器内にプラズマを生成して,基板を処理するプラズマ処理装置において,プラズマ内を流れる高周波電流量を測定する方法であって,
前記処理容器内の上下方向の複数個所に設置されたプローブにより,前記処理容器の上下方向の中心軸に対し周方向に向かう磁界の時間変化量を検出する工程と,
各プローブの前記磁界の時間変化量の検出結果に基づいて,前記高周波電力の供給によりプラズマ内を軸方向に流れる高周波電流量を算出する工程と,
一方の高周波電極側に近いプローブにより検出された高周波電流量から,他方の高周波電極側に近いプローブにより検出された高周波電流量を減算し,それらのプローブ間で増減した軸方向の高周波電流量から径方向に流れる高周波電流量を算出する工程と,を有することを特徴とする,プラズマ内の高周波電流量の測定方法。
In a plasma processing apparatus having a high-frequency electrode opposed vertically in a processing container, supplying high-frequency power to at least one of the high-frequency electrodes to generate plasma in the processing container, and processing a substrate, A method for measuring the amount of high-frequency current flowing in plasma,
Detecting a time change amount of a magnetic field in a circumferential direction with respect to a central axis in the vertical direction of the processing container by using probes installed at a plurality of vertical positions in the processing container;
Calculating the amount of high-frequency current flowing in the axial direction in the plasma by supplying the high-frequency power based on the detection result of the time change amount of the magnetic field of each probe;
The amount of high-frequency current detected by the probe close to the one high-frequency electrode is subtracted from the amount of high-frequency current detected by the probe close to the one high-frequency electrode, and the amount of axial high-frequency current increased or decreased between these probes is subtracted. And a step of calculating the amount of high-frequency current flowing in the radial direction.
JP2006090278A 2006-03-29 2006-03-29 Plasma processing apparatus and method for measuring high-frequency current in plasma Expired - Fee Related JP4727479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006090278A JP4727479B2 (en) 2006-03-29 2006-03-29 Plasma processing apparatus and method for measuring high-frequency current in plasma
US11/692,340 US7993487B2 (en) 2006-03-29 2007-03-28 Plasma processing apparatus and method of measuring amount of radio-frequency current in plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090278A JP4727479B2 (en) 2006-03-29 2006-03-29 Plasma processing apparatus and method for measuring high-frequency current in plasma

Publications (2)

Publication Number Publication Date
JP2007266365A true JP2007266365A (en) 2007-10-11
JP4727479B2 JP4727479B2 (en) 2011-07-20

Family

ID=38639048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090278A Expired - Fee Related JP4727479B2 (en) 2006-03-29 2006-03-29 Plasma processing apparatus and method for measuring high-frequency current in plasma

Country Status (1)

Country Link
JP (1) JP4727479B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294909A (en) * 2006-03-29 2007-11-08 Tokyo Electron Ltd Plasma processing device
JP2014029860A (en) * 2013-08-27 2014-02-13 Advantest Corp Power supply device and measuring device
JP2014229603A (en) * 2013-05-22 2014-12-08 チェ デギュウ Remote plasma system having self-management function and self management method of the same
WO2015125379A1 (en) * 2014-02-21 2015-08-27 日新電機株式会社 Method and device for measuring high-frequency current for use in plasma generation device
JP2019525390A (en) * 2016-06-29 2019-09-05 ティーエーイー テクノロジーズ, インコーポレイテッド Mineral insulated combined magnetic flux loop and B dot wire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171821A (en) * 1982-03-31 1983-10-08 Matsushita Electric Ind Co Ltd Detection of contamination and purification degree in plasma processing and apparatus thereof
JPS628523A (en) * 1985-07-05 1987-01-16 Canon Inc Ion-beam etching apparatus
JP2003223999A (en) * 2002-01-30 2003-08-08 Alps Electric Co Ltd Plasma treatment device
JP2004150953A (en) * 2002-10-30 2004-05-27 Fab Solution Kk Detector and method detecting abnormal discharge
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
JP2006512772A (en) * 2002-12-31 2006-04-13 東京エレクトロン株式会社 Method and apparatus for monitoring a material processing system
JP2007294909A (en) * 2006-03-29 2007-11-08 Tokyo Electron Ltd Plasma processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171821A (en) * 1982-03-31 1983-10-08 Matsushita Electric Ind Co Ltd Detection of contamination and purification degree in plasma processing and apparatus thereof
JPS628523A (en) * 1985-07-05 1987-01-16 Canon Inc Ion-beam etching apparatus
JP2003223999A (en) * 2002-01-30 2003-08-08 Alps Electric Co Ltd Plasma treatment device
JP2004150953A (en) * 2002-10-30 2004-05-27 Fab Solution Kk Detector and method detecting abnormal discharge
JP2006512772A (en) * 2002-12-31 2006-04-13 東京エレクトロン株式会社 Method and apparatus for monitoring a material processing system
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
JP2007294909A (en) * 2006-03-29 2007-11-08 Tokyo Electron Ltd Plasma processing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294909A (en) * 2006-03-29 2007-11-08 Tokyo Electron Ltd Plasma processing device
JP2014229603A (en) * 2013-05-22 2014-12-08 チェ デギュウ Remote plasma system having self-management function and self management method of the same
JP2014029860A (en) * 2013-08-27 2014-02-13 Advantest Corp Power supply device and measuring device
WO2015125379A1 (en) * 2014-02-21 2015-08-27 日新電機株式会社 Method and device for measuring high-frequency current for use in plasma generation device
JP2019525390A (en) * 2016-06-29 2019-09-05 ティーエーイー テクノロジーズ, インコーポレイテッド Mineral insulated combined magnetic flux loop and B dot wire
JP7148135B2 (en) 2016-06-29 2022-10-05 ティーエーイー テクノロジーズ, インコーポレイテッド Mineral insulated interlaced flux loops and B-dot wires

Also Published As

Publication number Publication date
JP4727479B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US9754769B2 (en) Metrology methods to detect plasma in wafer cavity and use of the metrology for station-to-station and tool-to-tool matching
US9349575B2 (en) Remote plasma system having self-management function and self management method of the same
JP5246836B2 (en) Process performance inspection method and apparatus for plasma processing apparatus
JP4920991B2 (en) Plasma processing apparatus and plasma processing method
JP4727479B2 (en) Plasma processing apparatus and method for measuring high-frequency current in plasma
US7655110B2 (en) Plasma processing apparatus
JP2014186994A (en) Plasma processing device, and plasma processing method
KR20120097504A (en) Methods and apparatus for detecting the confinement state of plasma in a plasma processing system
JP5107597B2 (en) Plasma processing equipment
US7993487B2 (en) Plasma processing apparatus and method of measuring amount of radio-frequency current in plasma
US20100050938A1 (en) Plasma processing apparatus
JP7059969B2 (en) Plasma processing equipment
JP2012138581A (en) Plasma processing apparatus and plasma processing method
US20120098545A1 (en) Plasma Diagnostic Apparatus And Method For Controlling The Same
US11361941B2 (en) Methods and apparatus for processing a substrate
JP3959318B2 (en) Plasma leak monitoring method, plasma processing apparatus, plasma processing method, and computer program
KR100839909B1 (en) High density plasma chemical vapor deposition equipment and method for processing of the same
WO2003077303A1 (en) Plasma processing method, seasoning end detection method, and plasma processing device
KR102433474B1 (en) Plasma processing apparatus and control method
CN112345814A (en) DC bias detection method, device, jig and lower electrode system
JP2003045846A (en) Monitoring and controlling method of semiconductor- manufacturing apparatus
WO2024019054A1 (en) Monitoring method and plasma processing apparatus
TW202233025A (en) Abnormality detecting method of plasma processing apparatus and plasma processing apparatus can detect abnormality generated in a plasma processing apparatus
KR20230092941A (en) Non-invasive measurement of plasma systems
KR20230094932A (en) Substrate processing system including impedence controlling apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees